1
|
Bian Q, Jiao X, Chen Y, Yu H, Ye L. Hierarchical dynamic regulation of Saccharomyces cerevisiae for enhanced lutein biosynthesis. Biotechnol Bioeng 2023; 120:536-552. [PMID: 36369967 DOI: 10.1002/bit.28286] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/26/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
Lutein, as a carotenoid with strong antioxidant capacity and an important component of macular pigment in the retina, has wide applications in pharmaceutical, food, feed, and cosmetics industries. Besides extraction from plant and algae, microbial fermentation using engineered cell factories to produce lutein has emerged as a promising route. However, intra-pathway competition between the lycopene cyclases and the conflict between cell growth and production are two major challenges. In our previous study, de novo synthesis of lutein had been achieved in Saccharomyces cerevisiae by dividing the pathway into two stages (δ-carotene formation and conversion) using temperature as the input signal to realize sequential cyclation of lycopene. However, lutein production was limited to microgram level, which is still too low to meet industrial demand. In this study, a dual-signal hierarchical dynamic regulation system was developed and applied to divide lutein biosynthesis into three stages in response to glucose concentration and culture temperature. By placing the genes involved in δ-carotene formation under the glucose-responsive ADH2 promoter and genes involved in the conversion of δ-carotene to lutein under temperature-responsive GAL promoters, the growth-production conflict and intra-pathway competition were simultaneously resolved. Meanwhile, the rate-limiting lycopene ε-cyclation and carotene hydroxylation reactions were improved by screening for lycopene ε-cyclase with higher activity and fine tuning of the P450 enzymes and their redox partners. Finally, a lutein titer of 19.92 mg/L (4.53 mg/g DCW) was obtained in shake-flask cultures using the engineered yeast strain YLutein-3S-6, which is the highest lutein titer ever reported in heterologous production systems.
Collapse
Affiliation(s)
- Qi Bian
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Xue Jiao
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Ye Chen
- Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorders, Institute of Genetics, Zhejiang University, Hangzhou, China
| | - Hongwei Yu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Lidan Ye
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| |
Collapse
|
2
|
Production and structural characterization of the cytochrome P450 enzymes in carotene ring hydroxylation. Methods Enzymol 2022; 671:223-241. [DOI: 10.1016/bs.mie.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Huang J, Xu Q, Liu Z, Jain N, Tyagi M, Wei DQ, Hong L. Controlling the Substrate Specificity of an Enzyme through Structural Flexibility by Varying the Salt-Bridge Density. Molecules 2021; 26:5693. [PMID: 34577164 PMCID: PMC8470667 DOI: 10.3390/molecules26185693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/03/2021] [Accepted: 09/16/2021] [Indexed: 11/17/2022] Open
Abstract
Many enzymes, particularly in one single family, with highly conserved structures and folds exhibit rather distinct substrate specificities. The underlying mechanism remains elusive, the resolution of which is of great importance for biochemistry, biophysics, and bioengineering. Here, we performed a neutron scattering experiment and molecular dynamics (MD) simulations on two structurally similar CYP450 proteins; CYP101 primarily catalyzes one type of ligands, then CYP2C9 can catalyze a large range of substrates. We demonstrated that it is the high density of salt bridges in CYP101 that reduces its structural flexibility, which controls the ligand access channel and the fluctuation of the catalytic pocket, thus restricting its selection on substrates. Moreover, we performed MD simulations on 146 different kinds of CYP450 proteins, spanning distinct biological categories including Fungi, Archaea, Bacteria, Protista, Animalia, and Plantae, and found the above mechanism generally valid. We demonstrated that, by fine changes of chemistry (salt-bridge density), the CYP450 superfamily can vary the structural flexibility of its member proteins among different biological categories, and thus differentiate their substrate specificities to meet the specific biological needs. As this mechanism is well-controllable and easy to be implemented, we expect it to be generally applicable in future enzymatic engineering to develop proteins of desired substrate specificities.
Collapse
Affiliation(s)
- Juan Huang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Qin Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Zhuo Liu
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China;
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Nitin Jain
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA;
| | - Madhusudan Tyagi
- NIST Center for Neutron Research, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA;
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
- Peng Cheng Laboratory, Shenzhen 518055, China
| | - Liang Hong
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China;
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
4
|
Dandekar BR, Ahalawat N, Mondal J. Reconciling conformational heterogeneity and substrate recognition in cytochrome P450. Biophys J 2021; 120:1732-1745. [PMID: 33675756 PMCID: PMC8204291 DOI: 10.1016/j.bpj.2021.02.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/20/2021] [Accepted: 02/24/2021] [Indexed: 01/08/2023] Open
Abstract
Cytochrome P450, the ubiquitous metalloenzyme involved in detoxification of foreign components, has remained one of the most popular systems for substrate-recognition process. However, despite being known for its high substrate specificity, the mechanistic basis of substrate-binding by archetypal system cytochrome P450cam has remained at odds with the contrasting reports of multiple diverse crystallographic structures of its substrate-free form. Here, we address this issue by elucidating the probability of mutual dynamical transition to the other crystallographic pose of cytochrome P450cam and vice versa via unbiased all-atom computer simulation. A robust Markov state model, constructed using adaptively sampled 84-μs-long molecular dynamics simulation trajectories, maps the broad and heterogenous P450cam conformational landscape into five key substates. In particular, the Markov state model identifies an intermediate-assisted dynamic equilibrium between a pair of conformations of P450cam, in which the substrate-recognition sites remain "closed" and "open," respectively. However, the estimate of a significantly higher stationary population of closed conformation, coupled with faster rate of open → closed transition than its reverse process, dictates that the net conformational equilibrium would be swayed in favor of "closed" conformation. Together, the investigation quantitatively infers that although a potential substrate of cytochrome P450cam would, in principle, explore a diverse array of conformations of substrate-free protein, it would mostly encounter a "closed" or solvent-occluded conformation and hence would follow an induced-fit-based recognition process. Overall, the work reconciles multiple precedent crystallographic, spectroscopic investigations and establishes how a statistical elucidation of conformational heterogeneity in protein would provide crucial insights in the mechanism of potential substrate-recognition process.
Collapse
Affiliation(s)
- Bhupendra R Dandekar
- Tata Institute of Fundamental Research, Center for Interdisciplinary Sciences, Hyderabad, India
| | - Navjeet Ahalawat
- Department of Molecular Biology, Biotechnology and Bioinformatics, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| | - Jagannath Mondal
- Tata Institute of Fundamental Research, Center for Interdisciplinary Sciences, Hyderabad, India.
| |
Collapse
|
5
|
Teshima A, Hadae N, Tsuda N, Arakawa K. Functional Analysis of P450 Monooxygenase SrrO in the Biosynthesis of Butenolide-Type Signaling Molecules in Streptomyces rochei. Biomolecules 2020; 10:biom10091237. [PMID: 32854353 PMCID: PMC7564063 DOI: 10.3390/biom10091237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023] Open
Abstract
Streptomyces rochei 7434AN4 produces two structurally unrelated polyketide antibiotics lankacidin and lankamycin, and their biosynthesis is tightly controlled by butenolide-type signaling molecules SRB1 and SRB2. SRBs are synthesized by SRB synthase SrrX, and induce lankacidin and lankamycin production at 40 nM concentration. We here investigated the role of a P450 monooxygenase gene srrO (orf84), which is located adjacent to srrX (orf85), in SRB biosynthesis. An srrO mutant KA54 accumulated lankacidin and lankamycin at a normal level when compared with the parent strain. To elucidate the chemical structures of the signaling molecules accumulated in KA54 (termed as KA54-SRBs), this mutant was cultured (30 L) and the active components were purified. Two active components (KA54-SRB1 and KA54-SRB2) were detected in ESI-MS and chiral HPLC analysis. The molecular formulae for KA54-SRB1 and KA54-SRB2 are C15H26O4 and C16H28O4, whose values are one oxygen smaller and two hydrogen larger when compared with those for SRB1 and SRB2, respectively. Based on extensive NMR analysis, the signaling molecules in KA54 were determined to be 6'-deoxo-SRB1 and 6'-deoxo-SRB2. Gel shift analysis indicated that a ligand affinity of 6'-deoxo-SRB1 to the specific receptor SrrA was 100-fold less than that of SRB1. We performed bioconversion of the synthetic 6'-deoxo-SRB1 in the Streptomyces lividans recombinant carrying SrrO-expression plasmid. Substrate 6'-deoxo-SRB1 was converted through 6'-deoxo-6'-hydroxy-SRB1 to SRB1 in a time-dependent manner. Thus, these results clearly indicated that SrrO catalyzes the C-6' oxidation at a final step in SRB biosynthesis.
