1
|
Jiménez-Juliana M, Martínez-Jiménez MI, Blanco L. Remdesivir triphosphate is a valid substrate to initiate synthesis of DNA primers by human PrimPol. DNA Repair (Amst) 2024; 143:103772. [PMID: 39378561 DOI: 10.1016/j.dnarep.2024.103772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/19/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024]
Abstract
Remdesivir is a broad-spectrum antiviral drug which has been approved to treat COVID-19. Remdesivir is in fact a prodrug, which is metabolized in vivo into the active form remdesivir triphosphate (RTP), an analogue of adenosine triphosphate (ATP) with a cyano group substitution in the carbon 1' of the ribose (1'-CN). RTP is a substrate for RNA synthesis and can be easily incorporated by viral RNA-dependent RNA polymerases (RdRp). Importantly, once remdesivir is incorporated (now monophosphate), it will act as a delayed chain terminator, thus blocking viral RNA synthesis. It has been reported that mitochondrial Polγ is also blocked in vitro by RTP, but the low impact in vivo on mitochondrial DNA replication stalling is likely due to repriming by the human DNA-directed DNA Primase/Polymerase (HsPrimPol), which also operates in mitochondria. In this work, we have tested if RTP is a valid substrate for both DNA primase and DNA polymerase activities of HsPrimPol, and its impact in the production of mature DNA primers. RTP resulted to be an invalid substrate for elongation, but it can be used to initiate primers at the 5´site, competing with ATP. Nevertheless, RTP-initiated primers are abortive, ocassionally reaching a maximal length of 4-5 nucleotides, and do not support elongation mediated by primer/template distortions. However, considering that the concentration of ATP, the natural substrate, is much higher than the intracellular concentration of RTP, it is unlikely that HsPrimPol would use RTP for primer synthesis during a remdesivir treatment in real patients.
Collapse
Affiliation(s)
- Marcos Jiménez-Juliana
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), C/ Nicolás Cabrera 1, Madrid 28049, Spain
| | - María I Martínez-Jiménez
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), C/ Nicolás Cabrera 1, Madrid 28049, Spain
| | - Luis Blanco
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), C/ Nicolás Cabrera 1, Madrid 28049, Spain.
| |
Collapse
|
2
|
Lipps G. Definition of the binding specificity of the T7 bacteriophage primase by analysis of a protein binding microarray using a thermodynamic model. Nucleic Acids Res 2024; 52:4818-4829. [PMID: 38597656 PMCID: PMC11109968 DOI: 10.1093/nar/gkae215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/26/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024] Open
Abstract
Protein binding microarrays (PBM), SELEX, RNAcompete and chromatin-immunoprecipitation have been intensively used to determine the specificity of nucleic acid binding proteins. While the specificity of proteins with pronounced sequence specificity is straightforward, the determination of the sequence specificity of proteins of modest sequence specificity is more difficult. In this work, an explorative data analysis workflow for nucleic acid binding data was developed that can be used by scientists that want to analyse their binding data. The workflow is based on a regressor realized in scikit-learn, the major machine learning module for the scripting language Python. The regressor is built on a thermodynamic model of nucleic acid binding and describes the sequence specificity with base- and position-specific energies. The regressor was used to determine the binding specificity of the T7 primase. For this, we reanalysed the binding data of the T7 primase obtained with a custom PBM. The binding specificity of the T7 primase agrees with the priming specificity (5'-GTC) and the template (5'-GGGTC) for the preferentially synthesized tetraribonucleotide primer (5'-pppACCC) but is more relaxed. The dominant contribution of two positions in the motif can be explained by the involvement of the initiating and elongating nucleotides for template binding.
Collapse
Affiliation(s)
- Georg Lipps
- Institute of Chemistry and Bioanalytics, University of Applied Sciences Northwestern Switzerland, 4132 Muttenz, Switzerland
| |
Collapse
|
3
|
Yuan Z, Li H. Primase and polymerase α tango to make an RNA-DNA hybrid primer. FEBS J 2024; 291:1889-1891. [PMID: 38581152 PMCID: PMC11068480 DOI: 10.1111/febs.17129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 03/22/2024] [Indexed: 04/08/2024]
Abstract
Several recent cryo-electron microscopy (cryo-EM) studies about the eukaryotic primosome, including the human primosome described by Yin et al. in this issue, have uncovered the structural intricacies between the RNA primase and the DNA polymerase. These studies show that these two partners tango on DNA to synthesize a hybrid primer composed of ~ 10 nucleotide (nt) RNA and ~ 10-nt DNA. They reveal key intermediate steps involved in this process; from the self-inhibited apo state to the initiation of RNA primer synthesis, RNA primer handover to the polymerase, primer elongation by polymerase, and finally, primer termination and release. Remarkably, the polymerase domain orchestrates all major steps during primer synthesis.
Collapse
Affiliation(s)
- Zuanning Yuan
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| |
Collapse
|
4
|
Wu P, Zehnder J, Schröder N, Blümmel PEW, Salmon L, Damberger FF, Lipps G, Allain FHT, Wiegand T. Initial Primer Synthesis of a DNA Primase Monitored by Real-Time NMR Spectroscopy. J Am Chem Soc 2024; 146:9583-9596. [PMID: 38538061 PMCID: PMC11009956 DOI: 10.1021/jacs.3c11836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
Primases are crucial enzymes for DNA replication, as they synthesize a short primer required for initiating DNA replication. We herein present time-resolved nuclear magnetic resonance (NMR) spectroscopy in solution and in the solid state to study the initial dinucleotide formation reaction of archaeal pRN1 primase. Our findings show that the helix-bundle domain (HBD) of pRN1 primase prepares the two substrates and then hands them over to the catalytic domain to initiate the reaction. By using nucleotide triphosphate analogues, the reaction is substantially slowed down, allowing us to study the initial dinucleotide formation in real time. We show that the sedimented protein-DNA complex remains active in the solid-state NMR rotor and that time-resolved 31P-detected cross-polarization experiments allow monitoring the kinetics of dinucleotide formation. The kinetics in the sedimented protein sample are comparable to those determined by solution-state NMR. Protein conformational changes during primer synthesis are observed in time-resolved 1H-detected experiments at fast magic-angle spinning frequencies (100 kHz). A significant number of spectral changes cluster in the HBD pointing to the importance of the HBD for positioning the nucleotides and the dinucleotide.
Collapse
Affiliation(s)
- Pengzhi Wu
- Department
of Biology, Institute of Biochemistry, ETH
Zürich, 8093 Zurich, Switzerland
| | - Johannes Zehnder
- Laboratory
of Physical Chemistry, ETH Zürich, 8093 Zurich, Switzerland
| | - Nina Schröder
- Institute
of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Pascal E. W. Blümmel
- Department
of Biology, Institute of Biochemistry, ETH
Zürich, 8093 Zurich, Switzerland
| | - Loïc Salmon
- Department
of Biology, Institute of Biochemistry, ETH
Zürich, 8093 Zurich, Switzerland
| | - Fred. F. Damberger
- Department
of Biology, Institute of Biochemistry, ETH
Zürich, 8093 Zurich, Switzerland
| | - Georg Lipps
- Institute
of Chemistry and Bioanalytics, University
of Applied Sciences Northwestern Switzerland, Hofackerstrasses 30, 4132 Muttenz, Switzerland
| | - Frédéric H.-T. Allain
- Department
of Biology, Institute of Biochemistry, ETH
Zürich, 8093 Zurich, Switzerland
| | - Thomas Wiegand
- Laboratory
of Physical Chemistry, ETH Zürich, 8093 Zurich, Switzerland
- Institute
of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
- Max-Planck-Institute
for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
5
|
Yin Z, Kilkenny ML, Ker DS, Pellegrini L. CryoEM insights into RNA primer synthesis by the human primosome. FEBS J 2024; 291:1813-1829. [PMID: 38335062 DOI: 10.1111/febs.17082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/24/2023] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
Eukaryotic DNA replication depends on the primosome - a complex of DNA polymerase alpha (Pol α) and primase - to initiate DNA synthesis by polymerisation of an RNA-DNA primer. Primer synthesis requires the tight coordination of primase and polymerase activities. Recent cryo-electron microscopy (cryoEM) analyses have elucidated the extensive conformational transitions required for RNA primer handover between primase and Pol α and primer elongation by Pol α. Because of the intrinsic flexibility of the primosome, however, structural information about the initiation of RNA primer synthesis is still lacking. Here, we capture cryoEM snapshots of the priming reaction to reveal the conformational trajectory of the human primosome that brings DNA primase subunits 1 and 2 (PRIM1 and PRIM2, respectively) together, poised for RNA synthesis. Furthermore, we provide experimental evidence for the continuous association of primase subunit PRIM2 with the RNA primer during primer synthesis, and for how both initiation and termination of RNA primer polymerisation are licenced by specific rearrangements of DNA polymerase alpha catalytic subunit (POLA1), the polymerase subunit of Pol α. Our findings fill a critical gap in our understanding of the conformational changes that underpin the synthesis of the RNA primer by the primosome. Together with existing evidence, they provide a complete description of the structural dynamics of the human primosome during DNA replication initiation.
Collapse
Affiliation(s)
- Zhan Yin
- Department of Biochemistry, University of Cambridge, UK
| | | | - De-Sheng Ker
- Department of Biochemistry, University of Cambridge, UK
| | | |
Collapse
|
6
|
Agarwal AK, Tunison K, Vale G, McDonald JG, Li X, Horton JD, Garg A. Adipose-specific overexpression of human AGPAT2 in mice causes increased adiposity and mild hepatic dysfunction. iScience 2024; 27:108653. [PMID: 38274405 PMCID: PMC10809107 DOI: 10.1016/j.isci.2023.108653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/11/2023] [Accepted: 12/04/2023] [Indexed: 01/27/2024] Open
Abstract
AGPAT2, a critical enzyme involved in the biosynthesis of phospholipids and triacylglycerol (TAG), is highly expressed in adipose tissue (AT). Whether overexpression of AGPAT2 in AT will result in increased TAG synthesis (obesity) and its metabolic complications remains unknown. We overexpressed human AGPAT2 specifically in AT using the adiponectin promoter and report increased mass of subcutaneous, gonadal, and brown AT in wild-type mice. Unexpectedly, overexpression of hAGPAT2 did not change the pattern of phospholipid or TAG concentration of the AT depots. Although there is an increase in liver weight, plasma aspartate aminotransferase, and plasma insulin at various time points of the study, it did not result in significant liver dysfunction. Despite increased adiposity in the Tg-AT-hAGPAT2;mAgpat2+/+ mice, there was no significant increase in TAG concentration of AT. Therefore, this study suggests a role of AGPAT2 in the generation of AT, but not for adipocyte TAG synthesis.
Collapse
Affiliation(s)
- Anil K. Agarwal
- Section of Nutrition and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Katie Tunison
- Section of Nutrition and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Goncalo Vale
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jeffrey G. McDonald
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xilong Li
- Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jay D. Horton
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Abhimanyu Garg
- Section of Nutrition and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
7
|
Lim CJ. Telomere C-Strand Fill-In Machinery: New Insights into the Human CST-DNA Polymerase Alpha-Primase Structures and Functions. Subcell Biochem 2024; 104:73-100. [PMID: 38963484 DOI: 10.1007/978-3-031-58843-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Telomeres at the end of eukaryotic chromosomes are extended by a specialized set of enzymes and telomere-associated proteins, collectively termed here the telomere "replisome." The telomere replisome acts on a unique replicon at each chromosomal end of the telomeres, the 3' DNA overhang. This telomere replication process is distinct from the replisome mechanism deployed to duplicate the human genome. The G-rich overhang is first extended before the complementary C-strand is filled in. This overhang is extended by telomerase, a specialized ribonucleoprotein and reverse transcriptase. The overhang extension process is terminated when telomerase is displaced by CTC1-STN1-TEN1 (CST), a single-stranded DNA-binding protein complex. CST then recruits DNA polymerase α-primase to complete the telomere replication process by filling in the complementary C-strand. In this chapter, the recent structure-function insights into the human telomere C-strand fill-in machinery (DNA polymerase α-primase and CST) will be discussed.
