1
|
Balaratnasingam C, Curcio CA, Morgan WH, van Dijk EHC. A possible association between intraocular pressure changes and pigment epithelial detachment in central serous chorioretinopathy. Acta Ophthalmol 2024; 102:843-848. [PMID: 38860298 DOI: 10.1111/aos.16730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/30/2024] [Indexed: 06/12/2024]
Abstract
Central serous chorioretinopathy (CSC) is a frequently occurring chorioretinal disease, that is commonly associated with subretinal fluid accumulation in a generally young population. Even though choroidal abnormalities have been found to be of importance, the exact pathogenesis of CSC is still being learned. The origin of pigment epithelial detachments, seen in many CSC patients, is also unclear. Based on the follow-up of a CSC patient for more than 5 years, we hypothesize that intraocular pressure and, by extension, the pressure gradient across the Bruch's membrane, may be one factor in the pathogenesis of pigment epithelial detachments in CSC, which might very well have implications for the occurrence of and possible ways to prevent subretinal fluid in CSC.
Collapse
Affiliation(s)
- Chandrakumar Balaratnasingam
- Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Western Australia, Australia
- Lions Eye Institute, Nedlands, Western Australia, Australia
- Retina Service, Department of Ophthalmology, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Christine A Curcio
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Heersink School of Medicine, Birmingham, Alabama, USA
| | - William H Morgan
- Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Western Australia, Australia
- Lions Eye Institute, Nedlands, Western Australia, Australia
- Glaucoma Service, Department of Ophthalmology, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Elon H C van Dijk
- Retina Service, Department of Ophthalmology, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Leiden University Medical Center, Department of Ophthalmology, Leiden, The Netherlands
| |
Collapse
|
2
|
Ji F, Islam MR, Sebastian F, He X, Schilpp H, Wang B, Hua Y, Amini R, Sigal IA. Capturing sclera anisotropy using direct collagen fiber models. Linking microstructure to macroscopic mechanical properties. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612702. [PMID: 39386446 PMCID: PMC11463644 DOI: 10.1101/2024.09.12.612702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Because of the crucial role of collagen fibers on soft tissue mechanics, there is great interest in techniques to incorporate them in computational models. Recently we introduced a direct fiber modeling approach for sclera based on representing the long-interwoven fibers. Our method differs from the conventional continuum approach to modeling sclera that homogenizes the fibers and describes them as statistical distributions for each element. At large scale our method captured gross collagen fiber bundle architecture from histology and experimental intraocular pressure-induced deformations. At small scale, a direct fiber model of a sclera sample reproduced equi-biaxial experimental behavior from the literature. In this study our goal was a much more challenging task for the direct fiber modeling: to capture specimen-specific 3D fiber architecture and anisotropic mechanics of four sclera samples tested under equibiaxial and four non-equibiaxial loadings. Samples of sclera from three eyes were isolated and tested in five biaxial loadings following an approach previously reported. Using microstructural architecture from polarized light microscopy we then created specimen-specific direct fiber models. Model fiber orientations agreed well with the histological information (adjusted R2's>0.89). Through an inverse-fitting process we determined model characteristics, including specimen-specific fiber mechanical properties to match equibiaxial loading. Interestingly, the equibiaxial properties also reproduced all the non-equibiaxial behaviors. These results indicate that the direct fiber modeling method naturally accounted for tissue anisotropy within its fiber structure. Direct fiber modeling is therefore a promising approach to understand how macroscopic behavior arises from microstructure.
Collapse
Affiliation(s)
- Fengting Ji
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA
| | - Mohammad R. Islam
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, TX
| | | | - Xuehuan He
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA
| | - Hannah Schilpp
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA
| | - Bingrui Wang
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA
| | - Yi Hua
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA
- Department of Biomedical Engineering, University of Mississippi, University, MS
| | - Rouzbeh Amini
- Department of Bioengineering, Northeastern University, Boston, MA
| | - Ian A. Sigal
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
3
|
Jiang L, Dai C, Wei Y, Zhao B, Li Q, Wu Z, Zou L, Ye Z, Yang Z, Huang L, Shi Y. Identification of LRRC46 as a novel candidate gene for high myopia. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1941-1956. [PMID: 38874710 DOI: 10.1007/s11427-024-2583-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/19/2024] [Indexed: 06/15/2024]
Abstract
High myopia (HM) is the primary cause of blindness, with the microstructural organization and composition of collagenous fibers in the cornea and sclera playing a crucial role in the biomechanical behavior of these tissues. In a previously reported myopic linkage region, MYP5 (17q21-22), a potential candidate gene, LRRC46 (c.C235T, p.Q79X), was identified in a large Han Chinese pedigree. LRRC46 is expressed in various eye tissues in humans and mice, including the retina, cornea, and sclera. In subsequent cell experiments, the mutation (c.C235T) decreased the expression of LRRC46 protein in human corneal epithelial cells (HCE-T). Further investigation revealed that Lrrc46-/- mice (KO) exhibited a classical myopia phenotype. The thickness of the cornea and sclera in KO mice became thinner and more pronounced with age, the activity of limbal stem cells decreased, and microstructural changes were observed in the fibroblasts of the sclera and cornea. We performed RNA-seq on scleral and corneal tissues of KO and normal control wild-type (WT) mice, which indicated a significant downregulation of the collagen synthesis-related pathway (extracellular matrix, ECM) in KO mice. Subsequent in vitro studies further indicated that LRRC46, a member of the important LRR protein family, primarily affected the formation of collagens. This study suggested that LRRC46 is a novel candidate gene for HM, influencing collagen protein VIII (Col8a1) formation in the eye and gradually altering the biomechanical structure of the cornea and sclera, thereby promoting the occurrence and development of HM.
Collapse
Affiliation(s)
- Lingxi Jiang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Chao Dai
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yao Wei
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Bo Zhao
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Qi Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Zhengzheng Wu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Liang Zou
- School of Food and Bioengineering, Chengdu University, Chengdu, 610106, China
| | - Zimeng Ye
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
- School of Medicine, University of Sydney, Sydney, 2050, Australia
| | - Zhenglin Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, 610072, China.
- Jinfeng Laboratory, Chongging, 40000, China.
| | - Lulin Huang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, 610072, China.
| | - Yi Shi
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, 610072, China.
| |
Collapse
|
4
|
Ong J, Zarnegar A, Selvam A, Driban M, Chhablani J. The Complement System as a Therapeutic Target in Retinal Disease. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:945. [PMID: 38929562 PMCID: PMC11205777 DOI: 10.3390/medicina60060945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024]
Abstract
The complement cascade is a vital system in the human body's defense against pathogens. During the natural aging process, it has been observed that this system is imperative for ensuring the integrity and homeostasis of the retina. While this system is critical for proper host defense and retinal integrity, it has also been found that dysregulation of this system may lead to certain retinal pathologies, including geographic atrophy and diabetic retinopathy. Targeting components of the complement system for retinal diseases has been an area of interest, and in vivo, ex vivo, and clinical trials have been conducted in this area. Following clinical trials, medications targeting the complement system for retinal disease have also become available. In this manuscript, we discuss the pathophysiology of complement dysfunction in the retina and specific pathologies. We then describe the results of cellular, animal, and clinical studies targeting the complement system for retinal diseases. We then provide an overview of complement inhibitors that have been approved by the Food and Drug Administration (FDA) for geographic atrophy. The complement system in retinal diseases continues to serve as an emerging therapeutic target, and further research in this field will provide additional insights into the mechanisms and considerations for treatment of retinal pathologies.
Collapse
Affiliation(s)
- Joshua Ong
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, MI 48105, USA
| | - Arman Zarnegar
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Amrish Selvam
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Matthew Driban
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jay Chhablani
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
5
|
Risseeuw S, Pilgrim MG, Bertazzo S, Brown CN, Csincsik L, Fearn S, Thompson RB, Bergen AA, ten Brink JB, Kortvely E, Spiering W, Ossewaarde–van Norel J, van Leeuwen R, Lengyel I. Bruch's Membrane Calcification in Pseudoxanthoma Elasticum: Comparing Histopathology and Clinical Imaging. OPHTHALMOLOGY SCIENCE 2024; 4:100416. [PMID: 38170125 PMCID: PMC10758992 DOI: 10.1016/j.xops.2023.100416] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/10/2023] [Accepted: 10/18/2023] [Indexed: 01/05/2024]
Abstract
Purpose To investigate the histology of Bruch's membrane (BM) calcification in pseudoxanthoma elasticum (PXE) and correlate this to clinical retinal imaging. Design Experimental study with clinicopathological correlation. Subjects and Controls Six postmortem eyes from 4 PXE patients and 1 comparison eye from an anonymous donor without PXE. One of the eyes had a multimodal clinical image set for comparison. Methods Calcification was labeled with OsteSense 680RD, a fluorescent dye specific for hydroxyapatite, and visualized with confocal microscopy. Scanning electron microscopy coupled with energy-dispersive x-ray spectroscopy (SEM-EDX) and time-of-flight secondary ion mass spectrometry (TOF-SIMs) were used to analyze the elemental and ionic composition of different anatomical locations. Findings on cadaver tissues were compared with clinical imaging of 1 PXE patient. Main Outcome Measures The characteristics and topographical distribution of hydroxyapatite in BM in eyes with PXE were compared with the clinical manifestations of the disease. Results Analyses of whole-mount and sectioned PXE eyes revealed an extensive, confluent OsteoSense labeling in the central and midperipheral BM, transitioning to a speckled labeling in the midperiphery. These areas corresponded to hyperreflective and isoreflective zones on clinical imaging. Scanning electron microscopy coupled with energy-dispersive x-ray spectroscopy and TOF-SIMs analyses identified these calcifications as hydroxyapatite in BM of PXE eyes. The confluent fluorescent appearance originates from heavily calcified fibrous structures of both the collagen and the elastic layers of BM. Calcification was also detected in an aged comparison eye, but this was markedly different from PXE eyes and presented as small snowflake-like deposits in the posterior pole. Conclusions Pseudoxanthoma elasticum eyes show extensive hydroxyapatite deposition in the inner and outer collagenous and elastic BM layers in the macula with a gradual change toward the midperiphery, which seems to correlate with the clinical phenotype. The snowflake-like calcification in BM of an aged comparison eye differed markedly from the extensive calcification in PXE. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Sara Risseeuw
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Matthew G. Pilgrim
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Sergio Bertazzo
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Connor N. Brown
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Lajos Csincsik
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Sarah Fearn
- Department of Materials, Imperial College London, London, United Kingdom
| | - Richard B. Thompson
- University of Maryland School of Medicine, Department of Biochemistry and Molecular Biology, Baltimore, Maryland
| | - Arthur A. Bergen
- Departments of Human Genetics and Ophthalmology, Amsterdam UMC, location AMC Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Emma Center for Personalized Medicine, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - Jacoline B. ten Brink
- Departments of Human Genetics and Ophthalmology, Amsterdam UMC, location AMC Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Elod Kortvely
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Wilko Spiering
- Department of Vascular Medicine, University Medical Center Utrecht, Utrecht University, The Netherlands
| | | | - Redmer van Leeuwen
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Imre Lengyel
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| |
Collapse
|
6
|
Tambroni N, Tomassetti G, Lombardi S, Repetto R. A mechanical model of ocular bulb vibrations and implications for acoustic tonometry. PLoS One 2024; 19:e0294825. [PMID: 38236823 PMCID: PMC10796012 DOI: 10.1371/journal.pone.0294825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/13/2023] [Indexed: 01/22/2024] Open
Abstract
In this study, we propose a comprehensive mechanical model of ocular bulb vibrations and discuss its implications for acoustic tonometry. The model describes the eye wall as a spherical, pre-stressed elastic shell containing a viscoelastic material and accounts for the interaction between the elastic corneoscleral shell and the viscoelastic vitreous humor. We investigate the natural frequencies of the system and the corresponding vibration modes, expanding the solution in terms of scalar and vector spherical harmonics. From a quantitative point of view, our findings reveal that the eyebulb vibration frequencies significantly depend on IOP. This dependency has two origins: "geometric" stiffening, due to an increase of the pre-stress, and "material" stiffening, due to the nonlinearity of the stress-strain curve of the sclera. The model shows that the second effect is by far dominant. We also find that the oscillation frequencies depend on ocular rigidity, but this dependency is important only at relatively large values of IOP. Thus close to physiological conditions, IOP is the main determinant of ocular vibration frequencies. The vitreous rheological properties are found to mostly influence vibration damping. This study contributes to the understanding of the mechanical behavior of the eye under dynamic conditions and thus has implications for non-contact intraocular pressure measurement techniques, such as acoustic tonometry. The model can also be relevant for other ocular pathological conditions, such as traumatic retinal detachment, which are believed to be influenced by the dynamic behavior of the eye.
