1
|
Haghizadeh A, Iftikhar M, Dandpat SS, Simpson T. Looking at Biomolecular Interactions through the Lens of Correlated Fluorescence Microscopy and Optical Tweezers. Int J Mol Sci 2023; 24:2668. [PMID: 36768987 PMCID: PMC9916863 DOI: 10.3390/ijms24032668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/19/2022] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
Understanding complex biological events at the molecular level paves the path to determine mechanistic processes across the timescale necessary for breakthrough discoveries. While various conventional biophysical methods provide some information for understanding biological systems, they often lack a complete picture of the molecular-level details of such dynamic processes. Studies at the single-molecule level have emerged to provide crucial missing links to understanding complex and dynamic pathways in biological systems, which are often superseded by bulk biophysical and biochemical studies. Latest developments in techniques combining single-molecule manipulation tools such as optical tweezers and visualization tools such as fluorescence or label-free microscopy have enabled the investigation of complex and dynamic biomolecular interactions at the single-molecule level. In this review, we present recent advances using correlated single-molecule manipulation and visualization-based approaches to obtain a more advanced understanding of the pathways for fundamental biological processes, and how this combination technique is facilitating research in the dynamic single-molecule (DSM), cell biology, and nanomaterials fields.
Collapse
|
2
|
Khaova EA, Kashevarova NM, Tkachenko AG. Ribosome Hibernation: Molecular Strategy of Bacterial Survival (Review). APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822030061] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
3
|
Koch A, Aguilera L, Morisaki T, Munsky B, Stasevich TJ. Quantifying the dynamics of IRES and cap translation with single-molecule resolution in live cells. Nat Struct Mol Biol 2020; 27:1095-1104. [PMID: 32958947 DOI: 10.1038/s41594-020-0504-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022]
Abstract
Viruses use internal ribosome entry sites (IRES) to hijack host ribosomes and promote cap-independent translation. Although they are well-studied in bulk, the dynamics of IRES-mediated translation remain unexplored at the single-molecule level. Here, we developed a bicistronic biosensor encoding distinct repeat epitopes in two open reading frames (ORFs), one translated from the 5' cap, and the other from the encephalomyocarditis virus IRES. When combined with a pair of complementary probes that bind the epitopes cotranslationally, the biosensor lights up in different colors depending on which ORF is translated. Using the sensor together with single-molecule tracking and computational modeling, we measured the kinetics of cap-dependent versus IRES-mediated translation in living human cells. We show that bursts of IRES translation are shorter and rarer than bursts of cap translation, although the situation reverses upon stress. Collectively, our data support a model for translational regulation primarily driven by transitions between translationally active and inactive RNA states.
Collapse
Affiliation(s)
- Amanda Koch
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Luis Aguilera
- Keck Scholars, Department of Chemical and Biological Engineering and School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Tatsuya Morisaki
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Brian Munsky
- Keck Scholars, Department of Chemical and Biological Engineering and School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA.
| | - Timothy J Stasevich
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA. .,World Research Hub Initiative, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.
| |
Collapse
|
4
|
Kumari N, Ciuba MA, Levitus M. Photophysical properties of the hemicyanine Dy-630 and its potential as a single-molecule fluorescent probe for biophysical applications. Methods Appl Fluoresc 2019; 8:015004. [PMID: 31585443 DOI: 10.1088/2050-6120/ab4b0d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Protein-induced fluorescence enhancement (PIFE) is an increasingly used approach to investigate DNA-protein interactions at the single molecule level. The optimal probe for this type of application is highly photostable, has a high absorption extinction coefficient, and has a moderate fluorescence quantum yield that increases significantly when the dye is in close proximity to a large macromolecule such as a protein. So far, the green-absorbing symmetric cyanine known as Cy3 has been the probe of choice in this field because the magnitude of the increase observed upon protein binding (usually 2-4 -fold) is large enough to allow for the analysis of protein dynamics on the inherently noisy single-molecule signals. Here, we report the characterization of the photophysical properties of the red-absorbing hemicyanine dye Dy-630 in the context of its potential application as a single-molecule PIFE probe. The behavior of Dy-630 in solution is similar to that of Cy3; the fluorescence quantum yield and lifetime of Dy-630 increase with increasing viscosity, and decrease with increasing temperature indicating the existence of an activated nonradiative process that depopulates the singlet state of the dye. As in the case of Cy3, the results of transient spectroscopy experiments are consistent with the formation of a photoisomer that reverts to the ground state thermally in the microsecond timescale. Unfortunately, experiments with DNA samples paint a more complex scenario. As in the case of Cy3, the fluorescence quantum yield of Dy-630 increases significantly when the dye interacts with the DNA bases, but in the case of Dy-630 attachment to DNA results in an already long fluorescence lifetime that does not provide a significant window for the protein-induced enhancement observed with Cy3. Although we show that Dy-630 may not be well-suited for PIFE, our results shed light on the optimal design principles for probes for PIFE applications.
Collapse
|
5
|
Latallo MJ, Livingston NM, Wu B. Translation imaging of single mRNAs in established cell lines and primary cultured neurons. Methods 2019; 162-163:12-22. [PMID: 30905747 DOI: 10.1016/j.ymeth.2019.03.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/17/2019] [Accepted: 03/20/2019] [Indexed: 12/28/2022] Open
Abstract
The central dogma of molecular biology reaches a crescendo at its final step: the translation of an mRNA into its corresponding protein product. This process is highly regulated both spatially and temporally, requiring techniques to interrogate the subcellular translational status of mRNAs in both living and fixed cells. Single-molecule imaging of nascent peptides (SINAPs) and related techniques allow us to study this fundamental process for single mRNAs in live cells. These techniques enable researchers to address previously intractable questions in the central dogma, such as the origin of stochastic translational control and the role of local translation in highly polarized cells. In this review, we present the methodology and the theoretical framework for conducting studies using SINAPs in both established cell lines and primary cultured neurons.
Collapse
Affiliation(s)
- Malgorzata J Latallo
- Johns Hopkins School of Medicine, Department of Biophysics and Biophysical Chemistry, 855 N Wolfe Street Ste. 454, Baltimore, MD 21205, USA; Johns Hopkins School of Medicine, Center for Cell Dynamics, Baltimore, USA
| | - Nathan M Livingston
- Johns Hopkins School of Medicine, Department of Biophysics and Biophysical Chemistry, 855 N Wolfe Street Ste. 454, Baltimore, MD 21205, USA; Johns Hopkins School of Medicine, Center for Cell Dynamics, Baltimore, USA
| | - Bin Wu
- Johns Hopkins School of Medicine, Department of Biophysics and Biophysical Chemistry, 855 N Wolfe Street Ste. 454, Baltimore, MD 21205, USA; Johns Hopkins School of Medicine, Center for Cell Dynamics, Baltimore, USA; Johns Hopkins School of Medicine, Solomon H. Snyder Department of Neuroscience, Baltimore, USA.
| |
Collapse
|
6
|
Sharma AK, Sormanni P, Ahmed N, Ciryam P, Friedrich UA, Kramer G, O’Brien EP. A chemical kinetic basis for measuring translation initiation and elongation rates from ribosome profiling data. PLoS Comput Biol 2019; 15:e1007070. [PMID: 31120880 PMCID: PMC6559674 DOI: 10.1371/journal.pcbi.1007070] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 06/11/2019] [Accepted: 05/06/2019] [Indexed: 01/23/2023] Open
Abstract
Analysis methods based on simulations and optimization have been previously developed to estimate relative translation rates from next-generation sequencing data. Translation involves molecules and chemical reactions, hence bioinformatics methods consistent with the laws of chemistry and physics are more likely to produce accurate results. Here, we derive simple equations based on chemical kinetic principles to measure the translation-initiation rate, transcriptome-wide elongation rate, and individual codon translation rates from ribosome profiling experiments. Our methods reproduce the known rates from ribosome profiles generated from detailed simulations of translation. By applying our methods to data from S. cerevisiae and mouse embryonic stem cells, we find that the extracted rates reproduce expected correlations with various molecular properties, and we also find that mouse embryonic stem cells have a global translation speed of 5.2 AA/s, in agreement with previous reports that used other approaches. Our analysis further reveals that a codon can exhibit up to 26-fold variability in its translation rate depending upon its context within a transcript. This broad distribution means that the average translation rate of a codon is not representative of the rate at which most instances of that codon are translated, and it suggests that translational regulation might be used by cells to a greater degree than previously thought.