Collapse
Affiliation(s)
- Ci Ji Lim
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
8
|
Velázquez-Ruiz C, Blanco L, Martínez-Jiménez MI. 3'dNTP Binding Is Modulated during Primer Synthesis and Translesion by Human PrimPol. Int J Mol Sci 2023; 25:51. [PMID: 38203225 PMCID: PMC10778844 DOI: 10.3390/ijms25010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
PrimPol is a DNA primase/polymerase from the Archaeo-Eukaryotic Primase (AEP) superfamily that enables the progression of stalled replication forks by synthesizing DNA primers ahead of blocking lesions or abnormal structures in the ssDNA template. PrimPol's active site is formed by three AEP-conserved motifs: A, B and C. Motifs A and C of human PrimPol (HsPrimPol) harbor the catalytic residues (Asp114, Glu116, Asp280) acting as metal ligands, whereas motif B includes highly conserved residues (Lys165, Ser167 and His169), which are postulated to stabilize 3' incoming deoxynucleotides (dNTPs). Additionally, other putative nucleotide ligands are situated close to motif C: Lys297, almost invariant in the whole AEP superfamily, and Lys300, specifically conserved in eukaryotic PrimPols. Here, we demonstrate that His169 is absolutely essential for 3'dNTP binding and, hence, for both primase and polymerase activities of HsPrimPol, whereas Ser167 and Lys297 are crucial for the dimer synthesis initiation step during priming, but dispensable for subsequent dNTP incorporation on growing primers. Conversely, the elimination of Lys165 does not affect the overall primase function; however, it is required for damage avoidance via primer-template realignments. Finally, Lys300 is identified as an extra anchor residue to stabilize the 3' incoming dNTP. Collectively, these results demonstrate that individual ligands modulate the stabilization of 3' incoming dNTPs to optimize DNA primer synthesis efficiency during initiation and primer maturation.
Collapse
Affiliation(s)
| | - Luis Blanco
- Centro de Biología Molecular Severo Ochoa, (CSIC-UAM), c/Nicolás Cabrera 1, Cantoblanco, 28049 Madrid, Spain;
| | | |
Collapse
|
9
|
Ren CY, Zhao HP. Synthetic Nuclease-Producing Microbiome Achieves Efficient Removal of Extracellular Antibiotic Resistance Genes from Wastewater Effluent. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21224-21234. [PMID: 38059467 DOI: 10.1021/acs.est.3c07974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Antibiotic resistance gene (ARG) transmission poses significant threats to human health. The effluent of wastewater treatment plants is demonstrated as a hotspot source of ARGs released into the environment. In this study, a synthetic microbiome containing nuclease-producing Deinococcus radiodurans was constructed to remove extracellular ARGs. Results of quantitative polymerase chain reaction (qPCR) showed significant reduction in plasmid RP4-associated ARGs (by more than 3 orders of magnitude) and reduction of indigenous ARG sul1 and mobile genetic element (MGE) intl1 (by more than 1 order of magnitude) in the synthetic microbiome compared to the control without D. radiodurans. Metagenomic analysis revealed a decrease in ARG and MGE diversity in extracellular DNA (eDNA) of the treated group. Notably, whereas eight antibiotic-resistant plasmids with mobility risk were detected in the control, only one was detected in the synthetic microbiome. The abundance of the nuclease encoding gene exeM, quantified by qPCR, indicated its enrichment in the synthetic microbiome, which ensures stable eDNA degradation even when D. radiodurans decreased. Moreover, intracellular ARGs and MGEs and pathogenic ARG hosts in the river receiving treated effluent were lower than those in the river receiving untreated effluent. Overall, this study presents a new approach for removing extracellular ARGs and further reducing the risk of ARG transmission in receiving rivers.
Collapse
Affiliation(s)
- Chong-Yang Ren
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - He-Ping Zhao
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
10
|
Bainbridge LJ, Zabrady K, Doherty AJ. Coordination of Primer Initiation Within the Catalytic Domain of Human PrimPol. J Mol Biol 2023; 435:168338. [PMID: 37923120 DOI: 10.1016/j.jmb.2023.168338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
To facilitate the eukaryotic repriming pathway of DNA damage tolerance, PrimPol synthesises de novo oligonucleotide primers downstream of polymerase-stalling obstacles. These primers enable replicative polymerases to resume synthesis and ensure the timely completion of DNA replication. Initiating synthesis de novo requires the coordination of single-stranded DNA, initiating nucleotides, and metal ions within PrimPol's active site to catalyze the formation of the first phosphodiester bond. Here we examine the interactions between human PrimPol's catalytic domain, nucleotides, and DNA template during each of the various catalytic steps to determine the 'choreography' of primer synthesis, where substrates bind in an ordered manner. Our findings show that the ability of PrimPol to conduct de novo primer synthesis is underpinned by a network of stabilising interactions between the enzyme, template, and nucleotides, as we previously observed for related primase CRISPR-Associated Prim-Pol (CAPP). Together, these findings establish a detailed model for the initiation of DNA synthesis by human PrimPol, which appears highly conserved.
Collapse
Affiliation(s)
- Lewis J Bainbridge
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK
| | - Katerina Zabrady
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK
| | - Aidan J Doherty
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK.
| |
Collapse
|
11
|
Peralta-Castro A, Cordoba-Andrade F, Díaz-Quezada C, Sotelo-Mundo R, Winkler R, Brieba LG. The plant organellar primase-helicase directs template recognition and primosome assembly via its zinc finger domain. BMC PLANT BIOLOGY 2023; 23:467. [PMID: 37803262 PMCID: PMC10557236 DOI: 10.1186/s12870-023-04477-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/19/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND The mechanisms and regulation for DNA replication in plant organelles are largely unknown, as few proteins involved in replisome assembly have been biochemically studied. A primase-helicase dubbed Twinkle (T7 gp4-like protein with intramitochondrial nucleoid localization) unwinds double-stranded DNA in metazoan mitochondria and plant organelles. Twinkle in plants is a bifunctional enzyme with an active primase module. This contrast with animal Twinkle in which the primase module is inactive. The organellar primase-helicase of Arabidopsis thaliana (AtTwinkle) harbors a primase module (AtPrimase) that consists of an RNA polymerase domain (RPD) and a Zn + + finger domain (ZFD). RESULTS Herein, we investigate the mechanisms by which AtTwinkle recognizes its templating sequence and how primer synthesis and coupling to the organellar DNA polymerases occurs. Biochemical data show that the ZFD of the AtPrimase module is responsible for template recognition, and this recognition is achieved by residues N163, R166, and K168. The role of the ZFD in template recognition was also corroborated by swapping the RPDs of bacteriophage T7 primase and AtPrimase with their respective ZFDs. A chimeric primase harboring the ZFD of T7 primase and the RPD of AtPrimase synthesizes ribonucleotides from the T7 primase recognition sequence and conversely, a chimeric primase harboring the ZFD of AtPrimase and the RPD of T7 primase synthesizes ribonucleotides from the AtPrimase recognition sequence. A chimera harboring the RPDs of bacteriophage T7 and the ZBD of AtTwinkle efficiently synthesizes primers for the plant organellar DNA polymerase. CONCLUSIONS We conclude that the ZFD is responsible for recognizing a single-stranded sequence and for primer hand-off into the organellar DNA polymerases active site. The primase activity of plant Twinkle is consistent with phylogeny-based reconstructions that concluded that Twinkle´s last eukaryotic common ancestor (LECA) was an enzyme with primase and helicase activities. In plants, the primase domain is active, whereas the primase activity was lost in metazoans. Our data supports the notion that AtTwinkle synthesizes primers at the lagging-strand of the organellar replication fork.
Collapse
Affiliation(s)
- Antolin Peralta-Castro
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera. Irapuato-León, 36821, Irapuato Guanajuato, Mexico
| | - Francisco Cordoba-Andrade
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera. Irapuato-León, 36821, Irapuato Guanajuato, Mexico
| | - Corina Díaz-Quezada
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera. Irapuato-León, 36821, Irapuato Guanajuato, Mexico
| | - Rogerio Sotelo-Mundo
- Laboratorio de Estructura Biomolecular, Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera Gustavo Enrique Astiazarán Rosas Núm. 46, Ejido a La Victoria, 83304, Hermosillo, Sonora, Mexico
| | - Robert Winkler
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera. Irapuato-León, 36821, Irapuato Guanajuato, Mexico
| | - Luis G Brieba
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera. Irapuato-León, 36821, Irapuato Guanajuato, Mexico.
| |
Collapse
|
12
|
He Q, Lim CJ. Models for human telomere C-strand fill-in by CST-Polα-primase. Trends Biochem Sci 2023; 48:860-872. [PMID: 37586999 PMCID: PMC10528720 DOI: 10.1016/j.tibs.2023.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 08/18/2023]
Abstract
Telomere maintenance is essential for the genome integrity of eukaryotes, and this function is underpinned by the two-step telomeric DNA synthesis process: telomere G-overhang extension by telomerase and complementary strand fill-in by DNA polymerase alpha-primase (polα-primase). Compared to the telomerase step, the telomere C-strand fill-in mechanism is less understood. Recent studies have provided new insights into how telomeric single-stranded DNA-binding protein CTC1-STN1-TEN1 (CST) and polα-primase coordinate to synthesize the telomeric C-strand for telomere overhang fill-in. Cryogenic electron microscopy (cryo-EM) structures of CST-polα-primase complexes have provided additional insights into how they assemble at telomeric templates and de novo synthesize the telomere C-strand. In this review, we discuss how these latest findings coalesce with existing understanding to develop a human telomere C-strand fill-in mechanism model.
Collapse
Affiliation(s)
- Qixiang He
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Ci Ji Lim
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
13
|
Emmerich HJ, Schneider L, Essen LO. Structural and Functional Analysis of a Prokaryotic (6-4) Photolyase from the Aquatic Pathogen Vibrio Cholerae †. Photochem Photobiol 2023; 99:1248-1257. [PMID: 36692077 DOI: 10.1111/php.13783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/19/2023] [Indexed: 01/25/2023]
Abstract
Photolyases are flavoproteins, which are able to repair UV-induced DNA lesions in a light-dependent manner. According to their substrate, they can be distinguished as CPD- and (6-4) photolyases. While CPD-photolyases repair the predominantly occurring cyclobutane pyrimidine dimer lesion, (6-4) photolyases catalyze the repair of the less prominent (6-4) photoproduct. The subgroup of prokaryotic (6-4) photolyases/FeS-BCP is one of the most ancient types of flavoproteins in the ubiquitously occurring photolyase & cryptochrome superfamily (PCSf). In contrast to canonical photolyases, prokaryotic (6-4) photolyases possess a few particular characteristics, including a lumazine derivative as antenna chromophore besides the catalytically essential flavin adenine dinucleotide as well as an elongated linker region between the N-terminal α/β-domain and the C-terminal all-α-helical domain. Furthermore, they can harbor an additional short subdomain, located at the C-terminus, with a binding site for a [4Fe-4S] cluster. So far, two crystal structures of prokaryotic (6-4) photolyases have been reported. Within this study, we present the high-resolution structure of the prokaryotic (6-4) photolyase from Vibrio cholerae and its spectroscopic characterization in terms of in vitro photoreduction and DNA-repair activity.
