1
|
Lapshin NK, Trofimova MS. The role of interplay between the plant plasma membrane H +-ATPase and its lipid environment. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112343. [PMID: 39638092 DOI: 10.1016/j.plantsci.2024.112343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
The mechanisms behind the regulation of plasma membrane (PM) P-type H+-ATPase in plant cells mediated by lipid-protein interactions and lateral heterogeneity of the plasma membrane are discussed. This review will focus on 1) the structural organization and mechanisms of the catalytic cycle of the enzyme, 2) phosphorylation as the primary mechanism of pump regulation; 3) the possible role of lateral heterogeneity of the plasma membrane in this process, as well as 4) the role of lipids in the H+-ATPase biosynthesis and its delivery to the plasma membrane. In addition, 5) the potential role of membrane lipids in the H+-ATPase co-localisation with secondary active transporters is speculated.
Collapse
Affiliation(s)
- Nikita K Lapshin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 35 Botanicheskaya St., Moscow 127276, Russia.
| | - Marina S Trofimova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 35 Botanicheskaya St., Moscow 127276, Russia
| |
Collapse
|
2
|
Zhao WB, Sheng R. The correlation between mitochondria-associated endoplasmic reticulum membranes (MAMs) and Ca 2+ transport in the pathogenesis of diseases. Acta Pharmacol Sin 2025; 46:271-291. [PMID: 39117969 PMCID: PMC11756407 DOI: 10.1038/s41401-024-01359-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024] Open
Abstract
Mitochondria and the endoplasmic reticulum (ER) are vital organelles that influence various cellular physiological and pathological processes. Recent evidence shows that about 5%-20% of the mitochondrial outer membrane is capable of forming a highly dynamic physical connection with the ER, maintained at a distance of 10-30 nm. These interconnections, known as MAMs, represent a relatively conserved structure in eukaryotic cells, acting as a critical platform for material exchange between mitochondria and the ER to maintain various aspects of cellular homeostasis. Particularly, ER-mediated Ca2+ release and recycling are intricately associated with the structure and functionality of MAMs. Thus, MAMs are integral in intracellular Ca2+ transport and the maintenance of Ca2+ homeostasis, playing an essential role in various cellular activities including metabolic regulation, signal transduction, autophagy, and apoptosis. The disruption of MAMs observed in certain pathologies such as cardiovascular and neurodegenerative diseases as well as cancers leads to a disturbance in Ca2+ homeostasis. This imbalance potentially aggravates pathological alterations and disease progression. Consequently, a thorough understanding of the link between MAM-mediated Ca2+ transport and these diseases could unveil new perspectives and therapeutic strategies. This review focuses on the changes in MAMs function during disease progression and their implications in relation to MAM-associated Ca2+ transport.
Collapse
Affiliation(s)
- Wen-Bin Zhao
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
3
|
Shin HW, Takatsu H. Substrates, regulation, cellular functions, and disease associations of P4-ATPases. Commun Biol 2025; 8:135. [PMID: 39875509 PMCID: PMC11775268 DOI: 10.1038/s42003-025-07549-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/14/2025] [Indexed: 01/30/2025] Open
Abstract
P4-ATPases, a subfamily of the P-type ATPase superfamily, play a crucial role in translocating membrane lipids from the exoplasmic/luminal leaflet to the cytoplasmic leaflet. This process generates and regulates transbilayer lipid asymmetry. These enzymes are conserved across all eukaryotes, and the human genome encodes 14 distinct P4-ATPases. Initially identified as aminophospholipid translocases, P4-ATPases have since been found to translocate other phospholipids, including phosphatidylcholine, phosphatidylinositol, and even glycosphingolipids. Recent advances in structural analysis have significantly improved our understanding of the lipid transport machinery associated with P4-ATPases, as documented in recent reviews. In this review, we highlight the emerging evidence related to substrate diversity, the regulation of cellular localization, enzymatic activities, and their impact on organism homeostasis and diseases.
Collapse
Affiliation(s)
- Hye-Won Shin
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Hiroyuki Takatsu
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
4
|
Sun Y, Tao H, Han H, Zou Y, Xue Y, Chen S, Tao F. Identification and expression analysis of P-type ATPase IIIA subfamily in Puccinia Striiformis f. sp. tritici. BMC Genomics 2025; 26:68. [PMID: 39856561 PMCID: PMC11759449 DOI: 10.1186/s12864-025-11219-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Puccinia striiformis f. sp. tritici (Pst) causes wheat stripe (yellow) rust disease, which is one of the most destructive diseases affecting wheat worldwide. ATPases, a class of membrane proteins, play an important role in material exchange and signal transduction both within and outside biological cells by transporting ions and phospholipids. In plant pathogens, P-type ATPases primarily participate in pathogen development and virulence regulation. However, the P-type ATPase of subfamily IIIA (PMA) has not yet been identified in Pst. To investigate the potential functions of the PMA gene family in Pst, we conducted a genome-wide bioinformatics analysis and examined the expression profiles of the PMA gene family. RESULTS Six PMA genes were identified in the genome of P. striiformis f. sp. tritici (CYR34 race). The PMA proteins encoded by these genes ranged in length from 811 to 960 amino acids (aa). Each of the six PMA genes contained a typical ATPase IIIA H superfamily domain and was distributed across four chromosomes. Thirty-six major cis-regulatory elements were detected within the PMA gene family members. Elements such as the CGTCA-motif and TGACG-motif play significant roles in responding to environmental stresses and hormone signals. Quantitative PCR analysis revealed that the expression of the PMA04 gene was generally higher at 9 °C under various temperature stresses. The PMA06 gene typically exhibited higher expression levels at 16 °C. During the infection of Pst, the expression levels of PMA04, PMA05, and PMA06 were elevated at 72 h post treatment. CONCLUSIONS Our results indicate that the PMA gene family in the CYR34 strain comprises six PMA genes, which are crucial for managing temperature stress and pathogen infection, and exhibit a distinctive splicing pattern. This study not only identifies a target and direction for the development of new, efficient, and environmentally friendly control agents for wheat stripe rust but also establishes a foundation for analyzing its pathogenic mechanisms.