Collapse
Affiliation(s)
- Nicoletta Tambroni
- Department of Civil, Chemical and Enivironmental Engineering, University of Genoa, Genoa, Italy
| | - Giuseppe Tomassetti
- Department of Industrial, Electronic, and Mechanical Engineering, Roma Tre University, Rome, Italy
| | | | - Rodolfo Repetto
- Department of Civil, Chemical and Enivironmental Engineering, University of Genoa, Genoa, Italy
| |
Collapse
|
7
|
Lee PY, Fryc G, Gnalian J, Wang B, Hua Y, Waxman S, Zhong F, Yang B, Sigal IA. Direct measurements of collagen fiber recruitment in the posterior pole of the eye. Acta Biomater 2024; 173:135-147. [PMID: 37967694 PMCID: PMC10843755 DOI: 10.1016/j.actbio.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/17/2023]
Abstract
Collagen is the main load-bearing component of the peripapillary sclera (PPS) and lamina cribrosa (LC) in the eye. Whilst it has been shown that uncrimping and recruitment of the PPS and LC collagen fibers underlies the macro-scale nonlinear stiffening of both tissues with increased intraocular pressure (IOP), the uncrimping and recruitment as a function of local stretch have not been directly measured. This knowledge is crucial to understanding their functions in bearing loads and maintaining tissue integrity. In this project we measured local stretch-induced collagen fiber bundle uncrimping and recruitment curves of the PPS and LC. Thin coronal samples of PPS and LC of sheep eyes were mounted and stretched biaxially quasi-statically using a custom system. At each step, we imaged the PPS and LC with instant polarized light microscopy and quantified pixel-level (1.5 μm/pixel) collagen fiber orientations. We used digital image correlation to measure the local stretch and quantified collagen crimp by the circular standard deviation of fiber orientations, or waviness. Local stretch-recruitment curves of PPS and LC approximated sigmoid functions. PPS recruited more fibers than the LC at the low levels of stretch. At 10% stretch the curves crossed with 75% bundles recruited. The PPS had higher uncrimping rate and waviness remaining after recruitment than the LC: 0.9º vs. 0.6º and 3.1º vs. 2.7º. Altogether our findings support describing fiber recruitment of both PPS and LC with sigmoid curves, with the PPS recruiting faster and at lower stretch than the LC, consistent with a stiffer tissue. STATEMENT OF SIGNIFICANCE: Peripapillary sclera (PPS) and lamina cribrosa (LC) collagen recruitment behaviors are central to the nonlinear mechanical behavior of the posterior pole of the eye. How PPS and LC collagen fibers recruit under stretch is crucial to develop constitutive models of the tissues but remains unclear. We used image-based stretch testing to characterize PPS and LC collagen fiber bundle recruitment under local stretch. We found that fiber-level stretch-recruitment curves of PPS and LC approximated sigmoid functions. PPS recruited more fibers at a low stretch, but at 10% bundle stretch the two curves crossed with 75% bundles recruited. We also found that PPS and LC fibers had different uncrimping rates and non-zero waviness's when recruited.
Collapse
Affiliation(s)
- Po-Yi Lee
- Department of Ophthalmology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gosia Fryc
- Department of Chemistry, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - John Gnalian
- Department of Ophthalmology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bingrui Wang
- Department of Ophthalmology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yi Hua
- Department of Ophthalmology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Biomedical Engineering, University of Mississippi, University, MS, USA; Department of Mechanical Engineering, University of Mississippi, University, MS, USA
| | - Susannah Waxman
- Department of Ophthalmology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Fuqiang Zhong
- Department of Ophthalmology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bin Yang
- Department of Engineering, Rangos School of Health Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Ian A Sigal
- Department of Ophthalmology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
8
|
Karimi A, Razaghi R, D'costa SD, Torbati S, Ebrahimi S, Rahmati SM, Kelley MJ, Acott TS, Gong H. Implementing new computational methods for the study of JCT and SC inner wall basement membrane biomechanics and hydrodynamics. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 243:107909. [PMID: 37976613 PMCID: PMC10840991 DOI: 10.1016/j.cmpb.2023.107909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE The conventional aqueous outflow pathway, which includes the trabecular meshwork (TM), juxtacanalicular tissue (JCT), and the inner wall endothelium of Schlemm's canal (SC), regulates intraocular pressure (IOP) by controlling the aqueous humor outflow resistance. Despite its importance, our understanding of the biomechanics and hydrodynamics within this region remains limited. Fluid-structure interaction (FSI) offers a way to estimate the biomechanical properties of the JCT and SC under various loading and boundary conditions, providing valuable insights that are beyond the reach of current imaging techniques. METHODS In this study, a normal human eye was fixed at a pressure of 7 mm Hg, and two radial wedges of the TM tissues, which included the SC inner wall basement membrane and JCT, were dissected, processed, and imaged using 3D serial block-face scanning electron microscopy (SBF-SEM). Four different sets of images were used to create 3D finite element (FE) models of the JCT and inner wall endothelial cells of SC with their basement membrane. The outer JCT portion was carefully removed as the outflow resistance is not in that region, leaving only the SCE inner wall and a few µm of the tissue, which does contain the resistance. An inverse iterative FE algorithm was then utilized to calculate the unloaded geometry of the JCT/SC complex at an aqueous humor pressure of 0 mm Hg. Then in the model, the intertrabecular spaces, pores, and giant vacuole contents were replaced by aqueous humor, and FSI was employed to pressurize the JCT/SC complex from 0 to 15 mm Hg. RESULTS In the JCT/SC complex, the shear stress of the aqueous humor is not evenly distributed. Areas proximal to the inner wall of SC experience larger stresses, reaching up to 10 Pa, while those closer to the JCT undergo lower stresses, approximately 4 Pa. Within this complex, giant vacuoles with or without I-pore behave differently. Those without I-pores experience a more significant strain, around 14%, compared to those with I-pores, where the strain is roughly 9%. CONCLUSIONS The distribution of aqueous humor wall shear stress is not uniform within the JCT/SC complex, which may contribute to our understanding of the underlying selective mechanisms in the pathway.
Collapse
Affiliation(s)
- Alireza Karimi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States; Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, United States.
| | - Reza Razaghi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States
| | - Siddharth Daniel D'costa
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States
| | - Saeed Torbati
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States
| | - Sina Ebrahimi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States.
| | | | - Mary J Kelley
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States; Department Integrative Biosciences, School of Dentistry, Oregon Health & Science University, Portland, OR, United States.
| | - Ted S Acott
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States; Department Chemical Physiology & Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR, United States.
| | - Haiyan Gong
- Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, United States; Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, United States.
| |
Collapse
|
9
|
Ji F, Quinn M, Hua Y, Lee PY, Sigal IA. 2D or not 2D? Mapping the in-depth inclination of the collagen fibers of the corneoscleral shell. Exp Eye Res 2023; 237:109701. [PMID: 37898229 PMCID: PMC10872428 DOI: 10.1016/j.exer.2023.109701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 10/30/2023]
Abstract
The collagen fibers of the corneoscleral shell play a central role in the eye mechanical behavior. Although it is well-known that these fibers form a complex three-dimensional interwoven structure, biomechanical and microstructural studies often assume that the fibers are aligned in-plane with the tissues. This is convenient as it removes the out-of-plane components and allows focusing on the 2D maps of in-plane fiber organization that are often quite complex. The simplification, however, risks missing potentially important aspects of the tissue architecture and mechanics. In the cornea, for instance, fibers with high in-depth inclination have been shown to be mechanically important. Outside the cornea, the in-depth fiber orientations have not been characterized, preventing a deeper understanding of their potential roles. Our goal was to characterize in-depth collagen fiber organization over the whole corneoscleral shell. Seven sheep whole-globe axial sections from eyes fixed at an IOP of 50 mmHg were imaged using polarized light microscopy to measure collagen fiber orientations and density. In-depth fiber orientation distributions and anisotropy (degree of fiber alignment) accounting for fiber density were quantified over the whole sclera and in 15 regions: central cornea, peripheral cornea, limbus, anterior equator, equator, posterior equator, posterior sclera and peripapillary sclera on both nasal and temporal sides. Orientation distributions were fitted using a combination of a uniform distribution and a sum of π-periodic von Mises distributions, each with three parameters: primary orientation μ, fiber concentration factor k, and weighting factor a. To study the features of fibers that are not in-plane, i.e., fiber inclination, we quantified the percentage of inclined fibers and the range of inclination angles (half width at half maximum of inclination angle distribution). Our measurements showed that the fibers were not uniformly in-plane but exhibited instead a wide range of in-depth orientations, with fibers significantly more aligned in-plane in the anterior parts of the globe. We found that fitting the orientation distributions required between one and three π-periodic von Mises distributions with different primary orientations and fiber concentration factors. Regions of the posterior globe, particularly on the temporal side, had a larger percentage of inclined fibers and a larger range of inclination angles than anterior and equatorial regions. Variations of orientation distributions and anisotropies may imply varying out-of-plane tissue mechanical properties around the eye globe. Out-of-plane fibers could indicate fiber interweaving, not necessarily long, inclined fibers. Effects of small-scale fiber undulations, or crimp, were minimized by using tissues from eyes at high IOPs. These fiber features also play a role in tissue stiffness and stability and are therefore also important experimental information.
Collapse
Affiliation(s)
- Fengting Ji
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marissa Quinn
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yi Hua
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering and Department of Mechanical Engineering, University of Mississippi, University, MS, USA
| | - Po-Yi Lee
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ian A Sigal
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
10
|
Dong R, Liu Y, Zhang Y, Chen Y. The application of corneal biomechanical interocular asymmetry for the diagnosis of keratoconus and subclinical keratoconus. Front Bioeng Biotechnol 2023; 11:1266940. [PMID: 37869711 PMCID: PMC10587551 DOI: 10.3389/fbioe.2023.1266940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023] Open
Abstract
Purpose: To evaluate the interocular consistency of biomechanical properties in normal, keratoconus (KC) and subclinical keratoconus (SKC) populations and explore the application of interocular asymmetry values in KC and SKC diagnoses. Methods: This was a retrospective chart-review study of 331 ametropic subjects (control group) and 207 KC patients (KC group, including 94 SKC patients). Interocular consistency was evaluated using the intraclass correlation coefficient (ICC). Interocular asymmetry was compared between the control and KC groups and its correlation with disease severity was analyzed. Three logistic models were constructed using biomechanical monocular parameters and interocular asymmetry values. The diagnostic ability of interocular asymmetry values and the newly established models were evaluated using receiver operating characteristic curves and calibration curves. Net reclassification improvement (NRI) and integrated discrimination improvement (IDI) were also estimated. Results: The interocular consistency significantly decreased and the interocular asymmetry values increased in KC patients compared with those in control individuals. In addition, the interocular asymmetry values increased with respect to the severity of KC. The binocular assisted biomechanical index (BaBI) had an area under the curve (AUC) of 0.998 (97.8% sensitivity, 99.2% specificity; cutoff 0.401), which was statistically higher than that of the Corvis biomechanical index [CBI; AUC = 0.935, p < 0.001 (DeLong's test), 85.6% sensitivity]. The optimized cutoff of 0.163 provided an AUC of 0.996 for SKC with 97.8% sensitivity, which was higher than that of CBI [AUC = 0.925, p < 0.001 (DeLong's test), 82.8% sensitivity]. Conclusion: Biomechanical interocular asymmetry values can reduce the false-negative rate and improve the performance in KC and SKC diagnoses.
Collapse
Affiliation(s)
- Ruilan Dong
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
- Peking University Institute of Laser Medicine, Beijing, China
| | - Yan Liu
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
- Peking University Institute of Laser Medicine, Beijing, China
| | - Yu Zhang
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
- Peking University Institute of Laser Medicine, Beijing, China
| | - Yueguo Chen
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
- Peking University Institute of Laser Medicine, Beijing, China
| |
Collapse
|
11
|
Karimi A, Razaghi R, Kelley MJ, Acott TS, Gong H. Biomechanics of the JCT and SC Inner Wall Endothelial Cells with Their Basement Membrane Using 3D Serial Block-Face Scanning Electron Microscopy. Bioengineering (Basel) 2023; 10:1038. [PMID: 37760140 PMCID: PMC10525990 DOI: 10.3390/bioengineering10091038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/01/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND More than ~70% of the aqueous humor exits the eye through the conventional aqueous outflow pathway that is comprised of the trabecular meshwork (TM), juxtacanalicular tissue (JCT), the inner wall endothelium of Schlemm's canal (SC). The flow resistance in the JCT and SC inner wall basement membrane is thought to play an important role in the regulation of the intraocular pressure (IOP) in the eye, but current imaging techniques do not provide enough information about the mechanics of these tissues or the aqueous humor in this area. METHODS A normal human eye was perfusion-fixed and a radial wedge of the TM tissue from a high-flow region was dissected. The tissues were then sliced and imaged using serial block-face scanning electron microscopy. Slices from these images were selected and segmented to create a 3D finite element model of the JCT and SC cells with an inner wall basement membrane. The aqueous humor was used to replace the intertrabecular spaces, pores, and giant vacuoles, and fluid-structure interaction was employed to couple the motion of the tissues with the aqueous humor. RESULTS Higher tensile stresses (0.8-kPa) and strains (25%) were observed in the basement membrane beneath giant vacuoles with open pores. The volumetric average wall shear stress was higher in SC than in JCT/SC. As the aqueous humor approached the inner wall basement membrane of SC, the velocity of the flow decreased, resulting in the formation of small eddies immediately after the flow left the inner wall. CONCLUSIONS Improved modeling of SC and JCT can enhance our understanding of outflow resistance and funneling. Serial block-face scanning electron microscopy with fluid-structure interaction can achieve this, and the observed micro-segmental flow patterns in ex vivo perfused human eyes suggest a hypothetical mechanism.
Collapse
Affiliation(s)
- Alireza Karimi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97208, USA; (R.R.); (M.J.K.); (T.S.A.)
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97208, USA
| | - Reza Razaghi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97208, USA; (R.R.); (M.J.K.); (T.S.A.)
| | - Mary J. Kelley
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97208, USA; (R.R.); (M.J.K.); (T.S.A.)
- Department Integrative Biosciences, School of Dentistry, Oregon Health & Science University, Portland, OR 97208, USA
| | - Ted S. Acott
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97208, USA; (R.R.); (M.J.K.); (T.S.A.)