Collapse
Affiliation(s)
- Hans-Joachim Emmerich
- Unit for Structural Biochemistry, Department of Chemistry, Philipps University Marburg, Marburg, Germany
| | - Leonie Schneider
- Unit for Structural Biochemistry, Department of Chemistry, Philipps University Marburg, Marburg, Germany
| | - Lars-Oliver Essen
- Unit for Structural Biochemistry, Department of Chemistry, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
14
|
Bainbridge L, Zabrady K, Doherty A. Primase-polymerases: how to make a primer from scratch. Biosci Rep 2023; 43:BSR20221986. [PMID: 37358261 PMCID: PMC10345425 DOI: 10.1042/bsr20221986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 06/27/2023] Open
Abstract
To pass on genetic information to the next generation, cells must faithfully replicate their genomes to provide copies for each daughter cell. To synthesise these duplicates, cells employ specialised enzymes called DNA polymerases, which rapidly and accurately replicate nucleic acid polymers. However, most polymerases lack the ability to directly initiate DNA synthesis and required specialised replicases called primases to make short polynucleotide primers, from which they then extend. Replicative primases (eukaryotes and archaea) belong to a functionally diverse enzyme superfamily known as Primase-Polymerases (Prim-Pols), with orthologues present throughout all domains of life. Characterised by a conserved catalytic Prim-Pol domain, these enzymes have evolved various roles in DNA metabolism, including DNA replication, repair, and damage tolerance. Many of these biological roles are fundamentally underpinned by the ability of Prim-Pols to generate primers de novo. This review examines our current understanding of the catalytic mechanisms utilised by Prim-Pols to initiate primer synthesis.
Collapse
Affiliation(s)
- Lewis J. Bainbridge
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, U.K
| | - Katerina Zabrady
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, U.K
| | - Aidan J. Doherty
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, U.K
| |
Collapse
|
15
|
Yuan Z, Georgescu R, Li H, O'Donnell ME. Molecular choreography of primer synthesis by the eukaryotic Pol α-primase. Nat Commun 2023; 14:3697. [PMID: 37344454 PMCID: PMC10284912 DOI: 10.1038/s41467-023-39441-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023] Open
Abstract
The eukaryotic polymerase α (Pol α) synthesizes an RNA-DNA hybrid primer of 20-30 nucleotides. Pol α is composed of Pol1, Pol12, Primase 1 (Pri1), and Pri2. Pol1 and Pri1 contain the DNA polymerase and RNA primase activities, respectively. It has been unclear how Pol α hands over an RNA primer from Pri1 to Pol1 for DNA primer extension, and how the primer length is defined. Here we report the cryo-EM analysis of yeast Pol α in the apo, primer initiation, primer elongation, RNA primer hand-off from Pri1 to Pol1, and DNA extension states, revealing a series of very large movements. We reveal a critical point at which Pol1-core moves to take over the 3'-end of the RNA from Pri1. DNA extension is limited by a spiral motion of Pol1-core. Since both Pri1 and Pol1-core are flexibly attached to a stable platform, primer growth produces stress that limits the primer length.
Collapse
Affiliation(s)
- Zuanning Yuan
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Roxana Georgescu
- DNA Replication Laboratory and Howard Hughes Medical Institute, Rockefeller University, New York, NY, USA
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA.
| | - Michael E O'Donnell
- DNA Replication Laboratory and Howard Hughes Medical Institute, Rockefeller University, New York, NY, USA.
| |
Collapse
|
16
|
Yuan Z, Georgescu R, Li H, O'Donnell ME. Molecular choreography of primer synthesis by the eukaryotic Pol α-primase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.03.539257. [PMID: 37205351 PMCID: PMC10187153 DOI: 10.1101/2023.05.03.539257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The eukaryotic polymerase α (Pol α) is a dual-function DNA polymerase/primase complex that synthesizes an RNA-DNA hybrid primer of 20-30 nucleotides for DNA replication. Pol α is composed of Pol1, Pol12, Primase 1 (Pri1), and Pri2, with Pol1 and Pri1 containing the DNA polymerase activity and RNA primase activity, respectively, whereas Pol12 and Pri2 serve a structural role. It has been unclear how Pol α hands over an RNA primer made by Pri1 to Pol1 for DNA primer extension, and how the primer length is defined, perhaps due to the difficulty in studying the highly mobile structure. Here we report a comprehensive cryo-EM analysis of the intact 4-subunit yeast Pol α in the apo, primer initiation, primer elongation, RNA primer hand-off from Pri1 to Pol1, and DNA extension states in a 3.5 Å - 5.6 Å resolution range. We found that Pol α is a three-lobed flexible structure. Pri2 functions as a flexible hinge that holds together the catalytic Pol1-core, and the noncatalytic Pol1 CTD that binds to Pol 12 to form a stable platform upon which the other components are organized. In the apo state, Pol1-core is sequestered on the Pol12-Pol1-CTD platform, and Pri1 is mobile perhaps in search of a template. Upon binding a ssDNA template, a large conformation change is induced that enables Pri1 to perform RNA synthesis, and positions Pol1-core to accept the future RNA primed site 50 Å upstream of where Pri1 binds. We reveal in detail the critical point at which Pol1-core takes over the 3'-end of the RNA from Pri1. DNA primer extension appears limited by the spiral motion of Pol1-core while Pri2-CTD stably holds onto the 5' end of the RNA primer. Since both Pri1 and Pol1-core are attached via two linkers to the platform, primer growth will produce stress within this "two-point" attachment that may limit the length of the RNA-DNA hybrid primer. Hence, this study reveals the large and dynamic series of movements that Pol α undergoes to synthesize a primer for DNA replication.
Collapse
|
17
|
Siskos L, Antoniou M, Riado J, Enciso M, Garcia C, Liberti D, Esselink D, Baranovskiy AG, Tahirov TH, Visser RGF, Kormelink R, Bai Y, Schouten HJ. DNA primase large subunit is an essential plant gene for geminiviruses, putatively priming viral ss-DNA replication. FRONTIERS IN PLANT SCIENCE 2023; 14:1130723. [PMID: 37008458 PMCID: PMC10064052 DOI: 10.3389/fpls.2023.1130723] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/03/2023] [Indexed: 06/19/2023]
Abstract
The family of Geminiviridae consists of more than 500 circular single-stranded (ss) DNA viral species that can infect numerous dicot and monocot plants. Geminiviruses replicate their genome in the nucleus of a plant cell, taking advantage of the host's DNA replication machinery. For converting their DNA into double-stranded DNA, and subsequent replication, these viruses rely on host DNA polymerases. However, the priming of the very first step of this process, i.e. the conversion of incoming circular ssDNA into a dsDNA molecule, has remained elusive for almost 30 years. In this study, sequencing of melon (Cucumis melo) accession K18 carrying the Tomato leaf curl New Delhi virus (ToLCNDV) recessive resistance quantitative trait locus (QTL) in chromosome 11, and analyses of DNA sequence data from 100 melon genomes, showed a conservation of a shared mutation in the DNA Primase Large subunit (PRiL) of all accessions that exhibited resistance upon a challenge with ToLCNDV. Silencing of (native) Nicotiana benthamiana PriL and subsequent challenging with three different geminiviruses showed a severe reduction in titers of all three viruses, altogether emphasizing an important role of PRiL in geminiviral replication. A model is presented explaining the role of PriL during initiation of geminiviral DNA replication, i.e. as a regulatory subunit of primase that generates an RNA primer at the onset of DNA replication in analogy to DNA Primase-mediated initiation of DNA replication in all living organisms.
Collapse
Affiliation(s)
- Lampros Siskos
- Laboratory of Plant Breeding, Wageningen University and Research, Wageningen, Netherlands
| | - Maria Antoniou
- Laboratory of Plant Breeding, Wageningen University and Research, Wageningen, Netherlands
| | - Jose Riado
- Sakata Vegetables Europe, Almeria, Spain
| | | | | | | | - Danny Esselink
- Laboratory of Plant Breeding, Wageningen University and Research, Wageningen, Netherlands
| | - Andrey G. Baranovskiy
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, United States
| | - Tahir H. Tahirov
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, United States
| | - Richard G. F. Visser
- Laboratory of Plant Breeding, Wageningen University and Research, Wageningen, Netherlands
| | - Richard Kormelink
- Laboratory of Virology, Wageningen University and Research, Wageningen, Netherlands
| | - Yuling Bai
- Laboratory of Plant Breeding, Wageningen University and Research, Wageningen, Netherlands
| | - Henk J. Schouten
- Laboratory of Plant Breeding, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
18
|
Protein-Ligand Interactions in Scarcity: The Stringent Response from Bacteria to Metazoa, and the Unanswered Questions. Int J Mol Sci 2023; 24:ijms24043999. [PMID: 36835415 PMCID: PMC9965611 DOI: 10.3390/ijms24043999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
The stringent response, originally identified in Escherichia coli as a signal that leads to reprogramming of gene expression under starvation or nutrient deprivation, is now recognized as ubiquitous in all bacteria, and also as part of a broader survival strategy in diverse, other stress conditions. Much of our insight into this phenomenon derives from the role of hyperphosphorylated guanosine derivatives (pppGpp, ppGpp, pGpp; guanosine penta-, tetra- and tri-phosphate, respectively) that are synthesized on starvation cues and act as messengers or alarmones. These molecules, collectively referred to here as (p)ppGpp, orchestrate a complex network of biochemical steps that eventually lead to the repression of stable RNA synthesis, growth, and cell division, while promoting amino acid biosynthesis, survival, persistence, and virulence. In this analytical review, we summarize the mechanism of the major signaling pathways in the stringent response, consisting of the synthesis of the (p)ppGpp, their interaction with RNA polymerase, and diverse factors of macromolecular biosynthesis, leading to differential inhibition and activation of specific promoters. We also briefly touch upon the recently reported stringent-like response in a few eukaryotes, which is a very disparate mechanism involving MESH1 (Metazoan SpoT Homolog 1), a cytosolic NADPH phosphatase. Lastly, using ppGpp as an example, we speculate on possible pathways of simultaneous evolution of alarmones and their multiple targets.
Collapse
|
19
|
Feng J, Li F, Sun L, Dong L, Gao L, Wang H, Yan L, Wu C. Characterization and genome analysis of phage vB_KpnS_SXFY507 against Klebsiella pneumoniae and efficacy assessment in Galleria mellonella larvae. Front Microbiol 2023; 14:1081715. [PMID: 36793879 PMCID: PMC9922705 DOI: 10.3389/fmicb.2023.1081715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae is one of the primary bacterial pathogens that pose a significant threat to global public health because of the lack of available therapeutic options. Phage therapy shows promise as a potential alternative to current antimicrobial chemotherapies. In this study, we isolated a new Siphoviridae phage vB_KpnS_SXFY507 against KPC-producing K. pneumoniae from hospital sewage. It had a short latent period of 20 min and a large burst size of 246 phages/cell. The host range of phage vB_KpnS_SXFY507 was relatively broad. It has a wide range of pH tolerance and high thermal stability. The genome of phage vB_KpnS_SXFY507 was 53,122 bp in length with a G + C content of 49.1%. A total of 81 open-reading frames (ORFs) and no virulence or antibiotic resistance related genes were involved in the phage vB_KpnS_SXFY507 genome. Phage vB_KpnS_SXFY507 showed significant antibacterial activity in vitro. The survival rate of Galleria mellonella larvae inoculated with K. pneumoniae SXFY507 was 20%. The survival rate of K. pneumonia-infected G. mellonella larvae was increased from 20 to 60% within 72 h upon treatment with phage vB_KpnS_SXFY507. In conclusion, these findings indicate that phage vB_KpnS_SXFY507 has the potential to be used as an antimicrobial agent for the control of K. pneumoniae.