Collapse
Affiliation(s)
- Yingjie Sun
- College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, China
| | - Hong Tao
- Forest Seedling Service Station of Linxia Hui Autonomous Prefecture, Linxia, 731100, China
| | - Hong Han
- Academy of Agricultural Sciences of Linxia Hui Autonomous Prefecture, Linxia, 731100, China
| | - Yiping Zou
- College of Life Sciences, Shandong Normal University, Jinan, 250358, China
| | - Yingyu Xue
- College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Shiwen Chen
- College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, China
| | - Fei Tao
- College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
5
|
Rachuri S, Nepal B, Shukla A, Ramanathan A, Morrisey JM, Daly T, Mather MW, Bergman LW, Kortagere S, Vaidya AB. Mutational analysis of an antimalarial drug target, PfATP4. Proc Natl Acad Sci U S A 2025; 122:e2403689122. [PMID: 39773028 PMCID: PMC11745376 DOI: 10.1073/pnas.2403689122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 11/24/2024] [Indexed: 01/11/2025] Open
Abstract
Among new antimalarials discovered over the past decade are multiple chemical scaffolds that target Plasmodium falciparum P-type ATPase (PfATP4). This essential protein is a Na+ pump responsible for the maintenance of Na+ homeostasis. PfATP4 belongs to the type two-dimensional (2D) subfamily of P-type ATPases, for which no structures have been determined. To gain better insight into the structure/function relationship of this validated drug target, we generated a homology model of PfATP4 based on sarco/endoplasmic reticulum Ca2+ ATPase, a P2A-type ATPase, and refined the model using molecular dynamics in its explicit membrane environment. This model predicted several residues in PfATP4 critical for its function, as well as those that impart resistance to various PfATP4 inhibitors. To validate our model, we developed a genetic system involving merodiploid states of PfATP4 in which the endogenous gene was conditionally expressed, and the second allele was mutated to assess its effect on the parasite. Our model predicted residues involved in Na+ coordination as well as the phosphorylation cycle of PfATP4. Phenotypic characterization of these mutants involved assessment of parasite growth, localization of mutated PfATP4, response to treatment with known PfATP4 inhibitors, and evaluation of the downstream consequences of Na+ influx. Our results were consistent with modeled predictions of the essentiality of the critical residues. Additionally, our approach confirmed the phenotypic consequences of resistance-associated mutations as well as a potential structural basis for the fitness cost associated with some mutations. Taken together, our approach provides a means to explore the structure/function relationship of essential genes in haploid organisms.
Collapse
Affiliation(s)
- Swaksha Rachuri
- Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA19129
| | - Binod Nepal
- Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA19129
| | - Anurag Shukla
- Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA19129
| | - Aarti Ramanathan
- Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA19129
| | - Joanne M. Morrisey
- Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA19129
| | - Thomas Daly
- Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA19129
| | - Michael W. Mather
- Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA19129
| | - Lawrence W. Bergman
- Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA19129
| | - Sandhya Kortagere
- Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA19129
| | - Akhil B. Vaidya
- Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA19129
| |
Collapse
|
6
|
Huang L, Liu X, Wang Q, Chen W, Fu W, Guo Y. RALF proteins-a monitoring hub for regulating salinity tolerance in plants. FRONTIERS IN PLANT SCIENCE 2025; 15:1365133. [PMID: 39830941 PMCID: PMC11738622 DOI: 10.3389/fpls.2024.1365133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 10/31/2024] [Indexed: 01/22/2025]
Affiliation(s)
- Liping Huang
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| | - Xing Liu
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| | - Qianqian Wang
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| | - Wen Chen
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| | - Wenxuan Fu
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| | - Yongjun Guo
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
- Foshan ZhiBao Ecological Technology Co. Ltd, Foshan, Guangdong, China
| |
Collapse
|
7
|
Capdevila DA, Rondón JJ, Edmonds KA, Rocchio JS, Dujovne MV, Giedroc DP. Bacterial Metallostasis: Metal Sensing, Metalloproteome Remodeling, and Metal Trafficking. Chem Rev 2024; 124:13574-13659. [PMID: 39658019 DOI: 10.1021/acs.chemrev.4c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Transition metals function as structural and catalytic cofactors for a large diversity of proteins and enzymes that collectively comprise the metalloproteome. Metallostasis considers all cellular processes, notably metal sensing, metalloproteome remodeling, and trafficking (or allocation) of metals that collectively ensure the functional integrity and adaptability of the metalloproteome. Bacteria employ both protein and RNA-based mechanisms that sense intracellular transition metal bioavailability and orchestrate systems-level outputs that maintain metallostasis. In this review, we contextualize metallostasis by briefly discussing the metalloproteome and specialized roles that metals play in biology. We then offer a comprehensive perspective on the diversity of metalloregulatory proteins and metal-sensing riboswitches, defining general principles within each sensor superfamily that capture how specificity is encoded in the sequence, and how selectivity can be leveraged in downstream synthetic biology and biotechnology applications. This is followed by a discussion of recent work that highlights selected metalloregulatory outputs, including metalloproteome remodeling and metal allocation by metallochaperones to both client proteins and compartments. We close by briefly discussing places where more work is needed to fill in gaps in our understanding of metallostasis.
Collapse
Affiliation(s)
- Daiana A Capdevila
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - Johnma J Rondón
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - Katherine A Edmonds
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Joseph S Rocchio
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Matias Villarruel Dujovne
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| |
Collapse
|
8
|
Xu J, Wang Y. Generating Multistate Conformations of P-type ATPases with a Conditional Diffusion Model. J Chem Inf Model 2024; 64:9227-9239. [PMID: 39480276 DOI: 10.1021/acs.jcim.4c01519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Understanding and predicting the diverse conformational states of membrane proteins is essential for elucidating their biological functions. Despite advancements in computational methods, accurately capturing these complex structural changes remains a significant challenge. Here, we introduce a computational approach to generate diverse and biologically relevant conformations of membrane proteins using a conditional diffusion model. Our approach integrates forward and backward diffusion processes, incorporating state classifiers and additional conditioners to control the generation gradient of conformational states. We specifically targeted the P-type ATPases, a critical family of membrane transporters, and constructed a comprehensive data set through a combination of experimental structures and molecular dynamics simulations. Our model, incorporating a graph neural network with specialized membrane constraints, demonstrates exceptional accuracy in generating a wide range of P-type ATPase conformations associated with different functional states. This approach represents a meaningful step forward in the computational generation of membrane protein conformations using AI and holds promise for studying the dynamics of other membrane proteins.
Collapse
Affiliation(s)
- Jingtian Xu
- College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Yong Wang
- College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
9
|
Li Y, Yang J, Zhang Q, Zhang K, Xue Q, Liu W, Ding X, Niu Z. CRISPR-Cas9 Mediated Gene Editing Platform Through Callus-to-Plant Regeneration and Functional Analysis of DoALA4─DoALA6 in Dendrobium officinale. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39641183 DOI: 10.1111/pce.15312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024]
Abstract
Dendrobium orchids are well known for their great horticultural and medicinal values; however, the CRISPR/Cas9 gene editing system for Dendrobium species still needs to be improved. Therefore, this study aims to establish a CRISPR/Cas9-based functional validation system using Dendrobium officinale as a model species for the Dendrobium genus and to validate the DoALA4─DoALA6 genes, which may relate to growth and disease resistance. We first conducted a bioinformatics analysis of the P-type ATPase gene family in D. officinale, revealing the evolutionary diversity of P-type ATPase genes in orchids. Second, we inserted the GFP gene into the vector of CRISPR/Cas9 gene editing system to enhance the selection efficiency of genome-edited plants. Comparative analysis showed that different explants exhibited varying transformation efficiencies, ranging from 5% to 46.2%. Considering the regeneration capability, survival rate and gene editing efficiency, we selected callus as the transformation explant. Third, we used this editing system to generate DoALA4─DoALA6 mutants. Phenotypic observations of the mutants and inoculation of D. officinale with Sclerotium rolfsii indicated that DoALA4─DoALA6 are crucial for the growth of D. officinale and its resistance to southern blight disease. This efficient and stable CRISPR/Cas9 platform offers a foundation for further gene studies and Dendrobium breeding.