- Department Chemical Physiology & Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR 97208, USA
| | - Haiyan Gong
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA 02118, USA;
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
12
|
Wang X, Luan F, Yue H, Song C, Wang S, Feng J, Zhang X, Yang W, Li Y, Wei W, Tao Y. Recent advances of smart materials for ocular drug delivery. Adv Drug Deliv Rev 2023; 200:115006. [PMID: 37451500 DOI: 10.1016/j.addr.2023.115006] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
Owing to the variety and complexity of ocular diseases and the natural ocular barriers, drug therapy for ocular diseases has significant limitations, such as poor drug targeting to the site of the disease, poor drug penetration, and short drug retention time in the vitreous body. With the development of biotechnology, biomedical materials have reached the "smart" stage. To date, despite their inability to overcome all the aforementioned drawbacks, a variety of smart materials have been widely tested to treat various ocular diseases. This review analyses the most recent developments in multiple smart materials (inorganic particles, polymeric particles, lipid-based particles, hydrogels, and devices) to treat common ocular diseases and discusses the future directions and perspectives regarding clinical translation issues. This review can help researchers rationally design more smart materials for specific ocular applications.
Collapse
Affiliation(s)
- Xiaojun Wang
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, PR China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Fuxiao Luan
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, PR China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Hua Yue
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Cui Song
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Shuang Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Jing Feng
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Xiao Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Wei Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yuxin Li
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, PR China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Yong Tao
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, PR China.
| |
Collapse
|
13
|
Ji F, Bansal M, Wang B, Hua Y, Islam MR, Matuschke F, Axer M, Sigal IA. A direct fiber approach to model sclera collagen architecture and biomechanics. Exp Eye Res 2023; 232:109510. [PMID: 37207867 PMCID: PMC10330555 DOI: 10.1016/j.exer.2023.109510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/16/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
Sclera collagen fiber microstructure and mechanical behavior are central to eye physiology and pathology. They are also complex, and are therefore often studied using modeling. Most models of sclera, however, have been built within a conventional continuum framework. In this framework, collagen fibers are incorporated as statistical distributions of fiber characteristics such as the orientation of a family of fibers. The conventional continuum approach, while proven successful for describing the macroscale behavior of the sclera, does not account for the sclera fibers are long, interwoven and interact with one another. Hence, by not considering these potentially crucial characteristics, the conventional approach has only a limited ability to capture and describe sclera structure and mechanics at smaller, fiber-level, scales. Recent advances in the tools for characterizing sclera microarchitecture and mechanics bring to the forefront the need to develop more advanced modeling techniques that can incorporate and take advantage of the newly available highly detailed information. Our goal was to create a new computational modeling approach that can represent the sclera fibrous microstructure more accurately than with the conventional continuum approach, while still capturing its macroscale behavior. In this manuscript we introduce the new modeling approach, that we call direct fiber modeling, in which the collagen architecture is built explicitly by long, continuous, interwoven fibers. The fibers are embedded in a continuum matrix representing the non-fibrous tissue components. We demonstrate the approach by doing direct fiber modeling of a rectangular patch of posterior sclera. The model integrated fiber orientations obtained by polarized light microscopy from coronal and sagittal cryosections of pig and sheep. The fibers were modeled using a Mooney-Rivlin model, and the matrix using a Neo-Hookean model. The fiber parameters were determined by inversely matching experimental equi-biaxial tensile data from the literature. After reconstruction, the direct fiber model orientations agreed well with the microscopy data both in the coronal plane (adjusted R2 = 0.8234) and in the sagittal plane (adjusted R2 = 0.8495) of the sclera. With the estimated fiber properties (C10 = 5746.9 MPa; C01 = -5002.6 MPa, matrix shear modulus 200 kPa), the model's stress-strain curves simultaneously fit the experimental data in radial and circumferential directions (adjusted R2's 0.9971 and 0.9508, respectively). The estimated fiber elastic modulus at 2.16% strain was 5.45 GPa, in reasonable agreement with the literature. During stretch, the model exhibited stresses and strains at sub-fiber level, with interactions among individual fibers which are not accounted for by the conventional continuum methods. Our results demonstrate that direct fiber models can simultaneously describe the macroscale mechanics and microarchitecture of the sclera, and therefore that the approach can provide unique insight into tissue behavior questions inaccessible with continuum approaches.
Collapse
Affiliation(s)
- Fengting Ji
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Manik Bansal
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bingrui Wang
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yi Hua
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mohammad R Islam
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Felix Matuschke
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Markus Axer
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Ian A Sigal
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
14
|
Lee PY, Schilpp H, Naylor N, Watkins SC, Yang B, Sigal IA. Instant polarized light microscopy pi (IPOLπ) for quantitative imaging of collagen architecture and dynamics in ocular tissues. OPTICS AND LASERS IN ENGINEERING 2023; 166:107594. [PMID: 37193214 PMCID: PMC10168649 DOI: 10.1016/j.optlaseng.2023.107594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Collagen architecture determines the biomechanical environment in the eye, and thus characterizing collagen fiber organization and biomechanics is essential to fully understand eye physiology and pathology. We recently introduced instant polarized light microscopy (IPOL) that encodes optically information about fiber orientation and retardance through a color snapshot. Although IPOL allows imaging collagen at the full acquisition speed of the camera, with excellent spatial and angular resolutions, a limitation is that the orientation-encoding color is cyclic every 90 degrees (π/2 radians). In consequence, two orthogonal fibers have the same color and therefore the same orientation when quantified by color-angle mapping. In this study, we demonstrate IPOLπ, a new variation of IPOL, in which the orientation-encoding color is cyclic every 180 degrees (π radians). Herein we present the fundamentals of IPOLπ, including a framework based on a Mueller-matrix formalism to characterize how fiber orientation and retardance determine the color. The improved quantitative capability of IPOLπ enables further study of essential biomechanical properties of collagen in ocular tissues, such as fiber anisotropy and crimp. We present a series of experimental calibrations and quantitative procedures to visualize and quantify ocular collagen orientation and microstructure in the optic nerve head, a region in the back of the eye. There are four important strengths of IPOLπ compared to IPOL. First, IPOLπ can distinguish the orientations of orthogonal collagen fibers via colors, whereas IPOL cannot. Second, IPOLπ requires a lower exposure time than IPOL, thus allowing faster imaging speed. Third, IPOLπ allows visualizing non-birefringent tissues and backgrounds from tissue absorption, whereas both appear dark in IPOL images. Fourth, IPOLπ is cheaper and less sensitive to imperfectly collimated light than IPOL. Altogether, the high spatial, angular, and temporal resolutions of IPOLπ enable a deeper insight into ocular biomechanics and eye physiology and pathology.
Collapse
Affiliation(s)
- Po-Yi Lee
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Hannah Schilpp
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Nathan Naylor
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Simon C. Watkins
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Bin Yang
- Department of Engineering, Rangos School of Health Sciences, Duquesne University, Pittsburgh, PA
| | - Ian A Sigal
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
15
|
Lee PY, Fryc G, Gnalian J, Hua Y, Waxman S, Zhong F, Yang B, Sigal IA. Direct measurements of collagen fiber recruitment in the posterior pole of the eye. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.07.539784. [PMID: 37215028 PMCID: PMC10197604 DOI: 10.1101/2023.05.07.539784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Collagen is the main load-bearing component of the peripapillary sclera (PPS) and lamina cribrosa (LC) in the eye. Whilst it has been shown that uncrimping and recruitment of the PPS and LC collagen fibers underlies the macro-scale nonlinear stiffening of both tissues with increased intraocular pressure (IOP), the uncrimping and recruitment as a function of local stretch have not been directly measured. This knowledge is crucial for the development of constitutive models associating micro and macro scales. In this project we measured local stretch-induced collagen fiber bundle uncrimping and recruitment curves of the PPS and LC. Thin coronal samples of PPS and LC of sheep eyes were mounted and stretched biaxially quasi-statically using a custom system. At each step, we imaged the PPS and LC with instant polarized light microscopy and quantified pixel-level (1.5 μm/pixel) collagen fiber orientations. We used digital image correlation to measure the local stretch and quantified collagen crimp by the circular standard deviation of fiber orientations, or waviness. Local stretch-recruitment curves of PPS and LC approximated sigmoid functions. PPS recruited more fibers than the LC at the low levels of stretch. At 10% stretch the curves crossed with 75% bundles recruited. The PPS had higher uncrimping rate and waviness remaining after recruitment than the LC: 0.9° vs. 0.6° and 3.1° vs. 2.7°. Altogether our findings support describing fiber recruitment of both PPS and LC with sigmoid curves, with the PPS recruiting faster and at lower stretch than the LC, consistent with a stiffer tissue.
Collapse
Affiliation(s)
- Po-Yi Lee
- Department of Ophthalmology, University of Pittsburgh School of Medicine
- Department of Bioengineering, Swanson School of Engineering
| | - Gosia Fryc
- Department of Chemistry, Dietrich School of Arts and Sciences University of Pittsburgh, Pittsburgh, PA
| | - John Gnalian
- Department of Ophthalmology, University of Pittsburgh School of Medicine
| | - Yi Hua
- Department of Ophthalmology, University of Pittsburgh School of Medicine
- Department of Biomedical Engineering, University of Mississippi, University, MS
- Department of Mechanical Engineering, University of Mississippi, University, MS
| | - Susannah Waxman
- Department of Ophthalmology, University of Pittsburgh School of Medicine
| | - Fuqiang Zhong
- Department of Ophthalmology, University of Pittsburgh School of Medicine
| | - Bin Yang
- Department of Engineering, Rangos School of Health Sciences, Duquesne University, Pittsburgh, PA
| | - Ian A Sigal
- Department of Ophthalmology, University of Pittsburgh School of Medicine
- Department of Bioengineering, Swanson School of Engineering
| |
Collapse
|
16
|
Foong TY, Hua Y, Amini R, Sigal IA. Who bears the load? IOP-induced collagen fiber recruitment over the corneoscleral shell. Exp Eye Res 2023; 230:109446. [PMID: 36935071 PMCID: PMC10133210 DOI: 10.1016/j.exer.2023.109446] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/25/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
Collagen is the main load-bearing component of cornea and sclera. When stretched, both of these tissues exhibit a behavior known as collagen fiber recruitment. In recruitment, as the tissues stretch the constitutive collagen fibers lose their natural waviness, progressively straightening. Recruited, straight, fibers bear substantially more mechanical load than non-recruited, wavy, fibers. As such, the process of recruitment underlies the well-established nonlinear macroscopic behavior of the corneoscleral shell. Recruitment has an interesting implication: when recruitment is incomplete, only a fraction of the collagen fibers is actually contributing to bear the loads, with the rest remaining "in reserve". In other words, at a given intraocular pressure (IOP), it is possible that not all the collagen fibers of the cornea and sclera are actually contributing to bear the loads. To the best of our knowledge, the fraction of corneoscleral shell fibers recruited and contributing to bear the load of IOP has not been reported. Our goal was to obtain regionally-resolved estimates of the fraction of corneoscleral collagen fibers recruited and in reserve. We developed a fiber-based microstructural constitutive model that could account for collagen fiber undulations or crimp via their tortuosity. We used experimentally-measured collagen fiber crimp tortuosity distributions in human eyes to derive region-specific nonlinear hyperelastic mechanical properties. We then built a three-dimensional axisymmetric model of the globe, assigning region-specific mechanical properties and regional anisotropy. The model was used to simulate the IOP-induced shell deformation. The model-predicted tissue stretch was then used to quantify collagen recruitment within each shell region. The calculations showed that, at low IOPs, collagen fibers in the posterior equator were recruited the fastest, such that at a physiologic IOP of 15 mmHg, over 90% of fibers were recruited, compared with only a third in the cornea and the peripapillary sclera. The differences in recruitment between regions, in turn, mean that at a physiologic IOP the posterior equator had a fiber reserve of only 10%, whereas the cornea and peripapillary sclera had two thirds. At an elevated IOP of 50 mmHg, collagen fibers in the limbus and the anterior/posterior equator were almost fully recruited, compared with 90% in the cornea and the posterior sclera, and 70% in the peripapillary sclera and the equator. That even at such an elevated IOP not all the fibers were recruited suggests that there are likely other conditions that challenge the corneoscleral tissues even more than IOP. The fraction of fibers recruited may have other potential implications. For example, fibers that are not bearing loads may be more susceptible to enzymatic digestion or remodeling. Similarly, it may be possible to control tissue stiffness through the fraction of recruited fibers without the need to add or remove collagen.
Collapse
Affiliation(s)
- Tian Yong Foong
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yi Hua
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, United States; Department of Biomedical Engineering, University of Mississippi, MS, United States; Department of Mechanical Engineering, University of Mississippi, MS, United States
| | - Rouzbeh Amini
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, United States; Department of Bioengineering, Northeastern University, Boston, MA, United States
| | - Ian A Sigal
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh Medical Center and University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
17
|
Jan NJ, Lee PY, Wallace J, Iasella M, Gogola A, Wang B, Sigal IA. Stretch-Induced Uncrimping of Equatorial Sclera Collagen Bundles. J Biomech Eng 2023; 145:054503. [PMID: 36459150 PMCID: PMC9791674 DOI: 10.1115/1.4056354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
Stretch-induced collagen uncrimping underlies the nonlinear mechanical behavior of the sclera according to what is often called the process of recruitment. We recently reported experimental measurements of sclera collagen crimp and pressure-induced uncrimping. Our studies, however, were cross-sectional, providing statistical descriptions of crimp with no information on the effects of stretch on specific collagen bundles. Data on bundle-specific uncrimping is necessary to better understand the effects of macroscale input on the collagen microscale and tissue failure. Our goal in this project was to measure bundle-specific stretch-induced collagen uncrimping of sclera. Three goat eyes were cryosectioned sagittally (30 μm). Samples of equatorial sclera were isolated, mounted to a custom uni-axial stretcher and imaged with polarized light microscopy at various levels of clamp-to-clamp stretch until failure. At each stretch level, local strain was measured using image tracking techniques. The level of collagen crimping was determined from the bundle waviness, defined as the circular standard deviation of fiber orientation along a bundle. Eye-specific recruitment curves were then computed using eye-specific waviness at maximum stretch before sample failure to define fibers as recruited. Nonlinear mixed effect models were used to determine the associations of waviness to local strain and recruitment to clamp-to-clamp stretch. Waviness decreased exponentially with local strain (p < 0.001), whereas bundle recruitment followed a sigmoidal curve with clamp-to-clamp stretch (p < 0.001). Individual bundle responses to stretch varied substantially, but recruitment curves were similar across sections and eyes. In conclusion, uni-axial stretch caused measurable bundle-specific uncrimping, with the sigmoidal recruitment pattern characteristic of fiber-reinforced soft tissues.