Collapse
Affiliation(s)
- Jiao Feng
- Institute of Biomedical Sciences, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education of China, The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Shanxi University, Taiyuan, China,*Correspondence: Jiao Feng, ✉
| | - Fei Li
- Center for Clinical Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China,College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Li Sun
- Institute of Biomedical Sciences, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education of China, The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Shanxi University, Taiyuan, China
| | - Lina Dong
- Core Laboratory, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
| | - Liting Gao
- Institute of Biomedical Sciences, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education of China, The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Shanxi University, Taiyuan, China
| | - Han Wang
- Medical Imaging Center, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Liyong Yan
- Hospital Office, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China,Liyong Yan, ✉
| | - Changxin Wu
- Institute of Biomedical Sciences, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education of China, The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Shanxi University, Taiyuan, China,Changxin Wu, ✉
| |
Collapse
|
20
|
Petronek MS, Allen BG. Maintenance of genome integrity by the late-acting cytoplasmic iron-sulfur assembly (CIA) complex. Front Genet 2023; 14:1152398. [PMID: 36968611 PMCID: PMC10031043 DOI: 10.3389/fgene.2023.1152398] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 02/24/2023] [Indexed: 03/29/2023] Open
Abstract
Iron-sulfur (Fe-S) clusters are unique, redox-active co-factors ubiquitous throughout cellular metabolism. Fe-S cluster synthesis, trafficking, and coordination result from highly coordinated, evolutionarily conserved biosynthetic processes. The initial Fe-S cluster synthesis occurs within the mitochondria; however, the maturation of Fe-S clusters culminating in their ultimate insertion into appropriate cytosolic/nuclear proteins is coordinated by a late-acting cytosolic iron-sulfur assembly (CIA) complex in the cytosol. Several nuclear proteins involved in DNA replication and repair interact with the CIA complex and contain Fe-S clusters necessary for proper enzymatic activity. Moreover, it is currently hypothesized that the late-acting CIA complex regulates the maintenance of genome integrity and is an integral feature of DNA metabolism. This review describes the late-acting CIA complex and several [4Fe-4S] DNA metabolic enzymes associated with maintaining genome stability.
Collapse
|
21
|
Verdú C, Pérez-Arnaiz P, Peropadre A, Berenguer J, Mencía M. Deletion of the primase-polymerases encoding gene, located in a mobile element in Thermus thermophilus HB27, leads to loss of function mutation of addAB genes. Front Microbiol 2022; 13:1005862. [DOI: 10.3389/fmicb.2022.1005862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/08/2022] [Indexed: 12/03/2022] Open
Abstract
DNA primase-polymerases (Ppol) have been shown to play active roles in DNA repair and damage tolerance, both in prokaryotes and eukaryotes. The ancestral thermophilic bacterium Thermus thermophilus strain HB27 encodes a Ppol protein among the genes present in mobile element ICETh2, absent in other T. thermophilus strains. Using different strategies we ablated the function of Ppol in HB27 cells, either by knocking out the gene through insertional mutagenesis, markerless deletion or through abolition of its catalytic activity. Whole genome sequencing of this diverse collection of Ppol mutants showed spontaneous loss of function mutation in the helicase-nuclease AddAB in every ppol mutant isolated. Given that AddAB is a major player in recombinational repair in many prokaryotes, with similar activity to the proteobacterial RecBCD complex, we have performed a detailed characterization of the ppol mutants in combination with addAB mutants. The results show that knockout addAB mutants are more sensitive to DNA damage agents than the wild type, and present a dramatic three orders of magnitude increase in natural transformation efficiencies with both plasmid and lineal DNA, whereas ppol mutants show defects in plasmid stability. Interestingly, DNA-integrity comet assays showed that the genome of all the ppol and/or addAB mutants was severely affected by widespread fragmentation, however, this did not translate in neat loss of viability of the strains. All these data support that Ppol appears to keep in balance the activity of AddAB as a part of the DNA housekeeping maintenance in T. thermophilus HB27, thus, playing a key role in its genome stability.
Collapse
|
22
|
Characteristics and Comparative Genomic Analysis of a Novel Virus, VarioGold, the First Bacteriophage of Variovorax. Int J Mol Sci 2022; 23:ijms232113539. [DOI: 10.3390/ijms232113539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/10/2022] Open
Abstract
Variovorax represents a widespread and ecologically significant genus of soil bacteria. Despite the ecological importance of these bacteria, our knowledge about the viruses infecting Variovorax spp. is quite poor. This study describes the isolation and characterization of the mitomycin-induced phage, named VarioGold. To the best of our knowledge, VarioGold represents the first characterized virus for this genus. Comparative genomic analyses suggested that VarioGold is distinct from currently known bacteriophages at both the nucleotide and protein levels; thus, it could be considered a new virus genus. In addition, another 37 prophages were distinguished in silico within the complete genomic sequences of Variovorax spp. that are available in public databases. The similarity networking analysis highlighted their general high diversity, which, despite clustering with previously described phages, shows their unique genetic load. Therefore, the novelty of Variovorax phages warrants the great enrichment of databases, which could, in turn, improve bioinformatic strategies for finding (pro)phages.
Collapse
|
23
|
Bansal A, Kaushik S, Kukreti S. Non-canonical DNA structures: Diversity and disease association. Front Genet 2022; 13:959258. [PMID: 36134025 PMCID: PMC9483843 DOI: 10.3389/fgene.2022.959258] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022] Open
Abstract
A complete understanding of DNA double-helical structure discovered by James Watson and Francis Crick in 1953, unveil the importance and significance of DNA. For the last seven decades, this has been a leading light in the course of the development of modern biology and biomedical science. Apart from the predominant B-form, experimental shreds of evidence have revealed the existence of a sequence-dependent structural diversity, unusual non-canonical structures like hairpin, cruciform, Z-DNA, multistranded structures such as DNA triplex, G-quadruplex, i-motif forms, etc. The diversity in the DNA structure depends on various factors such as base sequence, ions, superhelical stress, and ligands. In response to these various factors, the polymorphism of DNA regulates various genes via different processes like replication, transcription, translation, and recombination. However, altered levels of gene expression are associated with many human genetic diseases including neurological disorders and cancer. These non-B-DNA structures are expected to play a key role in determining genetic stability, DNA damage and repair etc. The present review is a modest attempt to summarize the available literature, illustrating the occurrence of non-canonical structures at the molecular level in response to the environment and interaction with ligands and proteins. This would provide an insight to understand the biological functions of these unusual DNA structures and their recognition as potential therapeutic targets for diverse genetic diseases.
Collapse
Affiliation(s)
- Aparna Bansal
- Nucleic Acid Research Lab, Department of Chemistry, University of Delhi, Delhi, India
- Department of Chemistry, Hansraj College, University of Delhi, Delhi, India
| | - Shikha Kaushik
- Nucleic Acid Research Lab, Department of Chemistry, University of Delhi, Delhi, India
- Department of Chemistry, Rajdhani College, University of Delhi, New Delhi, India
| | - Shrikant Kukreti
- Nucleic Acid Research Lab, Department of Chemistry, University of Delhi, Delhi, India
- *Correspondence: Shrikant Kukreti,
| |
Collapse
|
24
|
Transcriptomic Profile Analysis of Streptococcus mutans Response to Acmella paniculata Flower Extracts. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7767940. [PMID: 35774750 PMCID: PMC9239782 DOI: 10.1155/2022/7767940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/27/2022] [Indexed: 11/17/2022]
Abstract
Background Acmella paniculata has been used as a traditional medicine to treat oral health diseases such as dental caries and periodontitis. Streptococcus mutans is a common bacterium that initiates dental caries at an early stage. Aim The aim of this study was to determine the mode of action of A. paniculata (extracts) against S. mutans growth. Methods Time-kill assay has been done to investigate the rate of kill and effectiveness of Acmella paniculata (AP) extracts against S. mutans growth. Phytochemical analysis was done to identify major compounds in AP extracts using gas chromatography mass spectrometry (GCMS). Scanning and transmission electron microscopy (SEM and TEM) have been done to observe the morphological changes of treated bacteria. Transcriptomic profile analysis has been done using Next Gene Sequencing. Results AP flower n-hexane (APFH) and AP flower dichloromethane (APFD) extracts acted as bactericidal agents after killing >3 log10 cfu/mL of S. mutans after 24 hours. Oleic and hexadecenoic acids were found to be the major compounds in APFD and APFH extracts, respectively. Photomicrographs from SEM and TEM of treated S. mutans show that the bacterial cell wall has been lysed and the cytoplasm content was decreased. Pathway analysis revealed that the APFD extract significantly affected biosynthesis peptidoglycan, gene expression, RNA processing, and macromolecule metabolism processes in S. mutans. Conclusion Data analysis revealed that multiple mechanisms of action were involved in antibacterial activity of A. paniculata extracts toward S. mutans.
Collapse
|
25
|
Wang J, Shi Y, Reiss K, Allen B, Maschietto F, Lolis E, Konigsberg WH, Lisi GP, Batista VS. Insights into Binding of Single-Stranded Viral RNA Template to the Replication-Transcription Complex of SARS-CoV-2 for the Priming Reaction from Molecular Dynamics Simulations. Biochemistry 2022; 61:424-432. [PMID: 35199520 PMCID: PMC8887646 DOI: 10.1021/acs.biochem.1c00755] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/09/2022] [Indexed: 01/18/2023]
Abstract
A minimal replication-transcription complex (RTC) of SARS-CoV-2 for synthesis of viral RNAs includes the nsp12 RNA-dependent RNA polymerase and two nsp8 RNA primase subunits for de novo primer synthesis, one nsp8 in complex with its accessory nsp7 subunit and the other without it. The RTC is responsible for faithfully copying the entire (+) sense viral genome from its first 5'-end to the last 3'-end nucleotides through a replication-intermediate (RI) template. The single-stranded (ss) RNA template for the RI is its 33-nucleotide 3'-poly(A) tail adjacent to a well-characterized secondary structure. The ssRNA template for viral transcription is a 5'-UUUAU-3' next to stem-loop (SL) 1'. We analyze the electrostatic potential distribution of the nsp8 subunit within the RTC around the template strand of the primer/template (P/T) RNA duplex in recently published cryo-EM structures to address the priming reaction using the viral poly(A) template. We carried out molecular dynamics (MD) simulations with a P/T RNA duplex, the viral poly(A) template, or a generic ssRNA template. We find evidence that the viral poly(A) template binds similarly to the template strand of the P/T RNA duplex within the RTC, mainly through electrostatic interactions, providing new insights into the priming reaction by the nsp8 subunit within the RTC, which differs significantly from the existing proposal of the nsp7/nsp8 oligomer formed outside the RTC. High-order oligomerization of nsp8 and nsp7 for SARS-CoV observed outside the RTC of SARS-CoV-2 is not found in the RTC and not likely to be relevant to the priming reaction.