Collapse
Affiliation(s)
- Aiko Teshima
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan; (A.T.); (N.H.); (N.T.)
| | - Nozomi Hadae
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan; (A.T.); (N.H.); (N.T.)
| | - Naoto Tsuda
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan; (A.T.); (N.H.); (N.T.)
| | - Kenji Arakawa
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan; (A.T.); (N.H.); (N.T.)
- Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
- Correspondence: ; Tel./Fax: +81-82-424-7767
| |
Collapse
|
6
|
Abstract
Two cytochrome P450 enzymes, CYP97A3 and CYP97C1, catalyze hydroxylations of the β- and ε-rings of α-carotene to produce lutein. Chirality is introduced at the C-3 atom of both rings, and the reactions are both pro-3R-stereospecific. We determined the crystal structures of CYP97A3 in substrate-free and complex forms with a nonnatural substrate and the structure of CYP97C1 in a detergent-bound form. The structures of CYP97A3 in different states show the substrate channel and the structure of CYP97C1 bound with octylthioglucoside confirms the binding site for the carotenoid substrate. Biochemical assays confirm that the ferredoxin-NADP+ reductase (FNR)-ferredoxin pair is used as the redox partner. Details of the pro-3R stereospecificity are revealed in the retinal-bound CYP97A3 structure. Further analysis indicates that the CYP97B clan bears similarity to the β-ring-specific CYP97A clan. Overall, our research describes the molecular basis for the last steps of lutein biosynthesis.
Collapse
|
7
|
Abstract
On the occasion of Professor Frances H. Arnold's recent acceptance of the 2018 Nobel Prize in Chemistry, we honor her numerous contributions to the fields of directed evolution and biocatalysis. Arnold pioneered the development of directed evolution methods for engineering enzymes as biocatalysts. Her highly interdisciplinary research has provided a ground not only for understanding the mechanisms of enzyme evolution but also for developing commercially viable enzyme biocatalysts and biocatalytic processes. In this Account, we highlight some of her notable contributions in the past three decades in the development of foundational directed evolution methods and their applications in the design and engineering of enzymes with desired functions for biocatalysis. Her work has created a paradigm shift in the broad catalysis field.
Collapse
Affiliation(s)
- Rudi Fasan
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - S. B. Jennifer Kan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Huimin Zhao
- Departments of Chemical and Biomolecular Engineering, Chemistry, and Biochemistry, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
8
|
Goodin DB, Chuo SW, Liou SH. Conformational Changes in Cytochrome P450cam and the Effector Role of Putidaredoxin. DIOXYGEN-DEPENDENT HEME ENZYMES 2018. [DOI: 10.1039/9781788012911-00292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The cytochromes P450 form an enormous family of over 20 000 enzyme variants found in all branches of life. They catalyze the O2 dependent monooxygenation of a wide range of substrates in reactions important to drug metabolism, biosynthesis and energy utilization. Understanding how they function is important for biomedical science and requires a full description of their notorious propensity for specificity and promiscuity. The bacterial P450cam is an unusual example, having the most well characterized chemical mechanism of all of the forms. It also undergoes an increasingly well characterized structural change upon substrate binding, which may be similar to to that displayed by some, but not all forms of P450. Finally, P450cam is one of the rare forms that have a strict requirement for a particular electron donor, putidaredoxin (pdx). Pdx provides the required electrons for enzyme turnover, but it also induces specific changes in the enzyme to allow enzyme turnover, long known as its effector role. This review summarizes recent crystallographic and double electron–electron resonance studies that have revealed the effects of substrate and pdx binding on the structure of P450cam. We describe an emerging idea for how pdx exerts its effector function by inducing a conformational change in the enzyme. This change then propagates to the active site to enable cleavage of the ferric–hydroperoxy bond during catalysis, and appears to provide a very elegant approach for P450cam to attain both high efficiency and protection from oxidative damage.
Collapse
Affiliation(s)
- David B. Goodin
- University of California Davis, Department of Chemistry One Shields Ave Davis CA 95616 USA
| | - Shih-Wei Chuo
- University of California Davis, Department of Chemistry One Shields Ave Davis CA 95616 USA
| | - Shu-Hao Liou
- Research Group EPR Spectroscopy, Max-Planck-Institute for Biophysical Chemistry Göttingen 37077 Germany
| |
Collapse
|
9
|
Liou SH, Mahomed M, Lee YT, Goodin DB. Effector Roles of Putidaredoxin on Cytochrome P450cam Conformational States. J Am Chem Soc 2016; 138:10163-72. [PMID: 27452076 DOI: 10.1021/jacs.6b04110] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this study, the effector role of Pdx (putidaredoxin) on cytochrome P450cam conformation is refined by attaching two different spin labels, MTSL or BSL (bifunctional spin-label) onto the F or G helices and using DEER (double electron-electron resonance) to measure the distance between labels. Recent EPR and crystallographic studies have observed that oxidized Pdx induces substrate-bound P450cam to change from the closed to the open state. However, this change was not observed by DEER in the reduced Pdx complex with carbon-monoxide-bound P450cam (Fe(2+)CO). In addition, recent NMR studies have failed to observe a change in P450cam conformation upon binding Pdx. Hence, resolving these issues is important for a full understanding the effector role of Pdx. Here we show that oxidized Pdx induces camphor-bound P450cam to shift from the closed to the open conformation when labeled on either the F or G helices with MTSL. BSL at these sites can either narrow the distance distribution widths dramatically or alter the extent of the conformational change. In addition, we report DEER spectra on a mixed oxidation state containing oxidized Pdx and ferrous CO-bound P450cam, showing that P450cam remains closed. This indicates that CO binding to the heme prevents P450cam from opening, overriding the influence exerted by Pdx binding. Finally, we report the open form P450cam crystal structure with substrate bound, which suggests that crystal packing effects may prevent conformational conversion. Using multiple labeling approaches, DEER provides a unique perspective to resolve how the conformation of P450cam depends on Pdx and ligand states.
Collapse
Affiliation(s)
- Shu-Hao Liou
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| | - Mavish Mahomed
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| | - Young-Tae Lee
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| | - David B Goodin
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
10
|
Mirzaei S, Taherpour AA, Mohamadi S. Mechanistic study of allopurinol oxidation using aldehyde oxidase, xanthine oxidase and cytochrome P450 enzymes. RSC Adv 2016. [DOI: 10.1039/c6ra19197e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The oxidation reaction of allopurinol to its active metabolite (oxypurinol) is investigated using the AO and P450 enzymes. To the contrary of AO (and XO), the P450 enzyme can metabolize the allopurinol with a not self-inhibitory mechanism.