Collapse
Affiliation(s)
- Ning-Jiun Jan
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15213
| | - Po-Yi Lee
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15213
| | - Jacob Wallace
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15213
| | - Michael Iasella
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15213
| | - Alexandra Gogola
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Bingrui Wang
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Ian A. Sigal
- Department of Ophthalmology, Laboratory of Ocular Biomechanics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15213
| |
Collapse
|
18
|
Wang N, Zhang Y, Wang W, Ye Z, Chen H, Hu G, Ouyang D. How can machine learning and multiscale modeling benefit ocular drug development? Adv Drug Deliv Rev 2023; 196:114772. [PMID: 36906232 DOI: 10.1016/j.addr.2023.114772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/06/2023] [Accepted: 03/05/2023] [Indexed: 03/12/2023]
Abstract
The eyes possess sophisticated physiological structures, diverse disease targets, limited drug delivery space, distinctive barriers, and complicated biomechanical processes, requiring a more in-depth understanding of the interactions between drug delivery systems and biological systems for ocular formulation development. However, the tiny size of the eyes makes sampling difficult and invasive studies costly and ethically constrained. Developing ocular formulations following conventional trial-and-error formulation and manufacturing process screening procedures is inefficient. Along with the popularity of computational pharmaceutics, non-invasive in silico modeling & simulation offer new opportunities for the paradigm shift of ocular formulation development. The current work first systematically reviews the theoretical underpinnings, advanced applications, and unique advantages of data-driven machine learning and multiscale simulation approaches represented by molecular simulation, mathematical modeling, and pharmacokinetic (PK)/pharmacodynamic (PD) modeling for ocular drug development. Following this, a new computer-driven framework for rational pharmaceutical formulation design is proposed, inspired by the potential of in silico explorations in understanding drug delivery details and facilitating drug formulation design. Lastly, to promote the paradigm shift, integrated in silico methodologies were highlighted, and discussions on data challenges, model practicality, personalized modeling, regulatory science, interdisciplinary collaboration, and talent training were conducted in detail with a view to achieving more efficient objective-oriented pharmaceutical formulation design.
Collapse
Affiliation(s)
- Nannan Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China
| | - Yunsen Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China
| | - Wei Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China
| | - Zhuyifan Ye
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China
| | - Hongyu Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China; Faculty of Science and Technology (FST), University of Macau, Macau, China
| | - Guanghui Hu
- Faculty of Science and Technology (FST), University of Macau, Macau, China
| | - Defang Ouyang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China; Department of Public Health and Medicinal Administration, Faculty of Health Sciences (FHS), University of Macau, Macau, China.
| |
Collapse
|
19
|
Lee PY, Schilpp H, Naylor N, Watkins SC, Yang B, Sigal IA. Instant polarized light microscopy pi (IPOLπ) for quantitative imaging of collagen architecture and dynamics in ocular tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.29.526111. [PMID: 36778384 PMCID: PMC9915523 DOI: 10.1101/2023.01.29.526111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Collagen architecture determines the biomechanical environment in the eye, and thus characterizing collagen fiber organization and biomechanics is essential to fully understand eye physiology and pathology. We recently introduced instant polarized light microscopy (IPOL) that encodes optically information about fiber orientation and retardance through a color snapshot. Although IPOL allows imaging collagen at the full acquisition speed of the camera, with excellent spatial and angular resolutions, a limitation is that the orientation-encoding color is cyclic every 90 degrees (π/2 radians). In consequence, two orthogonal fibers have the same color and therefore the same orientation when quantified by color-angle mapping. In this study, we demonstrate IPOLπ, a new variation of IPOL, in which the orientation-encoding color is cyclic every 180 degrees (π radians). Herein we present the fundamentals of IPOLπ, including a framework based on a Mueller-matrix formalism to characterize how fiber orientation and retardance determine the color. The improved quantitative capability of IPOLπ enables further study of essential biomechanical properties of collagen in ocular tissues, such as fiber anisotropy and crimp. We present a series of experimental calibrations and quantitative procedures to visualize and quantify ocular collagen orientation and microstructure in the optic nerve head, a region in the back of the eye. There are four important strengths of IPOLπ compared to IPOL. First, IPOLπ can distinguish the orientations of orthogonal collagen fibers via colors, whereas IPOL cannot. Second, IPOLπ requires a lower exposure time than IPOL, thus allowing faster imaging speed. Third, IPOLπ allows visualizing non-birefringent tissues and backgrounds from tissue absorption, whereas both appear dark in IPOL images. Fourth, IPOLπ is cheaper and less sensitive to imperfectly collimated light than IPOL. Altogether, the high spatial, angular, and temporal resolutions of IPOLπ enable a deeper insight into ocular biomechanics and eye physiology and pathology.
Collapse
Affiliation(s)
- Po-Yi Lee
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Hannah Schilpp
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Nathan Naylor
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Simon C. Watkins
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Bin Yang
- Department of Engineering, Rangos School of Health Sciences, Duquesne University, Pittsburgh, PA
| | - Ian A Sigal
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
20
|
Sayah DN, Lesk MR. Ocular Rigidity and Current Therapy. Curr Eye Res 2023; 48:105-113. [PMID: 35763027 DOI: 10.1080/02713683.2022.2093380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Purpose: Ocular rigidity (OR) is an important biomechanical parameter of the eye accounting for the material and geometrical properties of the corneoscleral shell.Methods: This study used a literature search to review the role of ocular rigidity and the application of potential therapies targeting this parameter in glaucoma and myopia.Conclusion: Biomechanical modeling and improved understanding of the biochemistry, and molecular arrangement of sclera and its constituents have yielded important insights. Recent developments, including that of a non-invasive and direct OR measurement method and improved ocular imaging techniques are helping to elucidate the role of OR in healthy and diseased eyes by facilitating large scale and longitudinal clinical studies. Improved understanding of OR at the initial stages of disease processes and its alterations with disease progression will undoubtedly propel research in the field. Furthermore, a better understanding of the determinants of OR is helping to refine novel therapeutic approaches which target and alter the biomechanical properties of the sclera in sight-threatening conditions such as glaucoma and myopia.
Collapse
Affiliation(s)
- Diane N Sayah
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Canada.,School of Optometry, Université de Montréal, Montreal, Canada
| | - Mark R Lesk
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Canada.,Department of Ophthalmology, Faculty of Medicine, Université de Montréal, Montreal, Canada.,Centre Universitaire d'ophtalmologie de l'Université de Montréal de l'Hôpital Maisonneuve-Rosemont, CIUSSS-E, Montreal, Canada
| |
Collapse
|
21
|
Heidari H, Momeni-Moghaddam H, Jadidi K, Pirhadi S, Moshirfar M. Changes in Stress-Strain Index and Corneal Biomechanics in Granular Corneal Dystrophy. J Clin Med 2022; 11:jcm11216571. [PMID: 36362797 PMCID: PMC9657534 DOI: 10.3390/jcm11216571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Background: The aim of this study was to assess stress-strain index (SSI) and corneal biomechanical parameters in eyes with granular corneal dystrophy (GCD). Methods: This case-control study included 12 eyes of 12 patients with GCD (mean age 45.2 ± 18.7 years) and 20 eyes of 20 healthy individuals (mean age 54.4 ± 3.8 years). In addition to SSI, dynamic corneal response (DCR) parameters were assessed at the first and second applanation, including length (AL1, AL2), velocity (AV1, AV2), time (AT1, AT2), and deformation amplitude (DA A1, DA A2), and at the highest concavity (HC) phase, including DA, peak distance (PD), radius (HCR), and DA ratio (DAR 1 and 2 mm), by Corvis ST. Central corneal thickness (CCT) and biomechanically corrected intraocular pressure (bIOP) were considered covariates in comparing DCR parameters between the two groups. Results: SSI was statistically significantly lower in eyes with GCD than in normal eyes (p = 0.04). The corneal velocity towards the first applanation was 0.02 m/s faster in the GCD eyes AV1 (0.15 ± 0.02 vs. 0.13 ± 0.02 m/s, p < 0.001) and IR (7.48 ± 1.01 vs. 6.80 ± 1.22 mm, p = 0.003) parameters were significantly higher in the GDC group, while AT1 (7.33 ± 0.66 vs. 7.47 ± 0.36 ms, p = 0.002) and HCR (7.42 ± 0.76 vs. 8.20 ± 1.08 mm, p = 0.014) were significantly lower in the normal group. Conclusions: GCD led to a change in biomechanical properties of the cornea. SSI refers to fewer stiff corneas in GDC than normal.
Collapse
Affiliation(s)
- Hamidreza Heidari
- Rehabilitation Research Center, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Hamed Momeni-Moghaddam
- Rehabilitation Sciences Research Center, Zahedan University of Medical Sciences, Zahedan 43463-98167, Iran
- Correspondence: (H.M.-M.); (M.M.)
| | - Khosrow Jadidi
- Vision Health Research Center, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Shiva Pirhadi
- Vision Health Research Center, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran 14496-14535, Iran
| | - Majid Moshirfar
- Hoopes Vision Research Center, Hoopes Vision, 11820 S. State St. #200, Draper, UT 84020, USA
- John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
- Utah Lions Eye Bank, Murray, UT 84107, USA
- Correspondence: (H.M.-M.); (M.M.)
| |
Collapse
|
22
|
Garkal A, Bangar P, Rajput A, Pingale P, Dhas N, Sami A, Mathur K, Joshi S, Dhuri S, Parikh D, Mutalik S, Mehta T. Long-acting formulation strategies for protein and peptide delivery in the treatment of PSED. J Control Release 2022; 350:538-568. [PMID: 36030993 DOI: 10.1016/j.jconrel.2022.08.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 12/17/2022]
Abstract
The invigoration of protein and peptides in serious eye disease includes age-related macular degeneration, choroidal neovascularization, retinal neovascularization, and diabetic retinopathy. The transportation of macromolecules like aptamers, recombinant proteins, and monoclonal antibodies to the posterior segment of the eye is challenging due to their high molecular weight, rapid degradation, and low solubility. Moreover, it requires frequent administration for prolonged therapy. The long-acting novel formulation strategies are helpful to overcome these issues and provide superior therapy. It avoids frequent administration, improves stability, high retention time, and avoids burst release. This review briefly enlightens posterior segments of eye diseases with their diagnosis techniques and treatments. This article mainly focuses on recent advanced approaches like intravitreal implants and injectables, electrospun injectables, 3D printed drug-loaded implants, nanostructure thin-film polymer devices encapsulated cell technology-based intravitreal implants, injectable and depots, microneedles, PDS with ranibizumab, polymer nanoparticles, inorganic nanoparticles, hydrogels and microparticles for delivering macromolecules in the eye for intended therapy. Furthermore, novel techniques like aptamer, small Interference RNA, and stem cell therapy were also discussed. It is predicted that these systems will make revolutionary changes in treating posterior segment eye diseases in future.
Collapse
Affiliation(s)
- Atul Garkal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Priyanka Bangar
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Amarjitsing Rajput
- Department of Pharmaceutics, Bharti Vidyapeeth Deemed University, Poona College of Pharmacy, Pune, Maharashtra 411038, India
| | - Prashant Pingale
- Department of Pharmaceutics, GES's Sir Dr. M.S. Gosavi College of Pharmaceutical Education and Research, Nashik, Maharashtra 422005, India
| | - Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Anam Sami
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Khushboo Mathur
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Shubham Joshi
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Sonika Dhuri
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Dhaivat Parikh
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Tejal Mehta
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India.
| |
Collapse
|
23
|
Graf T, Kancerevycius G, Jonušauskas L, Eberle P. Rational Design of Microfluidic Glaucoma Stent. MICROMACHINES 2022; 13:mi13060978. [PMID: 35744591 PMCID: PMC9229318 DOI: 10.3390/mi13060978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 02/01/2023]
Abstract
Glaucoma is a common, irreparable eye disease associated with high intraocular pressure. One treatment option is implantation of a stent to lower the intraocular pressure. A systematic approach to develop a microchannel stent meshwork that drains aqueous humor from the anterior chamber of the eye into the subconjunctival space is presented. The stent has a large number of outlets within its mesh structure that open into the subconjunctiva. The development approach includes a flow resistance model of the stent. Local adaption of the stent’s tubular dimensions allows for adjustment of the flow resistance. In this way, an evenly distributed outflow into the subconjunctiva is achieved. We anticipate that microblebs will form at the stent outlets. Their size is crucial for drainage and control of intraocular pressure. An analytical model for bleb drainage is developed based on the porous properties of the subconjunctival tissue. Both models—the stent flow resistance model and the bleb drainage model—are verified by numerical simulation. The models and numerical simulation are used to predict intraocular pressure after surgery. They allow for a systematic and personalized design of microchannel stents. Stents designed in this way can stabilize the intraocular pressure between an upper and lower limit.