Collapse
Affiliation(s)
- Jimin Wang
- Department of Molecular Biophysics and Biochemistry,
Yale University, New Haven, Connecticut 06520-8114,
United States
| | - Yuanjun Shi
- Department of Chemistry, Yale
University, New Haven, Connecticut 06511-8499, United
States
| | - Krystle Reiss
- Department of Chemistry, Yale
University, New Haven, Connecticut 06511-8499, United
States
| | - Brandon Allen
- Department of Chemistry, Yale
University, New Haven, Connecticut 06511-8499, United
States
| | - Federica Maschietto
- Department of Chemistry, Yale
University, New Haven, Connecticut 06511-8499, United
States
| | - Elias Lolis
- Department of Pharmacology, Yale
University, New Haven, Connecticut 06520-8066, United
States
| | - William H. Konigsberg
- Department of Molecular Biophysics and Biochemistry,
Yale University, New Haven, Connecticut 06520-8114,
United States
| | - George P. Lisi
- Department of Molecular and Cell Biology and
Biochemistry, Brown University, Providence, Rhode Island 02912,
United States
| | - Victor S. Batista
- Department of Chemistry, Yale
University, New Haven, Connecticut 06511-8499, United
States
| |
Collapse
|
26
|
Periago J, Mason C, Griep MA. Theoretical Development of DnaG Primase as a Novel Narrow-Spectrum Antibiotic Target. ACS OMEGA 2022; 7:8420-8428. [PMID: 35309427 PMCID: PMC8928506 DOI: 10.1021/acsomega.1c05928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/01/2022] [Indexed: 06/01/2023]
Abstract
The widespread use of antibiotics to treat infections is one of the reasons that global mortality rates have fallen over the past 80 years. However, antibiotic use is also responsible for the concomitant rise in antibiotic resistance because it results in dysbiosis in which commensal and pathogenic bacteria are both greatly reduced. Therefore, narrow-range antibiotics are a promising direction for reducing antibiotic resistance because they are more discriminate. As a step toward addressing this problem, the goal of this study was to identify sites on DnaG primase that are conserved within Gram-positive bacteria and different from the equivalent sites in Gram-negative bacteria. Based on sequence and structural analysis, the primase C-terminal helicase-binding domain (CTD) was identified as most promising. Although the primase CTD sequences are very poorly conserved, they have highly conserved protein folds, and Gram-positive bacterial primases fold into a compact state that creates a small molecule binding site adjacent to a groove. The small molecule would stabilize the protein in its compact state, which would interfere with the helicase binding. This is important because primase CTD must be in its open conformation to bind to its cognate helicase at the replication fork.
Collapse
|
27
|
Horikoshi N, Kurumizaka H. Structural insight into replicative helicase loading in Escherichia coli. J Biochem 2022; 171:605-607. [PMID: 35238386 DOI: 10.1093/jb/mvac023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 02/25/2022] [Indexed: 11/14/2022] Open
Abstract
DNA replication is an essential, precisely regulated process that occurs once in a cell cycle. In the Gram-negative bacterium Escherichia coli, the replicative helicase EcDnaB and the helicase loader EcDnaC play key roles in the initiation step at the replication origin, oriC. EcDnaB and EcDnaC form a heterododecamer, in which hexameric EcDnaB is bound to hexameric EcDnaC. Using genetic, biochemical, and structural biology approaches, many groups have probed the mechanism of replicative helicase loading, using helicases and helicase loaders from various species. Recent X-ray crystallography and cryo-EM structural studies of the EcDnaB-EcDnaC complex revealed that the interaction of DnaC with DnaB triggers distortion accumulation on the closed ring of hexameric DnaB, inducing DnaB subunits to adopt the open helical form for replication progression. The high-resolution crystal structure of the DnaB-DnaC complex solved by Nagata et al. contributed to a better understanding of the conformational rearrangement of the DnaB ring. In addition to the structural alterations in DnaB subunits by DnaC, the binding of single stranded DNA (ssDNA) substrates alters the ATP- and ADP-bound forms of DnaB and DnaC. These studies have proposed mechanisms by which DnaC regulates helicase loading onto ssDNA.
Collapse
Affiliation(s)
- Naoki Horikoshi
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
28
|
Morcinek-Orłowska J, Zdrojewska K, Węgrzyn A. Bacteriophage-Encoded DNA Polymerases-Beyond the Traditional View of Polymerase Activities. Int J Mol Sci 2022; 23:635. [PMID: 35054821 PMCID: PMC8775771 DOI: 10.3390/ijms23020635] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/28/2021] [Accepted: 01/06/2022] [Indexed: 02/04/2023] Open
Abstract
DNA polymerases are enzymes capable of synthesizing DNA. They are involved in replication of genomes of all cellular organisms as well as in processes of DNA repair and genetic recombination. However, DNA polymerases can also be encoded by viruses, including bacteriophages, and such enzymes are involved in viral DNA replication. DNA synthesizing enzymes are grouped in several families according to their structures and functions. Nevertheless, there are examples of bacteriophage-encoded DNA polymerases which are significantly different from other known enzymes capable of catalyzing synthesis of DNA. These differences are both structural and functional, indicating a huge biodiversity of bacteriophages and specific properties of their enzymes which had to evolve under certain conditions, selecting unusual properties of the enzymes which are nonetheless crucial for survival of these viruses, propagating as special kinds of obligatory parasites. In this review, we present a brief overview on DNA polymerases, and then we discuss unusual properties of different bacteriophage-encoded enzymes, such as those able to initiate DNA synthesis using the protein-priming mechanisms or even start this process without any primer, as well as able to incorporate untypical nucleotides. Apart from being extremely interesting examples of biochemical biodiversity, bacteriophage-encoded DNA polymerases can also be useful tools in genetic engineering and biotechnology.
Collapse
Affiliation(s)
- Joanna Morcinek-Orłowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (J.M.-O.); (K.Z.)
| | - Karolina Zdrojewska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (J.M.-O.); (K.Z.)
| | - Alicja Węgrzyn
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdansk, Poland
| |
Collapse
|
29
|
Soffer A, Eisdorfer SA, Ifrach M, Ilic S, Afek A, Schussheim H, Vilenchik D, Akabayov B. Inferring primase-DNA specific recognition using a data driven approach. Nucleic Acids Res 2021; 49:11447-11458. [PMID: 34718733 PMCID: PMC8599759 DOI: 10.1093/nar/gkab956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 12/11/2022] Open
Abstract
DNA–protein interactions play essential roles in all living cells. Understanding of how features embedded in the DNA sequence affect specific interactions with proteins is both challenging and important, since it may contribute to finding the means to regulate metabolic pathways involving DNA–protein interactions. Using a massive experimental benchmark dataset of binding scores for DNA sequences and a machine learning workflow, we describe the binding to DNA of T7 primase, as a model system for specific DNA–protein interactions. Effective binding of T7 primase to its specific DNA recognition sequences triggers the formation of RNA primers that serve as Okazaki fragment start sites during DNA replication.
Collapse
Affiliation(s)
- Adam Soffer
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Data Science Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,School of Computer and Electrical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Sarah A Eisdorfer
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Morya Ifrach
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Stefan Ilic
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ariel Afek
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Hallel Schussheim
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Dan Vilenchik
- Data Science Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,School of Computer and Electrical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Barak Akabayov
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Data Science Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
30
|
Banchenko S, Weise C, Lanka E, Saenger W, Geibel S. Helix Bundle Domain of Primase RepB' Is Required for Dinucleotide Formation and Extension. ACS OMEGA 2021; 6:28903-28911. [PMID: 34746582 PMCID: PMC8567376 DOI: 10.1021/acsomega.1c03881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Indexed: 06/13/2023]
Abstract
During DNA replication, primases synthesize oligonucleotide primers on single-stranded template DNA, which are then extended by DNA polymerases to synthesize a complementary DNA strand. Primase RepB' of plasmid RSF1010 initiates DNA replication on two 40 nucleotide-long inverted repeats, termed ssiA and ssiB, within the oriV of RSF1010. RepB' consists of a catalytic domain and a helix bundle domain, which are connected by long α-helix 6 and an unstructured linker. Previous work has demonstrated that RepB' requires both domains for the initiation of dsDNA synthesis in DNA replication assays. However, the precise functions of these two domains in primer synthesis have been unknown. Here, we report that both domains of RepB' are required to synthesize a 10-12 nucleotide-long DNA primer, whereas the isolated domains are inactive. Mutational analysis of the catalytic domain indicates that the solvent-exposed W50 plays a critical role in resolving hairpin structures formed by ssiA and ssiB. Three structurally conserved aspartates (D77, D78, and D134) of RepB' catalyze the nucleotidyl transfer reaction. Mutations on the helix bundle domain are identified that either reduce the primer length to a dinucleotide (R285A) or abolish the primer synthesis (D238A), indicating that the helix bundle domain is required to form and extend the initial dinucleotide synthesized by the catalytic domain.
Collapse
Affiliation(s)
- Sofia Banchenko
- Charité—Universitätsmedizin
Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität
zu Berlin, Institute of Medical Physics
and Biophysics, Charitéplatz
1, 10117 Berlin, Germany
| | - Christoph Weise
- Freie
Universität Berlin, Institute for
Chemistry and Biochemistry, Thielallee 63, 14195 Berlin, Germany
| | - Erich Lanka
- Max-Planck-Institut
für Molekulare Genetik, Ihnestrasse 73, D-14195 Berlin, Germany
| | - Wolfram Saenger
- Freie
Universität Berlin, Institute for Chemistry, Biochemistry and Structural Biochemistry, Takustr. 6, 14195 Berlin, Germany
| | - Sebastian Geibel
- Institute
for Molecular Infection Biology & Rudolf Virchow Center for Integrative
and Translational Bioimaging, Julius-Maximilians-Universität
Würzburg, Josef-Schneider
Straße 2, 97080 Würzburg, Germany
| |
Collapse
|
31
|
Zehnder J, Cadalbert R, Yulikov M, Künze G, Wiegand T. Paramagnetic spin labeling of a bacterial DnaB helicase for solid-state NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 332:107075. [PMID: 34597956 DOI: 10.1016/j.jmr.2021.107075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Labeling of biomolecules with a paramagnetic probe for nuclear magnetic resonance (NMR) spectroscopy enables determining long-range distance restraints, which are otherwise not accessible by classically used dipolar coupling-based NMR approaches. Distance restraints derived from paramagnetic relaxation enhancements (PREs) can facilitate the structure determination of large proteins and protein complexes. We herein present the site-directed labeling of the large oligomeric bacterial DnaB helicase from Helicobacter pylori with cysteine-reactive maleimide tags carrying either a nitroxide radical or a lanthanide ion. The success of the labeling reaction was followed by quantitative continuous-wave electron paramagnetic resonance (EPR) experiments performed on the nitroxide-labeled protein. PREs were extracted site-specifically from 2D and 3D solid-state NMR spectra. A good agreement with predicted PRE values, derived by computational modeling of nitroxide and Gd3+ tags in the low-resolution DnaB crystal structure, was found. Comparison of experimental PREs and model-predicted spin label-nucleus distances indicated that the size of the "blind sphere" around the paramagnetic center, in which NMR resonances are not detected, is slightly larger for Gd3+ (∼14 Å) than for nitroxide (∼11 Å) in 13C-detected 2D spectra of DnaB. We also present Gd3+-Gd3+ dipolar electron-electron resonance EPR experiments on DnaB supporting the conclusion that DnaB was present as a hexameric assembly.