Collapse
Affiliation(s)
- Saber Mirzaei
- Department of Organic Chemistry
- Faculty of Chemistry
- Razi University
- Kermanshah
- Iran
| | - Avat Arman Taherpour
- Department of Organic Chemistry
- Faculty of Chemistry
- Razi University
- Kermanshah
- Iran
| | - Shahryar Mohamadi
- Department of Organic Chemistry
- Faculty of Chemistry
- Razi University
- Kermanshah
- Iran
| |
Collapse
|
11
|
Wang W, Liang AD, Lippard SJ. Coupling Oxygen Consumption with Hydrocarbon Oxidation in Bacterial Multicomponent Monooxygenases. Acc Chem Res 2015; 48:2632-9. [PMID: 26293615 PMCID: PMC4624108 DOI: 10.1021/acs.accounts.5b00312] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A fundamental goal in catalysis is the coupling of multiple reactions to yield a desired product. Enzymes have evolved elegant approaches to address this grand challenge. A salient example is the biological conversion of methane to methanol catalyzed by soluble methane monooxygenase (sMMO), a member of the bacterial multicomponent monooxygenase (BMM) superfamily. sMMO is a dynamic protein complex of three components: a hydroxylase, a reductase, and a regulatory protein. The active site, a carboxylate-rich non-heme diiron center, is buried inside the 251 kDa hydroxylase component. The enzyme processes four substrates: O2, protons, electrons, and methane. To couple O2 activation to methane oxidation, timely control of substrate access to the active site is critical. Recent studies of sMMO, as well as its homologues in the BMM superfamily, have begun to unravel the mechanism. The emerging and unifying picture reveals that each substrate gains access to the active site along a specific pathway through the hydroxylase. Electrons and protons are delivered via a three-amino-acid pore located adjacent to the diiron center; O2 migrates via a series of hydrophobic cavities; and hydrocarbon substrates reach the active site through a channel or linked set of cavities. The gating of these pathways mediates entry of each substrate to the diiron active site in a timed sequence and is coordinated by dynamic interactions with the other component proteins. The result is coupling of dioxygen consumption with hydrocarbon oxidation, avoiding unproductive oxidation of the reductant rather than the desired hydrocarbon. To initiate catalysis, the reductase delivers two electrons to the diiron(III) center by binding over the pore of the hydroxylase. The regulatory component then displaces the reductase, docking onto the same surface of the hydroxylase. Formation of the hydroxylase-regulatory component complex (i) induces conformational changes of pore residues that may bring protons to the active site; (ii) connects hydrophobic cavities in the hydroxylase leading from the exterior to the diiron active site, providing a pathway for O2 and methane, in the case of sMMO, to the reduced diiron center for O2 activation and substrate hydroxylation; (iii) closes the pore, as well as a channel in the case of four-component BMM enzymes, restricting proton access to the diiron center during formation of "Fe2O2" intermediates required for hydrocarbon oxidation; and (iv) inhibits undesired electron transfer to the Fe2O2 intermediates by blocking reductase binding during O2 activation. This mechanism is quite different from that adopted by cytochromes P450, a large class of heme-containing monooxygenases that catalyze reactions very similar to those catalyzed by the BMM enzymes. Understanding the timed enzyme control of substrate access has implications for designing artificial catalysts. To achieve multiple turnovers and tight coupling, synthetic models must also control substrate access, a major challenge considering that nature requires large, multimeric, dynamic protein complexes to accomplish this feat.
Collapse
Affiliation(s)
- Weixue Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alexandria D. Liang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Stephen J. Lippard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
12
|
Roccatano D. Structure, dynamics, and function of the monooxygenase P450 BM-3: insights from computer simulations studies. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:273102. [PMID: 26061496 DOI: 10.1088/0953-8984/27/27/273102] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The monooxygenase P450 BM-3 is a NADPH-dependent fatty acid hydroxylase enzyme isolated from soil bacterium Bacillus megaterium. As a pivotal member of cytochrome P450 superfamily, it has been intensely studied for the comprehension of structure-dynamics-function relationships in this class of enzymes. In addition, due to its peculiar properties, it is also a promising enzyme for biochemical and biomedical applications. However, despite the efforts, the full understanding of the enzyme structure and dynamics is not yet achieved. Computational studies, particularly molecular dynamics (MD) simulations, have importantly contributed to this endeavor by providing new insights at an atomic level regarding the correlations between structure, dynamics, and function of the protein. This topical review summarizes computational studies based on MD simulations of the cytochrome P450 BM-3 and gives an outlook on future directions.
Collapse
Affiliation(s)
- Danilo Roccatano
- School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
13
|
|
14
|
Doble MV, Ward AC, Deuss PJ, Jarvis AG, Kamer PC. Catalyst design in oxidation chemistry; from KMnO4 to artificial metalloenzymes. Bioorg Med Chem 2014; 22:5657-77. [DOI: 10.1016/j.bmc.2014.07.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 06/27/2014] [Accepted: 07/01/2014] [Indexed: 01/07/2023]
|
15
|
Choi S, Han S, Lee H, Chun YJ, Kim D. Evaluation of Luminescent P450 Analysis for Directed Evolution of Human CYP4A11. Biomol Ther (Seoul) 2014; 21:487-92. [PMID: 24404341 PMCID: PMC3879922 DOI: 10.4062/biomolther.2013.086] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 11/08/2013] [Accepted: 11/13/2013] [Indexed: 11/29/2022] Open
Abstract
Cytochrome P450 4A11 (CYP4A11) is a fatty acid hydroxylase enzyme expressed in human liver. It catalyzes not only the hydroxylation of saturated and unsaturated fatty acids, but the conversion of arachidonic acid to 20-hydroxyeicosatetraenoic acid (20-HETE), a regulator of blood pressure. In this study, we performed a directed evolution analysis of CYP4A11 using the luminogenic assay system. A random mutant library of CYP4A11, in which mutations were made throughout the entire coding region, was screened with luciferase activity to detect the demethylation of luciferin-4A (2-[6-methoxyquinolin-2-yl]-4,5-dihydrothiazole-4-carboxylic acid) of CYP4A11 mutants in Escherichia coli. Consecutive rounds of random mutagenesis and screening yielded three improved CYP4A11 mutants, CP2600 (A24T/T263A), CP2601 (T263A), and CP2616 (A24T/T263A/V430E) with ~3-fold increase in whole cells and >10-fold increase in purified proteins on the luminescence assay. However, the steady state kinetic analysis for lauric acid hydroxylation showed the significant reductions in enzymatic activities in all three mutants. A mutant, CP2600, showed a 51% decrease in catalytic efficiency (kcat/Km) for lauric acid hydroxylation mainly due to an increase in Km. CP2601 and CP2616 showed much greater reductions (>75%) in the catalytic efficiency due to both a decrease in kcat and an increase in Km. These decreased catalytic activities of CP2601 and CP2616 can be partially attributed to the changes in substrate affinities. These results suggest that the enzymatic activities of CYP4A11 mutants selected from directed evolution using a luminogenic P450 substrate may not demonstrate a direct correlation with the hydroxylation activities of lauric acid.
Collapse
Affiliation(s)
- Seunghye Choi
- Department of Biological Sciences, Konkuk University, Seoul 143-701
| | - Songhee Han
- Department of Biological Sciences, Konkuk University, Seoul 143-701
| | - Hwayoun Lee
- Department of Biological Sciences, Konkuk University, Seoul 143-701
| | - Young-Jin Chun
- College of Pharmacy, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, Seoul 143-701
| |
Collapse
|
16
|
Verma R, Schwaneberg U, Roccatano D. Conformational Dynamics of the FMN-Binding Reductase Domain of Monooxygenase P450BM-3. J Chem Theory Comput 2012; 9:96-105. [DOI: 10.1021/ct300723x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Rajni Verma
- School of Engineering and Science,
Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
- Department of Biotechnology,
RWTH Aachen University, Worringer Weg 1, 52074 Aachen, Germany
| | - Ulrich Schwaneberg
- Department of Biotechnology,
RWTH Aachen University, Worringer Weg 1, 52074 Aachen, Germany
| | - Danilo Roccatano
- School of Engineering and Science,
Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
17
|
Zhang K, Shafer BM, Demars MD, Stern HA, Fasan R. Controlled oxidation of remote sp3 C-H bonds in artemisinin via P450 catalysts with fine-tuned regio- and stereoselectivity. J Am Chem Soc 2012; 134:18695-704. [PMID: 23121379 PMCID: PMC3498520 DOI: 10.1021/ja3073462] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Indexed: 01/20/2023]
Abstract
The selective oxyfunctionalization of isolated sp(3) C-H bonds in complex molecules represents a formidable challenge in organic chemistry. Here, we describe a rational, systematic strategy to expedite the development of P450 oxidation catalysts with refined regio- and stereoselectivity for the hydroxylation of remote, unactivated C-H sites in a complex scaffold. Using artemisinin as model substrate, we demonstrate how a three-tier strategy involving first-sphere active site mutagenesis, high-throughput P450 fingerprinting, and fingerprint-driven P450 reactivity predictions enabled the rapid evolution of three efficient biocatalysts for the selective hydroxylation of a primary and a secondary C-H site (with both S and R stereoselectivity) in a relevant yet previously inaccessible region of this complex natural product. The evolved P450 variants could be applied to provide direct access to the desired hydroxylated derivatives at preparative scales (0.4 g) and in high isolated yields (>90%), thereby enabling further elaboration of this molecule. As an example, enantiopure C7-fluorinated derivatives of the clinical antimalarial drugs artesunate and artemether, in which a major metabolically sensitive site is protected by means of a C-H to C-F substitution, were afforded via P450-mediated chemoenzymatic synthesis.