Collapse
Affiliation(s)
- Thomas Graf
- Institute of Electrical Engineering, Lucerne University of Applied Sciences, CH-6048 Horw, Switzerland;
| | - Gitanas Kancerevycius
- Valsigna GmbH, Via Luganetto 4, CH-6962 Lugano-Viganello, Switzerland; (G.K.); (L.J.)
| | - Linas Jonušauskas
- Valsigna GmbH, Via Luganetto 4, CH-6962 Lugano-Viganello, Switzerland; (G.K.); (L.J.)
| | - Patric Eberle
- Institute of Electrical Engineering, Lucerne University of Applied Sciences, CH-6048 Horw, Switzerland;
- Correspondence: ; Tel.: +41-41-349-35-04
| |
Collapse
|
24
|
RAJARAJESWARI P, MOORTHY JAYASHREE, BÉG OANWAR. SIMULATION OF DIABETIC RETINOPATHY UTILIZING CONVOLUTIONAL NEURAL NETWORKS. J MECH MED BIOL 2022. [DOI: 10.1142/s0219519422500117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Currently, diabetic retinopathy is still screened as a three-stage classification, which is a tedious strategy and along these lines of this paper focuses on developing an improved methodology. In this methodology, we taught a convolutional neural network form on a major dataset, which includes around 45 depictions to do mathematical analysis and characterization. In this paper, DR is constructed, which takes the enter parameters as the HRF fundus photo of the eye. Three classes of patients are considered — healthy patients, diabetic’s retinopathy patients and glaucoma patients. An informed convolutional neural system without a fully connected model will also separate the highlights of the fundus pixel with the help of the enactment abilities like ReLu and softmax and arrangement. The yield obtained from the convolutional neural network (CNN) model and patient data achieves an institutionalized 97% accuracy. Therefore, the resulting methodology is having a great potential benefiting ophthalmic specialists in clinical medicine in terms of diagnosing earlier the symptoms of DR and mitigating its effects.
Collapse
Affiliation(s)
- P. RAJARAJESWARI
- Department of Computer Science and Engineering, Sreenivasa Institute of Technology and Management Studies, Chittoor, Andhra Pradesh, India
| | - JAYASHREE MOORTHY
- Department of Computer Science and Engineering, Sreenivasa Institute of Technology and Management Studies, Chittoor, Andhra Pradesh, India
| | - O. ANWAR BÉG
- Professor of Engineering Science & Director Multi Physical Engineering Sciences Group (MPESG), School of Science, Engineering and Environment (SEE), University of Salford, Manchester, M5 4WT, UK
| |
Collapse
|
25
|
Effect of SCUBA Diving on Ophthalmic Parameters. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58030408. [PMID: 35334584 PMCID: PMC8949343 DOI: 10.3390/medicina58030408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 11/17/2022]
Abstract
Background and Objective: Several cases of central serous chorioretinopathy (CSC) in divers have been reported in our medical retina center over the past few years. This study was designed to evaluate possible changes induced by SCUBA diving in ophthalmic parameters and especially subfoveal choroidal thickness (SFCT), since the choroid seems to play a crucial role in physiopathology of CSC. Materials and Methods: Intraocular pressure (IOP), SFCT, pachymetry, flow-mediated dilation (FMD), blood pressure, and heart rate were measured in 15 healthy volunteer divers before diving, 30 and 60 min after a standard deep dive of 25 m depth for 25 min in a dedicated diving pool (NEMO 33). Results: SFCT reduces significantly to 96.63 ± 13.89% of pre-dive values (p = 0.016) 30 min after diving. It recovers after 60 min reaching control values. IOP decreases to 88.05 ± 10.04% of pre-dive value at 30 min, then increases to 91.42 ± 10.35% of its pre-dive value (both p < 0.0001). Pachymetry shows a slight variation, but is significantly increased to 101.63 ± 1.01% (p = 0.0159) of the pre-dive value, and returns to control level after 60 min. FMD pre-dive was 107 ± 6.7% (p < 0.0001), but post-dive showed a diminished increase to 103 ± 6.5% (p = 0.0132). The pre-post difference was significant (p = 0.03). Conclusion: Endothelial dysfunction leading to arterial stiffness after diving may explain the reduced SFCT observed, but SCUBA diving seems to have miscellaneous consequences on eye parameters. Despite this clear influence on SFCT, no clear relationship between CSC and SCUBA diving can be drawn.
Collapse
|
26
|
Cai JC, Chen YL, Cao YH, Babenko A, Chen X. Numerical study of aqueous humor flow and iris deformation with pupillary block and the efficacy of laser peripheral iridotomy. Clin Biomech (Bristol, Avon) 2022; 92:105579. [PMID: 35085976 DOI: 10.1016/j.clinbiomech.2022.105579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/29/2021] [Accepted: 01/13/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Disclosing the mechanism of primary angle closure glaucoma with pupillary block is important to the diagnosis as well as treatments, such as the laser peripheral iridotomy. Comparing with abundant clinical researches, there have been fewer quantitative studies of the aqueous humor flows with synechia iris configurations, and the efficacy of laser peripheral iridotomy in treating glaucoma. METHODS Based on the mathematical models of aqueous humor flow and iris deformation, the flow fields were simulated by computational fluid dynamics with normal and synechia iris configurations (iris-lens gap of 30, 5 and 2 μm, respectively), and through one-way fluid-structure coupling technique the deformations of the iris under the flow field pressure were calculated by finite element analysis. The efficacy of glaucoma treatment with different orifice sizes was also investigated. FINDINGS Results show that the pressure difference between anterior and posterior chambers and iris deformation increase dramatically with the iris-lens gap distance less than 5 μm, and when further decreasing this gap may lead the iris touch the cornea causing angle closure glaucoma with noticeable iris bombé. Laser peripheral iridotomy simulation results show that iridotomy size of 0.2 mm can effectively decrease the pressure difference across the iris and relieve iris bombé. INTERPRETATION This is a biomechanical numerical study, and the results are reasonable compare to those of published works. It may shed additional light on the diagnosis and treatment of angle closure glaucoma with pupillary block.
Collapse
Affiliation(s)
- Jian-Cheng Cai
- College of Engineering, Zhejiang Normal University, Jinhua 321004, China.
| | - Yan-Ling Chen
- Department of Ophthalmology, Jinhua People's Hospital, Jinhua 321000, China
| | - Yue-Hong Cao
- Department of Ophthalmology, Jinhua People's Hospital, Jinhua 321000, China.
| | - Andrii Babenko
- College of Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Xi Chen
- College of Mathematics, Physics and Information Science and Engineering, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
27
|
Lee PY, Yang B, Hua Y, Waxman S, Zhu Z, Ji F, Sigal IA. Real-time imaging of optic nerve head collagen microstructure and biomechanics using instant polarized light microscopy. Exp Eye Res 2022; 217:108967. [PMID: 35114213 PMCID: PMC8957577 DOI: 10.1016/j.exer.2022.108967] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/04/2021] [Accepted: 01/25/2022] [Indexed: 01/09/2023]
Abstract
Current tools lack the temporal or spatial resolution necessary to image many important aspects of the architecture and dynamics of the optic nerve head (ONH). We evaluated the potential of instant polarized light microscopy (IPOL) to overcome these limitations by leveraging the ability to capture collagen fiber orientation and density in a single image. Coronal sections through the ONH of fresh normal sheep eyes were imaged using IPOL while they were stretched using custom uniaxial or biaxial micro-stretch devices. IPOL allows identifying ONH collagen architectural details, such as fiber interweaving and crimp, and has high temporal resolution, limited only by the frame rate of the camera. Local collagen fiber orientations and deformations were quantified using color analysis and image tracking techniques. We quantified stretch-induced collagen uncrimping of lamina cribrosa (LC) and peripapillary sclera (PPS), and changes in LC pore size (area) and shape (convexity and aspect ratio). The simultaneous high spatial and temporal resolutions of IPOL revealed complex ONH biomechanics: i) stretch-induced local deformation of the PPS was nonlinear and nonaffine. ii) under load the crimped collagen fibers in the PPS and LC straightened, without torsion and with only small rotations. iii) stretch-induced LC pore deformation was anisotropic and heterogeneous among pores. Overall, with stretch the pores were became larger, more convex, and more circular. We have demonstrated that IPOL reveals details of collagen morphology and mechanics under dynamic loading previously out of reach. IPOL can detect stretch-induced collagen uncrimping and other elements of the tissue nonlinear mechanical behavior. IPOL showed changes in pore morphology and collagen architecture that will help improve understanding of how LC tissue responds to load.
Collapse
Affiliation(s)
- Po-Yi Lee
- Department of Bioengineering, Swanson School of Engineering, United States; Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Bin Yang
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Department of Engineering, Rangos School of Health Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Yi Hua
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Susannah Waxman
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ziyi Zhu
- Department of Bioengineering, Swanson School of Engineering, United States; Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Fengting Ji
- Department of Bioengineering, Swanson School of Engineering, United States; Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ian A Sigal
- Department of Bioengineering, Swanson School of Engineering, United States; Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
28
|
Ocular Fluid Mechanics and Drug Delivery: A Review of Mathematical and Computational Models. Pharm Res 2021; 38:2003-2033. [PMID: 34936067 DOI: 10.1007/s11095-021-03141-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/10/2021] [Indexed: 10/19/2022]
Abstract
The human eye is a complex biomechanical structure with a range of biomechanical processes involved in various physiological as well as pathological conditions. Fluid flow inside different domains of the eye is one of the most significant biomechanical processes that tend to perform a wide variety of functions and when combined with other biophysical processes play a crucial role in ocular drug delivery. However, it is quite difficult to comprehend the effect of these processes on drug transport and associated treatment experimentally because of ethical constraints and economic feasibility. Computational modeling on the other hand is an excellent means to understand the associated complexity between these aforementioned processes and drug delivery. A wide range of computational models specific to different types of fluids present in different domains of the eye as well as varying drug delivery modes has been established to understand the fluid flow behavior and drug transport phenomenon in an insilico manner. These computational models have been used as a non-invasive tool to aid ophthalmologists in identifying the challenges associated with a particular drug delivery mode while treating particular eye diseases and to advance the understanding of the biomechanical behavior of the eye. In this regard, the author attempts to summarize the existing computational and mathematical approaches proposed in the last two decades for understanding the fluid mechanics and drug transport associated with different domains of the eye, together with their application to modify the existing treatment processes.
Collapse
|
29
|
Agujetas R, Kudiesh B, Fernández-Vigo JI, García-Feijóo J, Montanero JM. Analytical model for managing hypotony after implantation surgery of a glaucoma drainage device. Biomech Model Mechanobiol 2021; 20:2061-2070. [PMID: 34302202 PMCID: PMC8595190 DOI: 10.1007/s10237-021-01494-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 07/09/2021] [Indexed: 11/28/2022]
Abstract
The main aim of glaucoma treatment is to reduce the intraocular pressure (IOP). One of the most common surgical treatments of glaucoma is the implantation of a glaucoma drainage device to drain the aqueous humor from the anterior chamber to a filtration bleb, where the aqueous humor is absorbed. In some cases, the excess of drainage causes ocular hypotony, which constitutes a sight-threatening complication. To prevent hypotony after this intervention, surgeons frequently introduce a suture into the device tube, which increases the hydraulic resistance of the tube and, therefore, the IOP. This study aims to provide an analytical model to correct hypotony following implantation surgery of a glaucoma drainage device, which may help glaucoma surgeons decide on hypotony treatment. The results indicate that the IOP after implanting a cylindrical tube around 300 μm in diameter is essentially the same as that built up in the filtering bleb and can hardly be controlled by introducing a straight suture unless the suture diameter is slightly lower than that of the tube. On the contrary, when the tube diameter is smaller than, for example, 100 μm, significant reductions of the IOP can be obtained by introducing a thin suture into the tube.
Collapse
Affiliation(s)
- R Agujetas
- Depto. de Ingeniería Mecánica, Energética y de los Materiales and Instituto de Computación Científica Avanzada (ICCAEx), Universidad de Extremadura, E-06006, Badajoz, Spain
| | - B Kudiesh
- Department of Ophthalmology, Puerta de Hierro University Hospital, Majadahonda, Madrid, Spain
- International Center of Advanced Ophthalmology, Madrid, Spain
| | - J I Fernández-Vigo
- Department of Ophthalmology, San Carlos Clinical Hospital, Health Research Institute (IdISSC), Universidad Complutense. OFTARED, Madrid, Spain
- International Center of Advanced Ophthalmology, Madrid, Spain
| | - Julián García-Feijóo
- Department of Ophthalmology, San Carlos Clinical Hospital, Health Research Institute (IdISSC), Universidad Complutense. OFTARED, Madrid, Spain
- International Center of Advanced Ophthalmology, Madrid, Spain
| | - J M Montanero
- Depto. de Ingeniería Mecánica, Energética y de los Materiales and Instituto de Computación Científica Avanzada (ICCAEx), Universidad de Extremadura, E-06006, Badajoz, Spain.
| |
Collapse
|
30
|
Formisano N, van der Putten C, Grant R, Sahin G, Truckenmüller RK, Bouten CVC, Kurniawan NA, Giselbrecht S. Mechanical Properties of Bioengineered Corneal Stroma. Adv Healthc Mater 2021; 10:e2100972. [PMID: 34369098 PMCID: PMC11468718 DOI: 10.1002/adhm.202100972] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/15/2021] [Indexed: 12/26/2022]
Abstract
For the majority of patients with severe corneal injury or disease, corneal transplantation is the only suitable treatment option. Unfortunately, the demand for donor corneas greatly exceeds the availability. To overcome shortage issues, a myriad of bioengineered constructs have been developed as mimetics of the corneal stroma over the last few decades. Despite the sheer number of bioengineered stromas developed , these implants fail clinical trials exhibiting poor tissue integration and adverse effects in vivo. Such shortcomings can partially be ascribed to poor biomechanical performance. In this review, existing approaches for bioengineering corneal stromal constructs and their mechanical properties are described. The information collected in this review can be used to critically analyze the biomechanical properties of future stromal constructs, which are often overlooked, but can determine the failure or success of corresponding implants.