Collapse
Affiliation(s)
| | | | - Maxim Yulikov
- Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Georg Künze
- Institute for Drug Discovery, Medical School, Leipzig University, 04103 Leipzig, Germany.
| | - Thomas Wiegand
- Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland; Max-Planck-Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany; Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| |
Collapse
|
32
|
Genome and Ecology of a Novel Alteromonas Podovirus, ZP6, Representing a New Viral Genus, Mareflavirus. Microbiol Spectr 2021; 9:e0046321. [PMID: 34643440 PMCID: PMC8515928 DOI: 10.1128/spectrum.00463-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Alteromonas is a ubiquitous, abundant, copiotrophic and phytoplankton-associated marine member of the Gammaproteobacteria with a range extending from tropical waters to polar regions and including hadal zones. Here, we describe a novel Alteromonas phage, ZP6, that was isolated from surface coastal waters of Qingdao, China. ZP6 contains a linear, double-stranded, 38,080-bp DNA molecule with 50.1% G+C content and 47 putative open reading frames (ORFs). Three auxiliary metabolic genes were identified, encoding metal-dependent phosphohydrolase, diaminopurine synthetase, and nucleotide pyrophosphohydrolase. The first two ORFs facilitate the replacement of adenine (A) by diaminopurine (Z) in phage genomes and help phages to evade attack from host restriction enzymes. The nucleotide pyrophosphohydrolase enables the host cells to stop programmed cell death and improves the survival rate of the host in a nutrient-depleted environment. Phylogenetic analysis based on the amino acid sequences of whole genomes and comparative genomic analysis revealed that ZP6 is most closely related to Enhodamvirus but with low similarity (shared genes, <30%, and average nucleotide sequence identity, <65%); it is distinct from other bacteriophages. Together, these results suggest that ZP6 could represent a novel viral genus, here named Mareflavirus. Combining its ability to infect Alteromonas, its harboring of a diaminopurine genome-biosynthetic system, and its representativeness of an understudied viral group, ZP6 could be an important and novel model system for marine virus research. IMPORTANCEAlteromonas is an important symbiotic bacterium of phytoplankton, but research on its bacteriophages is still at an elementary level. Our isolation and genome characterization of a novel Alteromonas podovirus, ZP6, identified a new viral genus of podovirus, namely, Mareflavirus. The ZP6 genome, with a diaminopurine genome-biosynthetic system, is different from those of other isolated Alteromonas phages and will bring new impetus to the development of virus classification and provide important insights into novel viral sequences from metagenomic data sets.
Collapse
|
33
|
Shi R, Hou W, Wang ZQ, Xu X. Biogenesis of Iron-Sulfur Clusters and Their Role in DNA Metabolism. Front Cell Dev Biol 2021; 9:735678. [PMID: 34660592 PMCID: PMC8514734 DOI: 10.3389/fcell.2021.735678] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 09/06/2021] [Indexed: 12/02/2022] Open
Abstract
Iron–sulfur (Fe/S) clusters (ISCs) are redox-active protein cofactors that their synthesis, transfer, and insertion into target proteins require many components. Mitochondrial ISC assembly is the foundation of all cellular ISCs in eukaryotic cells. The mitochondrial ISC cooperates with the cytosolic Fe/S protein assembly (CIA) systems to accomplish the cytosolic and nuclear Fe/S clusters maturation. ISCs are needed for diverse cellular functions, including nitrogen fixation, oxidative phosphorylation, mitochondrial respiratory pathways, and ribosome assembly. Recent research advances have confirmed the existence of different ISCs in enzymes that regulate DNA metabolism, including helicases, nucleases, primases, DNA polymerases, and glycosylases. Here we outline the synthesis of mitochondrial, cytosolic and nuclear ISCs and highlight their functions in DNA metabolism.
Collapse
Affiliation(s)
- Ruifeng Shi
- Shenzhen University-Friedrich Schiller Universität Jena Joint Ph.D. Program in Biomedical Sciences, Shenzhen University School of Medicine, Shenzhen, China.,Guangdong Key Laboratory for Genome Stability and Disease Prevention and Marshall Laboratory of Biomedical Engineering, Shenzhen University School of Medicine, Shenzhen, China
| | - Wenya Hou
- Guangdong Key Laboratory for Genome Stability and Disease Prevention and Marshall Laboratory of Biomedical Engineering, Shenzhen University School of Medicine, Shenzhen, China
| | - Zhao-Qi Wang
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany.,Faculty of Biological Sciences, Friedrich-Schiller-University Jena, Jena, Germany
| | - Xingzhi Xu
- Shenzhen University-Friedrich Schiller Universität Jena Joint Ph.D. Program in Biomedical Sciences, Shenzhen University School of Medicine, Shenzhen, China.,Guangdong Key Laboratory for Genome Stability and Disease Prevention and Marshall Laboratory of Biomedical Engineering, Shenzhen University School of Medicine, Shenzhen, China
| |
Collapse
|
34
|
García-Medel PL, Peralta-Castro A, Baruch-Torres N, Fuentes-Pascacio A, Pedroza-García JA, Cruz-Ramirez A, Brieba LG. Arabidopsis thaliana PrimPol is a primase and lesion bypass DNA polymerase with the biochemical characteristics to cope with DNA damage in the nucleus, mitochondria, and chloroplast. Sci Rep 2021; 11:20582. [PMID: 34663822 PMCID: PMC8523556 DOI: 10.1038/s41598-021-00151-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/07/2021] [Indexed: 11/09/2022] Open
Abstract
PrimPol is a novel Primase–Polymerase that synthesizes RNA and DNA primers de novo and extents from these primers as a DNA polymerase. Animal PrimPol is involved in nuclear and mitochondrial DNA replication by virtue of its translesion DNA synthesis (TLS) and repriming activities. Here we report that the plant model Arabidopsis thaliana encodes a functional PrimPol (AtPrimPol). AtPrimPol is a low fidelity and a TLS polymerase capable to bypass DNA lesions, like thymine glycol and abasic sites, by incorporating directly across these lesions or by skipping them. AtPrimPol is also an efficient primase that preferentially recognizes the single-stranded 3′-GTCG-5′ DNA sequence, where the 3′-G is cryptic. AtPrimPol is the first DNA polymerase that localizes in three cellular compartments: nucleus, mitochondria, and chloroplast. In vitro, AtPrimPol synthesizes primers that are extended by the plant organellar DNA polymerases and this reaction is regulated by organellar single-stranded binding proteins. Given the constant exposure of plants to endogenous and exogenous DNA-damaging agents and the enzymatic capabilities of lesion bypass and re-priming of AtPrimPol, we postulate a predominant role of this enzyme in avoiding replication fork collapse in all three plant genomes, both as a primase and as a TLS polymerase.
Collapse
Affiliation(s)
- Paola L García-Medel
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, CP 36821, Irapuato, Guanajuato, Mexico
| | - Antolín Peralta-Castro
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, CP 36821, Irapuato, Guanajuato, Mexico
| | - Noe Baruch-Torres
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, CP 36821, Irapuato, Guanajuato, Mexico.,Department of Pharmacology and Toxicology, The University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA
| | - Alma Fuentes-Pascacio
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, CP 36821, Irapuato, Guanajuato, Mexico
| | - José A Pedroza-García
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 510-3, 62250, Cuernavaca, Morelos, Mexico
| | - Alfredo Cruz-Ramirez
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, CP 36821, Irapuato, Guanajuato, Mexico
| | - Luis G Brieba
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, CP 36821, Irapuato, Guanajuato, Mexico.
| |
Collapse
|
35
|
The alarmone (p)ppGpp regulates primer extension by bacterial primase. J Mol Biol 2021; 433:167189. [PMID: 34389317 DOI: 10.1016/j.jmb.2021.167189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/22/2021] [Accepted: 08/02/2021] [Indexed: 11/21/2022]
Abstract
Primase is an essential component of the DNA replication machinery, responsible for synthesizing RNA primers that initiate leading and lagging strand DNA synthesis. Bacterial primase activity can be regulated by the starvation-inducible nucleotide (p)ppGpp. This regulation contributes to a timely inhibition of DNA replication upon amino acid starvation in the Gram-positive bacterium Bacillus subtilis. Here, we characterize the effect of (p)ppGpp on B. subtilis DnaG primase activity in vitro. Using a single-nucleotide resolution primase assay, we dissected the effect of ppGpp on the initiation, extension, and fidelity of B. subtilis primase. We found that ppGpp has a mild effect on initiation, but strongly inhibits primer extension and reduces primase processivity, promoting termination of primer extension. High (p)ppGpp concentration, together with low GTP concentration, additively inhibit primase activity. This explains the strong inhibition of replication elongation during starvation which induces high levels of (p)ppGpp and depletion of GTP in B. subtilis. Finally, we found that lowering GTP concentration results in mismatches in primer base pairing that allow priming readthrough, and that ppGpp reduces readthrough to protect priming fidelity. These results highlight the importance of (p)ppGpp in protecting replisome integrity and genome stability in fluctuating nucleotide concentrations upon onset of environmental stress.
Collapse
|
36
|
Calvo P, Martínez-Jiménez MI, Díaz M, Stojkovic G, Kasho K, Guerra S, Wanrooij S, Méndez J, Blanco L. Motif WFYY of human PrimPol is crucial to stabilize the incoming 3'-nucleotide during replication fork restart. Nucleic Acids Res 2021; 49:8199-8213. [PMID: 34302490 PMCID: PMC8373064 DOI: 10.1093/nar/gkab634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 11/12/2022] Open
Abstract
PrimPol is the second primase in human cells, the first with the ability to start DNA chains with dNTPs. PrimPol contributes to DNA damage tolerance by restarting DNA synthesis beyond stalling lesions, acting as a TLS primase. Multiple alignment of eukaryotic PrimPols allowed us to identify a highly conserved motif, WxxY near the invariant motif A, which contains two active site metal ligands in all members of the archeo-eukaryotic primase (AEP) superfamily. In vivo and in vitro analysis of single variants of the WFYY motif of human PrimPol demonstrated that the invariant Trp87 and Tyr90 residues are essential for both primase and polymerase activities, mainly due to their crucial role in binding incoming nucleotides. Accordingly, the human variant F88L, altering the WFYY motif, displayed reduced binding of incoming nucleotides, affecting its primase/polymerase activities especially during TLS reactions on UV-damaged DNA. Conversely, the Y89D mutation initially associated with High Myopia did not affect the ability to rescue stalled replication forks in human cells. Collectively, our data suggest that the WFYY motif has a fundamental role in stabilizing the incoming 3′-nucleotide, an essential requisite for both its primase and TLS abilities during replication fork restart.
Collapse
Affiliation(s)
- Patricia A Calvo
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049, Madrid, Spain
| | | | - Marcos Díaz
- Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Gorazd Stojkovic
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Kazutoshi Kasho
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Susana Guerra
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049, Madrid, Spain
| | - Sjoerd Wanrooij
- Correspondence may also be addressed to Sjoerd Wanrooij. Tel: +46 722460309;
| | - Juan Méndez
- Correspondence may also be addressed to Juan Méndez. Tel: +34 917328000; Fax: +34 917328033;
| | - Luis Blanco
- To whom correspondence should be addressed. Tel: +34 911964685; Fax: +34 911964401;
| |
Collapse
|
37
|
Zabrady K, Zabrady M, Kolesar P, Li AWH, Doherty AJ. CRISPR-Associated Primase-Polymerases are implicated in prokaryotic CRISPR-Cas adaptation. Nat Commun 2021; 12:3690. [PMID: 34140468 PMCID: PMC8211822 DOI: 10.1038/s41467-021-23535-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 05/04/2021] [Indexed: 12/24/2022] Open
Abstract
CRISPR-Cas pathways provide prokaryotes with acquired “immunity” against foreign genetic elements, including phages and plasmids. Although many of the proteins associated with CRISPR-Cas mechanisms are characterized, some requisite enzymes remain elusive. Genetic studies have implicated host DNA polymerases in some CRISPR-Cas systems but CRISPR-specific replicases have not yet been discovered. We have identified and characterised a family of CRISPR-Associated Primase-Polymerases (CAPPs) in a range of prokaryotes that are operonically associated with Cas1 and Cas2. CAPPs belong to the Primase-Polymerase (Prim-Pol) superfamily of replicases that operate in various DNA repair and replication pathways that maintain genome stability. Here, we characterise the DNA synthesis activities of bacterial CAPP homologues from Type IIIA and IIIB CRISPR-Cas systems and establish that they possess a range of replicase activities including DNA priming, polymerisation and strand-displacement. We demonstrate that CAPPs operonically-associated partners, Cas1 and Cas2, form a complex that possesses spacer integration activity. We show that CAPPs physically associate with the Cas proteins to form bespoke CRISPR-Cas complexes. Finally, we propose how CAPPs activities, in conjunction with their partners, may function to undertake key roles in CRISPR-Cas adaptation. CAPPs are putative Primase-Polymerases associated with CRISPR-Cas operons. Here, the authors show CAPPs genetic and physical association with Cas1 and Cas2, their capacity to function as DNA-dependent DNA primases and DNA polymerases, and that Cas1-Cas2 complex adjacent to CAPP has bona fide spacer integration activity.