Collapse
Affiliation(s)
- Ajeet K. Sharma
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Pietro Sormanni
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Nabeel Ahmed
- Bioinformatics and Genomics Graduate Program, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Prajwal Ciryam
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Ulrike A. Friedrich
- Center for Molecular Biology of the Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Günter Kramer
- Center for Molecular Biology of the Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Edward P. O’Brien
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Bioinformatics and Genomics Graduate Program, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Institute for CyberScience, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
7
|
Katranidis A, Fitter J. Single-Molecule Techniques and Cell-Free Protein Synthesis: A Perfect Marriage. Anal Chem 2019; 91:2570-2576. [PMID: 30648382 DOI: 10.1021/acs.analchem.8b03855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Single-molecule techniques are currently an essential tool to study conformational changes as well as the synthesis and folding of proteins. However, the preparation of suitable protein samples is often time-consuming and demanding. The rapid development of cell-free protein synthesis over the last few years opened new perspectives for fast and easy sample preparation, but this was not fully exploited until now. Here, we take a look at the advancements in sample preparation as well as in the development of technical approaches and analytical tools, which unavoidably lead to the combination of single-molecule techniques and cell-free protein synthesis. It is an ideal combination that can unlock the full potential of studying complex biological processes in the near future.
Collapse
Affiliation(s)
| | - Jörg Fitter
- Forschungszentrum Jülich , Institute of Complex Systems ICS-5, Jülich , Germany.,RWTH Aachen , I. Physikalisches Institut (IA) , Aachen , Germany
| |
Collapse
|
8
|
Prabhakar A, Puglisi EV, Puglisi JD. Single-Molecule Fluorescence Applied to Translation. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a032714. [PMID: 29891562 DOI: 10.1101/cshperspect.a032714] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Single-molecule fluorescence methods have illuminated the dynamics of the translational machinery. Structural and bulk biochemical experiments have provided detailed atomic and global mechanistic views of translation, respectively. Single-molecule studies of translation have bridged these views by temporally connecting the conformational and compositional states defined from structural data within the mechanistic framework of translation produced from biochemical studies. Here, we discuss the context for applying different single-molecule fluorescence experiments, and present recent applications to studying prokaryotic and eukaryotic translation. We underscore the power of observing single translating ribosomes to delineate and sort complex mechanistic pathways during initiation and elongation, and discuss future applications of current and improved technologies.
Collapse
Affiliation(s)
- Arjun Prabhakar
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305.,Program in Biophysics, Stanford University, Stanford, California 94305
| | - Elisabetta Viani Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
9
|
Choi J, Grosely R, Prabhakar A, Lapointe CP, Wang J, Puglisi JD. How Messenger RNA and Nascent Chain Sequences Regulate Translation Elongation. Annu Rev Biochem 2018; 87:421-449. [PMID: 29925264 PMCID: PMC6594189 DOI: 10.1146/annurev-biochem-060815-014818] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Translation elongation is a highly coordinated, multistep, multifactor process that ensures accurate and efficient addition of amino acids to a growing nascent-peptide chain encoded in the sequence of translated messenger RNA (mRNA). Although translation elongation is heavily regulated by external factors, there is clear evidence that mRNA and nascent-peptide sequences control elongation dynamics, determining both the sequence and structure of synthesized proteins. Advances in methods have driven experiments that revealed the basic mechanisms of elongation as well as the mechanisms of regulation by mRNA and nascent-peptide sequences. In this review, we highlight how mRNA and nascent-peptide elements manipulate the translation machinery to alter the dynamics and pathway of elongation.
Collapse
Affiliation(s)
- Junhong Choi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305-5126, USA; , , , , ,
- Department of Applied Physics, Stanford University, Stanford, California 94305-4090, USA
| | - Rosslyn Grosely
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305-5126, USA; , , , , ,
| | - Arjun Prabhakar
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305-5126, USA; , , , , ,
- Program in Biophysics, Stanford University, Stanford, California 94305, USA
| | - Christopher P Lapointe
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305-5126, USA; , , , , ,
| | - Jinfan Wang
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305-5126, USA; , , , , ,
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305-5126, USA; , , , , ,
| |
Collapse
|
10
|
Rodnina MV, Fischer N, Maracci C, Stark H. Ribosome dynamics during decoding. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0182. [PMID: 28138068 PMCID: PMC5311926 DOI: 10.1098/rstb.2016.0182] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2016] [Indexed: 11/24/2022] Open
Abstract
Elongation factors Tu (EF-Tu) and SelB are translational GTPases that deliver aminoacyl-tRNAs (aa-tRNAs) to the ribosome. In each canonical round of translation elongation, aa-tRNAs, assisted by EF-Tu, decode mRNA codons and insert the respective amino acid into the growing peptide chain. Stop codons usually lead to translation termination; however, in special cases UGA codons are recoded to selenocysteine (Sec) with the help of SelB. Recruitment of EF-Tu and SelB together with their respective aa-tRNAs to the ribosome is a multistep process. In this review, we summarize recent progress in understanding the role of ribosome dynamics in aa-tRNA selection. We describe the path to correct codon recognition by canonical elongator aa-tRNA and Sec-tRNASec and discuss the local and global rearrangements of the ribosome in response to correct and incorrect aa-tRNAs. We present the mechanisms of GTPase activation and GTP hydrolysis of EF-Tu and SelB and summarize what is known about the accommodation of aa-tRNA on the ribosome after its release from the elongation factor. We show how ribosome dynamics ensures high selectivity for the cognate aa-tRNA and suggest that conformational fluctuations, induced fit and kinetic discrimination play major roles in maintaining the speed and fidelity of translation. This article is part of the themed issue ‘Perspectives on the ribosome’.
Collapse
Affiliation(s)
- Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany
| | - Niels Fischer
- Department of Structural Dynamics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany
| | - Cristina Maracci
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany
| | - Holger Stark
- Department of Structural Dynamics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany
| |
Collapse
|
11
|
Bugaud O, Barbier N, Chommy H, Fiszman N, Le Gall A, Dulin D, Saguy M, Westbrook N, Perronet K, Namy O. Kinetics of CrPV and HCV IRES-mediated eukaryotic translation using single-molecule fluorescence microscopy. RNA (NEW YORK, N.Y.) 2017; 23:1626-1635. [PMID: 28768714 PMCID: PMC5648031 DOI: 10.1261/rna.061523.117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/27/2017] [Indexed: 05/05/2023]
Abstract
Protein synthesis is a complex multistep process involving many factors that need to interact in a coordinated manner to properly translate the messenger RNA. As translating ribosomes cannot be synchronized over many elongation cycles, single-molecule studies have been introduced to bring a deeper understanding of prokaryotic translation dynamics. Extending this approach to eukaryotic translation is very appealing, but initiation and specific labeling of the ribosomes are much more complicated. Here, we use a noncanonical translation initiation based on internal ribosome entry sites (IRES), and we monitor the passage of individual, unmodified mammalian ribosomes at specific fluorescent milestones along mRNA. We explore initiation by two types of IRES, the intergenic IRES of cricket paralysis virus (CrPV) and the hepatitis C (HCV) IRES, and show that they both strongly limit the rate of the first elongation steps compared to the following ones, suggesting that those first elongation cycles do not correspond to a canonical elongation. This new system opens the possibility of studying both IRES-mediated initiation and elongation kinetics of eukaryotic translation and will undoubtedly be a valuable tool to investigate the role of translation machinery modifications in human diseases.