Collapse
Affiliation(s)
- Kaidong Zhang
- Department of Chemistry,
University of Rochester, Rochester,
New York 14627, United States
| | - Brian M. Shafer
- Department of Chemistry,
University of Rochester, Rochester,
New York 14627, United States
| | - Matthew D. Demars
- Department of Chemistry,
University of Rochester, Rochester,
New York 14627, United States
| | - Harry A. Stern
- Department of Chemistry,
University of Rochester, Rochester,
New York 14627, United States
| | - Rudi Fasan
- Department of Chemistry,
University of Rochester, Rochester,
New York 14627, United States
| |
Collapse
|
18
|
Double electron-electron resonance shows cytochrome P450cam undergoes a conformational change in solution upon binding substrate. Proc Natl Acad Sci U S A 2012; 109:12888-93. [PMID: 22826259 DOI: 10.1073/pnas.1207123109] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although cytochrome P450cam from Pseudomonas putida, the archetype for all heme monooxygenases, has long been known to have a closed active site, recent reports show that the enzyme can also be crystallized in at least two clusters of open conformations. This suggests that the enzyme may undergo significant conformational changes during substrate binding and catalytic turnover. However, these conformations were observed in the crystalline state, and information is needed about the conformations that are populated in solution. In this study, double electron-electron resonance experiments were performed to observe substrate-induced changes in distance as measured by the dipolar coupling between spin labels introduced onto the surface of the enzyme on opposite sides of the substrate access channel. The double electron-electron resonance data show a decrease of 0.8 nm in the distance between spin labels placed at S48C and S190C upon binding the substrate camphor. A rotamer distribution model based on the crystal structures adequately describes the observed distance distributions. These results demonstrate conclusively that, in the physiologically relevant solution state, the substrate-free enzyme exists in the open P450cam-O conformation and that camphor binding results in conversion to the closed P450cam-C form. This approach should be useful for investigating many other P450s, including mammalian forms, in which the role of conformational change is of central importance but not well understood.
Collapse
|
19
|
Affiliation(s)
- Rudi Fasan
- Department of Chemistry,
Hutchison Hall, University of Rochester, Rochester, New York 14627,
United States
| |
Collapse
|
20
|
Denisov IG, Sligar SG. A novel type of allosteric regulation: functional cooperativity in monomeric proteins. Arch Biochem Biophys 2012; 519:91-102. [PMID: 22245335 PMCID: PMC3329180 DOI: 10.1016/j.abb.2011.12.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 12/19/2011] [Accepted: 12/20/2011] [Indexed: 10/14/2022]
Abstract
Cooperative functional properties and allosteric regulation in cytochromes P450 play an important role in xenobiotic metabolism and define one of the main mechanisms of drug-drug interactions. Recent experimental results suggest that ability to bind simultaneously two or more small organic molecules can be the essential feature of cytochrome P450 fold, and often results in rich and complex pattern of allosteric behavior. Manifestations of non-Michaelis kinetics include homotropic and heterotropic activation and inhibition effects depending on the stoichiometric ratios of substrate and effector, changes in the regio- and stereospecificity of catalytic transformations, and often give rise to the clinically important drug-drug interactions. In addition, functional response of P450 systems is modulated by the presence of specific and non-specific effector molecules, metal ions, membrane incorporation, formation of homo- and hetero-oligomers, and interactions with the protein redox partners. In this article we briefly overview the main factors contributing to the allosteric effects in cytochromes P450 with the main focus on the sources of cooperative behavior in xenobiotic metabolizing monomeric heme enzymes with their conformational flexibility and extremely broad substrate specificity. The novel mechanism of functional cooperativity in P450 enzymes does not require substantial binding cooperativity, rather it implies the presence of one or more binding sites with higher affinity than the single catalytically active site in the vicinity of the heme iron.
Collapse
Affiliation(s)
- Ilia G. Denisov
- Department of Biochemistry, University of Illinois, Urbana, IL, 61801
| | - Stephen G. Sligar
- Department of Biochemistry, University of Illinois, Urbana, IL, 61801
- Beckman Institute, University of Illinois, Urbana, IL, 61801
- School of Molecular and Cellular Biology, University of Illinois, Urbana, IL, 61801
| |
Collapse
|
21
|
Chen MMY, Snow CD, Vizcarra CL, Mayo SL, Arnold FH. Comparison of random mutagenesis and semi-rational designed libraries for improved cytochrome P450 BM3-catalyzed hydroxylation of small alkanes. Protein Eng Des Sel 2012; 25:171-8. [DOI: 10.1093/protein/gzs004] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
22
|
Bell SG, Yang W, Yorke JA, Zhou W, Wang H, Harmer J, Copley R, Zhang A, Zhou R, Bartlam M, Rao Z, Wong LL. Structure and function of CYP108D1 from Novosphingobium aromaticivorans DSM12444: an aromatic hydrocarbon-binding P450 enzyme. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:277-91. [PMID: 22349230 DOI: 10.1107/s090744491200145x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 01/12/2012] [Indexed: 11/11/2022]
Abstract
CYP108D1 from Novosphingobium aromaticivorans DSM12444 binds a range of aromatic hydrocarbons such as phenanthrene, biphenyl and phenylcyclohexane. Its structure, which is reported here at 2.2 Å resolution, is closely related to that of CYP108A1 (P450terp), an α-terpineol-oxidizing enzyme. The compositions and structures of the active sites of these two enzymes are very similar; the most significant changes are the replacement of Glu77 and Thr103 in CYP108A1 by Thr79 and Val105 in CYP108D1. Other residue differences lead to a larger and more hydrophobic access channel in CYP108D1. These structural features are likely to account for the weaker α-terpineol binding by CYP108D1 and, when combined with the presence of three hydrophobic phenylalanine residues in the active site, promote the binding of aromatic hydrocarbons. The haem-proximal surface of CYP108D1 shows a different charge distribution and topology to those of CYP101D1, CYP101A1 and CYP108A1, including a pronounced kink in the proximal loop of CYP108D1, which may result in poor complementarity with the [2Fe-2S] ferredoxins Arx, putidaredoxin and terpredoxin that are the respective redox partners of these three P450 enzymes. The unexpectedly low reduction potential of phenylcyclohexane-bound CYP108D1 (-401 mV) may also contribute to the low activity observed with these ferredoxins. CYP108D1 appears to function as an aromatic hydrocarbon hydroxylase that requires a different electron-transfer cofactor protein.
Collapse
Affiliation(s)
- Stephen G Bell
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford,South Parks Road, Oxford OX1 3QR, England.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Belin P, Moutiez M, Lautru S, Seguin J, Pernodet JL, Gondry M. The nonribosomal synthesis of diketopiperazines in tRNA-dependent cyclodipeptide synthase pathways. Nat Prod Rep 2012; 29:961-79. [DOI: 10.1039/c2np20010d] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
24
|
Miniaturized, microarray-based assays for chemical proteomic studies of protein function. Methods Mol Biol 2012; 800:133-62. [PMID: 21964787 DOI: 10.1007/978-1-61779-349-3_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Systematic analysis of protein and enzyme function typically requires scale-up of protein expression and purification prior to assay development; this can often be limiting. Miniaturization of assays provides an alternative approach, but simple, generic methods are in short supply. Here we show how custom microarrays can be adapted to this purpose. We discuss the different routes to array fabrication and describe in detail one facile approach in which the purification and immobilization procedures are combined into a single step, significantly simplifying the array fabrication process. We illustrate this approach by reference to the creation of arrays of human protein kinases and of human cytochrome P450s. We discuss methods for both ligand-binding and turnover-based assays, as well as data analysis on such arrays.