Collapse
Affiliation(s)
- Ying Li
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, China
| | - Jiapeng Yang
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, China
| | - Qian Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, China
| | - Ke Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, China
| | - Qingyun Xue
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, China
| | - Wei Liu
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, China
| | - Xiaoyu Ding
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, China
| | - Zhitao Niu
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, China
| |
Collapse
|
10
|
Abe K, McDermott J, Valia Madapally H, Marimuthu P, Gopalasingam CC, Gerle C, Shigematsu H, Khandelia H, Blanco G. Molecular Structure of the Na +,K +-ATPase α4β1 Isoform in Its Ouabain-Bound Conformation. Int J Mol Sci 2024; 25:12397. [PMID: 39596464 PMCID: PMC11594824 DOI: 10.3390/ijms252212397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Na+,K+-ATPase is the active ion transport system that maintains the electrochemical gradients for Na+ and K+ across the plasma membrane of most animal cells. Na+,K+-ATPase is constituted by the association of two major subunits, a catalytic α and a glycosylated β subunit, both of which exist as different isoforms (in mammals known as α1, α2, α3, α4, β1, β2 and β3). Na+,K+-ATPase α and β isoforms assemble in different combinations to produce various isozymes with tissue specific expression and distinct biochemical properties. Na+,K+-ATPase α4β1 is only found in male germ cells of the testis and is mainly expressed in the sperm flagellum, where it plays a critical role in sperm motility and male fertility. Here, we report the molecular structure of Na+,K+-ATPase α4β1 at 2.37 Å resolution in the ouabain-bound state and in the presence of beryllium fluoride. Overall, Na+,K+-ATPase α4 structure exhibits the basic major domains of a P-Type ATPase, resembling Na+,K+-ATPase α1, but has differences specific to its distinct sequence. Dissimilarities include the site where the inhibitor ouabain binds. Molecular simulations indicate that glycosphingolipids can bind to a putative glycosphingolipid binding site, which could potentially modulate Na+,K+-ATPase α4 activity. This is the first experimental evidence for the structure of Na+,K+-ATPase α4β1. These data provide a template that will aid in better understanding the function Na+,K+-ATPase α4β1 and will be important for the design and development of compounds that can modulate Na+,K+-ATPase α4 activity for the purpose of improving male fertility or to achieve male contraception.
Collapse
Affiliation(s)
- Kazuhiro Abe
- Department of Chemistry, Faculty of Science, Hokkaido University, Hokkaido 060-0808, Japan
| | - Jeff McDermott
- Department of Cell Biology and Physiology, The University of Kansas Medical Center, Kansas City, KS 66103, USA;
| | - Hridya Valia Madapally
- PhyLife: Physical Life Science, Department of Physics Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense, Denmark; (H.V.M.); (H.K.)
| | - Parthiban Marimuthu
- Pharmaceutical Science Laboratory (PSL—Pharmacy) and Structural Bioinformatics Laboratory (SBL—Biochemistry), Faculty of Science and Engineering, Åbo Akademi University, FI-20520 Turku, Finland;
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai 602 105, India
| | | | - Christoph Gerle
- RIKEN SPring-8 Center, Kouto, Sayo-gun, Hyogo 679-5148, Japan; (C.C.G.); (C.G.)
| | - Hideki Shigematsu
- Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan;
| | - Himanshu Khandelia
- PhyLife: Physical Life Science, Department of Physics Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense, Denmark; (H.V.M.); (H.K.)
| | - Gustavo Blanco
- Department of Cell Biology and Physiology, The University of Kansas Medical Center, Kansas City, KS 66103, USA;
| |
Collapse
|
11
|
Lin Z, Zhu P, Gao L, Chen X, Li M, Wang Y, He J, Miao Y, Miao R. Recent Advances in Understanding the Regulatory Mechanism of Plasma Membrane H+-ATPase through the Brassinosteroid Signaling Pathway. PLANT & CELL PHYSIOLOGY 2024; 65:1515-1529. [PMID: 38372617 DOI: 10.1093/pcp/pcae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/28/2024] [Accepted: 02/02/2024] [Indexed: 02/20/2024]
Abstract
The polyhydroxylated steroid phytohormone brassinosteroid (BR) controls many aspects of plant growth, development and responses to environmental changes. Plasma membrane (PM) H+-ATPase, the well-known PM proton pump, is a central regulator in plant physiology, which mediates not only plant growth and development, but also adaptation to stresses. Recent studies highlight that PM H+-ATPase is at least partly regulated via the BR signaling. Firstly, the BR cell surface receptor BRASSINOSTEROID-INSENSITIVE 1 (BRI1) and multiple key components of BR signaling directly or indirectly influence PM H+-ATPase activity. Secondly, the SMALL AUXIN UP RNA (SAUR) gene family physically interacts with BRI1 to enhance organ development of Arabidopsis by activating PM H+-ATPase. Thirdly, RNA-sequencing (RNA-seq) assays showed that the expression of some SAUR genes is upregulated under the light or sucrose conditions, which is related to the phosphorylation state of the penultimate residue of PM H+-ATPase in a time-course manner. In this review, we describe the structural and functional features of PM H+-ATPase and summarize recent progress towards understanding the regulatory mechanism of PM H+-ATPase by BRs, and briefly introduce how PM H+-ATPase activity is modulated by its own biterminal regions and the post-translational modifications.
Collapse
Affiliation(s)
- Zhaoheng Lin
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Pan Zhu
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liyang Gao
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuanyi Chen
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meijing Li
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuhe Wang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Junxian He
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Ying Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rui Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
12
|
Steunou AS, Durand A, Liotenberg S, Bourbon ML, Ouchane S. Investigating MerR's Selectivity: The Crosstalk Between Cadmium and Copper Under Elevated Stress Conditions. Biomolecules 2024; 14:1429. [PMID: 39595605 PMCID: PMC11591864 DOI: 10.3390/biom14111429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/28/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Bacteria respond to metal pollution through sensors that control the uptake and the detoxification machineries. Specificity in metal recognition is therefore a prerequisite for triggering the appropriate response, particularly when facing a mixture of metals. In response to Cu+, the purple bacterium Rubrivivax gelatinosus induces the efflux Cu+-ATPase CopA by the Cu+ regulator CopR. However, genetic analyses have suggested the presence of additional regulators. Here, we show that CadR, the Cd2+ sensor, is involved in Cd2+ and Cu+ tolerance and demonstrate that CopR and CadR share common target genes. Interestingly, expression of the Cu+ detoxification and efflux (CopI/CopA) system was induced by Cd2+ and downregulated in the double mutant copRcadR-. This double mutant was more sensitive to low Cu+ concentration than the single copR- mutant, and accumulation of coproporphyrin III pointed to a significantly decreased expression of CopA. Furthermore, analyses of Cd2+ toxicity in the cadR- mutant suggested that although CopR is Cu+ selective, CopR is involved in Cd2+ response since the addition of Cu+ alleviates Cd2+ toxicity. Based on our current knowledge of metal transport across the inner membrane, Cd2+ and Cu+ do not share common efflux routes nor do they share common regulators. Nevertheless, the crosstalk between Cd2+ and Cu+ tolerance systems is demonstrated in the present study. The modulation of Cu+ detoxification by a Cd2+ regulator in vivo places emphasis on the relaxed selectivity, under elevated metal concentration, in MerR regulators.