Collapse
Affiliation(s)
- Olivier Bugaud
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91190 Gif sur Yvette, France
| | - Nathalie Barbier
- Laboratoire Charles Fabry, Institut d'Optique, CNRS, Université Paris-Saclay, 91127 Palaiseau, France
| | - Hélène Chommy
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91190 Gif sur Yvette, France
- Laboratoire Charles Fabry, Institut d'Optique, CNRS, Université Paris-Saclay, 91127 Palaiseau, France
| | - Nicolas Fiszman
- Laboratoire Charles Fabry, Institut d'Optique, CNRS, Université Paris-Saclay, 91127 Palaiseau, France
| | - Antoine Le Gall
- Laboratoire Charles Fabry, Institut d'Optique, CNRS, Université Paris-Saclay, 91127 Palaiseau, France
| | - David Dulin
- Laboratoire Charles Fabry, Institut d'Optique, CNRS, Université Paris-Saclay, 91127 Palaiseau, France
| | - Matthieu Saguy
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91190 Gif sur Yvette, France
| | - Nathalie Westbrook
- Laboratoire Charles Fabry, Institut d'Optique, CNRS, Université Paris-Saclay, 91127 Palaiseau, France
| | - Karen Perronet
- Laboratoire Charles Fabry, Institut d'Optique, CNRS, Université Paris-Saclay, 91127 Palaiseau, France
| | - Olivier Namy
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91190 Gif sur Yvette, France
| |
Collapse
|
12
|
Host Cell S Phase Restricts Legionella pneumophila Intracellular Replication by Destabilizing the Membrane-Bound Replication Compartment. mBio 2017; 8:mBio.02345-16. [PMID: 28830950 PMCID: PMC5565972 DOI: 10.1128/mbio.02345-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Legionella pneumophila grows within cells ranging from environmental amoebae to human macrophages. In spite of this conserved strategy of pathogenesis, identification of host factors that restrict L. pneumophila intracellular replication has not been extended outside components of the mammalian innate immune response. We performed a double-stranded RNA (dsRNA) screen against more than 50% of the Drosophila melanogaster annotated open reading frames (ORFs) to identify host cell factors that restrict L. pneumophila. The majority of analyzed dsRNAs that stimulated L. pneumophila intracellular replication were directed against host proteins involved in protein synthesis or cell cycle control. Consistent with disruption of the cell cycle stimulating intracellular replication, proteins involved in translation initiation also resulted in G1 arrest. Stimulation of replication was dependent on the stage of cell cycle arrest, as dsRNAs causing arrest during S phase had an inhibitory effect on intracellular replication. The inhibitory effects of S phase arrest could be recapitulated in a human cell line, indicating that cell cycle control of L. pneumophila replication is evolutionarily conserved. Synchronized HeLa cell populations in S phase and challenged with L. pneumophila failed to progress through the cell cycle and were depressed for supporting intracellular replication. Poor bacterial replication in S phase was associated with loss of the vacuole membrane barrier, resulting in exposure of bacteria to the cytosol and their eventual degradation. These results are consistent with the model that S phase is inhibitory for L. pneumophila intracellular survival as a consequence of failure to maintain the integrity of the membrane surrounding intracellular bacteria. Legionella pneumophila has the ability to replicate within human macrophages and amoebal hosts. Here, we report that the host cell cycle influences L. pneumophila intracellular replication. Our data demonstrate that the G1 and G2/M phases of the host cell cycle are permissive for bacterial replication, while S phase is toxic for the bacterium. L. pneumophila replicates poorly within host cells present in S phase. The inability of L. pneumophila to replicate relies on its failure to control the integrity of its vacuole, leading to cytosolic exposure of the bacteria and eventual degradation. The data presented here argue that growth-arrested host cells that are encountered by L. pneumophila in either the environment or within human hosts are ideal targets for intracellular replication because their transit through S phase is blocked.
Collapse
|
13
|
Plitzko JM, Schuler B, Selenko P. Structural Biology outside the box-inside the cell. Curr Opin Struct Biol 2017; 46:110-121. [PMID: 28735108 DOI: 10.1016/j.sbi.2017.06.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/17/2017] [Accepted: 06/23/2017] [Indexed: 01/11/2023]
Abstract
Recent developments in cellular cryo-electron tomography, in-cell single-molecule Förster resonance energy transfer-spectroscopy, nuclear magnetic resonance-spectroscopy and electron paramagnetic resonance-spectroscopy delivered unprecedented insights into the inner workings of cells. Here, we review complementary aspects of these methods and provide an outlook toward joint applications in the future.
Collapse
Affiliation(s)
- Jürgen M Plitzko
- Max Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Benjamin Schuler
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Philipp Selenko
- Leibniz Institute of Molecular Pharmacology (FMP Berlin), In-cell NMR Laboratory, Robert-Roessle Strasse 10, D-13125 Berlin, Germany.
| |
Collapse
|
14
|
Sharma AK, O'Brien EP. Increasing Protein Production Rates Can Decrease the Rate at Which Functional Protein Is Produced and Their Steady-State Levels. J Phys Chem B 2017. [PMID: 28650169 DOI: 10.1021/acs.jpcb.7b01700] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The rate at which soluble, functional protein is produced by the ribosome has recently been found to vary in complex and unexplained ways as various translation-associated rates are altered through synonymous codon substitutions. To understand this phenomenon, here, we combine a well-established ribosome-traffic model with a master-equation model of cotranslational domain folding to explore the scenarios that are possible for the protein production rate, J, and the functional-nascent protein production rate, F, as the rates of various translation processes are altered for five different E. coli proteins. We find that while J monotonically increases as the rates of translation-initiation, -elongation, and -termination increase, F can either increase or decrease. We show that F's nonmonotonic behavior arises within the model from two opposing trends: the tendency for increased translation rates to produce more total protein but less cotranslationally folded protein. We further demonstrate that under certain conditions these nonmonotonic changes in F can result in nonmonotonic variations in post-translational, steady-state levels of functional protein. These results provide a potential explanation for recent experimental observations in which the specific activity of enzymatic proteins decreased with increased synthesis rates. Additionally our model has the potential to be used to rationally design transcripts to maximize the production of functional nascent protein by simultaneously optimizing translation initiation, elongation, and termination rates.
Collapse
Affiliation(s)
- Ajeet K Sharma
- Department of Chemistry, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Edward P O'Brien
- Department of Chemistry, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| |
Collapse
|
15
|
Fischer N, Neumann P, Bock LV, Maracci C, Wang Z, Paleskava A, Konevega AL, Schröder GF, Grubmüller H, Ficner R, Rodnina MV, Stark H. The pathway to GTPase activation of elongation factor SelB on the ribosome. Nature 2016; 540:80-85. [PMID: 27842381 DOI: 10.1038/nature20560] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/24/2016] [Indexed: 01/29/2023]
Abstract
In all domains of life, selenocysteine (Sec) is delivered to the ribosome by selenocysteine-specific tRNA (tRNASec) with the help of a specialized translation factor, SelB in bacteria. Sec-tRNASec recodes a UGA stop codon next to a downstream mRNA stem-loop. Here we present the structures of six intermediates on the pathway of UGA recoding in Escherichia coli by single-particle cryo-electron microscopy. The structures explain the specificity of Sec-tRNASec binding by SelB and show large-scale rearrangements of Sec-tRNASec. Upon initial binding of SelB-Sec-tRNASec to the ribosome and codon reading, the 30S subunit adopts an open conformation with Sec-tRNASec covering the sarcin-ricin loop (SRL) on the 50S subunit. Subsequent codon recognition results in a local closure of the decoding site, which moves Sec-tRNASec away from the SRL and triggers a global closure of the 30S subunit shoulder domain. As a consequence, SelB docks on the SRL, activating the GTPase of SelB. These results reveal how codon recognition triggers GTPase activation in translational GTPases.
Collapse
Affiliation(s)
- Niels Fischer
- Department of Structural Dynamics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Piotr Neumann
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, GZMB, Georg-August University Göttingen, Justus-von Liebig Weg 11, 37077 Göttingen, Germany
| | - Lars V Bock
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Cristina Maracci
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Zhe Wang
- Institute of Complex Systems (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Alena Paleskava
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Andrey L Konevega
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Gunnar F Schröder
- Institute of Complex Systems (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany.,Physics Department, Heinrich-Heine Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Helmut Grubmüller
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, GZMB, Georg-August University Göttingen, Justus-von Liebig Weg 11, 37077 Göttingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Holger Stark
- Department of Structural Dynamics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
16
|
Belardinelli R, Sharma H, Peske F, Wintermeyer W, Rodnina MV. Translocation as continuous movement through the ribosome. RNA Biol 2016; 13:1197-1203. [PMID: 27801619 DOI: 10.1080/15476286.2016.1240140] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In each round of translation elongation, tRNAs and mRNA move within the ribosome by one codon at a time. tRNA-mRNA translocation is promoted by elongation factor G (EF-G) at the cost of GTP hydrolysis. The key questions for understanding translocation are how and when the tRNAs move and how EF-G coordinates motions of the ribosomal subunits with tRNA movement. Here we present 2 recent papers which describe the choreography of movements over the whole trajectory of translocation. We present the view that EF-G accelerates translocation by promoting the steps that lead to GTPase-dependent ribosome unlocking. EF-G facilitates the formation of the rotated state of the ribosome and uncouples the backward motions of the ribosomal subunits, forming an open conformation in which the tRNAs can rapidly move. Ribosome dynamics are important not only in translocation, but also in recoding events, such as frameshifting and bypassing, and mediate sensitivity to antibiotics.