Collapse
|
25
|
Denisov IG, Shih AY, Sligar SG. Structural differences between soluble and membrane bound cytochrome P450s. J Inorg Biochem 2011; 108:150-8. [PMID: 22244217 DOI: 10.1016/j.jinorgbio.2011.11.026] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 10/28/2011] [Accepted: 11/08/2011] [Indexed: 12/24/2022]
Abstract
The superfamily of cytochrome P450s forms a large class of heme monooxygenases with more than 13,000 enzymes represented in organisms from all biological kingdoms. Despite impressive variability in sizes, sequences, location, and function, all cytochrome P450s from various organisms have very similar tertiary structures within the same fold. Here we show that systematic comparison of all available X-ray structures of cytochrome P450s reveals the presence of two distinct structural classes of cytochrome P450s. For all membrane bound enzymes, except the CYP51 family, the beta-domain and the A-propionate heme side chain are shifted towards the proximal side of the heme plane, which may result in an increase of the volume of the substrate binding pocket and an opening of a potential channel for the substrate access and/or product escape directly into the membrane. This structural feature is also observed in several soluble cytochrome P450s, such as CYP108, CYP151, and CYP158A2, which catalyze transformations of bulky substrates. Alternatively, both beta-domains and the A-propionate side chains in the soluble isozymes extend towards the distal site of the heme. This difference between the structures of soluble and membrane bound cytochrome P450s can be rationalized through the presence of several amino acid inserts in the latter class which are involved in direct interactions with the membrane, namely the F'- and G'-helices. Molecular dynamics using the most abundant human cytochrome P450, CYP3A4, incorporated into a model POPC bilayer reveals the facile conservation of a substrate access channel, directed into the membrane between the B-C loop and the beta domain, and the closure of the peripheral substrate access channel directed through the B-C loop. This is in contrast to the case when the same simulation is run in buffer, where no such channel closing occurs. Taken together, these results reveal a key structural difference between membrane bound and soluble cytochrome P450s with important functional implications induced by the lipid bilayer.
Collapse
Affiliation(s)
- I G Denisov
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| | | | | |
Collapse
|
26
|
Abstract
P450(BM3) (CYP102A1), a fatty acid hydroxylase from Bacillus megaterium, has been extensively studied over a period of almost forty years. The enzyme has been redesigned to catalyse the oxidation of non-natural substrates as diverse as pharmaceuticals, terpenes and gaseous alkanes using a variety of engineering strategies. Crystal structures have provided a basis for several of the catalytic effects brought about by mutagenesis, while changes to reduction potentials, inter-domain electron transfer rates and catalytic parameters have yielded functional insights. Areas of active research interest include drug metabolite production, the development of process-scale techniques, unravelling general mechanistic aspects of P450 chemistry, methane oxidation, and improving selectivity control to allow the synthesis of fine chemicals. This review draws together the disparate research themes and places them in a historical context with the aim of creating a resource that can be used as a gateway to the field.
Collapse
Affiliation(s)
- Christopher J C Whitehouse
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, UK
| | | | | |
Collapse
|
27
|
Zhang K, El Damaty S, Fasan R. P450 Fingerprinting Method for Rapid Discovery of Terpene Hydroxylating P450 Catalysts with Diversified Regioselectivity. J Am Chem Soc 2011; 133:3242-5. [DOI: 10.1021/ja109590h] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kaidong Zhang
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Shady El Damaty
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Rudi Fasan
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
28
|
Lee YT, Glazer EC, Wilson RF, Stout CD, Goodin DB. Three clusters of conformational states in p450cam reveal a multistep pathway for closing of the substrate access channel. Biochemistry 2011; 50:693-703. [PMID: 21171581 DOI: 10.1021/bi101726d] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Conformational changes in the substrate access channel have been observed for several forms of cytochrome P450, but the extent of conformational plasticity exhibited by a given isozyme has not been completely characterized. Here we present crystal structures of P450cam bound to a library of 12 active site probes containing a substrate analogue tethered to a variable linker. The structures provide a unique view of the range of protein conformations accessible during substrate binding. Principal component analysis of a total of 30 structures reveals three discrete clusters of conformations: closed (P450cam-C), intermediate (P450cam-I), and fully open (P450cam-O). Relative to P450cam-C, the P450cam-I state results predominantly from a retraction of helix F, while both helices F and G move in concert to reach the fully open P450cam-O state. Both P450cam-C and P450cam-I are well-defined states, while P450cam-O shows evidence of a somewhat broader distribution of conformations and includes the open form recently seen in the absence of substrate. The observed clustering of protein conformations over a wide range of ligand variants suggests a multistep closure of the enzyme around the substrate that begins by conformational selection from an ensemble of open conformations and proceeds through a well-defined intermediate, P450cam-I, before full closure to the P450cam-C state in the presence of small substrates. This multistep pathway may have significant implications for a full understanding of substrate specificity, kinetics, and coupling of substrate binding to P450 function.
Collapse
Affiliation(s)
- Young-Tae Lee
- Department of Molecular Biology, 10550 North Torrey Pines Road, The Scripps Research Institute, La Jolla, California 92037, United States
| | | | | | | | | |
Collapse
|
29
|
Huang WC, Cullis PM, Raven EL, Roberts GCK. Control of the stereo-selectivity of styrene epoxidation by cytochrome P450 BM3 using structure-based mutagenesis. Metallomics 2011; 3:410-6. [DOI: 10.1039/c0mt00082e] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Montemiglio LC, Gianni S, Vallone B, Savino C. Azole Drugs Trap Cytochrome P450 EryK in Alternative Conformational States,. Biochemistry 2010; 49:9199-206. [DOI: 10.1021/bi101062v] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Linda Celeste Montemiglio
- Department of Biochemical Sciences, “Sapienza” University of Rome and CNR Institute of Molecular Biology and Pathology, P. le A. Moro 5, 00185 Rome, Italy
| | - Stefano Gianni
- Department of Biochemical Sciences, “Sapienza” University of Rome and CNR Institute of Molecular Biology and Pathology, P. le A. Moro 5, 00185 Rome, Italy
| | - Beatrice Vallone
- Department of Biochemical Sciences, “Sapienza” University of Rome and CNR Institute of Molecular Biology and Pathology, P. le A. Moro 5, 00185 Rome, Italy
| | - Carmelinda Savino
- Department of Biochemical Sciences, “Sapienza” University of Rome and CNR Institute of Molecular Biology and Pathology, P. le A. Moro 5, 00185 Rome, Italy
| |
Collapse
|
31
|
Sun L, Wang Z, Jiang H, Tan X, Huang Z. Novel Conformational Transitions of Human Cytochrome P450 2C8 during Thermal and Acid-induced Unfolding. CHINESE J CHEM 2010. [DOI: 10.1002/cjoc.201090255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
32
|
Yang Y, Li C, Li W, Yi Z. Synthesis, Crystal Structure, Luminescence and Thermal Stability of a New Coordination Polymer Constructed by Europium(III) and 2,4-Dichlorophenoxyacetate. CHINESE J CHEM 2010. [DOI: 10.1002/cjoc.201090237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Lee YT, Wilson RF, Rupniewski I, Goodin DB. P450cam visits an open conformation in the absence of substrate. Biochemistry 2010; 49:3412-9. [PMID: 20297780 DOI: 10.1021/bi100183g] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
P450cam from Pseudomonas putida is the best characterized member of the vast family of cytochrome P450s, and it has long been believed to have a more rigid and closed active site relative to other P450s. Here we report X-ray structures of P450cam crystallized in the absence of substrate and at high and low [K(+)]. The camphor-free structures are observed in a distinct open conformation characterized by a water-filled channel created by the retraction of the F and G helices, disorder of the B' helix, and loss of the K(+) binding site. Crystallization in the presence of K(+) alone does not alter the open conformation, while crystallization with camphor alone is sufficient for closure of the channel. Soaking crystals of the open conformation in excess camphor does not promote camphor binding or closure, suggesting resistance to conformational change by the crystal lattice. This open conformation is remarkably similar to that seen upon binding large tethered substrates, showing that it is not the result of a perturbation by the ligand. Redissolved crystals of the open conformation are observed as a mixture of P420 and P450 forms, which is converted to the P450 form upon addition of camphor and K(+). These data reveal that P450cam can dynamically visit an open conformation that allows access to the deeply buried active site without being induced by substrate or ligand.