Collapse
Affiliation(s)
- Nello Formisano
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Cas van der Putten
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhoven5612 APThe Netherlands
| | - Rhiannon Grant
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Gozde Sahin
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Roman K. Truckenmüller
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Carlijn V. C. Bouten
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhoven5612 APThe Netherlands
| | - Nicholas A. Kurniawan
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhoven5612 APThe Netherlands
| | - Stefan Giselbrecht
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| |
Collapse
|
31
|
Kenia VP, Kenia RV, Pirdankar OH. Short term changes in corneal stress-strain index and other corneal biomechanical parameters post-laser in situ keratomileusis. Indian J Ophthalmol 2021; 69:2650-2656. [PMID: 34571607 PMCID: PMC8597531 DOI: 10.4103/ijo.ijo_3365_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Purpose: To report the short-term changes in a corneal stress-strain index (SSI) and other corneal biomechanical parameters post-laser in situ keratomileusis (LASIK) surgery. Methods: A retrospective study was conducted at a tertiary eye care center wherein patients who had undergone LASIK (microkeratome blade and femtosecond bladeless LASIK) between July and December 2019 were enrolled. Patients of age group 20–40 years, best-corrected visual acuity of 20/20, intraocular pressure (IOP) <22 mmHg, pre-LASIK pachymetry >500 microns, and corneal astigmatism ≤3.00 D were included. Subjects with a prior history of refractive surgery, any other ocular or systemic disease, poor-quality scans, intraoperative complications, and missing data were excluded. Corneal biomechanical properties including SSI were analyzed using Corvis ST and compared using the Paired T-test for each group separately at pre-LASIK, and 1-month post-operatively. Results: Overall, 202 eyes were reviewed, and 79 eyes fulfilled the inclusion criteria. Forty-three and 36 eyes had undergone Microkeratome Blade LASIK (Group I) and Femto LASIK (Group II), respectively. Overall, 29 and 26 corneal biomechanical parameters out of 33 changed significantly post-Microkeratome Blade LASIK and Femto LASIK, respectively. Statistically significant changes were noted in all the parameters at A1, maximum and Vinciguerra screening parameters (P < 0.001), however, no changes were noted in SSI in both the groups when compared with the pre-surgery data. Conclusion: Though the reduction in SSI was not statistically significant, other biomechanical parameters showed significant biomechanical changes pre- and post-LASIK surgeries in both the groups. However, a long-term study with a larger sample size would be required to understand the changes and stability in SSI post-refractive surgery.
Collapse
|
32
|
Baksam V, Nimmakayala S, Devineni SR, Muchumarri RMR, Shandilya S, Kumar P. Isolation and characterization of thermal degradation impurity in brimonidine tartrate by HPLC, LC-MS/MS, and 2DNMR. J Pharm Biomed Anal 2021; 205:114297. [PMID: 34391137 DOI: 10.1016/j.jpba.2021.114297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/22/2021] [Accepted: 07/30/2021] [Indexed: 11/29/2022]
Abstract
One potential unknown impurity was detected during the analysis of stability batches of brimonidine tartrate (BMT) in the level ranging from 0.03 % to 0.06 % by high-performance liquid chromatography (HPLC). Based on the liquid chromatography-mass spectrophotometry (LC-MS) analysis, the unknown impurity structure was presumed as 3,6,11,13,16-pentaazatetracyclo [8.6.0.0²,⁷.0¹²,¹⁶] hexadeca-1,3,5,7,9,12-hexaene. The proposed structure was elucidated, after its isolation using preparative liquid chromatography from the impurity enriched reaction crude sample, using analytical applications such as 1D NMR (1H, 13C and DEPT-135), 2D NMR (HMBC and COSY), high-resolution mass spectrometry (HRMS) and infrared spectroscopy (IR). The unknown impurity was prepared from brimonidine by following Ullman coupling reaction in the presence of CuBr2 in gram scale with optimum purity to use further in analytical developments. The identification, structural elucidation and synthesis of unknown degradation impurity such as BMT-cyclized impurity, and HPLC method validation were reported for the first time in this paper.
Collapse
Affiliation(s)
- Vijayakumar Baksam
- Micro Labs Ltd, API R&D Centre, Plot No. 43-45, 4(th) Phase, KIADB, JB Link Road, Bengaluru, Karnataka, 560105, India; JNTUA College of Engineering, Department of Chemistry, Kalikiri, Chittoor, 576213, Andhra Pradesh, India.
| | - Saritha Nimmakayala
- JNTUA College of Engineering, Department of Chemistry, Kalikiri, Chittoor, 576213, Andhra Pradesh, India
| | - Subba Rao Devineni
- Micro Labs Ltd, API R&D Centre, Plot No. 43-45, 4(th) Phase, KIADB, JB Link Road, Bengaluru, Karnataka, 560105, India
| | - Rama Mohan R Muchumarri
- Micro Labs Ltd, API R&D Centre, Plot No. 43-45, 4(th) Phase, KIADB, JB Link Road, Bengaluru, Karnataka, 560105, India
| | - Sanjeev Shandilya
- Micro Labs Ltd, API R&D Centre, Plot No. 43-45, 4(th) Phase, KIADB, JB Link Road, Bengaluru, Karnataka, 560105, India
| | - Pramod Kumar
- Micro Labs Ltd, API R&D Centre, Plot No. 43-45, 4(th) Phase, KIADB, JB Link Road, Bengaluru, Karnataka, 560105, India
| |
Collapse
|
33
|
Khosravimelal S, Mobaraki M, Eftekhari S, Ahearne M, Seifalian AM, Gholipourmalekabadi M. Hydrogels as Emerging Materials for Cornea Wound Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006335. [PMID: 33887108 DOI: 10.1002/smll.202006335] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Hydrogel biomaterials have many favorable characteristics including tuneable mechanical behavior, cytocompatibility, optical properties suitable for regeneration and restoration of the damaged cornea tissue. The cornea is a tissue susceptible to various injuries and traumas with a complicated healing cascade, in which conserving its transparency and integrity is critical. Accordingly, the hydrogels' known properties along with the stimulation of nerve and cell regeneration make them ideal scaffold for corneal tissue engineering. Hydrogels have been used extensively in clinical applications for the repair and replacement of diseased organs. The development and optimizing of novel hydrogels to repair/replace corneal injuries have been the main focus of researches within the last decade. This research aims to critically review in vitro, preclinical, as well as clinical trial studies related to corneal wound healing using hydrogels in the past 10 years, as this is considered as an emerging technology for corneal treatment. Several unique modifications of hydrogels with smart behaviors have undergone early phase clinical trials and showed promising outcomes. Financially, this considers a multibillion dollars industry and with huge interest from medical devices as well as pharmaceutical industries with several products may emerge within the next five years.
Collapse
Affiliation(s)
- Sadjad Khosravimelal
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Mohammadmahdi Mobaraki
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, 1591634311, Iran
| | - Samane Eftekhari
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Mark Ahearne
- Trinity Centre for Biomedical Engineering, School of Engineering, Trinity College Dublin, University of Dublin, Dublin, D02 R590, Republic of Ireland
| | - Alexander Marcus Seifalian
- Nanotechnology & Regenerative Medicine Commercialization Centre (NanoRegMed Ltd), London BioScience Innovation Centre, London, NW1 0NH, UK
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| |
Collapse
|
34
|
Ferrara M, Lugano G, Sandinha MT, Kearns VR, Geraghty B, Steel DHW. Biomechanical properties of retina and choroid: a comprehensive review of techniques and translational relevance. Eye (Lond) 2021; 35:1818-1832. [PMID: 33649576 PMCID: PMC8225810 DOI: 10.1038/s41433-021-01437-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/06/2020] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Studying the biomechanical properties of biological tissue is crucial to improve our understanding of disease pathogenesis. The biomechanical characteristics of the cornea, sclera and the optic nerve head have been well addressed with an extensive literature and an in-depth understanding of their significance whilst, in comparison, knowledge of the retina and choroid is relatively limited. Knowledge of these tissues is important not only to clarify the underlying pathogenesis of a wide variety of retinal and vitreoretinal diseases, including age-related macular degeneration, hereditary retinal dystrophies and vitreoretinal interface diseases but also to optimise the surgical handling of retinal tissues and, potentially, the design and properties of implantable retinal prostheses and subretinal therapies. Our aim with this article is to comprehensively review existing knowledge of the biomechanical properties of retina, internal limiting membrane (ILM) and the Bruch’s membrane–choroidal complex (BMCC), highlighting the potential implications for clinical and surgical practice. Prior to this we review the testing methodologies that have been used both in vitro, and those starting to be used in vivo to aid understanding of their results and significance.
Collapse
Affiliation(s)
| | - Gaia Lugano
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | | | - Victoria R Kearns
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Brendan Geraghty
- Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK.
| | - David H W Steel
- Sunderland Eye Infirmary, Sunderland, UK. .,Bioscience Institute, Newcastle University, Newcastle Upon Tyne, UK.
| |
Collapse
|
35
|
Hasenzahl M, Müsken M, Mertsch S, Schrader S, Reichl S. Cell sheet technology: Influence of culture conditions on in vitro-cultivated corneal stromal tissue for regenerative therapies of the ocular surface. J Biomed Mater Res B Appl Biomater 2021; 109:1488-1504. [PMID: 33538123 DOI: 10.1002/jbm.b.34808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 11/11/2022]
Abstract
The in vitro reconstruction of stromal tissue by long-term cultivation of corneal fibroblasts is a smart approach for regenerative therapies of ocular surface diseases. However, systematic investigations evaluating optimized cultivation protocols for the realization of a biomaterial are lacking. This study investigated the influence of supplements to the culture media of human corneal fibroblasts on the formation of a cell sheet consisting of cells and extracellular matrix. Among the supplements studied are vitamin C, fetal bovine serum, L-glutamine, components of collagen such as L-proline, L-4-hydroxyproline and glycine, and TGF-β1, bFGF, IGF-2, PDGF-BB and insulin. After long-term cultivation, the proliferation, collagen and glycosaminoglycan content and light transmission of the cell sheets were examined. Biomechanical properties were investigated by tensile tests and the ultrastructure was characterized by electron microscopy, small-angle X-ray scattering, antibody staining and ELISA. The synthesis of extracellular matrix was significantly increased by cultivation with insulin or TGF-β1, each with vitamin C. The sheets exhibited a high transparency and suitable material properties. The production of a transparent, scaffold-free, potentially autologous, in vitro-generated construct by culturing fibroblasts with extracellular matrix synthesis-stimulating supplements represents a promising approach for a biomaterial that can be used for ocular surface reconstruction in slowly progressing diseases.
Collapse
Affiliation(s)
- Meike Hasenzahl
- Institut für Pharmazeutische Technologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Mathias Müsken
- Helmholtz-Centre for Infection Research, Central Facility for Microscopy, Braunschweig, Germany
| | - Sonja Mertsch
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius-Hospital, Carl von Ossietzky University, Oldenburg, Germany
| | - Stefan Schrader
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius-Hospital, Carl von Ossietzky University, Oldenburg, Germany
| | - Stephan Reichl
- Institut für Pharmazeutische Technologie, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
36
|
Direct Evidence of Symmetry between Bilateral Human Corneas in Biomechanical Properties: A Comparison Study with Fresh Corneal Tissue. J Ophthalmol 2021. [DOI: 10.1155/2021/8891412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Purpose. To investigate the difference between the eyes from the same human with respect to the biomechanical properties of fresh corneal tissues and investigate the assumption of similarity of the corneal biomechanical properties between the eyes. Methods. Strip specimens extracted through a small incision lenticule extraction (SMILE) surgery were tested using a uniaxial tensile test. The specimens were extracted vertically. Low-strain tangent modulus (LSTM), high-strain tangent modulus (HSTM), and tensile strength () were the biomechanical parameters used in the comparison of the eyes from the same human. Results. Ninety corneal specimens from 45 persons were included in this study. The LSTM of the left and right eyes were 1.34 ± 0.52 and 1.37 ± 0.46 MPa, while the HSTM were 50.53 ± 7.51 and 49.41 ± 7.01 MPa, respectively. There was no significant difference between the eyes in terms of LSTM, HSTM, and. The LSTM and HSTM were significantly correlated with the spherical equivalent (SE) (, resp.). Conclusions. The assumption that the corneal biomechanical properties of the eyes from the same human are similar has been confirmed for the first time using fresh human corneal tissue. This finding may be useful in further biomechanical studies.