Collapse
Affiliation(s)
- Anne Soisig Steunou
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France
| | | | | | | | - Soufian Ouchane
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France
| |
Collapse
|
13
|
Li P, Bågenholm V, Hägglund P, Lindkvist-Petersson K, Wang K, Gourdon P. The structure and function of P5A-ATPases. Nat Commun 2024; 15:9605. [PMID: 39505844 PMCID: PMC11541931 DOI: 10.1038/s41467-024-53757-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024] Open
Abstract
Endoplasmic reticulum (ER) membrane resident P5A-ATPases broadly affect protein biogenesis and quality control, and yet their molecular function remains debated. Here, we report cryo-EM structures of a P5A-ATPase, CtSpf1, covering multiple transport intermediates of the E1 → E1-ATP → E1P-ADP → E1P → E2P → E2.Pi → E2 → E1 cycle. In the E2P and E2.Pi states a cleft spans the entire membrane, holding a polypeptide cargo molecule. The cargo includes an ER luminal extension, pinpointed as the C-terminus in the E2.Pi state, which reenters the membrane in E2P. The E1 structure harbors a cytosol-facing cavity that is blocked by an insertion we refer to as the Plug-domain. The Plug-domain is nestled to key ATPase features and is displaced in the E1P-ADP and E1P states. Collectively, our findings are compatible with a broad range of proteins as cargo, with the P5A-ATPases serving a role in membrane removal of helices, although insertion/secretion cannot be excluded, as well as with a mechanistic role of the Plug-domain.
Collapse
Affiliation(s)
- Ping Li
- Department of Experimental Medical Science, Lund University, Sölvegatan 19, SE-221 84, Lund, Sweden.
| | - Viktoria Bågenholm
- Department of Biomedical Sciences, University of Copenhagen, Nørre Allé 14, DK-2200, Copenhagen N, Denmark
| | - Per Hägglund
- Department of Biomedical Sciences, University of Copenhagen, Nørre Allé 14, DK-2200, Copenhagen N, Denmark
| | | | - Kaituo Wang
- Department of Biomedical Sciences, University of Copenhagen, Nørre Allé 14, DK-2200, Copenhagen N, Denmark
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Pontus Gourdon
- Department of Experimental Medical Science, Lund University, Sölvegatan 19, SE-221 84, Lund, Sweden.
- Department of Biomedical Sciences, University of Copenhagen, Nørre Allé 14, DK-2200, Copenhagen N, Denmark.
| |
Collapse
|
14
|
Cao L, Liu L, Zhang C, Ren W, Zheng J, Tao C, Zhu W, Xiang M, Wang L, Liu Y, Cao S, Zheng P. The MYC2 and MYB43 transcription factors cooperate to repress HMA2 and HMA4 expression, altering cadmium tolerance in Arabidopsis thaliana. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135703. [PMID: 39226685 DOI: 10.1016/j.jhazmat.2024.135703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
Cadmium (Cd) represents a hazardous heavy metal, prevalent in agricultural soil due to industrial and agricultural expansion. Its propensity for being absorbed by edible plants, even at minimal concentrations, and subsequently transferred along the food chain poses significant risks to human health. Accordingly, it is imperative to investigate novel genes and mechanisms that govern Cd tolerance and detoxification in plants. Here, we discovered that the transcription factor MYC2 directly binds to the promoters of HMA2 and HMA4 to repress their expression, thereby altering the distribution of Cd in plant tissues and negatively regulating Cd stress tolerance. Additionally, molecular, biochemical, and genetic analyses revealed that MYC2 interacts and cooperates with MYB43 to negatively regulate the expression of HMA2 and HMA4 and Cd stress tolerance. Notably, under Cd stress conditions, MYC2 undergoes degradation, thereby alleviating its inhibitory effect on HMA2 and HMA4 expression and plant tolerance to Cd stress. Thus, our study highlights the dynamic regulatory role of MYC2, in concert with MYB43, in regulating the expression of HMA2 and HMA4 under both normal and Cd stress conditions. These findings present MYC2 as a promising target for directed breeding efforts aimed at mitigating Cd accumulation in edible plant roots.
Collapse
Affiliation(s)
- Lei Cao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Linyao Liu
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Cheng Zhang
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Wangmei Ren
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Jiale Zheng
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Cheng Tao
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Wenyan Zhu
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Minghao Xiang
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Lihuan Wang
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Yongsheng Liu
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Shuqing Cao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China.
| | - Pengpeng Zheng
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
15
|
Ahmad MZ, Chen S, Qi X, Feng J, Chen H, Liu X, Sun M, Deng Y. Genome wide analysis of HMA gene family in Hydrangea macrophylla and characterization of HmHMA2 in response to aluminum stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109182. [PMID: 39405998 DOI: 10.1016/j.plaphy.2024.109182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024]
Abstract
Aluminum toxicity poses a significant threat to plant growth, especially in acidic soils. Heavy metal ATPases (HMAs) are crucial for transporting heavy metal ions across plant cell membranes, yet their role in Al3+ transport remains unexplored. This study identified eight HmHMA genes in the genome of Hydrangea macrophylla, categorizing them into two major clades based on phylogenetic relationships. These genes were found unevenly distributed across six chromosomes. Detailed analysis of their physicochemical properties, collinearity, and gene structure was conducted. RNA-seq and qRT-PCR analyses revealed that specific HmHMA genes, notably HmHMA2, were predominantly expressed in roots and flowers under Al3+ stress, indicating their potential role in Al3+ tolerance. HmHMA2 showed significant expression in roots, especially under Al3+ stress conditions, and when expressed in yeast cells, it conferred resistance to aluminum and zinc but increased sensitivity to cadmium. Overexpression of HmHMA2 in hydrangea leaf discs significantly improved Al3+ tolerance, reduced oxidative stress markers like hydrogen peroxide and malondialdehyde, and enhanced antioxidant enzyme activity such as SOD, POD and CAT compared to controls. These findings shed lights on the potential role of HmHMAs in Al transport and tolerance in H. macrophylla.