Collapse
Affiliation(s)
- Riccardo Belardinelli
- a Max Planck Institute for Biophysical Chemistry , Department of Physical Biochemistry , Göttingen , Germany
| | - Heena Sharma
- a Max Planck Institute for Biophysical Chemistry , Department of Physical Biochemistry , Göttingen , Germany
| | - Frank Peske
- a Max Planck Institute for Biophysical Chemistry , Department of Physical Biochemistry , Göttingen , Germany
| | - Wolfgang Wintermeyer
- a Max Planck Institute for Biophysical Chemistry , Department of Physical Biochemistry , Göttingen , Germany
| | - Marina V Rodnina
- a Max Planck Institute for Biophysical Chemistry , Department of Physical Biochemistry , Göttingen , Germany
| |
Collapse
|
17
|
Savir Y, Tlusty T. Comment on "Ribosome utilizes the minimum free energy changes to achieve the highest decoding rate and fidelity". Phys Rev E 2016; 93:056401. [PMID: 27301009 DOI: 10.1103/physreve.93.056401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Indexed: 11/07/2022]
Abstract
We examined [Y. Savir and T. Tlusty, Cell 153, 471 (2013)10.1016/j.cell.2013.03.032] the decoding performance of tRNA by the ribosome. For this purpose, we specified the kinetics of tRNA decoding and the corresponding energy landscape, from which we calculated the steady-state decoding rate R_{C}. Following our work, Xie reexamined [P. Xie, Phys. Rev. E 92, 022716 (2015)10.1103/PhysRevE.92.022716] the energy landscape of tRNA decoding. His analysis relies on an alternative expression for R_{C}, while claiming that the expression we use is missing some terms. In this Comment we rederive in detail our expression for the steady-state decoding rate R_{C}, show they hold, explain why the alternative expression for R_{C} is inaccurate, and discuss the underlying intuition.
Collapse
Affiliation(s)
- Yonatan Savir
- Department of Physiology, Biophysics and Systems Biology, Faculty of Medicine, Technion, Haifa, 31096, Israel
| | - Tsvi Tlusty
- Center for Soft and Living Matter, Institute for Basic Research, UNIST, Ulsan, Korea; Department of Physics, Ulsan National Institute for Science and Technology, Ulsan, Korea; Simons Center for Systems Biology, Institute for Advanced Study, Einstein Drive, Princeton NJ 08540, USA; and Simons Center for Systems Biology, Institute for Advanced Study, Princeton, New Jersey 08540, USA
| |
Collapse
|
18
|
Shebl B, Menke DE, Pennella M, Poudyal RR, Burke DH, Cornish PV. Preparation of ribosomes for smFRET studies: A simplified approach. Arch Biochem Biophys 2016; 603:118-30. [PMID: 27208427 DOI: 10.1016/j.abb.2016.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 11/18/2022]
Abstract
During the past decade, single-molecule studies of the ribosome have significantly advanced our understanding of protein synthesis. The broadest application of these methods has been towards the investigation of ribosome conformational dynamics using single-molecule Förster resonance energy transfer (smFRET). The recent advances in fluorescently labeled ribosomes and translation components have resulted in success of smFRET experiments. Various methods have been employed to target fluorescent dyes to specific locations within the ribosome. Primarily, these methods have involved additional steps including subunit dissociation and/or full reconstitution, which could result in ribosomes of reduced activity and translation efficiency. In addition, substantial time and effort are required to produce limited quantities of material. To enable rapid and large-scale production of highly active, fluorescently labeled ribosomes, we have developed a procedure that combines partial reconstitution with His-tag purification. This allows for a homogeneous single-step purification of mutant ribosomes and subsequent integration of labeled proteins. Ribosomes produced with this method are shown to be as active as ribosomes purified using classical methods. While we have focused on two labeling sites in this report, the method is generalizable and can in principle be extended to any non-essential ribosomal protein.
Collapse
Affiliation(s)
- Bassem Shebl
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Drew E Menke
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Min Pennella
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Raghav R Poudyal
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Donald H Burke
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Peter V Cornish
- Department of Biochemistry, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
19
|
Tinoco I, Kim HK, Yan S. Frameshifting dynamics. Biopolymers 2016; 99:1147-66. [PMID: 23722586 DOI: 10.1002/bip.22293] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/14/2013] [Accepted: 05/20/2013] [Indexed: 01/26/2023]
Abstract
Translation of messenger RNA by a ribosome occurs three nucleotides at a time from start signal to stop. However, a frameshift means that some nucleotides are read twice or some are skipped, and the following sequence of amino acids is completely different from the sequence in the original frame. In some messenger RNAs, including viral RNAs, frameshifting is programmed with RNA signals to produce specific ratios of proteins vital to the replication of the organism. The mechanisms that cause frameshifting have been studied for many years, but there are no definitive conclusions. We review ribosome structure and dynamics in relation to frameshifting dynamics provided by classical ensemble studies, and by new single-molecule methods using optical tweezers and FRET.
Collapse
Affiliation(s)
- Ignacio Tinoco
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720-1460
| | | | | |
Collapse
|
20
|
Exploring the balance between folding and functional dynamics in proteins and RNA. Int J Mol Sci 2015; 16:6868-89. [PMID: 25822873 PMCID: PMC4424993 DOI: 10.3390/ijms16046868] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/11/2015] [Accepted: 03/11/2015] [Indexed: 11/17/2022] Open
Abstract
As our understanding of biological dynamics continues to be refined, it is becoming clear that biomolecules can undergo transitions between ordered and disordered states as they execute functional processes. From a computational perspective, studying disorder events poses a challenge, as they typically occur on long timescales, and the associated molecules are often large (i.e., hundreds of residues). These size and time requirements make it advantageous to use computationally inexpensive models to characterize large-scale dynamics, where more highly detailed models can provide information about individual sub-steps associated with function. To reduce computational demand, one often uses a coarse-grained representation of the molecule or a simplified description of the energetics. In order to use simpler models to identify transient disorder in RNA and proteins, it is imperative that these models can accurately capture structural fluctuations about folded configurations, as well as the overall stability of each molecule. Here, we explore a class of simplified model for which all non-hydrogen atoms are explicitly represented. We find that this model can provide a consistent description of protein folding and native-basin dynamics for several representative biomolecules. We additionally show that the native-basin fluctuations of tRNA and the ribosome are robust to variations in the model. Finally, the extended variable loop in tRNAIle is predicted to be very dynamic, which may facilitate biologically-relevant rearrangements. Together, this study provides a foundation that will aid in the application of simplified models to study disorder during function in ribonucleoprotein (RNP) assemblies.
Collapse
|
21
|
Fung AWS, Leung CCY, Fahlman RP. The determination of tRNALeu recognition nucleotides for Escherichia coli L/F transferase. RNA (NEW YORK, N.Y.) 2014; 20:1210-1222. [PMID: 24935875 PMCID: PMC4105747 DOI: 10.1261/rna.044529.114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 04/28/2014] [Indexed: 06/03/2023]
Abstract
Escherichia coli leucyl/phenylalanyl-tRNA protein transferase catalyzes the tRNA-dependent post-translational addition of amino acids onto the N-terminus of a protein polypeptide substrate. Based on biochemical and structural studies, the current tRNA recognition model by L/F transferase involves the identity of the 3' aminoacyl adenosine and the sequence-independent docking of the D-stem of an aminoacyl-tRNA to the positively charged cluster on L/F transferase. However, this model does not explain the isoacceptor preference observed 40 yr ago. Using in vitro-transcribed tRNA and quantitative MALDI-ToF MS enzyme activity assays, we have confirmed that, indeed, there is a strong preference for the most abundant leucyl-tRNA, tRNA(Leu) (anticodon 5'-CAG-3') isoacceptor for L/F transferase activity. We further investigate the molecular mechanism for this preference using hybrid tRNA constructs. We identified two independent sequence elements in the acceptor stem of tRNA(Leu) (CAG)-a G₃:C₇₀ base pair and a set of 4 nt (C₇₂, A₄:U₆₉, C₆₈)-that are important for the optimal binding and catalysis by L/F transferase. This maps a more specific, sequence-dependent tRNA recognition model of L/F transferase than previously proposed.
Collapse
Affiliation(s)
- Angela Wai Shan Fung
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | - Richard Peter Fahlman
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7 Department of Oncology, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| |
Collapse
|
22
|
da Costa MR, Pizzatti L, Lindoso RS, Sant'Anna JF, DuRocher B, Abdelhay E, Vieyra A. Mechanisms of kidney repair by human mesenchymal stromal cells after ischemia: a comprehensive view using label-free MS(E). Proteomics 2014; 14:1480-93. [PMID: 24723500 DOI: 10.1002/pmic.201300084] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 02/24/2014] [Accepted: 03/27/2014] [Indexed: 01/08/2023]
Abstract
Acute kidney injury (AKI) is one of the more frequent and lethal pathological conditions seen in intensive care units. Currently available treatments are not totally effective but stem cell-based therapies are emerging as promising alternatives, especially the use of mesenchymal stromal cells (MSC), although the signaling pathways involved in their beneficial actions are not fully understood. The objective of this study was to identify signaling networks and key proteins involved in the repair of ischemia by MSC. Using an in vitro model of AKI to investigate paracrine interactions and label-free high definition 2D-NanoESI-MS(E) , differentially expressed proteins were identified in a human renal proximal tubule cell lineage (HK-2) exposed to human MSC (hMSC) after an ischemic insult. In silico analysis showed that hMSC stimulated antiapoptotic activity, normal ROS handling, energy production, cytoskeleton organization, protein synthesis, and cell proliferation. The proteomic data were validated by parallel experiments demonstrating reduced apoptosis in HK-2 cells and recovery of intracellular ATP levels. qRT-PCR for proteins implicated in the above processes revealed that hMSC exerted their effects by stimulating translation, not transcription. Western blotting of proteins associated with ROS and energy metabolism confirmed their higher abundance in HK-2 cells exposed to hMSC.