Collapse
|
37
|
Bhandari A, Bansal A, Sinha N. Effect of aging on heat transfer, fluid flow and drug transport in anterior human eye: A computational study. J Control Release 2020; 328:286-303. [PMID: 32861760 DOI: 10.1016/j.jconrel.2020.08.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/07/2020] [Accepted: 08/22/2020] [Indexed: 12/15/2022]
Abstract
There are a lot of geometrical and morphological changes that happen in the human eye with age. Primary open-angle glaucoma, which is caused by the increase in intraocular pressure inside the anterior chamber of the eye is also associated with the physiological aging of the eye. Therefore, it is crucial to understand the effects of aging on drug delivery in the human eye when applied topically. Consequently, a numerical model of topical drug delivery for an aging human eye has been developed using commercial software COMSOL Multiphysics in the current study. Three different age groups (young, middle and old) have been considered and the changes in geometrical and tissue properties of different domains of the eye with age have been included in the numerical model. The effect of aging on heat transfer, aqueous humor flow, intraocular pressure and drug concentration in different domains and orientations of the eye have been investigated. Additionally, an attempt has been made to predict the best class of anti-glaucomatic treatment in silico that should be preferred to treat primary open-angle glaucoma effectively. Results illustrate that there is a decrease in the average corneal temperature and an increase in the temperature deviation across the cornea with age. Further, there is a decrease in the aqueous humor flow magnitude in the anterior chamber of the eye and an increase in intraocular pressure in the anterior chamber of older age groups, which leads to primary open-angle glaucoma. The reduced aqueous humor flow leads to increased drug concentration in the anterior chamber as well as iris and reduced drug concentration in the trabecular mesh of the older age groups, thereby affecting the treatment efficacy. Additionally, our simulated results demonstrate that anti-glaucomatic treatments should be more focused on treating the trabecular mesh rather than the ciliary body of the eye.
Collapse
Affiliation(s)
- Ajay Bhandari
- Department of Mechanical Engineering, Indian Institute of Technology, Kanpur 208016, India; Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826004, India
| | - Ankit Bansal
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology, Roorkee 247677, India
| | - Niraj Sinha
- Department of Mechanical Engineering, Indian Institute of Technology, Kanpur 208016, India.
| |
Collapse
|
38
|
Prieto E, Cardiel MJ, Vispe E, Idoipe M, Garcia-Martin E, Fraile JM, Polo V, Mayoral JA, Pablo LE, Rodrigo MJ. Dexamethasone delivery to the ocular posterior segment by sustained-release Laponite formulation. ACTA ACUST UNITED AC 2020; 15:065021. [PMID: 32647098 DOI: 10.1088/1748-605x/aba445] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This paper presents a novel nanoformulation for sustained-release delivery of dexamethasone (DEX) to the ocular posterior segment using a Laponite (LAP) carrier-DEX/LAP 1:10 w w-1 formulation; 10 mg ml-1. In vivo ocular feasibility and pharmacokinetics after intravitreal (IV) and suprachoroidal (SC) administration in rabbit eyes are compared against IV administration of a DEX solution (1 mg ml-1). Thirty rabbit eyes were injected with the DEX/LAP formulation (15 suprachoroid/15 intravitreous). Ophthalmological signs were monitored at day 1 and at weeks 1-4-12-24 post-administration. Three eyes per sample time point were used to quantify DEX concentration using high-performance liquid chromatography-mass spectrometry. The ocular tissues' pharmacokinetic parameters (lens, vitreous humour, choroid-retina unit and sclera) were studied. DEX/LAP was well tolerated under both administration methods. Peak intraocular DEX levels from the DEX/LAP were detected in the vitreous humour after both deliveries soon after administration. The vitreous area under the curve was significantly greater after both DEX/LAP deliveries (IV: 205 968.47; SC: 11 442.22 ng g-1 d-1) than after IV administration of the DEX solution (317.17 ng g-1 d-1). Intravitreal DEX/LAP delivery extended higher vitreous DEX levels up to week 24 (466.32 ± 311.15 ng g-1). With SC delivery, DEX levels were detectable in the choroid-retina unit (12.04 ± 20.85 ng g-1) and sclera (25.46 ± 44.09 ng g-1) up to week 24. This study demonstrated the intraocular feasibility of both SC and IV administration of the DEX/LAP formulation. The LAP increased the intraocular retention time of DEX when compared with conventional solutions. DEX/LAP could be considered a biocompatible and useful sustained-release formulation for treating posterior-pole eye diseases.
Collapse
Affiliation(s)
- Esther Prieto
- Ophthalmology Department, Miguel Servet University Hospital, Paseo Isabel la Católica 1-3, E-50009, Zaragoza, Spain. Aragon Institute for Health Research (IIS Aragon), GIMSO research group, University of Zaragoza (Spain), Avda. San Juan Bosco 13, Zaragoza E-50009, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Liu G, Rong H, Pei R, Du B, Jin N, Wang D, Jin C, Wei R. Age distribution and associated factors of cornea biomechanical parameter stress-strain index in Chinese healthy population. BMC Ophthalmol 2020; 20:436. [PMID: 33143686 PMCID: PMC7607623 DOI: 10.1186/s12886-020-01704-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/23/2020] [Indexed: 12/15/2022] Open
Abstract
Background To investigate the new cornea biomechanical parameter stress-strain index (SSI) in Chinese healthy people and the factors associated with SSI. Methods A total of 175 eyes from 175 participants were included in this study. Axial length was measured with the Lenstar LS-900. Pentacam measured curvature of the cornea and anterior chamber volume (ACV). Cornea biomechanical properties assessments were performed by corneal visualization Scheimpflug technology (Corvis ST). Student’s t-test, one-way ANOVA, partial least square linear regression (PLSLR) and linear mixed effects (LME) model were used in the statistical analysis. Results The mean (±SD) SSI was 1.14 ± 0.22 (range, 0.66–1.78) in all subjects and affected by age significantly after age of 35 (P < 0.05). In LME models, SSI was significantly associated with age (β = 0.526, P < 0.001), axial length (AL) (β = − 0.541, P < 0.001), intraocular pressure (IOP) (β = 0.326, P < 0.001) and steepest radius of anterior corneal curvature (RsF) (β = 0.229, P < 0.001) but not with ACV, biomechanical corrected intraocular pressure (bIOP), flattest radius of anterior corneal curvature (RfF) or central corneal thickness (CCT) (P > 0.05 for each). Conclusions SSI increased with age after the age of 35. In addition to age, SSI was positively correlated with RsF and IOP, while negatively correlated with AL.
Collapse
Affiliation(s)
- Guihua Liu
- Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Postal address: 251 Fukang Road, Nankai District, Tianjin, China.,Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Postal address: 251 Fukang Road, Nankai District, Tianjin, China
| | - Hua Rong
- Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Postal address: 251 Fukang Road, Nankai District, Tianjin, China.,Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Postal address: 251 Fukang Road, Nankai District, Tianjin, China
| | - Ruxia Pei
- Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Postal address: 251 Fukang Road, Nankai District, Tianjin, China.,Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Postal address: 251 Fukang Road, Nankai District, Tianjin, China
| | - Bei Du
- Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Postal address: 251 Fukang Road, Nankai District, Tianjin, China.,Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Postal address: 251 Fukang Road, Nankai District, Tianjin, China
| | - Nan Jin
- Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Postal address: 251 Fukang Road, Nankai District, Tianjin, China.,Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Postal address: 251 Fukang Road, Nankai District, Tianjin, China
| | - Di Wang
- Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Postal address: 251 Fukang Road, Nankai District, Tianjin, China.,Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Postal address: 251 Fukang Road, Nankai District, Tianjin, China
| | - Chengcheng Jin
- Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Postal address: 251 Fukang Road, Nankai District, Tianjin, China.,Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Postal address: 251 Fukang Road, Nankai District, Tianjin, China
| | - Ruihua Wei
- Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Postal address: 251 Fukang Road, Nankai District, Tianjin, China. .,Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Postal address: 251 Fukang Road, Nankai District, Tianjin, China.
| |
Collapse
|
40
|
Numerical model to predict and compare the hypotensive efficacy and safety of minimally invasive glaucoma surgery devices. PLoS One 2020; 15:e0239324. [PMID: 32991588 PMCID: PMC7523982 DOI: 10.1371/journal.pone.0239324] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 09/04/2020] [Indexed: 12/25/2022] Open
Abstract
Purpose To predict and compare the hypotensive efficacy of three minimally-invasive glaucoma surgery (MIGS) implants through a numerical model. Methods Post-implant hypotensive efficacy was evaluated by using a numerical model and a computational fluid dynamics simulation. Three different devices were compared: the XEN 45 stent (tube diameter, 45 μm), the XEN 63 stent (63 μm) and the PreserFlo microshunt (70 μm). The influence of the filtration bleb pressure (Bp) and tube diameter, length, and position within the anterior chamber (AC) on intraocular pressure (IOP) were evaluated. Results Using baseline IOPs of 25, 30 and 50 mmHg, respectively, the corresponding computed post-implant IOPs for each device were as follows: XEN 45: 17 mmHg (29% decrease), 19 mmHg (45%) and 20 mmHg (59%) respectively; XEN 63: 13 mmHg (48%), 13 mmHg (62%), and 13 mmHg (73%); PreserFlo: 12 mmHg (59%), 13 mmHg (73%) and 13 mmHg (73%). At a baseline IOP of 35 mmHg with an increase in the outflow resistance within the Bp from 5 to 17 mmHg, the hypotensive efficacy for each device was reduced as follows: XEN45: 54% to 37%; XEN 63: 74% to 46%; and PreserFlo: 75% to 47%. The length and the position of the tube in the AC had only a minimal (non-significant) effect on IOP (<0.1 mmHg). Conclusions This hydrodynamic/numerical model showed that implant diameter and bleb pressure are the two most pertinent determinants of hypotensive efficacy. In distinction, tube length and position in the AC do not significantly influence IOP.
Collapse
|
41
|
Beckett LE, Lewis JT, Tonge TK, Korley LTJ. Enhancement of the Mechanical Properties of Hydrogels with Continuous Fibrous Reinforcement. ACS Biomater Sci Eng 2020; 6:5453-5473. [PMID: 33320571 DOI: 10.1021/acsbiomaterials.0c00911] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Reinforcing mechanically weak hydrogels with fibers is a promising route to obtain strong and tough materials for biomedical applications while retaining a favorable cell environment. The resulting hierarchical structure recreates structural elements of natural tissues such as articular cartilage, with fiber diameters ranging from the nano- to microscale. Through control of properties such as the fiber diameter, orientation, and porosity, it is possible to design materials which display the nonlinear, synergistic mechanical behavior observed in natural tissues. In order to fully exploit these advantages, it is necessary to understand the structure-property relationships in fiber-reinforced hydrogels. However, there are currently limited models which capture their complex mechanical properties. The majority of reported fiber-reinforced hydrogels contain fibers obtained by electrospinning, which allows for limited spatial control over the fiber scaffold and limits the scope for systematic mechanical testing studies. Nevertheless, new manufacturing techniques such as melt electrowriting and bioprinting have emerged, which allow for increased control over fiber deposition and the potential for future investigations on the effect of specific structural features on mechanical properties. In this review, we therefore explore the mechanics of fiber-reinforced hydrogels, and the evolution of their design and manufacture from replicating specific features of biological tissues to more complex structures, by taking advantage of design principles from both tough hydrogels and fiber-reinforced composites. By highlighting the overlap between these fields, it is possible to identify the remaining challenges and opportunities for the development of effective biomedical devices.
Collapse
Affiliation(s)
- Laura E Beckett
- University of Delaware, Department of Materials Science and Engineering, 127 The Green, Newark, Delaware 19716, United States
| | - Jackson T Lewis
- W. L. Gore & Associates, Inc., 501 Vieves Way, Elkton, Maryland 21921, United States
| | - Theresa K Tonge
- W. L. Gore & Associates, Inc., 501 Vieves Way, Elkton, Maryland 21921, United States
| | - LaShanda T J Korley
- University of Delaware, Department of Materials Science and Engineering, 127 The Green, Newark, Delaware 19716, United States.,University of Delaware, Department of Chemical and Biomolecular Engineering, 150 Academy Street, Newark, Delaware 19716, United States
| |
Collapse
|
42
|
Ambekar YS, Singh M, Scarcelli G, Rueda EM, Hall BM, Poché RA, Larin KV. Characterization of retinal biomechanical properties using Brillouin microscopy. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:JBO-200208LR. [PMID: 32981240 PMCID: PMC7519206 DOI: 10.1117/1.jbo.25.9.090502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/04/2020] [Indexed: 05/03/2023]
Abstract
SIGNIFICANCE The retina is critical for vision, and several diseases may alter its biomechanical properties. However, assessing the biomechanical properties of the retina nondestructively is a challenge due to its fragile nature and location within the eye globe. Advancements in Brillouin spectroscopy have provided the means for nondestructive investigations of retina biomechanical properties. AIM We assessed the biomechanical properties of mouse retinas using Brillouin microscopy noninvasively and showed the potential of Brillouin microscopy to differentiate the type and layers of retinas based on stiffness. APPROACH We used Brillouin microscopy to quantify stiffness of fresh and paraformaldehyde (PFA)-fixed retinas. As further proof-of-concept, we demonstrated a change in the stiffness of a retina with N-methyl-D-aspartate (NMDA)-induced damage, compared to an undamaged sample. RESULTS We found that the retina layers with higher cell body density had higher Brillouin modulus compared to less cell-dense layers. We have also demonstrated that PFA-fixed retina samples were stiffer compared with fresh samples. Further, NMDA-induced neurotoxicity leads to retinal ganglion cell (RGC) death and reactive gliosis, increasing the stiffness of the RGC layer. CONCLUSION Brillouin microscopy can be used to characterize the stiffness distribution of the layers of the retina and can be used to differentiate tissue at different conditions based on biomechanical properties.