Collapse
Affiliation(s)
- Muhammad Zulfiqar Ahmad
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, Jiangsu, China
| | - Shuangshuang Chen
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, Jiangsu, China
| | - Xiangyu Qi
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, Jiangsu, China
| | - Jing Feng
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, Jiangsu, China
| | - Huijie Chen
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, Jiangsu, China
| | - Xintong Liu
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, Jiangsu, China
| | - Ming Sun
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, 100083, Beijing, China
| | - Yanming Deng
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, Jiangsu, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, 100083, Beijing, China.
| |
Collapse
|
16
|
Dhalla NS, Elimban V, Adameova AD. Role of Na +-K + ATPase Alterations in the Development of Heart Failure. Int J Mol Sci 2024; 25:10807. [PMID: 39409137 PMCID: PMC11476929 DOI: 10.3390/ijms251910807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
Na+-K+ ATPase is an integral component of cardiac sarcolemma and consists of three major subunits, namely the α-subunit with three isoforms (α1, α2, and α3), β-subunit with two isoforms (β1 and β2) and γ-subunit (phospholemman). This enzyme has been demonstrated to transport three Na and two K ions to generate a trans-membrane gradient, maintain cation homeostasis in cardiomyocytes and participate in regulating contractile force development. Na+-K+ ATPase serves as a receptor for both exogenous and endogenous cardiotonic glycosides and steroids, and a signal transducer for modifying myocardial metabolism as well as cellular survival and death. In addition, Na+-K+ ATPase is regulated by different hormones through the phosphorylation/dephosphorylation of phospholemman, which is tightly bound to this enzyme. The activity of Na+-K+ ATPase has been reported to be increased, unaltered and depressed in failing hearts depending upon the type and stage of heart failure as well as the association/disassociation of phospholemman and binding with endogenous cardiotonic steroids, namely endogenous ouabain and marinobufagenin. Increased Na+-K+ ATPase activity in association with a depressed level of intracellular Na+ in failing hearts is considered to decrease intracellular Ca2+ and serve as an adaptive mechanism for maintaining cardiac function. The slight to moderate depression of Na+-K+ ATPase by cardiac glycosides in association with an increased level of Na+ in cardiomyocytes is known to produce beneficial effects in failing hearts. On the other hand, markedly reduced Na+-K+ ATPase activity associated with an increased level of intracellular Na+ in failing hearts has been demonstrated to result in an intracellular Ca2+ overload, the occurrence of cardiac arrhythmias and depression in cardiac function during the development of heart failure. Furthermore, the status of Na+-K+ ATPase activity in heart failure is determined by changes in isoform subunits of the enzyme, the development of oxidative stress, intracellular Ca2+-overload, protease activation, the activity of inflammatory cytokines and sarcolemmal lipid composition. Evidence has been presented to show that marked alterations in myocardial cations cannot be explained exclusively on the basis of sarcolemma alterations, as other Ca2+ channels, cation transporters and exchangers may be involved in this event. A marked reduction in Na+-K+ ATPase activity due to a shift in its isoform subunits in association with intracellular Ca2+-overload, cardiac energy depletion, increased membrane permeability, Ca2+-handling abnormalities and damage to myocardial ultrastructure appear to be involved in the progression of heart failure.
Collapse
Affiliation(s)
- Naranjan S. Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada;
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Vijayan Elimban
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada;
| | - Adriana Duris Adameova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, 83232 Bratislava, Slovakia;
| |
Collapse
|
17
|
Moraes CM, Fabri LM, Garçon DP, Augusto A, Faria SC, McNamara JC, Leone FA. Kinetic properties of gill (Na +, K +)-ATPase in the Pacific whiteleg shrimp Penaeus vannamei (Decapoda, Penaeidae). Comp Biochem Physiol B Biochem Mol Biol 2024; 275:111038. [PMID: 39374865 DOI: 10.1016/j.cbpb.2024.111038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/21/2024] [Accepted: 10/02/2024] [Indexed: 10/09/2024]
Abstract
The whiteleg marine shrimp Penaeus vannamei, originally from the Eastern Pacific Ocean, now inhabits tropical waters across Asia and Central and Southern America. This benthic species exhibits rapid growth, wide salinity and temperature tolerance, and disease resistance. These physiological traits have led to extensive research on its osmoregulatory mechanisms, including next-generation sequencing, transcriptomic analyses, and lipidomic responses. In crustaceans, osmotic and ionic homeostasis is primarily maintained by the membrane-bound metalloenzyme (Na+, K+)-ATPase. However, little is known about how various ligands modulate this enzyme in P. vannamei. Here, we examined the kinetic characteristics of the gill (Na+, K+)-ATPase to get biochemical insights into its modulation. A prominent immunoreactive band of ~120 kDa, corresponding to the (Na+, K+)-ATPase alpha-subunit, was identified. The enzyme exhibited two ATP hydrolyzing sites with K0.5 = 0.0003 ± 0.00002 and 0.05 ± 0.003 mmol L-1 and was stimulated by low sodium ion concentrations. Potassium and ammonium ions also stimulated enzyme activity with similar K0.5 values of 0.08 ± 0.004 and 0.06 ± 0.003 mmol L-1, respectively. Ouabain inhibition profile suggested a single enzyme isoform with a KI value of 2.10 ± 0.16 mmol L-1. Our findings showed significant kinetic differences in the (Na+, K+)-ATPase in Penaeus vannamei compared to marine and freshwater crustaceans. We expect our results to enhance understanding of the modulation of gill (Na+, K+)-ATPase in Penaeus vannamei and to provide a valuable tool for studying the shrimp's biochemical acclimation to varying salinity conditions.
Collapse
Affiliation(s)
- Cintya M Moraes
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Brazil
| | - Leonardo M Fabri
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Brazil
| | | | - Alessandra Augusto
- lnstituto de Biociências, Universidade Estadual Paulista, Campus Experimental do Litoral Paulista, São Vicente, Brazil
| | - Samuel C Faria
- Centro de Biologia Marinha, Universidade de São Paulo, São Sebastião, Brazil
| | - John C McNamara
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil; Centro de Biologia Marinha, Universidade de São Paulo, São Sebastião, Brazil
| | - Francisco A Leone
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
18
|
Flannery KP, Safwat S, Matsell E, Battula N, Hamed AAA, Mohamed IN, Elseed MA, Koko M, Abubaker R, Abozar F, Elsayed LEO, Bhise V, Molday RS, Salih MA, Yahia A, Manzini MC. A novel missense variant in the ATPase domain of ATP8A2 and review of phenotypic variability of ATP8A2-related disorders caused by missense changes. Neurogenetics 2024; 25:425-433. [PMID: 39066872 PMCID: PMC11534842 DOI: 10.1007/s10048-024-00773-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024]
Abstract
ATPase, class 1, type 8 A, member 2 (ATP8A2) is a P4-ATPase with a critical role in phospholipid translocation across the plasma membrane. Pathogenic variants in ATP8A2 are known to cause cerebellar ataxia, impaired intellectual development, and disequilibrium syndrome 4 (CAMRQ4) which is often associated with encephalopathy, global developmental delay, and severe motor deficits. Here, we present a family with two siblings born from a consanguineous, first-cousin union from Sudan presenting with global developmental delay, intellectual disability, spasticity, ataxia, nystagmus, and thin corpus callosum. Whole exome sequencing revealed a homozygous missense variant in the nucleotide binding domain of ATP8A2 (p.Leu538Pro) that results in near complete loss of protein expression. This is in line with other missense variants in the same domain leading to protein misfolding and loss of ATPase function. In addition, by performing diffusion-weighted imaging, we identified bilateral hyperintensities in the posterior limbs of the internal capsule suggesting possible microstructural changes in axon tracts that had not been appreciated before and could contribute to the sensorimotor deficits in these individuals.