Collapse
Affiliation(s)
- Milene R da Costa
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
23
|
NMR contour maps as a new parameter of carboxyl’s OH groups in amino acids recognition: A reason of tRNA–amino acid conjugation. Chem Phys 2014. [DOI: 10.1016/j.chemphys.2014.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
24
|
Larson JD, Rodgers ML, Hoskins AA. Visualizing cellular machines with colocalization single molecule microscopy. Chem Soc Rev 2014; 43:1189-200. [PMID: 23970346 PMCID: PMC3946777 DOI: 10.1039/c3cs60208g] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Many of the cell's macromolecular machines contain multiple components that transiently associate with one another. This compositional and dynamic complexity presents a challenge for understanding how these machines are constructed and function. Colocalization single molecule spectroscopy enables simultaneous observation of individual components of these machines in real-time and grants a unique window into processes that are typically obscured in ensemble assays. Colocalization experiments can yield valuable information about assembly pathways, compositional heterogeneity, and kinetics that together contribute to the development of richly detailed reaction mechanisms. This review focuses on recent advances in colocalization single molecule spectroscopy and how this technique has been applied to enhance our understanding of transcription, RNA splicing, and translation.
Collapse
Affiliation(s)
- Joshua D Larson
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Dr., Madison, USA.
| | | | | |
Collapse
|
25
|
Abstract
Riboswitches are structured noncoding RNA elements that control the expression of their embedding messenger RNAs by sensing the intracellular concentration of diverse metabolites. As the name suggests, riboswitches are dynamic in nature so that studying their inherent conformational dynamics and ligand-mediated folding is important for understanding their mechanism of action. Single-molecule fluorescence energy transfer (smFRET) microscopy is a powerful and versatile technique for studying the folding pathways and intra- and intermolecular dynamics of biological macromolecules, especially RNA. The ability of smFRET to monitor intramolecular distances and their temporal evolution make it a particularly insightful tool for probing the structure and dynamics of riboswitches. Here, we detail the general steps for using prism-based total internal reflection fluorescence microscopy for smFRET studies of the structure, dynamics, and ligand-binding mechanisms of riboswitches.
Collapse
|
26
|
Stennett EMS, Ciuba MA, Levitus M. Photophysical processes in single molecule organic fluorescent probes. Chem Soc Rev 2014; 43:1057-75. [DOI: 10.1039/c3cs60211g] [Citation(s) in RCA: 214] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
27
|
Abstract
Single-molecule spectroscopy has developed into a widely used method for probing the structure, dynamics, and mechanisms of biomolecular systems, especially in combination with Förster resonance energy transfer (FRET). In this introductory tutorial, essential concepts and methods will be outlined, from the FRET process and the basic considerations for sample preparation and instrumentation to some key elements of data analysis and photon statistics. Different approaches for obtaining dynamic information over a wide range of timescales will be explained and illustrated with examples, including the quantitative analysis of FRET efficiency histograms, correlation spectroscopy, fluorescence trajectories, and microfluidic mixing.
Collapse
Affiliation(s)
- Benjamin Schuler
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057
Zurich, Switzerland
| |
Collapse
|
28
|
Pytharopoulou S, Kournoutou GG, Leotsinidis M, Georgiou CD, Kalpaxis DL. Cadmium versus copper toxicity: insights from an integrated dissection of protein synthesis pathway in the digestive glands of mussel Mytilus galloprovincialis. JOURNAL OF HAZARDOUS MATERIALS 2013; 260:263-71. [PMID: 23770617 DOI: 10.1016/j.jhazmat.2013.05.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 05/15/2013] [Accepted: 05/17/2013] [Indexed: 05/23/2023]
Abstract
The main purpose of this study was to investigate the impact of metal-mediated stress on the protein-synthesis pathway in mussels. To this end, mussels (Mytilus galloprovincialis) underwent a 15 days exposure to 100 μg/L Cu(2+) or Cd(2+). Both metals, in particular Cd(2+), accumulated in mussel digestive glands and generated a specific status of oxidative-stress. Exposure of mussels to each metal resulted in 40% decrease of the tRNA-aminoacylation efficiency, at the end of exposure. Cu(2+) also caused a progressive loss in the capability of 40S-ribosomal subunits to form 48S pre-initiation complex, which reached 34% of the control at the end of exposure. Other steps of translation underwent less pronounced, but measurable damages. Mussels exposed to Cd(2+) for 5 days presented a similar pattern of translational dysfunctions in digestive glands, but during the following days of exposure the ribosomal efficiency was gradually restored. Meanwhile, metallothionein levels significantly increased, suggesting that upon Cd(2+)-mediated stress the protein-synthesizing activity was reorganized both quantitatively and qualitatively. Conclusively, Cd(2+) and Cu(2+) affect translation at several levels. However, the pattern of translational responses differs, largely depending on the capability of each metal to affect cytotoxic pathways in the tissues, such as induction of antioxidant defense and specific repair mechanisms.
Collapse
Affiliation(s)
- S Pytharopoulou
- Laboratory of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | | | | | | | | |
Collapse
|
29
|
Quantitative single cell and single molecule proteomics for clinical studies. Curr Opin Biotechnol 2013; 24:745-51. [DOI: 10.1016/j.copbio.2013.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/28/2013] [Accepted: 06/01/2013] [Indexed: 11/18/2022]
|
30
|
Microfluidic mixer designed for performing single-molecule kinetics with confocal detection on timescales from milliseconds to minutes. Nat Protoc 2013; 8:1459-74. [PMID: 23845960 DOI: 10.1038/nprot.2013.082] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microfluidic mixing in combination with single-molecule spectroscopy allows the investigation of complex biomolecular processes under non-equilibrium conditions. Here we present a protocol for building, installing and operating microfluidic mixing devices optimized for this purpose. The mixer is fabricated by replica molding with polydimethylsiloxane (PDMS), which allows the production of large numbers of devices at a low cost using a single microfabricated silicon mold. The design is based on hydrodynamic focusing combined with diffusive mixing and allows single-molecule kinetics to be recorded over five orders of magnitude in time, from 1 ms to ∼100 s. Owing to microfabricated particle filters incorporated in the inlet channels, the devices provide stable flow for many hours to days without channel blockage, which allows reliable collection of high-quality data. Modular design enables rapid exchange of samples and mixing devices, which are mounted in a specifically designed holder for use with a confocal microscopy detection system. Integrated Peltier elements provide temperature control from 4 to 37 °C. The protocol includes the fabrication of a silicon master, production of the microfluidic devices, instrumentation setup and data acquisition. Once a silicon master is available, devices can be produced and experiments started within ∼1 d of preparation. We demonstrate the performance of the system with single-molecule Förster resonance energy transfer (FRET) measurements of kinetics of protein folding and conformational changes. The dead time of 1 ms, as predicted from finite element calculations, was confirmed by the measurements.
Collapse
|
31
|
Pytharopoulou S, Kournoutou GG, Leotsinidis M, Georgiou CD, Kalpaxis DL. Dysfunctions of the translational machinery in digestive glands of mussels exposed to mercury ions. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 134-135:23-33. [PMID: 23537583 DOI: 10.1016/j.aquatox.2013.02.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 02/20/2013] [Accepted: 02/26/2013] [Indexed: 06/02/2023]
Abstract
Mercury is an element naturally occurring in the biosphere, but is also released into the environment by human activities, such as mining, smelting, and industrial discharge. Mercury is a biologically harmful element and any exposure of living organisms mainly due to contamination, can cause severe or even lethal side effects. In every form detected, elemental, inorganic, or organic, mercury exhibits toxicity associated with induced oxidative stress. Although the genotoxicity of mercury has been well demonstrated in mussels, little is known about its toxic effects on the translational machinery at the molecular level. To investigate possible effects, we exposed the common mussel Mytilus galloprovincialis in seawater supplemented by 30 μg/L Hg²⁺ for 15 days. We observed that Hg²⁺ was significantly accumulated in the digestive glands of mussels, reaching a level around 80 μg/g tissue (dry weight) at the 15th day of exposure. Exposure of mussels to Hg²⁺ resulted in failure of redox homeostasis, as reflected on lipid peroxidation levels and superoxide dismutase activity in glands, and micronucleus frequency in gills. Extracts from digestive glands after 15-day exposure to Hg²⁺ exhibited decreased tRNA aminoacylation ability and, moreover, a 70% reduction in the ability of 40S ribosomal subunits to form the 48S initiation ribosomal complex. A similar reduction was detected in the ability of ribosomes to translocate peptidyl-tRNA from the A-site to the P-site, an observation coinciding with the notion that regulation of protein synthesis by Hg²⁺ mainly occurs at the initiation and elongation stages of translation. A-site binding, peptidyl transferase activity, and termination of peptide chain synthesis underwent less pronounced but measurable reductions, a finding which explains why poly(Phe)-synthesis in ribosomes isolated from exposed mussels is reduced by 70%. In conclusion, Hg²⁺ apart from being a genotoxic ion acts as a modulator of protein synthesis in mussels, an observation probably related with its ability to induce oxidative stress.