Collapse
Affiliation(s)
- Katerina Zabrady
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Matej Zabrady
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Peter Kolesar
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK.,National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| | - Arthur W H Li
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Aidan J Doherty
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK.
| |
Collapse
|
38
|
Bermek O, Williams RS. The three-component helicase/primase complex of herpes simplex virus-1. Open Biol 2021; 11:210011. [PMID: 34102080 PMCID: PMC8187027 DOI: 10.1098/rsob.210011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is one of the nine herpesviruses that infect humans. HSV-1 encodes seven proteins to replicate its genome in the hijacked human cell. Among these are the herpes virus DNA helicase and primase that are essential components of its replication machinery. In the HSV-1 replisome, the helicase-primase complex is composed of three components including UL5 (helicase), UL52 (primase) and UL8 (non-catalytic subunit). UL5 and UL52 subunits are functionally interdependent, and the UL8 component is required for the coordination of UL5 and UL52 activities proceeding in opposite directions with respect to the viral replication fork. Anti-viral compounds currently under development target the functions of UL5 and UL52. Here, we review the structural and functional properties of the UL5/UL8/UL52 complex and highlight the gaps in knowledge to be filled to facilitate molecular characterization of the structure and function of the helicase-primase complex for development of alternative anti-viral treatments.
Collapse
Affiliation(s)
- Oya Bermek
- Genome Integrity and Structural Biology Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - R Scott Williams
- Genome Integrity and Structural Biology Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
39
|
van Schendel R, Romeijn R, Buijs H, Tijsterman M. Preservation of lagging strand integrity at sites of stalled replication by Pol α-primase and 9-1-1 complex. SCIENCE ADVANCES 2021; 7:eabf2278. [PMID: 34138739 PMCID: PMC8133754 DOI: 10.1126/sciadv.abf2278] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/31/2021] [Indexed: 05/03/2023]
Abstract
During genome duplication, the replication fork encounters a plethora of obstacles in the form of damaged bases, DNA-cross-linked proteins, and secondary structures. How cells protect DNA integrity at sites of stalled replication is currently unknown. Here, by engineering "primase deserts" into the Caenorhabditis elegans genome close to replication-impeding G-quadruplexes, we show that de novo DNA synthesis downstream of the blocked fork suppresses DNA loss. We next identify the pol α-primase complex to limit deletion mutagenesis, a conclusion substantiated by whole-genome analysis of animals carrying mutated POLA2/DIV-1. We subsequently identify a new role for the 9-1-1 checkpoint clamp in protecting Okazaki fragments from resection by EXO1. Together, our results provide a mechanistic model for controlling the fate of replication intermediates at sites of stalled replication.
Collapse
Affiliation(s)
- Robin van Schendel
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, Netherlands
| | - Ron Romeijn
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, Netherlands
| | - Helena Buijs
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, Netherlands
| | - Marcel Tijsterman
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, Netherlands.
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, Netherlands
| |
Collapse
|
40
|
Allopatric Plant Pathogen Population Divergence following Disease Emergence. Appl Environ Microbiol 2021; 87:AEM.02095-20. [PMID: 33483307 DOI: 10.1128/aem.02095-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/13/2021] [Indexed: 12/19/2022] Open
Abstract
Within the landscape of globally distributed pathogens, populations differentiate via both adaptive and nonadaptive forces. Individual populations are likely to show unique trends of genetic diversity, host-pathogen interaction, and ecological adaptation. In plant pathogens, allopatric divergence may occur particularly rapidly within simplified agricultural monoculture landscapes. As such, the study of plant pathogen populations in monocultures can highlight the distinct evolutionary mechanisms that lead to local genetic differentiation. Xylella fastidiosa is a plant pathogen known to infect and damage multiple monocultures worldwide. One subspecies, Xylella fastidiosa subsp. fastidiosa, was first introduced to the United States ∼150 years ago, where it was found to infect and cause disease in grapevines (Pierce's disease of grapevines, or PD). Here, we studied PD-causing subsp. fastidiosa populations, with an emphasis on those found in the United States. Our study shows that following their establishment in the United States, PD-causing strains likely split into populations on the East and West Coasts. This diversification has occurred via both changes in gene content (gene gain/loss events) and variations in nucleotide sequence (mutation and recombination). In addition, we reinforce the notion that PD-causing populations within the United States acted as the source for subsequent subsp. fastidiosa outbreaks in Europe and Asia.IMPORTANCE Compared to natural environments, the reduced diversity of monoculture agricultural landscapes can lead bacterial plant pathogens to quickly adapt to local biological and ecological conditions. Because of this, accidental introductions of microbial pathogens into naive regions represents a significant economic and environmental threat. Xylella fastidiosa is a plant pathogen with an expanding host and geographic range due to multiple intra- and intercontinental introductions. X. fastidiosa subsp. fastidiosa infects and causes disease in grapevines (Pierce's disease of grapevines [PD]). This study focused on PD-causing X. fastidiosa populations, particularly those found in the United States but also invasions into Taiwan and Spain. The analysis shows that PD-causing X. fastidiosa has diversified via multiple cooccurring evolutionary forces acting at an intra- and interpopulation level. This analysis enables a better understanding of the mechanisms leading to the local adaptation of X. fastidiosa and how a plant pathogen diverges allopatrically after multiple and sequential introduction events.
Collapse
|
41
|
Lacabanne D, Boudet J, Malär AA, Wu P, Cadalbert R, Salmon L, Allain FHT, Meier BH, Wiegand T. Protein Side-Chain-DNA Contacts Probed by Fast Magic-Angle Spinning NMR. J Phys Chem B 2020; 124:11089-11097. [PMID: 33238710 PMCID: PMC7734624 DOI: 10.1021/acs.jpcb.0c08150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Protein–nucleic
acid interactions are essential in a variety
of biological events ranging from the replication of genomic DNA to
the synthesis of proteins. Noncovalent interactions guide such molecular
recognition events, and protons are often at the center of them, particularly
due to their capability of forming hydrogen bonds to the nucleic acid
phosphate groups. Fast magic-angle spinning experiments (100 kHz)
reduce the proton NMR line width in solid-state NMR of fully protonated
protein–DNA complexes to such an extent that resolved proton
signals from side-chains coordinating the DNA can be detected. We
describe a set of NMR experiments focusing on the detection of protein
side-chains from lysine, arginine, and aromatic amino acids and discuss
the conclusions that can be obtained on their role in DNA coordination.
We studied the 39 kDa enzyme of the archaeal pRN1 primase complexed
with DNA and characterize protein–DNA contacts in the presence
and absence of bound ATP molecules.
Collapse
Affiliation(s)
| | - Julien Boudet
- Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Pengzhi Wu
- Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland.,Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Loic Salmon
- Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | - Frédéric H-T Allain
- Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland.,Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Beat H Meier
- Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Thomas Wiegand
- Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
42
|
Pérez-Arnaiz P, Dattani A, Smith V, Allers T. Haloferax volcanii-a model archaeon for studying DNA replication and repair. Open Biol 2020; 10:200293. [PMID: 33259746 PMCID: PMC7776575 DOI: 10.1098/rsob.200293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/09/2020] [Indexed: 12/16/2022] Open
Abstract
The tree of life shows the relationship between all organisms based on their common ancestry. Until 1977, it comprised two major branches: prokaryotes and eukaryotes. Work by Carl Woese and other microbiologists led to the recategorization of prokaryotes and the proposal of three primary domains: Eukarya, Bacteria and Archaea. Microbiological, genetic and biochemical techniques were then needed to study the third domain of life. Haloferax volcanii, a halophilic species belonging to the phylum Euryarchaeota, has provided many useful tools to study Archaea, including easy culturing methods, genetic manipulation and phenotypic screening. This review will focus on DNA replication and DNA repair pathways in H. volcanii, how this work has advanced our knowledge of archaeal cellular biology, and how it may deepen our understanding of bacterial and eukaryotic processes.
Collapse
Affiliation(s)
| | | | | | - Thorsten Allers
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| |
Collapse
|
43
|
Irving SE, Choudhury NR, Corrigan RM. The stringent response and physiological roles of (pp)pGpp in bacteria. Nat Rev Microbiol 2020; 19:256-271. [PMID: 33149273 DOI: 10.1038/s41579-020-00470-y] [Citation(s) in RCA: 202] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 01/10/2023]
Abstract
The stringent response is a stress signalling system mediated by the alarmones guanosine tetraphosphate (ppGpp) and guanosine pentaphosphate (pppGpp) in response to nutrient deprivation. Recent research highlights the complexity and broad range of functions that these alarmones control. This Review provides an update on our current understanding of the enzymes involved in ppGpp, pppGpp and guanosine 5'-monophosphate 3'-diphosphate (pGpp) (collectively (pp)pGpp) turnover, including those shown to produce pGpp and its analogue (pp)pApp. We describe the well-known interactions with RNA polymerase as well as a broader range of cellular target pathways controlled by (pp)pGpp, including DNA replication, transcription, nucleotide synthesis, ribosome biogenesis and function, as well as lipid metabolism. Finally, we review the role of ppGpp and pppGpp in bacterial pathogenesis, providing examples of how these nucleotides are involved in regulating many aspects of virulence and chronic infection.
Collapse
Affiliation(s)
- Sophie E Irving
- The Florey Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Naznin R Choudhury
- The Florey Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Rebecca M Corrigan
- The Florey Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK.
| |
Collapse
|
44
|
Parry DA, Tamayo-Orrego L, Carroll P, Marsh JA, Greene P, Murina O, Uggenti C, Leitch A, Káposzta R, Merő G, Nagy A, Orlik B, Kovács-Pászthy B, Quigley AJ, Riszter M, Rankin J, Reijns MAM, Szakszon K, Jackson AP. PRIM1 deficiency causes a distinctive primordial dwarfism syndrome. Genes Dev 2020; 34:1520-1533. [PMID: 33060134 PMCID: PMC7608753 DOI: 10.1101/gad.340190.120] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 09/18/2020] [Indexed: 12/26/2022]
Abstract
DNA replication is fundamental for cell proliferation in all organisms. Nonetheless, components of the replisome have been implicated in human disease, and here we report PRIM1 encoding the catalytic subunit of DNA primase as a novel disease gene. Using a variant classification agnostic approach, biallelic mutations in PRIM1 were identified in five individuals. PRIM1 protein levels were markedly reduced in patient cells, accompanied by replication fork asymmetry, increased interorigin distances, replication stress, and prolonged S-phase duration. Consequently, cell proliferation was markedly impaired, explaining the patients' extreme growth failure. Notably, phenotypic features distinct from those previously reported with DNA polymerase genes were evident, highlighting differing developmental requirements for this core replisome component that warrant future investigation.