Collapse
Affiliation(s)
- Kyle P Flannery
- Department of Neuroscience & Cell Biology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Sylvia Safwat
- Department of Neuroscience & Cell Biology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Eli Matsell
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, B.C, Canada
| | - Namarata Battula
- Department of Neuroscience & Cell Biology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Ahlam A A Hamed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Inaam N Mohamed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Maha A Elseed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Mahmoud Koko
- Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Rayan Abubaker
- Sudanese Neurogenetics Research group, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Fatima Abozar
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Liena E O Elsayed
- Department of Basic Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh, Riyadh, 11671, Saudi Arabia
| | - Vikram Bhise
- Department of Pediatrics and Neurology, Rutgers - Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Robert S Molday
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, B.C, Canada
| | - Mustafa A Salih
- Consultant Pediatric Neurologist, Health Sector, King Abdulaziz City for Science and Technology, Riyadh, 11442, Saudi Arabia
| | - Ashraf Yahia
- Department of Biochemistry, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet and Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Solna, Sweden
| | - M Chiara Manzini
- Department of Neuroscience & Cell Biology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA.
- Department of Neuroscience and Cell Biology, Child Health Institute of New Jersey, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
19
|
Sai KV, Lee JYE. Crossing the membrane-What does it take to flip a phospholipid? Structural and biochemical advances on P4-ATPase flippases. J Biol Chem 2024; 300:107738. [PMID: 39233230 PMCID: PMC11460456 DOI: 10.1016/j.jbc.2024.107738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024] Open
Abstract
Membrane asymmetry is critical for maintenance of several different processes such as cell signaling, apoptosis, and vesicular transport in various eukaryotic systems. Flippases of the P4-ATPase family are associated with flipping phospholipids from the luminal or exoplasmic leaflet to the cytosolic leaflet. P4-ATPases belong to the P-type ATPase family, which are activated by phosphorylation and couple ATPase activity to substrate translocation. These proteins possess a transmembrane domain responsible for substrate transport, while the cytosolic machinery performs the necessary ATP hydrolysis for this process. Several high-resolution structures of human or yeast P4-ATPases have recently been resolved, but a comprehensive overview of the changes for reaction cycle in different members was crucial for future research. In this review, we have compiled available data reflecting the reaction cycle-associated changes in conformation of P4-ATPases. Together, this will provide an improved understanding of the similarities and differences between these members, which will drive further structural, functional, and computational studies to understand the mechanisms of these flippases.
Collapse
Affiliation(s)
- Kadambari Vijay Sai
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Jyh-Yeuan Eric Lee
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
20
|
Ramírez-Alonso JI, Sampedro JG. Effect of Cations on ATP Binding to the N-domain of Na +, K +-ATPase. J Fluoresc 2024:10.1007/s10895-024-03922-3. [PMID: 39298054 DOI: 10.1007/s10895-024-03922-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/04/2024] [Indexed: 09/21/2024]
Abstract
The nucleotide-binding domain (N-domain) of the Na+, K+-ATPase (NKA) is physicochemically characterized by a high content of Glu and Asp residues, resulting in a low isoelectric point (pI = 5.0). Acidic proteins are known to interact with cations. The analysis in silico revealed potential cation interaction sites in the NKA N-domain structure. The interaction with cations was tested in vitro by using a recombinant NKA N-domain. The N-domain contains two Trp residues at the protein surface, as determined by acrylamide-mediated fluorescence quenching, that are useful for structural studies through fluorescence changes. Intrinsic fluorescence of the N-domain was decreased by the presence of cations (Na+, K+, Ca2+) indicating an effect on the protein structure. ATP binding also decreased the N-domain intrinsic fluorescence, which allowed nucleotide affinity determination. In the presence of cations, the N-domain affinity for ATP was increased. Molecular docking of fluorescein isothiocyanate (FITC) with the N-domain showed two binding modes with the isothiocyanate group located 5-6 Å close to Lys485 and Lys506 in the nucleotide-binding site. The presence of ATP prevented the FITC covalent labeling of the N-domain demonstrating the competitive behavior for the binding site. It is proposed that cations interact with the N-domain structure and thereby modulate nucleotide (ATP) affinity and possibly affecting NKA catalysis.
Collapse
Affiliation(s)
- Jocelin I Ramírez-Alonso
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Av. Parque Chapultepec 1570, Privadas del Pedregal, San Luis Potosí, SLP, C.P. 78295, México
| | - José G Sampedro
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Av. Parque Chapultepec 1570, Privadas del Pedregal, San Luis Potosí, SLP, C.P. 78295, México.
| |
Collapse
|
21
|
Tanveer M, Xing Z, Huang L, Wang L, Shabala S. Effects of superoxide radical on photosynthesis and K + and redox homeostasis in quinoa and spinach. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108886. [PMID: 38950461 DOI: 10.1016/j.plaphy.2024.108886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/30/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024]
Abstract
Methyl viologen (MV), also known as paraquat, is a widely used herbicide but has also been reported as highly toxic to different life forms. The mode of its operation is related to superoxide radical (O2.-) production and consequent oxidative damage. However, besides the damage to key macromolecules, reactive oxygen species (ROS; to which O2.- belongs) are also known as regulators of numerous ion transport systems located at cellular membranes. In this study, we used MV as a tool to probe the role of O2.- in regulating membrane-transport activity and systemic acquired tolerance in halophytic Chenopodium quinoa and glycophytic spinach plants. Both plant species showed growth reduction in terms of reduced shoot length, lower shoot fresh and dry weight, photosynthesis rate, and chlorophyll contents; however, quinoa showed less reduction in growth compared with spinach. This whole plant response was further examined by measuring the ion concentration, gene expression of ion transporters, activation of antioxidants, and osmolyte accumulation. We observed that at the mechanistic level, the differences in growth in response to MV were conferred by at least four complementary physiological mechanisms: (1) higher K+ loss from spinach leaves resulted from higher expression of MV-induced plasma membrane-based depolarization-activated K+ efflux GORK channel, (2) higher activation of high-affinity K+ uptake transporter HAK5 in quinoa, (3) higher antioxidant production and osmolyte accumulation in quinoa as compared with spinach, and (4) maintaining a higher rate of photosynthesis due to higher chlorophyll contents, and efficiency of photosystem II and reduced ROS and MDA contents. Obtained results also showed that MV induced O2.- significantly reduced N contents in both species but with more pronounced effects in glycophytic spinach. Taken together this study has shown the role of O2.- in regulating membrane ion transport and N metabolism in the leaves of halophyte vs. glycophyte in the context of oxidative stress tolerance.