Collapse
Affiliation(s)
- Sofia Pytharopoulou
- Laboratory of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | | | | | | | | |
Collapse
|
32
|
Fan R, Xie J, Bai J, Wang H, Tian X, Bai R, Jia X, Yang L, Song Y, Herrid M, Gao W, He X, Yao J, Smith GW, Dong C. Skin transcriptome profiles associated with coat color in sheep. BMC Genomics 2013; 14:389. [PMID: 23758853 PMCID: PMC3689618 DOI: 10.1186/1471-2164-14-389] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 06/04/2013] [Indexed: 01/06/2023] Open
Abstract
Background Previous molecular genetic studies of physiology and pigmentation of sheep skin have focused primarily on a limited number of genes and proteins. To identify additional genes that may play important roles in coat color regulation, Illumina sequencing technology was used to catalog global gene expression profiles in skin of sheep with white versus black coat color. Results There were 90,006 and 74,533 unigenes assembled from the reads obtained from white and black sheep skin, respectively. Genes encoding for the ribosomal proteins and keratin associated proteins were most highly expressed. A total of 2,235 known genes were differentially expressed in black versus white sheep skin, with 479 genes up-regulated and 1,756 genes down-regulated. A total of 845 novel genes were differentially expressed in black versus white sheep skin, consisting of 107 genes which were up-regulated (including 2 highly expressed genes exclusively expressed in black sheep skin) and 738 genes that were down-regulated. There was also a total of 49 known coat color genes expressed in sheep skin, from which 13 genes showed higher expression in black sheep skin. Many of these up-regulated genes, such as DCT, MATP, TYR and TYRP1, are members of the components of melanosomes and their precursor ontology category. Conclusion The white and black sheep skin transcriptome profiles obtained provide a valuable resource for future research to understand the network of gene expression controlling skin physiology and melanogenesis in sheep.
Collapse
Affiliation(s)
- Ruiwen Fan
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Haenni D, Zosel F, Reymond L, Nettels D, Schuler B. Intramolecular distances and dynamics from the combined photon statistics of single-molecule FRET and photoinduced electron transfer. J Phys Chem B 2013; 117:13015-28. [PMID: 23718771 DOI: 10.1021/jp402352s] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Single-molecule Förster resonance energy transfer (FRET) and photoinduced electron transfer (PET) have developed into versatile and complementary methods for probing distances and dynamics in biomolecules. Here we show that the two methods can be combined in one molecule to obtain both accurate distance information and the kinetics of intramolecular contact formation. In a first step, we show that the fluorescent dyes Alexa 488 and Alexa 594, which are frequently used as a donor and acceptor for single-molecule FRET, are also suitable as PET probes with tryptophan as a fluorescence quencher. We then performed combined FRET/PET experiments with FRET donor- and acceptor-labeled polyproline peptides. The placement of a tryptophan residue into the polyglycylserine tail incorporated in the peptides allowed us to measure both FRET efficiencies and the nanosecond dynamics of contact formation between one of the fluorescent dyes and the quencher. Variation of the linker length between the polyproline and the Alexa dyes and in the position of the tryptophan residue demonstrates the sensitivity of this approach. Modeling of the combined photon statistics underlying the combined FRET and PET process enables the accurate analysis of both the resulting transfer efficiency histograms and the nanosecond fluorescence correlation functions. This approach opens up new possibilities for investigating single biomolecules with high spatial and temporal resolution.
Collapse
Affiliation(s)
- Dominik Haenni
- Department of Biochemistry, University of Zurich , Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
34
|
Demeshkina N, Jenner L, Westhof E, Yusupov M, Yusupova G. New structural insights into the decoding mechanism: translation infidelity via a G·U pair with Watson-Crick geometry. FEBS Lett 2013; 587:1848-57. [PMID: 23707250 DOI: 10.1016/j.febslet.2013.05.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 05/06/2013] [Accepted: 05/06/2013] [Indexed: 11/15/2022]
Abstract
Pioneer crystallographic studies of the isolated 30S ribosomal subunit provided the first structural insights into the decoding process. Recently, new crystallographic data on full 70S ribosomes with mRNA and tRNAs have shown that the formation of the tight decoding centre is ensured by conformational rearrangement of the 30S subunit (domain closure), which is identical for cognate or near-cognate tRNA. When a G·U forms at the first or second codon-anticodon positions (near-cognate tRNA), the ribosomal decoding centre forces the adoption of Watson-Crick G·C-like geometry rather than that of the expected Watson-Crick wobble pair. Energy expenditure for rarely occuring tautomeric base required for Watson-Crick G·C-like G·U pair or the repulsion energy due to steric clash within the mismatched base pair could constitute the only cause for efficient rejection of a near-cognate tRNA. Our data suggest that "geometrical mimicry" can explain how wrong aminoacyl-tRNAs with G·U pairs in the codon-anticodon helix forming base pairs with Watson-Crick geometry in the decoding center can be incorporated into the polypeptide chain.
Collapse
Affiliation(s)
- Natalia Demeshkina
- Département de Biologie et de Génomique Structurales, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Illkirch 67400, France
| | | | | | | | | |
Collapse
|
35
|
Chudaev M, Poruri K, Goldman E, Jakubowski H, Jain MR, Chen W, Li H, Tyagi S, Mandecki W. Design and properties of efficient tRNA:EF-Tu FRET system for studies of ribosomal translation. Protein Eng Des Sel 2013; 26:347-57. [PMID: 23447652 PMCID: PMC3630515 DOI: 10.1093/protein/gzt006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 01/20/2013] [Accepted: 01/28/2013] [Indexed: 11/14/2022] Open
Abstract
Formation of the ternary complex between GTP-bound form of elongation factor Tu (EF-Tu) and aminoacylated transfer RNA (aa-tRNA) is a key event in protein biosynthesis. Here we show that fluorescently modified Escherichia coli EF-Tu carrying three mutations, C137A, C255V and E348C, and fluorescently modified Phe-tRNA(Phe) form functionally active ternary complex that has properties similar to those of the naturally occurring (unmodified) complex. Similarities include the binding and binding rate constants, behavior in gel retardation assay, as well as activities in tRNA protection and in vitro translation assays. Proper labeling of EF-Tu was demonstrated in MALDI mass spectroscopy experiments. To generate the mutant EF-Tu, a series of genetic constructions were performed. Two native cysteine residues in the wild-type EF-Tu at positions 137 and 255 were replaced by Ala and Val, respectively, and an additional cysteine was introduced either in position 324 or 348. The assembly FRET assay showed a 5- to 7-fold increase of Cy5-labeled EF-Tu E348C mutant fluorescence upon formation of ternary complex with charged tRNA(Phe)(Cy3-labeled) when the complex was excited at 532 nm and monitored at 665 nm. In a control experiment, we did not observe FRET using uncharged tRNA(Phe)(Cy3), nor with wild-type EF-Tu preparation that was allowed to react with Cy5 maleimide, nor in the absence of GTP. The results obtained demonstrate that the EF-Tu:tRNA FRET system described can be used for investigations of ribosomal translation in many types of experiments.