Collapse
Affiliation(s)
- Yogeshwari S. Ambekar
- University of Houston, Department of Biomedical Engineering, Houston, Texas, United States
| | - Manmohan Singh
- University of Houston, Department of Biomedical Engineering, Houston, Texas, United States
| | - Giuliano Scarcelli
- University of Maryland, Fischell Department of Bioengineering, College Park, Maryland, United States
| | - Elda M. Rueda
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, Houston, Texas, United States
| | - Benjamin M. Hall
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, Houston, Texas, United States
| | - Ross A. Poché
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, Houston, Texas, United States
- Address all correspondence to Ross A. Poché, E-mail: ; Kirill V. Larin, E-mail:
| | - Kirill V. Larin
- University of Houston, Department of Biomedical Engineering, Houston, Texas, United States
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, Houston, Texas, United States
- Address all correspondence to Ross A. Poché, E-mail: ; Kirill V. Larin, E-mail:
| |
Collapse
|
43
|
Jin Y, Wang X, Irnadiastputri SFR, Mohan RE, Aung T, Perera SA, Boote C, Jonas JB, Schmetterer L, Girard MJA. Effect of Changing Heart Rate on the Ocular Pulse and Dynamic Biomechanical Behavior of the Optic Nerve Head. Invest Ophthalmol Vis Sci 2020; 61:27. [PMID: 32315378 PMCID: PMC7401455 DOI: 10.1167/iovs.61.4.27] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Purpose To study the effect of changing heart rate on the ocular pulse and the dynamic biomechanical behavior of the optic nerve head (ONH) using a comprehensive mathematical model. Methods In a finite element model of a healthy eye, a biphasic choroid consisted of a solid phase with connective tissues and a fluid phase with blood, and the lamina cribrosa (LC) was viscoelastic as characterized by a stress-relaxation test. We applied arterial pressures at 18 ocular entry sites (posterior ciliary arteries), and venous pressures at four exit sites (vortex veins). In the model, the heart rate was varied from 60 to 120 bpm (increment: 20 bpm). We assessed the ocular pulse amplitude (OPA), pulse volume, ONH deformations, and the dynamic modulus of the LC at different heart rates. Results With an increasing heart rate, the OPA decreased by 0.04 mm Hg for every 10 bpm increase in heart rate. The ocular pulse volume decreased linearly by 0.13 µL for every 10 bpm increase in heart rate. The storage modulus and the loss modulus of the LC increased by 0.014 and 0.04 MPa, respectively, for every 10 bpm increase in heart rate. Conclusions In our model, the OPA, pulse volume, and ONH deformations decreased with an increasing heart rate, whereas the LC became stiffer. The effects of blood pressure/heart rate changes on ONH stiffening may be of interest for glaucoma pathology.
Collapse
|
44
|
Role of radially aligned scleral collagen fibers in optic nerve head biomechanics. Exp Eye Res 2020; 199:108188. [PMID: 32805265 DOI: 10.1016/j.exer.2020.108188] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/22/2020] [Accepted: 08/06/2020] [Indexed: 01/04/2023]
Abstract
Collagen fibers organized circumferentially around the canal in the peripapillary sclera are thought to provide biomechanical support to the sensitive tissues within the optic nerve head (ONH). Recent studies have demonstrated the existence of a family of fibers in the innermost sclera organized radially from the scleral canal. Our goal was to determine the role of these radial fibers in the sensitivity of scleral canal biomechanics to acute increases in intraocular pressure (IOP). Following the same general approach of previous parametric sensitivity studies, we created nonlinear generic finite element models of a posterior pole with various combinations of radial and circumferential fibers at an IOP of 0 mmHg. We then simulated the effects of normal and elevated IOP levels (15 and 30 mmHg). We monitored four IOP-induced geometric changes: peripapillary sclera stretch, scleral canal displacement, lamina cribrosa displacement, and scleral canal expansion. In addition, we examined the radial (maximum tension) and through-thickness (maximum compression) strains within the ONH tissues. Our models predicted that: 1) radial fibers reduced the posterior displacement of the lamina, especially at elevated IOP; 2) radial fibers reduced IOP-induced radial strain within the peripapillary sclera and retinal tissue; and 3) a combination of radial and circumferential fibers maintained strains within the ONH at a level similar to those conferred by circumferential fibers alone. In conclusion, radial fibers provide support for the posterior globe, additional to that provided by circumferential fibers. Most importantly, a combination of both fiber families can better protect ONH tissues from excessive IOP-induced deformation than either alone.
Collapse
|
45
|
Preclinical challenges for developing long acting intravitreal medicines. Eur J Pharm Biopharm 2020; 153:130-149. [DOI: 10.1016/j.ejpb.2020.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/01/2020] [Accepted: 05/08/2020] [Indexed: 02/07/2023]
|
46
|
Bhandari A, Bansal A, Sinha N. Numerical modeling of therapeutic lens drug delivery in the anterior human eye for the treatment of primary open-angle glaucoma. Proc Inst Mech Eng H 2020; 234:942-954. [PMID: 32633667 DOI: 10.1177/0954411920934960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A numerical model of drug delivery from a therapeutic lens in the anterior portion of the human eye has been developed for a more effective treatment plan of primary open-angle glaucoma. The numerical model takes into account the drug diffusion through the therapeutic lens along with heat transfer and aqueous humor flow in different orientations of the human eye (supine (two-dimensional) as well as standing (three-dimensional)). Results illustrate that the drug diffuses through the therapeutic lens to the cornea and is convected into the anterior chamber of the eye due to the temperature gradient across the eye. In addition, eye orientation significantly affects drug delivery with supine orientation providing better and uniform drug exposure in different target regions of the eye as compared to standing in the case of the therapeutic lens. Furthermore, a comparison of the therapeutic efficacy of the therapeutic lens has been done with topical administration and the drug uptake results from both the drug delivery modes have been validated with the experimental data reported in the literature. The developed model may help ophthalmologists to comprehend the transport and retention of different drugs in different domains and orientations of the human eye when administered through a therapeutic lens.
Collapse
Affiliation(s)
- Ajay Bhandari
- Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur, India
| | - Ankit Bansal
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Niraj Sinha
- Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur, India
| |
Collapse
|
47
|
The prominence of the dosage form design to treat ocular diseases. Int J Pharm 2020; 586:119577. [PMID: 32622806 DOI: 10.1016/j.ijpharm.2020.119577] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/16/2020] [Accepted: 06/21/2020] [Indexed: 12/13/2022]
Abstract
The eye is susceptible to various diseases commonly difficult to treat. To overcome the barriers imposed by this organ for required drugs penetration, technological strategies have been implemented to ocular formulations. Among them are the use of temperature or electric stimuli and the development of nanoparticles. The objective of this review is to present the main barriers to ocular drug delivery and to discuss strategies used in the development of ocular dosage forms, primarily for topical delivery, to increase the local bioavailability of drugs, target their delivery and increase patient compliance. Results obtained in the last years related to the topical administration of liposomes, dendrimers, iontophoresis, among other nanoparticulate systems focused on ophthalmic delivery, will be addressed. Finally, some clinical trials and marketed formulations that use nanotechnology to topically treat eye diseases will be presented.
Collapse
|
48
|
Sayah DN, Szigiato AA, Mazzaferri J, Descovich D, Duval R, Rezende FA, Costantino S, Lesk MR. Correlation of ocular rigidity with intraocular pressure spike after intravitreal injection of bevacizumab in exudative retinal disease. Br J Ophthalmol 2020; 105:392-396. [PMID: 32345604 DOI: 10.1136/bjophthalmol-2019-315595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 11/04/2022]
Abstract
BACKGROUND/AIMS To evaluate the non-invasive measurement of ocular rigidity (OR), an important biomechanical property of the eye, as a predictor of intraocular pressure (IOP) elevation after anti-vascular endothelial growth factor (anti-VEGF) intravitreal injection (IVI). METHODS Subjects requiring IVI of anti-VEGF for a pre-existing retinal condition were enrolled in this prospective cross-sectional study. OR was assessed in 18 eyes of 18 participants by measurement of pulsatile choroidal volume change using video-rate optical coherence tomography, and pulsatile IOP change using dynamic contour tonometry. IOP was measured using Tono-Pen XL before and immediately following the injection and was correlated with OR. RESULTS The average increase in IOP following IVI was 19±9 mm Hg, with a range of 7-33 mm Hg. The Spearman correlation coefficient between OR and IOP elevation following IVI was 0.796 (p<0.001), showing higher IOP elevation in more rigid eyes. A regression line was also calculated to predict the IOP spike based on the OR coefficient, such that IOP spike=664.17 mm Hg·µL×OR + 4.59 mm Hg. CONCLUSION This study shows a strong positive correlation between OR and acute IOP elevation following IVI. These findings indicate that the non-invasive measurement of OR could be an effective tool in identifying patients at risk of IOP spikes following IVI.
Collapse
Affiliation(s)
- Diane N Sayah
- Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada.,Ophthalmology, University of Montreal, Montreal, Quebec, Canada
| | | | - Javier Mazzaferri
- Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada
| | - Denise Descovich
- Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada
| | - Renaud Duval
- Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada.,Ophthalmology, University of Montreal, Montreal, Quebec, Canada
| | - Flavio A Rezende
- Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada.,Ophthalmology, University of Montreal, Montreal, Quebec, Canada
| | - Santiago Costantino
- Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada.,Ophthalmology, University of Montreal, Montreal, Quebec, Canada
| | - Mark R Lesk
- Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada .,Ophthalmology, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
49
|
Harris A, Guidoboni G, Siesky B, Mathew S, Verticchio Vercellin AC, Rowe L, Arciero J. Ocular blood flow as a clinical observation: Value, limitations and data analysis. Prog Retin Eye Res 2020; 78:100841. [PMID: 31987983 PMCID: PMC8908549 DOI: 10.1016/j.preteyeres.2020.100841] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/24/2022]
Abstract
Alterations in ocular blood flow have been identified as important risk factors for the onset and progression of numerous diseases of the eye. In particular, several population-based and longitudinal-based studies have provided compelling evidence of hemodynamic biomarkers as independent risk factors for ocular disease throughout several different geographic regions. Despite this evidence, the relative contribution of blood flow to ocular physiology and pathology in synergy with other risk factors and comorbidities (e.g., age, gender, race, diabetes and hypertension) remains uncertain. There is currently no gold standard for assessing all relevant vascular beds in the eye, and the heterogeneous vascular biomarkers derived from multiple ocular imaging technologies are non-interchangeable and difficult to interpret as a whole. As a result of these disease complexities and imaging limitations, standard statistical methods often yield inconsistent results across studies and are unable to quantify or explain a patient's overall risk for ocular disease. Combining mathematical modeling with artificial intelligence holds great promise for advancing data analysis in ophthalmology and enabling individualized risk assessment from diverse, multi-input clinical and demographic biomarkers. Mechanism-driven mathematical modeling makes virtual laboratories available to investigate pathogenic mechanisms, advance diagnostic ability and improve disease management. Artificial intelligence provides a novel method for utilizing a vast amount of data from a wide range of patient types to diagnose and monitor ocular disease. This article reviews the state of the art and major unanswered questions related to ocular vascular anatomy and physiology, ocular imaging techniques, clinical findings in glaucoma and other eye diseases, and mechanistic modeling predictions, while laying a path for integrating clinical observations with mathematical models and artificial intelligence. Viable alternatives for integrated data analysis are proposed that aim to overcome the limitations of standard statistical approaches and enable individually tailored precision medicine in ophthalmology.
Collapse
Affiliation(s)
- Alon Harris
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA.
| | | | - Brent Siesky
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA
| | - Sunu Mathew
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alice C Verticchio Vercellin
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA; University of Pavia, Pavia, Italy; IRCCS - Fondazione Bietti, Rome, Italy
| | - Lucas Rowe
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Julia Arciero
- Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| |
Collapse
|
50
|
Sherwood JM, Boazak EM, Feola AJ, Parker K, Ethier CR, Overby DR. Measurement of Ocular Compliance Using iPerfusion. Front Bioeng Biotechnol 2019; 7:276. [PMID: 31709244 PMCID: PMC6823226 DOI: 10.3389/fbioe.2019.00276] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/01/2019] [Indexed: 11/25/2022] Open
Abstract
The pressure-volume relationship of the eye is determined by the biomechanical properties of the corneoscleral shell and is classically characterised by Friedenwald's coefficient of ocular rigidity or, alternatively, by the ocular compliance (OC), defined as dV/dP. OC is important in any situation where the volume (V) or pressure (P) of the eye is perturbed, as occurs during several physiological and pathological processes. However, accurately measuring OC is challenging, particularly in rodents. We measured OC in 24 untreated enucleated eyes from 12 C57BL/6 mice using the iPerfusion system to apply controlled pressure steps, whilst measuring the time-varying flow rate into the eye. Pressure and flow data were analysed by a “Discrete Volume” (integrating the flow trace) and “Step Response” method (fitting an analytical solution to the pressure trace). OC evaluated at 13 mmHg was similar between the two methods (Step Response, 41 [37, 46] vs. Discrete Volume, 42 [37, 48] nl/mmHg; mean [95% CI]), although the Step Response Method yielded tighter confidence bounds on individual eyes. OC was tightly correlated between contralateral eyes (R2 = 0.75, p = 0.0003). Following treatment with the cross-linking agent genipin, OC decreased by 40 [33, 47]% (p = 0.0001; N = 6, Step Response Method). Measuring OC provides a powerful tool to assess corneoscleral biomechanics in mice and other species.
Collapse
Affiliation(s)
- Joseph M Sherwood
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Elizabeth M Boazak
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Andrew J Feola
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States.,Atlanta VA Medical Center, Atlanta, GA, United States
| | - Kim Parker
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - C Ross Ethier
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States.,George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Darryl R Overby
- Department of Bioengineering, Imperial College London, London, United Kingdom
| |
Collapse
|