Collapse
Affiliation(s)
- Mohsin Tanveer
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Zeming Xing
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Liping Huang
- International Research Centre for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| | - Lei Wang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
| | - Sergey Shabala
- International Research Centre for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China; School of Biological Sciences, University of Western Australia, Perth, 6009, Australia.
| |
Collapse
|
22
|
Li X, Li S, Zhang W, Wang Q, Zou W. Impacts of P4-ATPase Deletion on Membrane Asymmetry and Disease Development. Cell Biochem Funct 2024; 42:e70004. [PMID: 39425455 DOI: 10.1002/cbf.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/21/2024]
Abstract
Phospholipids exhibit an asymmetrical distribution on the cell membrane. P4-ATPases, type IV lipid flippases, are responsible for establishing and maintaining this phospholipid compositional asymmetry. The essential β subunit CDC50 (also known as TMEM30) assists in the transport and proper functioning of P4-ATPases. Deletion of P4-ATPases and its β subunit disrupts the membrane asymmetry, impacting the growth and development and leading to various diseases affecting the nervous, skeletal muscle, digestive, and hematopoietic systems. This review discusses the crucial roles of P4-ATPases and their β subunit in Saccharomyces cerevisiae, Arabidopsis thaliana, Caenorhabditis elegans, and mammals, offering valuable insights for future research.
Collapse
Affiliation(s)
- Xinyu Li
- School of Public Health, Kunming Medical University, Kunming, China
| | - Shuzhen Li
- School of Public Health, Kunming Medical University, Kunming, China
| | - Weipu Zhang
- School of Public Health, Kunming Medical University, Kunming, China
| | - Qi Wang
- School of Public Health, Kunming Medical University, Kunming, China
| | - Wei Zou
- School of Public Health, Kunming Medical University, Kunming, China
| |
Collapse
|
23
|
Zhang D, Li Y, Pan J, Zheng Y, Xu X. Copper homeostasis and cuproptosis in radiation-induced injury. Biomed Pharmacother 2024; 178:117150. [PMID: 39047417 DOI: 10.1016/j.biopha.2024.117150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
Radiation therapy for cancer treatment brings about a series of radiation injuries to normal tissues. In recent years, the discovery of copper-regulated cell death, cuproptosis, a novel form of programmed cell death, has attracted widespread attention and exploration in various biological functions and pathological mechanisms of copper metabolism and cuproptosis. Understanding its role in the process of radiation injury may open up new avenues and directions for exploration in radiation biology and radiation oncology, thereby improving tumor response and mitigating adverse reactions to radiotherapy. This review provides an overview of copper metabolism, the characteristics of cuproptosis, and their potential regulatory mechanisms in radiation injury.
Collapse
Affiliation(s)
- Daoming Zhang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuan Li
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jinghui Pan
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yongfa Zheng
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Ximing Xu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
24
|
Zhou S, Wang W, Wang P, Ma H, Li W. The role of reactive oxygen species in regulation of the plasma membrane H+-ATPase activity in Masson pine (Pinus massoniana Lamb.) roots responding to acid stress. TREE PHYSIOLOGY 2024; 44:tpae083. [PMID: 38982738 DOI: 10.1093/treephys/tpae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/21/2024] [Accepted: 07/04/2024] [Indexed: 07/11/2024]
Abstract
To understand the role of reactive oxygen species (ROS) in regulation of the plasma membrane (PM) H+-ATPase in acid-stressed Masson pine roots, different acidity (pH 6.6 as the control, pH 5.6 and pH 4.6) of simulated acid rain (SAR) added with and without external chemicals (H2O2, enzyme inhibitors and ROS scavenger) was prepared. After 30 days of SAR exposure, the plant morphological phenotype attributes, levels of cellular ROS and lipid peroxidation, enzymatic activities of antioxidants, PM nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity and PM H+-ATPase activity in pine seedlings were measured. Compared with the control, the growth of pine seedlings exposed to SAR in the presence or absence of H2O2 was well-maintained, but the application of Na3VO4, 1,3-dimethyl-2-thiourea, N, N-dimethylthiourea (DMTU) and diphenyleneiodonium chloride (DPI) caused a substantial growth inhibition. In addition, SAR exposure, SAR with H2O2 treatment, and SAR with Na3VO4 treatment increased the cellular H2O2 content, O2- content and malondialdehyde (MDA) content, while the use of DMTU and DPI lead to relatively low levels. Similarly, the enzymatic activities of antioxidants, PM NADPH oxidase and PM H+-ATPase in acid stressed pine seedlings elevated with the increasing acidity. A significant stimulation of these enzymatic activities obtained from SAR with H2O2 treatment was observed, whereas which decreased obviously with the addition of Na3VO4, DMTU and DPI (P < 0.05). Moreover, a positive correlation was found between plant morphological attributes and the PM H+-ATPase activity (P < 0.05). Besides, the PM H+-ATPase activity positively correlated with the cellular ROS contents and the enzymatic activities of antioxidants and PM NADPH oxidase (P < 0.05). Therefore, the PM H+-ATPase is instrumental in the growth of pine seedlings resisting to acid stress by enhancing its activity. The process involves the signaling transduction of cellular ROS and coordination with PM NADPH oxidase.
Collapse
Affiliation(s)
- Sijie Zhou
- College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, P.R. China
- Cooperative College, Jiangsu Vocational College of Business, Nantong 226011, P.R. China
| | - Wenxin Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Ping Wang
- College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, P.R. China
| | - Huiyan Ma
- College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, P.R. China
| | - Wenhui Li
- College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, P.R. China
| |
Collapse
|
25
|
Jain R, Srivastava H, Kumar K, Sharma S, Singh A, Gaikwad K. Understanding the role of P-type ATPases in regulating pollen fertility and development in pigeonpea. Mol Genet Genomics 2024; 299:68. [PMID: 38980531 DOI: 10.1007/s00438-024-02155-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 06/08/2024] [Indexed: 07/10/2024]
Abstract
The P-type ATPase superfamily genes are the cation and phospholipid pumps that transport ions across the membranes by hydrolyzing ATP. They are involved in a diverse range of functions, including fundamental cellular events that occur during the growth of plants, especially in the reproductive organs. The present work has been undertaken to understand and characterize the P-type ATPases in the pigeonpea genome and their potential role in anther development and pollen fertility. A total of 59 P-type ATPases were predicted in the pigeonpea genome. The phylogenetic analysis classified the ATPases into five subfamilies: eleven P1B, eighteen P2A/B, fourteen P3A, fifteen P4, and one P5. Twenty-three pairs of P-type ATPases were tandemly duplicated, resulting in their expansion in the pigeonpea genome during evolution. The orthologs of the reported anther development-related genes were searched in the pigeonpea genome, and the expression profiling studies of specific genes via qRT-PCR in the pre- and post-meiotic anther stages of AKCMS11A (male sterile), AKCMS11B (maintainer) and AKPR303 (fertility restorer) lines of pigeonpea was done. Compared to the restorer and maintainer lines, the down-regulation of CcP-typeATPase22 in the post-meiotic anthers of the male sterile line might have played a role in pollen sterility. Furthermore, the strong expression of CcP-typeATPase2 in the post-meiotic anthers of restorer line and CcP-typeATPase46, CcP-typeATPase51, and CcP-typeATPase52 in the maintainer lines, respectively, compared to the male sterile line, clearly indicates their potential role in developing male reproductive organs in pigeonpea.