Collapse
Affiliation(s)
- Maxim Chudaev
- Department of Microbiology and Molecular Genetics, UMDNJ – New Jersey Medical School, Newark, NJ 07101, USA
| | - Kiran Poruri
- Department of Microbiology and Molecular Genetics, UMDNJ – New Jersey Medical School, Newark, NJ 07101, USA
| | - Emanuel Goldman
- Department of Microbiology and Molecular Genetics, UMDNJ – New Jersey Medical School, Newark, NJ 07101, USA
| | - Hieronim Jakubowski
- Department of Microbiology and Molecular Genetics, UMDNJ – New Jersey Medical School, Newark, NJ 07101, USA
| | - Mohit Raja Jain
- Department of Biochemistry and Molecular Biology, Center for Advanced Proteomics Research, UMDNJ – New Jersey Medical School Cancer Center, 205 S. Orange Ave., Newark, NJ 07103, USA
| | - Wei Chen
- Department of Biochemistry and Molecular Biology, Center for Advanced Proteomics Research, UMDNJ – New Jersey Medical School Cancer Center, 205 S. Orange Ave., Newark, NJ 07103, USA
| | - Hong Li
- Department of Biochemistry and Molecular Biology, Center for Advanced Proteomics Research, UMDNJ – New Jersey Medical School Cancer Center, 205 S. Orange Ave., Newark, NJ 07103, USA
| | - Sanjay Tyagi
- Public Health Research Institute, UMDNJ – New Jersey Medical School, Newark, NJ 07103, USA
| | - Wlodek Mandecki
- Department of Microbiology and Molecular Genetics, UMDNJ – New Jersey Medical School, Newark, NJ 07101, USA
| |
Collapse
|
36
|
Diao J, Zhao M, Zhang Y, Kyoung M, Brunger AT. Studying protein-reconstituted proteoliposome fusion with content indicators in vitro. Bioessays 2013; 35:658-65. [PMID: 23625805 DOI: 10.1002/bies.201300010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In vitro reconstitution assays are commonly used to study biological membrane fusion. However, to date, most ensemble and single-vesicle experiments involving SNARE proteins have been performed only with lipid-mixing, but not content-mixing indicators. Through simultaneous detection of lipid and small content-mixing indicators, we found that lipid mixing often occurs seconds prior to content mixing, or without any content mixing at all, during a 50-seconds observation period, for Ca(2+) -triggered fusion with SNAREs, full-length synaptotagmin-1, and complexin. Our results illustrate the caveats of commonly used bulk lipid-mixing fusion experiments. We recommend that proteoliposome fusion experiments should always employ content-mixing indicators in addition to, or in place of, lipid-mixing indicators.
Collapse
Affiliation(s)
- Jiajie Diao
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA.
| | | | | | | | | |
Collapse
|
37
|
Wang L, Wasserman MR, Feldman MB, Altman RB, Blanchard SC. Mechanistic insights into antibiotic action on the ribosome through single-molecule fluorescence imaging. Ann N Y Acad Sci 2013; 1241:E1-16. [PMID: 23419024 DOI: 10.1111/j.1749-6632.2012.06839.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Single-molecule fluorescence imaging has provided unprecedented access to the dynamics of ribosome function, revealing transient intermediate states that are critical to ribosome activity. Imaging platforms have now been developed that are capable of probing many hundreds of molecules simultaneously at temporal and spatial resolutions approaching the sub-millisecond time and the sub-nanometer scales. These advances enable both steady- and pre-steady state measurements of individual steps in the translation process as well as processive reactions. The data generated using these methods have yielded new, quantitative structural and kinetic insights into ribosomal activity. They have also shed light on the mechanisms of antibiotic targeting the translation apparatus, revealing features of the structure-function relationship that would be difficult to obtain by other means. This review provides an overview of the types of information that can be obtained using such imaging platforms and a blueprint for using the technique to assess how small-molecule antibiotics alter macromolecular functions.
Collapse
Affiliation(s)
- Leyi Wang
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
38
|
The Ribosome as an Optimal Decoder: A Lesson in Molecular Recognition. Cell 2013; 153:471-9. [DOI: 10.1016/j.cell.2013.03.032] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 10/03/2012] [Accepted: 03/22/2013] [Indexed: 11/24/2022]
|
39
|
Dynes JL, Steward O. Arc mRNA docks precisely at the base of individual dendritic spines indicating the existence of a specialized microdomain for synapse-specific mRNA translation. J Comp Neurol 2013; 520:3105-19. [PMID: 22350812 DOI: 10.1002/cne.23073] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Arc (aka Arg 3.1) is induced by neural activity and learning experience. Arc mRNA is rapidly exported into dendrites where it localizes near activated synapses. By imaging green fluorescent protein (GFP)-tagged mRNA in living neurons in culture, we show that fusion transcripts containing the Arc 30'UTR (untranslated region) localize with remarkable precision in a microdomain at the base of dendritic spines. Transcripts with the Arc 30'UTR that encode a reporter protein rather than Arc show precise localization. Localization persists in the presence of translation inhibitors, indicating that localization does not require ongoing translation. Similarly, polyribosome complexes remained stably positioned at spine bases in brain tissue treated with the translation inhibitor (puromycin) that releases ribosomes from mRNA. Single particle tracking revealed that Arc mRNA particles positioned at spine bases exhibited highly constrained submicron movements. These observations imply the existence of a microdomain at the spine base where Arc mRNA docks in association with a previously unknown mRNA-binding structural element.
Collapse
Affiliation(s)
- Joseph L Dynes
- Reeve-Irvine Research Center, University of California at Irvine, Irvine, California 92697, USA
| | | |
Collapse
|
40
|
SHARMA AJEETK, CHOWDHURY DEBASHISH. TEMPLATE-DIRECTED BIOPOLYMERIZATION: TAPE-COPYING TURING MACHINES. ACTA ACUST UNITED AC 2013. [DOI: 10.1142/s1793048012300083] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
DNA, RNA and proteins are among the most important macromolecules in a living cell. These molecules are polymerized by molecular machines. These natural nano-machines polymerize such macromolecules, adding one monomer at a time, using another linear polymer as the corresponding template. The machine utilizes input chemical energy to move along the template which also serves as a track for the movements of the machine. In the Alan Turing year 2012, it is worth pointing out that these machines are "tape-copying Turing machines". We review the operational mechanisms of the polymerizer machines and their collective behavior from the perspective of statistical physics, emphasizing their common features in spite of the crucial differences in their biological functions. We also draw the attention of the physics community to another class of modular machines that carry out a different type of template-directed polymerization. We hope this review will inspire new kinetic models for these modular machines.
Collapse
Affiliation(s)
- AJEET K. SHARMA
- Department of Physics, Indian Institute of Technology, Kanpur 208016, India
| | | |
Collapse
|
41
|
Whitford PC, Sanbonmatsu KY, Onuchic JN. Biomolecular dynamics: order-disorder transitions and energy landscapes. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2012; 75:076601. [PMID: 22790780 PMCID: PMC3695400 DOI: 10.1088/0034-4885/75/7/076601] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
While the energy landscape theory of protein folding is now a widely accepted view for understanding how relatively weak molecular interactions lead to rapid and cooperative protein folding, such a framework must be extended to describe the large-scale functional motions observed in molecular machines. In this review, we discuss (1) the development of the energy landscape theory of biomolecular folding, (2) recent advances toward establishing a consistent understanding of folding and function and (3) emerging themes in the functional motions of enzymes, biomolecular motors and other biomolecular machines. Recent theoretical, computational and experimental lines of investigation have provided a very dynamic picture of biomolecular motion. In contrast to earlier ideas, where molecular machines were thought to function similarly to macroscopic machines, with rigid components that move along a few degrees of freedom in a deterministic fashion, biomolecular complexes are only marginally stable. Since the stabilizing contribution of each atomic interaction is on the order of the thermal fluctuations in solution, the rigid body description of molecular function must be revisited. An emerging theme is that functional motions encompass order-disorder transitions and structural flexibility provides significant contributions to the free energy. In this review, we describe the biological importance of order-disorder transitions and discuss the statistical-mechanical foundation of theoretical approaches that can characterize such transitions.
Collapse
Affiliation(s)
- Paul C Whitford
- Center for Theoretical Biological Physics, Department of Physics, Rice University, 6100 Main, Houston, TX 77005-1827, USA
| | | | | |
Collapse
|
42
|
Lee G, Ha T. Single-Molecule Imaging: A Collagenase Pauses before Embarking on a Killing Spree. Curr Biol 2012; 22:R499-501. [DOI: 10.1016/j.cub.2012.04.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
43
|
Real-time evidence for EF-G-induced dynamics of helix 44 in 16S rRNA. J Mol Biol 2012; 422:45-57. [PMID: 22634282 DOI: 10.1016/j.jmb.2012.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 05/03/2012] [Accepted: 05/08/2012] [Indexed: 11/21/2022]
Abstract
The penultimate stem-loop of 16S ribosomal RNA (rRNA), helix 44, plays a central role in ribosome function. Using time-resolved dimethyl sulfate (DMS) probing, we have analyzed time-dependent modifications that occur at specific bases in this helix near the decoding region, resulting from the binding of elongation factor G (EF-G) in various forms. When EF-G-GTP is bound to 70S ribosomes, bases A1492 and A1493 are immediately protected, while other bases in the region show either no change or enhanced modification. When apo-EF-G is bound to 70S ribosomes and GTP is added, substantial transient time-dependent enhancement occurs at bases A1492 and A1493, with somewhat less enhancement occurring at base A1483, all in the first 45 ms. When mRNA and deacylated tRNAs are bound to the 70S ribosome and EF-G-GTP is added, bases A1492 and A1493 again show substantial and continued enhancement, while bases A1408, A1413, and A1418 all show time-dependent protection. These results provide primary, real-time evidence that EF-G induces direct or indirect structural changes in this region as EF-G is bound and as GTP is hydrolyzed.