Collapse
Affiliation(s)
- David A Parry
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, the University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Lukas Tamayo-Orrego
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, the University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Paula Carroll
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, the University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Joseph A Marsh
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, the University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Philip Greene
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, the University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Olga Murina
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, the University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Carolina Uggenti
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, the University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Andrea Leitch
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, the University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | | | - Rita Káposzta
- Institute of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
| | - Gabriella Merő
- Institute of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
| | - Andrea Nagy
- Institute of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
| | - Brigitta Orlik
- Institute of Pathology, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
| | - Balázs Kovács-Pászthy
- Institute of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
| | - Alan J Quigley
- Department of Radiology, Royal Hospital for Sick Children, Edinburgh EH9 1LF, United Kingdom
| | - Magdolna Riszter
- Institute of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
| | - Julia Rankin
- Department Clinical Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter EX1 2ED, United Kingdom
| | - Martin A M Reijns
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, the University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Katalin Szakszon
- Institute of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
| | - Andrew P Jackson
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, the University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | | |
Collapse
|
45
|
Bebel A, Walsh MA, Mir-Sanchis I, Rice PA. A novel DNA primase-helicase pair encoded by SCC mec elements. eLife 2020; 9:55478. [PMID: 32945259 PMCID: PMC7581432 DOI: 10.7554/elife.55478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 09/17/2020] [Indexed: 01/18/2023] Open
Abstract
Mobile genetic elements (MGEs) are a rich source of new enzymes, and conversely, understanding the activities of MGE-encoded proteins can elucidate MGE function. Here, we biochemically characterize three proteins encoded by a conserved operon carried by the Staphylococcal Cassette Chromosome (SCCmec), an MGE that confers methicillin resistance to Staphylococcus aureus, creating MRSA strains. The first of these proteins, CCPol, is an active A-family DNA polymerase. The middle protein, MP, binds tightly to CCPol and confers upon it the ability to synthesize DNA primers de novo. The CCPol-MP complex is therefore a unique primase-polymerase enzyme unrelated to either known primase family. The third protein, Cch2, is a 3’-to-5’ helicase. Cch2 additionally binds specifically to a dsDNA sequence downstream of its gene that is also a preferred initiation site for priming by CCPol-MP. Taken together, our results suggest that this is a functional replication module for SCCmec.
Collapse
Affiliation(s)
- Aleksandra Bebel
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
| | - Melissa A Walsh
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
| | - Ignacio Mir-Sanchis
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
| | - Phoebe A Rice
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
| |
Collapse
|
46
|
Julius C, Salgado PS, Yuzenkova Y. Metabolic cofactors NADH and FAD act as non-canonical initiating substrates for a primase and affect replication primer processing in vitro. Nucleic Acids Res 2020; 48:7298-7306. [PMID: 32463447 PMCID: PMC7367122 DOI: 10.1093/nar/gkaa447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 11/17/2022] Open
Abstract
To initiate replication on a double-stranded DNA de novo, all organisms require primase, an RNA polymerase making short RNA primers which are then extended by DNA polymerases. Here, we show that primase can use metabolic cofactors as initiating substrates, instead of its canonical substrate ATP. DnaG primase of Escherichia coli initiates synthesis of RNA with NADH (the reduced form of nicotinamide adenine dinucleotide) and FAD (flavin adenine dinucleotide) in vitro. These cofactors consist of an ADP core covalently bound to extra moieties. The ADP component of these metabolites base-pairs with the DNA template and provides a 3′-OH group for RNA extension. The additional cofactors moieties apparently contact the ‘basic ridge’ domain of DnaG, but not the DNA template base at the –1 position. ppGpp, the starvation response regulator, strongly inhibits the initiation with cofactors, hypothetically due to competition for overlapping binding sites. Efficient RNA primer processing is a prerequisite for Okazaki fragments maturation, and we find that the efficiency of primer processing by DNA polymerase I in vitro is specifically affected by the cofactors on its 5′-end. Together these results indicate that utilization of cofactors as substrates by primase may influence regulation of replication initiation and Okazaki fragments processing.
Collapse
Affiliation(s)
- Christina Julius
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle upon Tyne, NE2 4AX, UK
| | - Paula S Salgado
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle upon Tyne, NE2 4AX, UK
| | - Yulia Yuzenkova
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle upon Tyne, NE2 4AX, UK
| |
Collapse
|
47
|
Nichols CA, Gibson WJ, Brown MS, Kosmicki JA, Busanovich JP, Wei H, Urbanski LM, Curimjee N, Berger AC, Gao GF, Cherniack AD, Dhe-Paganon S, Paolella BR, Beroukhim R. Loss of heterozygosity of essential genes represents a widespread class of potential cancer vulnerabilities. Nat Commun 2020; 11:2517. [PMID: 32433464 PMCID: PMC7239950 DOI: 10.1038/s41467-020-16399-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
Alterations in non-driver genes represent an emerging class of potential therapeutic targets in cancer. Hundreds to thousands of non-driver genes undergo loss of heterozygosity (LOH) events per tumor, generating discrete differences between tumor and normal cells. Here we interrogate LOH of polymorphisms in essential genes as a novel class of therapeutic targets. We hypothesized that monoallelic inactivation of the allele retained in tumors can selectively kill cancer cells but not somatic cells, which retain both alleles. We identified 5664 variants in 1278 essential genes that undergo LOH in cancer and evaluated the potential for each to be targeted using allele-specific gene-editing, RNAi, or small-molecule approaches. We further show that allele-specific inactivation of either of two essential genes (PRIM1 and EXOSC8) reduces growth of cells harboring that allele, while cells harboring the non-targeted allele remain intact. We conclude that LOH of essential genes represents a rich class of non-driver cancer vulnerabilities. In tumors, hundreds of genes can undergo loss of heterozygosity (LOH). Here, the authors investigate the potential for this LOH as a class of non-driver cancer vulnerabilities.
Collapse
Affiliation(s)
- Caitlin A Nichols
- Departments of Cancer Biology, Boston, MA, USA.,Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02215, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - William J Gibson
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Meredith S Brown
- Departments of Cancer Biology, Boston, MA, USA.,Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02215, USA
| | - Jack A Kosmicki
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.,Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.,Program in Bioinformatics and Integrative Genomics, Harvard University, Cambridge, MA, 02138, USA
| | - John P Busanovich
- Departments of Cancer Biology, Boston, MA, USA.,Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02215, USA
| | - Hope Wei
- Departments of Cancer Biology, Boston, MA, USA.,Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02215, USA
| | - Laura M Urbanski
- Departments of Cancer Biology, Boston, MA, USA.,Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02215, USA
| | - Naomi Curimjee
- Departments of Cancer Biology, Boston, MA, USA.,Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02215, USA
| | - Ashton C Berger
- Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02215, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Galen F Gao
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Andrew D Cherniack
- Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02215, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Sirano Dhe-Paganon
- Departments of Cancer Biology, Boston, MA, USA.,Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Brenton R Paolella
- Departments of Cancer Biology, Boston, MA, USA. .,Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| | - Rameen Beroukhim
- Departments of Cancer Biology, Boston, MA, USA. .,Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02215, USA. .,Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA. .,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
48
|
Amir M, Mohammad T, Dohare R, Islam A, Ahmad F, Imtaiyaz Hassan M. Structure, function and therapeutic implications of OB-fold proteins: A lesson from past to present. Brief Funct Genomics 2020; 19:377-389. [PMID: 32393969 DOI: 10.1093/bfgp/elaa008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Oligonucleotide/oligosaccharide-binding (OB)-fold proteins play essential roles in the regulation of genome and its correct transformation to the subsequent generation. To maintain the genomic stability, OB-fold proteins are implicated in various cellular processes including DNA replication, DNA repair, cell cycle regulation and maintenance of telomere. The diverse functional spectrums of OB-fold proteins are mainly due to their involvement in protein-DNA and protein-protein complexes. Mutations and consequential structural alteration in the OB-fold proteins often lead to severe diseases. Here, we have investigated the structure, function and mode of action of OB-fold proteins (RPA, BRCA2, DNA ligases and SSBs1/2) in cellular pathways and their relationship with diseases and their possible use in therapeutic intervention. Due to the crucial role of OB-fold proteins in regulating the key physiological process, a detailed structural understanding in the context of underlying mechanism of action and cellular complexity offers a new avenue to target OB-proteins for therapeutic intervention.
Collapse
|
49
|
Peter B, Falkenberg M. TWINKLE and Other Human Mitochondrial DNA Helicases: Structure, Function and Disease. Genes (Basel) 2020; 11:genes11040408. [PMID: 32283748 PMCID: PMC7231222 DOI: 10.3390/genes11040408] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/30/2022] Open
Abstract
Mammalian mitochondria contain a circular genome (mtDNA) which encodes subunits of the oxidative phosphorylation machinery. The replication and maintenance of mtDNA is carried out by a set of nuclear-encoded factors—of which, helicases form an important group. The TWINKLE helicase is the main helicase in mitochondria and is the only helicase required for mtDNA replication. Mutations in TWINKLE cause a number of human disorders associated with mitochondrial dysfunction, neurodegeneration and premature ageing. In addition, a number of other helicases with a putative role in mitochondria have been identified. In this review, we discuss our current knowledge of TWINKLE structure and function and its role in diseases of mtDNA maintenance. We also briefly discuss other potential mitochondrial helicases and postulate on their role(s) in mitochondria.
Collapse
|
50
|
Chen X, Su S, Chen Y, Gao Y, Li Y, Shao Z, Zhang Y, Shao Q, Liu H, Li J, Ma J, Gan J. Structural studies reveal a ring-shaped architecture of deep-sea vent phage NrS-1 polymerase. Nucleic Acids Res 2020; 48:3343-3355. [PMID: 32016421 PMCID: PMC7102993 DOI: 10.1093/nar/gkaa071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/17/2020] [Accepted: 01/23/2020] [Indexed: 11/23/2022] Open
Abstract
NrS-1 is the first known phage that can infect Epsilonproteobacteria, one of the predominant primary producers in the deep-sea hydrothermal vent ecosystems. NrS-1 polymerase is a multidomain enzyme and is one key component of the phage replisome. The N-terminal Prim/Pol and HBD domains are responsible for DNA polymerization and de novo primer synthesis activities of NrS-1 polymerase. However, the structure and function of the C-terminus (CTR) of NrS-1 polymerase are poorly understood. Here, we report two crystal structures, showing that NrS-1 CTR adopts one unique hexameric ring-shaped conformation. Although the central helicase domain of NrS-1 CTR shares structural similarity with the superfamily III helicases, the folds of the Head and Tail domains are completely novel. Via mutagenesis and in vitro biochemical analysis, we identified many residues important for the helicase and polymerization activities of NrS-1 polymerase. In addition to NrS-1 polymerase, our study may also help us identify and understand the functions of multidomain polymerases expressed by many NrS-1 related phages.
Collapse
Affiliation(s)
- Xi Chen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Shanghai Public Health Clinical Center, School of Life Sciences, Fudan University, Shanghai 200438, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Shichen Su
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yiqing Chen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Shanghai Public Health Clinical Center, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yanqing Gao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Shanghai Public Health Clinical Center, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yangyang Li
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Shanghai Public Health Clinical Center, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Zhiwei Shao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Shanghai Public Health Clinical Center, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yixi Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Shanghai Public Health Clinical Center, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Qiyuan Shao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Shanghai Public Health Clinical Center, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Hehua Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Shanghai Public Health Clinical Center, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jixi Li
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jinbiao Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jianhua Gan
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Shanghai Public Health Clinical Center, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|