Collapse
Affiliation(s)
- Young-Tae Lee
- Department of Molecular Biology, 10550 North Torrey Pines Road, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
34
|
Savino C, Montemiglio LC, Sciara G, Miele AE, Kendrew SG, Jemth P, Gianni S, Vallone B. Investigating the structural plasticity of a cytochrome P450: three-dimensional structures of P450 EryK and binding to its physiological substrate. J Biol Chem 2009; 284:29170-9. [PMID: 19625248 DOI: 10.1074/jbc.m109.003590] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytochrome P450s are heme-containing proteins that catalyze the oxidative metabolism of many physiological endogenous compounds. Because of their unique oxygen chemistry and their key role in drug and xenobiotic metabolism, particular attention has been devoted in elucidating their mechanism of substrate recognition. In this work, we analyzed the three-dimensional structures of a monomeric cytochrome P450 from Saccharopolyspora erythraea, commonly called EryK, and the binding kinetics to its physiological ligand, erythromycin D. Three different structures of EryK were obtained: two ligand-free forms and one in complex with its substrate. Analysis of the substrate-bound structure revealed the key structural determinants involved in substrate recognition and selectivity. Interestingly, the ligand-free structures of EryK suggested that the protein may explore an open and a closed conformation in the absence of substrate. In an effort to validate this hypothesis and to investigate the energetics between such alternative conformations, we performed stopped-flow absorbance experiments. Data demonstrated that EryK binds erythromycin D via a mechanism involving at least two steps. Contrary to previously characterized cytochrome P450s, analysis of double jump mixing experiments confirmed that this complex scenario arises from a pre-existing equilibrium between the open and closed subpopulations of EryK, rather than from an induced-fit type mechanism.
Collapse
Affiliation(s)
- Carmelinda Savino
- CNR Institute of Molecular Biology and Pathology, P.le A. Moro 5, 00185 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Probing intermediates in the activation cycle of [NiFe] hydrogenase by infrared spectroscopy: the Ni-SIr state and its light sensitivity. J Biol Inorg Chem 2009; 14:1227-41. [PMID: 19626348 PMCID: PMC2847147 DOI: 10.1007/s00775-009-0566-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Accepted: 06/26/2009] [Indexed: 11/08/2022]
Abstract
The [NiFe] hydrogenase from the sulphate-reducing bacterium Desulfovibrio vulgaris Miyazaki F is reversibly inhibited in the presence of molecular oxygen. A key intermediate in the reactivation process, Ni-SIr, provides the link between fully oxidized (Ni-A, Ni-B) and active (Ni-SIa, Ni-C and Ni-R) forms of hydrogenase. In this work Ni-SIr was found to be light-sensitive (T ≤ 110 K), similar to the active Ni-C and the CO-inhibited states. Transition to the final photoproduct state (Ni-SL) was shown to involve an additional transient light-induced state (Ni-SI1961). Rapid scan kinetic infrared measurements provided activation energies for the transition from Ni-SL to Ni-SIr in protonated as well as in deuterated samples. The inhibitor CO was found not to react with the active site of the Ni-SL state. The wavelength dependence of the Ni-SIr photoconversion was examined in the range between 410 and 680 nm. Light-induced effects were associated with a nickel-centred electronic transition, possibly involving a change in the spin state of nickel (Ni2+). In addition, at T ≤ 40 K the CN− stretching vibrations of Ni-SL were found to be dependent on the colour of the monochromatic light used to irradiate the species, suggesting a change in the interaction of the hydrogen-bonding network of the surrounding amino acids. A possible mechanism for the photochemical process, involving displacement of the oxygen-based ligand, is discussed.
Collapse
|
36
|
Denisov IG, Frank DJ, Sligar SG. Cooperative properties of cytochromes P450. Pharmacol Ther 2009; 124:151-67. [PMID: 19555717 DOI: 10.1016/j.pharmthera.2009.05.011] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 05/28/2009] [Indexed: 02/07/2023]
Abstract
Cytochromes P450 form a large and important class of heme monooxygenases with a broad spectrum of substrates and corresponding functions, from steroid hormone biosynthesis to the metabolism of xenobiotics. Despite decades of study, the molecular mechanisms responsible for the complex non-Michaelis behavior observed with many members of this superfamily during metabolism, often termed 'cooperativity', remain to be fully elucidated. Although there is evidence that oligomerization may play an important role in defining the observed cooperativity, some monomeric cytochromes P450, particularly those involved in xenobiotic metabolism, also display this behavior due to their ability to simultaneously bind several substrate molecules. As a result, formation of distinct enzyme-substrate complexes with different stoichiometry and functional properties can give rise to homotropic and heterotropic cooperative behavior. This review aims to summarize the current understanding of cooperativity in cytochromes P450, with a focus on the nature of cooperative effects in monomeric enzymes.
Collapse
Affiliation(s)
- Ilia G Denisov
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, United States of America
| | | | | |
Collapse
|
37
|
Rupenyan A, Commandeur J, Groot ML. CO Photodissociation Dynamics in Cytochrome P450BM3 Studied by Subpicosecond Visible and Mid-Infrared Spectroscopy. Biochemistry 2009; 48:6104-10. [DOI: 10.1021/bi900351m] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alisa Rupenyan
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Jan Commandeur
- Department of Pharmacochemistry, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Marie Louise Groot
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
38
|
McCoy JG, Johnson HD, Singh S, Bingman CA, Lei IK, Thorson JS, Phillips GN. Structural characterization of CalO2: a putative orsellinic acid P450 oxidase in the calicheamicin biosynthetic pathway. Proteins 2009; 74:50-60. [PMID: 18561189 DOI: 10.1002/prot.22131] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although bacterial iterative Type I polyketide synthases are now known to participate in the biosynthesis of a small set of diverse natural products, the subsequent downstream modification of the resulting polyketide products remains poorly understood. Toward this goal, we report the X-ray structure determination at 2.5 A resolution and preliminary characterization of the putative orsellenic acid P450 oxidase (CalO2) involved in calicheamicin biosynthesis. These studies represent the first crystal structure for a P450 involved in modifying a bacterial iterative Type I polyketide product and suggest the CalO2-catalyzed step may occur after CalO3-catalyzed iodination and may also require a coenzyme A- (CoA) or acyl carrier protein- (ACP) bound substrate. Docking studies also reveal a putative docking site within CalO2 for the CLM orsellinic acid synthase (CalO5) ACP domain which involves a well-ordered helix along the CalO2 active site cavity that is unique compared with other P450 structures.
Collapse
Affiliation(s)
- Jason G McCoy
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706-1544, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Jeon JR, Murugesan K, Kim YM, Kim EJ, Chang YS. Synergistic effect of laccase mediators on pentachlorophenol removal by Ganoderma lucidum laccase. Appl Microbiol Biotechnol 2008; 81:783-90. [DOI: 10.1007/s00253-008-1753-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 10/12/2008] [Accepted: 10/18/2008] [Indexed: 11/24/2022]
|
40
|
Fasan R, Meharenna YT, Snow CD, Poulos TL, Arnold FH. Evolutionary history of a specialized p450 propane monooxygenase. J Mol Biol 2008; 383:1069-80. [PMID: 18619466 DOI: 10.1016/j.jmb.2008.06.060] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 06/13/2008] [Accepted: 06/19/2008] [Indexed: 11/16/2022]
Abstract
The evolutionary pressures that shaped the specificity and catalytic efficiency of enzymes can only be speculated. While directed evolution experiments show that new functions can be acquired under positive selection with few mutations, the role of negative selection in eliminating undesired activities and achieving high specificity remains unclear. Here we examine intermediates along the 'lineage' from a naturally occurring C12-C20 fatty acid hydroxylase (P450BM3) to a laboratory-evolved P450 propane monooxygenase (P450PMO) having 20 heme domain substitutions compared to P450BM3. Biochemical, crystallographic, and computational analyses show that a minimal perturbation of the P450BM3 fold and substrate-binding pocket accompanies a significant broadening of enzyme substrate range and the emergence of propane activity. In contrast, refinement of the enzyme catalytic efficiency for propane oxidation (approximately 9000-fold increase in kcat/Km) involves profound reshaping and partitioning of the substrate access pathway. Remodeling of the substrate-recognition mechanisms ultimately results in remarkable narrowing of the substrate profile around propane and enables the acquisition of a basal iodomethane dehalogenase activity as yet unknown in natural alkane monooxygenases. A highly destabilizing L188P substitution in a region of the enzyme that undergoes a large conformational change during catalysis plays an important role in adaptation to the gaseous alkane. This work demonstrates that positive selection alone is sufficient to completely respecialize the cytochrome P450 for function on a nonnative substrate.