Collapse
|
44
|
Quality control of mRNA decoding on the bacterial ribosome. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2012; 86:95-128. [PMID: 22243582 DOI: 10.1016/b978-0-12-386497-0.00003-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The ribosome is a major player in providing accurate gene expression in the cell. The fidelity of substrate selection is tightly controlled throughout the translation process, including the initiation, elongation, and termination phases. Although each phase of translation involves different players, that is, translation factors and tRNAs, the general principles of selection appear surprisingly similar for very different substrates. At essentially every step of translation, differences in complex stabilities as well as induced fit are sources of selectivity. A view starts to emerge of how the ribosome uses local and global conformational switches to govern induced-fit mechanisms that ensure fidelity. This review describes the mechanisms of tRNA and mRNA selection at all phases of protein synthesis in bacteria.
Collapse
|
45
|
Excited states of ribosome translocation revealed through integrative molecular modeling. Proc Natl Acad Sci U S A 2011; 108:18943-8. [PMID: 22080606 DOI: 10.1073/pnas.1108363108] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The dynamic nature of biomolecules leads to significant challenges when characterizing the structural properties associated with function. While X-ray crystallography and imaging techniques (such as cryo-electron microscopy) can reveal the structural details of stable molecular complexes, strategies must be developed to characterize configurations that exhibit only marginal stability (such as intermediates) or configurations that do not correspond to minima on the energy landscape (such as transition-state ensembles). Here, we present a methodology (MDfit) that utilizes molecular dynamics simulations to generate configurations of excited states that are consistent with available biophysical and biochemical measurements. To demonstrate the approach, we present a sequence of configurations that are suggested to be associated with transfer RNA (tRNA) movement through the ribosome (translocation). The models were constructed by combining information from X-ray crystallography, cryo-electron microscopy, and biochemical data. These models provide a structural framework for translocation that may be further investigated experimentally and theoretically to determine the precise energetic character of each configuration and the transition dynamics between them.
Collapse
|
46
|
Saks ME, Sanderson LE, Choi DS, Crosby CM, Uhlenbeck OC. Functional consequences of T-stem mutations in E. coli tRNAThrUGU in vitro and in vivo. RNA (NEW YORK, N.Y.) 2011; 17:1038-1047. [PMID: 21527672 PMCID: PMC3096036 DOI: 10.1261/rna.2427311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 03/22/2011] [Indexed: 05/30/2023]
Abstract
The binding affinities between Escherichia coli EF-Tu and 34 single and double base-pair changes in the T stem of E. coli tRNA(Thr)(UGU) were compared with similar data obtained previously for several aa-tRNAs binding to Thermus thermophilus EF-Tu. With a single exception, the two proteins bound to mutations in three T-stem base pairs in a quantitatively identical manner. However, tRNA(Thr) differs from other tRNAs by also using its rare A52-C62 pair as a negative specificity determinant. Using a plasmid-based tRNA gene replacement strategy, we show that many of the tRNA(Thr)(UGU) T-stem changes are either unable to support growth of E. coli or are less effective than the wild-type sequence. Since the inviable T-stem sequences are often present in other E. coli tRNAs, it appears that T-stem sequences in each tRNA body have evolved to optimize function in a different way. Although mutations of tRNA(Thr) can substantially increase or decrease its affinity to EF-Tu, the observed affinities do not correlate with the growth phenotype of the mutations in any simple way. This may either reflect the different conditions used in the two assays or indicate that the T-stem mutants affect another step in the translation mechanism.
Collapse
Affiliation(s)
- Margaret E Saks
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | | | |
Collapse
|
47
|
Lee G, Yoo J, Leslie BJ, Ha T. Single-molecule analysis reveals three phases of DNA degradation by an exonuclease. Nat Chem Biol 2011; 7:367-74. [PMID: 21552271 PMCID: PMC3097319 DOI: 10.1038/nchembio.561] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 02/25/2011] [Indexed: 11/12/2022]
Abstract
λ exonuclease degrades one strand of duplex DNA in the 5’-3’ direction to generate a 3’ overhang required for recombination. Its ability to hydrolyze thousands of nucleotides processively is attributed to its ring structure and most studies have focused on the processive phase. Here, we use single molecule FRET to reveal three phases of λ exonuclease reactions: initiation, distributive and processive phases. The distributive phase occurs at early reactions where the 3’ overhang is too short for a stable engagement with the enzyme. A mismatched base is digested five times slower than a Watson-Crick paired base and concatenating multiple mismatches has a cooperatively negative effect, highlighting the crucial role of basepairing in aligning the 5’ end toward the active site. The rate-limiting step during processive degradation appears to be the post-cleavage melting of the terminal base pair. We also found that an escape from a known pausing sequence requires enzyme backtracking.
Collapse
Affiliation(s)
- Gwangrog Lee
- Department of Physics and the Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | |
Collapse
|
48
|
Elucidating mechanistic principles underpinning eukaryotic translation initiation using quantitative fluorescence methods. Biochem Soc Trans 2011; 38:1587-92. [PMID: 21118131 DOI: 10.1042/bst0381587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Eukaryotic translation initiation is an intricate process involving at least 11 formally classified eIFs (eukaryotic initiation factors), which, together with the ribosome, comprise one of the largest molecular machines in the cell. Studying such huge macromolecular complexes presents many challenges which cannot readily be overcome by traditional molecular and structural methods. Increasingly, novel quantitative techniques are being used to further dissect such complex assembly pathways. One area of methodology involves the labelling of ribosomal subunits and/or eIFs with fluorophores and the use of techniques such as FRET (Förster resonance energy transfer) and FA (fluorescence anisotropy). The applicability of such techniques in such a complex system has been greatly enhanced by recent methodological developments. In the present mini-review, we introduce these quantitative fluorescence methods and discuss the impact they are beginning to have on the field.
Collapse
|
49
|
Tuning the affinity of aminoacyl-tRNA to elongation factor Tu for optimal decoding. Proc Natl Acad Sci U S A 2011; 108:5215-20. [PMID: 21402928 DOI: 10.1073/pnas.1102128108] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To better understand why aminoacyl-tRNAs (aa-tRNAs) have evolved to bind bacterial elongation factor Tu (EF-Tu) with uniform affinities, mutant tRNAs with differing affinities for EF-Tu were assayed for decoding on Escherichia coli ribosomes. At saturating EF-Tu concentrations, weaker-binding aa-tRNAs decode their cognate codons similarly to wild-type tRNAs. However, tighter-binding aa-tRNAs show reduced rates of peptide bond formation due to slow release from EF-Tu•GDP. Thus, the affinities of aa-tRNAs for EF-Tu are constrained to be uniform by their need to bind tightly enough to form the ternary complex but weakly enough to release from EF-Tu during decoding. Consistent with available crystal structures, the identity of the esterified amino acid and three base pairs in the T stem of tRNA combine to define the affinity of each aa-tRNA for EF-Tu, both off and on the ribosome.
Collapse
|
50
|
Bustamante C, Cheng W, Mejia YX, Meija YX. Revisiting the central dogma one molecule at a time. Cell 2011; 144:480-97. [PMID: 21335233 PMCID: PMC3063003 DOI: 10.1016/j.cell.2011.01.033] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 01/21/2011] [Accepted: 01/26/2011] [Indexed: 12/24/2022]
Abstract
The faithful relay and timely expression of genetic information depend on specialized molecular machines, many of which function as nucleic acid translocases. The emergence over the last decade of single-molecule fluorescence detection and manipulation techniques with nm and Å resolution and their application to the study of nucleic acid translocases are painting an increasingly sharp picture of the inner workings of these machines, the dynamics and coordination of their moving parts, their thermodynamic efficiency, and the nature of their transient intermediates. Here we present an overview of the main results arrived at by the application of single-molecule methods to the study of the main machines of the central dogma.
Collapse
Affiliation(s)
- Carlos Bustamante
- Jason L. Choy Laboratory of Single-Molecule Biophysics, University of California, Berkeley, 94720, USA.
| | | | | | | |
Collapse
|