Collapse
Affiliation(s)
- Rudi Fasan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., MC 210-41, Pasadena, CA 91125, USA
| | | | | | | | | |
Collapse
|
41
|
Fasan R, Chen MM, Crook NC, Arnold FH. Engineered alkane-hydroxylating cytochrome P450(BM3) exhibiting nativelike catalytic properties. Angew Chem Int Ed Engl 2008; 46:8414-8. [PMID: 17886313 DOI: 10.1002/anie.200702616] [Citation(s) in RCA: 180] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Rudi Fasan
- Department of Chemistry and Chemical Engineering, California Institute of Technology, 1200 California Blvd. MC 210-41, Pasadena, CA 91125, USA
| | | | | | | |
Collapse
|
42
|
Bonifacio A, Millo D, Keizers PHJ, Boegschoten R, Commandeur JNM, Vermeulen NPE, Gooijer C, van der Zwan G. Active-site structure, binding and redox activity of the heme-thiolate enzyme CYP2D6 immobilized on coated Ag electrodes: a surface-enhanced resonance Raman scattering study. J Biol Inorg Chem 2008; 13:85-96. [PMID: 17899220 PMCID: PMC2099460 DOI: 10.1007/s00775-007-0303-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Accepted: 09/08/2007] [Indexed: 11/28/2022]
Abstract
Surface-enhance resonance Raman scattering spectra of the heme-thiolate enzyme cytochrome P450 2D6 (CYP2D6) adsorbed on Ag electrodes coated with 11-mercaptoundecanoic acid (MUA) were obtained in various experimental conditions. An analysis of these spectra, and a comparison between them and the RR spectra of CYP2D6 in solution, indicated that the enzyme's active site retained its nature of six-coordinated low-spin heme upon immobilization. Moreover, the spectral changes detected in the presence of dextromethorphan (a CYP2D6 substrate) and imidazole (an exogenous heme axial ligand) indicated that the immobilized enzyme also preserved its ability to reversibly bind a substrate and form a heme-imidazole complex. The reversibility of these processes could be easily verified by flowing alternately solutions of the various compounds and the buffer through a home-built spectroelectrochemical flow cell which contained a sample of immobilized protein, without the need to disassemble the cell between consecutive spectral data acquisitions. Despite immobilized CYP2D6 being effectively reduced by a sodium dithionite solution, electrochemical reduction via the Ag electrode was not able to completely reduce the enzyme, and led to its extensive inactivation. This behavior indicated that although the enzyme's ability to exchange electrons is not altered by immobilization per se, MUA-coated electrodes are not suited to perform direct electrochemistry of CYP2D6.
Collapse
Affiliation(s)
- Alois Bonifacio
- Analytical Chemistry and Applied Spectroscopy, Vrije Universiteit Amsterdam, De Boelelaan 1083a, 1081 HV Amsterdam, The Netherlands
| | - Diego Millo
- Analytical Chemistry and Applied Spectroscopy, Vrije Universiteit Amsterdam, De Boelelaan 1083a, 1081 HV Amsterdam, The Netherlands
| | - Peter H. J. Keizers
- Molecular Toxicology, Vrije Universiteit Amsterdam, De Boelelaan 1083a, 1081 HV Amsterdam, The Netherlands
| | - Roald Boegschoten
- Mechanical Workshop, Vrije Universiteit Amsterdam, De Boelelaan 1083a, 1081 HV Amsterdam, The Netherlands
| | - Jan N. M. Commandeur
- Molecular Toxicology, Vrije Universiteit Amsterdam, De Boelelaan 1083a, 1081 HV Amsterdam, The Netherlands
| | - Nico P. E. Vermeulen
- Molecular Toxicology, Vrije Universiteit Amsterdam, De Boelelaan 1083a, 1081 HV Amsterdam, The Netherlands
| | - Cees Gooijer
- Analytical Chemistry and Applied Spectroscopy, Vrije Universiteit Amsterdam, De Boelelaan 1083a, 1081 HV Amsterdam, The Netherlands
| | - Gert van der Zwan
- Analytical Chemistry and Applied Spectroscopy, Vrije Universiteit Amsterdam, De Boelelaan 1083a, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
43
|
Fasan R, Chen M, Crook N, Arnold F. Engineered Alkane-Hydroxylating Cytochrome P450BM3 Exhibiting Nativelike Catalytic Properties. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200702616] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
44
|
Huang WC, Westlake ACG, Maréchal JD, Joyce MG, Moody PCE, Roberts GCK. Filling a Hole in Cytochrome P450 BM3 Improves Substrate Binding and Catalytic Efficiency. J Mol Biol 2007; 373:633-51. [PMID: 17868686 DOI: 10.1016/j.jmb.2007.08.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 07/09/2007] [Accepted: 08/07/2007] [Indexed: 11/19/2022]
Abstract
Cytochrome P450BM3 (CYP102A1) from Bacillus megaterium, a fatty acid hydroxylase, is a member of a very large superfamily of monooxygenase enzymes. The available crystal structures of the enzyme show non-productive binding of substrates with their omega-end distant from the iron in a hydrophobic pocket at one side of the active site. We have constructed and characterised mutants in which this pocket is filled by large hydrophobic side-chains replacing alanine at position 82. The mutants having phenylalanine or tryptophan at this position have very much (approximately 800-fold) greater affinity for substrate, with a greater conversion of the haem iron to the high-spin state, and similarly increased catalytic efficiency. The enzyme as isolated contains bound palmitate, reflecting this much higher affinity. We have determined the crystal structure of the haem domain of the Ala82Phe mutant with bound palmitate; this shows that the substrate is binding differently from the wild-type enzyme but still distant from the haem iron. Detailed analysis of the structure indicates that the tighter binding in the mutant reflects a shift in the conformational equilibrium of the substrate-free enzyme towards the conformation seen in the substrate complex rather than differences in the enzyme-substrate interactions. On this basis, we outline a sequence of events for the initial stages of the catalytic cycle. The Ala82Phe and Ala82Trp mutants are also very much more effective catalysts of indole hydroxylation than the wild-type enzyme, suggesting that they will be valuable starting points for the design of mutants to catalyse synthetically useful hydroxylation reactions.
Collapse
Affiliation(s)
- Wei-Cheng Huang
- Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Leicester LE1 9HN, UK
| | | | | | | | | | | |
Collapse
|
45
|
Lepesheva GI, Seliskar M, Knutson CG, Stourman NV, Rozman D, Waterman MR. Conformational dynamics in the F/G segment of CYP51 from Mycobacterium tuberculosis monitored by FRET. Arch Biochem Biophys 2007; 464:221-7. [PMID: 17585868 PMCID: PMC3042880 DOI: 10.1016/j.abb.2007.05.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Revised: 05/21/2007] [Accepted: 05/22/2007] [Indexed: 11/28/2022]
Abstract
A cysteine was introduced into the FG-loop (P187C) of CYP51 from Mycobacterium tuberculosis (MT) for selective labeling with BODIPY and fluorescence energy transfer (FRET) analysis. Förster radius for the BODIPY-heme pair was calculated assuming that the distance between the heme and Cys187 in solution corresponds to that in the crystal structure of ligand free MTCYP51. Interaction of MTCYP51 with azole inhibitors ketoconazole and fluconazole or the substrate analog estriol did not influence the fluorescence, but titration with the substrate lanosterol quenched BODIPY emission, the effect being proportional to the portion of substrate bound MTCYP51. The detected changes correspond to approximately 10A decrease in the calculated distance between BODIPY-Cys187 and the heme. The results confirm (1) functional importance of conformational motions in the MTCYP51 F/G segment and (2) applicability of FRET to monitor them in solution.
Collapse
Affiliation(s)
- Galina I. Lepesheva
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA
| | - Matej Seliskar
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Charles G. Knutson
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA
| | - Nina V. Stourman
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA
| | - Damjana Rozman
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Michael R. Waterman
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA
| |
Collapse
|
46
|
Bloom JD, Romero PA, Lu Z, Arnold FH. Neutral genetic drift can alter promiscuous protein functions, potentially aiding functional evolution. Biol Direct 2007; 2:17. [PMID: 17598905 PMCID: PMC1914045 DOI: 10.1186/1745-6150-2-17] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Accepted: 06/28/2007] [Indexed: 11/10/2022] Open
Abstract
Background Many of the mutations accumulated by naturally evolving proteins are neutral in the sense that they do not significantly alter a protein's ability to perform its primary biological function. However, new protein functions evolve when selection begins to favor other, "promiscuous" functions that are incidental to a protein's original biological role. If mutations that are neutral with respect to a protein's primary biological function cause substantial changes in promiscuous functions, these mutations could enable future functional evolution. Results Here we investigate this possibility experimentally by examining how cytochrome P450 enzymes that have evolved neutrally with respect to activity on a single substrate have changed in their abilities to catalyze reactions on five other substrates. We find that the enzymes have sometimes changed as much as four-fold in the promiscuous activities. The changes in promiscuous activities tend to increase with the number of mutations, and can be largely rationalized in terms of the chemical structures of the substrates. The activities on chemically similar substrates tend to change in a coordinated fashion, potentially providing a route for systematically predicting the change in one activity based on the measurement of several others. Conclusion Our work suggests that initially neutral genetic drift can lead to substantial changes in protein functions that are not currently under selection, in effect poising the proteins to more readily undergo functional evolution should selection favor new functions in the future. Reviewers This article was reviewed by Martijn Huynen, Fyodor Kondrashov, and Dan Tawfik (nominated by Christoph Adami).
Collapse
Affiliation(s)
- Jesse D Bloom
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Philip A Romero
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Zhongyi Lu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Frances H Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
47
|
Brenner S, Hay S, Girvan HM, Munro AW, Scrutton NS. Conformational dynamics of the cytochrome P450 BM3/N-palmitoylglycine complex: the proposed "proximal-distal" transition probed by temperature-jump spectroscopy. J Phys Chem B 2007; 111:7879-86. [PMID: 17571881 DOI: 10.1021/jp073036n] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ferric spin state equilibrium of the heme iron was analyzed in wild-type cytochrome P450 BM3 and its F87G mutant by using temperature (T)-jump relaxation spectroscopy in combination with static equilibrium experiments. No relaxation process was measurable in the substrate-free enzyme indicating a relaxation process with a rate constant>10,000 s(-1). In contrast, a slow spin state transition process was observed in the N-palmitoylglycine (NPG)-bound enzyme species. This transition occurred with an observed rate constant (298 K) of approximately 800 s(-1) in the wild-type, and approximately 2500 s(-1) in the F87G mutant, suggesting a significant contribution of the phenylalanine side chain to a reaction step rate limiting the actual spin state transition. These findings are discussed in terms of an equilibrium between different binding modes of the substrate, including a position 7.5 A away from the heme iron ("distal") and the catalytically relevant "proximal" binding site, and are in accordance with results from X-ray crystallography, NMR studies, and molecular dynamics simulations.
Collapse
Affiliation(s)
- Sibylle Brenner
- Manchester Interdisciplinary Biocentre and Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | | | | | | | | |
Collapse
|
48
|
Woithe K, Geib N, Zerbe K, Li DB, Heck M, Fournier-Rousset S, Meyer O, Vitali F, Matoba N, Abou-Hadeed K, Robinson JA. Oxidative Phenol Coupling Reactions Catalyzed by OxyB: A Cytochrome P450 from the Vancomycin Producing Organism. Implications for Vancomycin Biosynthesis. J Am Chem Soc 2007; 129:6887-95. [PMID: 17477533 DOI: 10.1021/ja071038f] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OxyB is a cytochrome P450 enzyme that catalyzes the first phenol coupling reaction during the biosynthesis of vancomycin-like glycopeptide antibiotics. The phenol coupling reaction occurs on a linear peptide intermediate linked as a C-terminal thioester to a peptide carrier protein (PCP) domain within the multidomain glycopeptide nonribosomal peptide synthetase (NRPS). Using model peptides with the sequence (R)(NMe)Leu-(R)Tyr-(S)Asn-(R)Hpg-(R)Hpg-(S)Tyr-S-PCP and (R)(NMe)Leu-(R)Tyr-(S)Asn-(R)Hpg-(R)Hpg-(S)Tyr-(S)Dpg-S-PCP (where Hpg = 4-hydroxyphenylglycine, and Dpg = 3,5-dihydroxyphenylglycine), or containing (R)Leu instead of (R)(NMe)Leu, attached to recombinant PCPs derived from modules-6 and -7 in the vancomycin NRPS, we show that cross-linking of Hpg4 and Tyr6 by OxyB can occur in both hexapeptide- and heptapeptide-PCP conjugates. Thus, whereas OxyB may act preferentially on a hexapeptide still linked to the PCP-6 in NRPS subunit-2, it is possible that a linear heptapeptide intermediate linked to PCP-7 in NRPS subunit-3 may also be transformed into monocyclic product. For turnover, OxyB requires electrons, which in vitro can be supplied by spinach ferredoxin and E. coli flavodoxin reductase. Turnover is also dependent upon the presence of molecular oxygen. The model substrate (R)(NMe)Leu-(R)Tyr-(S)Asn-(R)Hpg-(R)Hpg-(S)Tyr-S-PCP is transformed into cross-linked product by OxyB with a kcat of 0.1 s-1 and Km in the range 4-13 muM. Equilibrium binding of this substrate to OxyB, monitored by UV-vis, is accompanied by a typical low-to-high spin state change in the heme, characterized with a Kd of 17 +/- 5 muM.
Collapse
Affiliation(s)
- Katharina Woithe
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Mouawad L, Tetreau C, Abdel-Azeim S, Perahia D, Lavalette D. CO migration pathways in cytochrome P450cam studied by molecular dynamics simulations. Protein Sci 2007; 16:781-94. [PMID: 17400927 PMCID: PMC2206643 DOI: 10.1110/ps.062374707] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Previous laser flash photolysis investigations between 100 and 300 K have shown that the kinetics of CO rebinding with cytochrome P450(cam)(camphor) consist of up to four different processes revealing a complex internal dynamics after ligand dissociation. In the present work, molecular dynamics simulations were undertaken on the ternary complex P450(cam)(cam)(CO) to explore the CO migration pathways, monitor the internal cavities of the protein, and localize the CO docking sites. One trajectory of 1 nsec with the protein in a water box and 36 trajectories of 1 nsec in the vacuum were calculated. In each trajectory, the protein contained only one CO ligand on which no constraints were applied. The simulations were performed at 200, 300, and 320 K. The results indicate the presence of seven CO docking sites, mainly hydrophobic, located in the same moiety of the protein. Two of them coincide with xenon binding sites identified by crystallography. The protein matrix exhibits eight persistent internal cavities, four of which corresponding to the ligand docking sites. In addition, it was observed that water molecules entering the protein were mainly attracted into the polar pockets, far away from the CO docking sites. Finally, the identified CO migration pathways provide a consistent interpretation of the experimental rebinding kinetics.
Collapse
Affiliation(s)
- Liliane Mouawad
- Inserm U759, Institut Curie-Recherche, Bâtiment 112, Université Paris-Sud, 91405 Orsay cedex, France.
| | | | | | | | | |
Collapse
|
50
|
Feenstra KA, Starikov EB, Urlacher VB, Commandeur JNM, Vermeulen NPE. Combining substrate dynamics, binding statistics, and energy barriers to rationalize regioselective hydroxylation of octane and lauric acid by CYP102A1 and mutants. Protein Sci 2007; 16:420-31. [PMID: 17322527 PMCID: PMC2203314 DOI: 10.1110/ps.062224407] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Hydroxylations of octane and lauric acid by Cytochrome P450-BM3 (CYP102A1) wild-type and three active site mutants--F87A, L188Q/A74G, and F87V/L188Q/A74G--were rationalized using a combination of substrate orientation from docking, substrate binding statistics from molecular dynamics simulations, and barrier energies for hydrogen atom abstraction from quantum mechanical calculations. Wild-type BM3 typically hydroxylates medium- to long-chain fatty acids on subterminal (omega-1, omega-2, omega-3) but not the terminal (omega) positions. The known carboxylic anchoring site Y51/R47 for lauric acid, and hydrophobic interactions and steric exclusion, mainly by F87, for octane as well as lauric acid, play a role in the binding modes of the substrates. Electrostatic interactions between the protein and the substrate strongly modulate the substrate's regiodependent activation barriers. A combination of the binding statistics and the activation barriers of hydrogen-atom abstraction in the substrates is proposed to determine the product formation. Trends observed in experimental product formation for octane and lauric acid by wild-type BM3 and the three active site mutants were qualitatively explained. It is concluded that the combination of substrate binding statistics and hydrogen-atom abstraction barrier energies is a valuable tool to rationalize substrate binding and product formation and constitutes an important step toward prediction of product ratios.
Collapse
Affiliation(s)
- K Anton Feenstra
- Leiden/Amsterdam Center for Drug Research, Division of Molecular Toxicology, Vrije Universiteit, 1081HV Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|