Collapse
Affiliation(s)
- Rishu Jain
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
- Department of Biotechnology, TERI School of Advanced Studies, 10 Institutional Area, Vasant Kunj, New Delhi, 110070, India
| | - Harsha Srivastava
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Kuldeep Kumar
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
- ICAR-Indian Institute of Pulses Research, Kanpur, Uttar Pradesh, 208024, India
| | - Sandhya Sharma
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Anandita Singh
- Department of Biotechnology, TERI School of Advanced Studies, 10 Institutional Area, Vasant Kunj, New Delhi, 110070, India
| | - Kishor Gaikwad
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India.
| |
Collapse
|
26
|
Huang XY, Shen JY, Huang K, Wang L, Sethi G, Ma Z. Cuproptosis in cancers: Function and implications from bench to bedside. Biomed Pharmacother 2024; 176:116874. [PMID: 38850661 DOI: 10.1016/j.biopha.2024.116874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/15/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Copper, an indispensable micronutrient, is implicated in numerous vital biological processes and is essential for all physiological activities. Recently, the discovery of a novel type of copper-dependent cell death, known as cuproptosis, has shed light on its role in cancer development. Extensive research is currently underway to unravel the mechanisms underlying cuproptosis and its correlation with various cancer types. In this review, we summarize the findings regarding the roles and mechanisms of cuproptosis in various cancer types, including colorectal cancer, lung cancer, gastric cancer, breast cancer, liver cancer and cutaneous melanoma. Furthermore, the effects of copper-related agents such as copper chelators and copper ionophores on cell proliferation, apoptosis, angiogenesis, tumor immunity, and chemotherapy resistance have been explored in cancer preclinical and clinical trials. These insights provide promising avenues for the development of prospective anticancer drugs aimed at inducing cuproptosis.
Collapse
Affiliation(s)
- Xin-Yi Huang
- School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China
| | - Jia-Yang Shen
- School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China
| | - Ke Huang
- School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; NUS Centre for Cancer Research (N2CR), National University of Singapore, 117599 Singapore; Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; NUS Centre for Cancer Research (N2CR), National University of Singapore, 117599 Singapore.
| | - Zhaowu Ma
- School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China.
| |
Collapse
|
27
|
Lin Y, Yuan M, Wang G. Copper homeostasis and cuproptosis in gynecological disorders: Pathogenic insights and therapeutic implications. J Trace Elem Med Biol 2024; 84:127436. [PMID: 38547725 DOI: 10.1016/j.jtemb.2024.127436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/16/2024] [Accepted: 03/17/2024] [Indexed: 05/27/2024]
Abstract
This review comprehensively explores the complex role of copper homeostasis in female reproductive system diseases. As an essential trace element, copper plays a crucial role in various biological functions. Its dysregulation is increasingly recognized as a pivotal factor in the pathogenesis of gynecological disorders. We investigate how copper impacts these diseases, focusing on aspects like oxidative stress, inflammatory responses, immune function, estrogen levels, and angiogenesis. The review highlights significant changes in copper levels in diseases such as cervical, ovarian, endometrial cancer, and endometriosis, underscoring their potential roles in disease mechanisms and therapeutic exploration. The recent discovery of 'cuproptosis,' a novel cell death mechanism induced by copper ions, offers a fresh molecular perspective in understanding these diseases. The review also examines genes associated with cuproptosis, particularly those related to drug resistance, suggesting new strategies to enhance traditional therapy effectiveness. Additionally, we critically evaluate current therapeutic approaches targeting copper homeostasis, including copper ionophores, chelators, and nanoparticles, emphasizing their emerging potential in gynecological disease treatment. This article aims to provide a comprehensive overview of copper's role in female reproductive health, setting the stage for future research to elucidate its mechanisms and develop targeted therapeutic strategies.
Collapse
Affiliation(s)
- Ying Lin
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, China; Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China; Jinan Key Laboratory of Diagnosis and Treatment of Major Gynecological Disease, Jinan, Shandong Province China; Gynecology Laboratory, Shandong Provincial Hospital, Jinan Shandong Province, China; Gynecology Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan Shandong Province, China
| | - Ming Yuan
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, China; Jinan Key Laboratory of Diagnosis and Treatment of Major Gynecological Disease, Jinan, Shandong Province China; Gynecology Laboratory, Shandong Provincial Hospital, Jinan Shandong Province, China; Gynecology Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan Shandong Province, China
| | - Guoyun Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, China; Jinan Key Laboratory of Diagnosis and Treatment of Major Gynecological Disease, Jinan, Shandong Province China; Gynecology Laboratory, Shandong Provincial Hospital, Jinan Shandong Province, China; Gynecology Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan Shandong Province, China.
| |
Collapse
|
28
|
Zhang F, Yuan A, Nie Z, Chu M, An Y. Identification of the potato ( Solanum tuberosum L.) P-type ATPase gene family and investigating the role of PHA2 in response to Pep13. FRONTIERS IN PLANT SCIENCE 2024; 15:1353024. [PMID: 38903445 PMCID: PMC11187005 DOI: 10.3389/fpls.2024.1353024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/21/2024] [Indexed: 06/22/2024]
Abstract
P-type ATPase family members play important roles in plant growth and development and are involved in plant resistance to various biotic and abiotic factors. Extensive studies have been conducted on the P-type ATPase gene families in Arabidopsis thaliana and rice but our understanding in potato remains relatively limited. Therefore, this study aimed to screen and analyze 48 P-type ATPase genes from the potato (Solanum tuberosum L.) genome database at the genome-wide level. Potato P-type ATPase genes were categorized into five subgroups based on the phylogenetic classification of the reported species. Additionally, several bioinformatic analyses, including gene structure analysis, chromosomal position analysis, and identification of conserved motifs and promoter cis-acting elements, were performed. Interestingly, the plasma membrane H+-ATPase (PM H+-ATPase) genes of one of the P3 subgroups showed differential expression in different tissues of potato. Specifically, PHA2, PHA3, and PHA7 were highly expressed in the roots, whereas PHA8 was expressed in potatoes only under stress. Furthermore, the small peptide Pep13 inhibited the expression of PHA1, PHA2, PHA3, and PHA7 in potato roots. Transgenic plants heterologously overexpressing PHA2 displayed a growth phenotype sensitive to Pep13 compared with wild-type plants. Further analysis revealed that reducing potato PM H+-ATPase enzyme activity enhanced resistance to Pep13, indicating the involvement of PM H+-ATPase in the physiological process of potato late blight and the enhancement of plant disease resistance. This study confirms the critical role of potato PHA2 in resistance to Pep13.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Food Science and Engineering, Moutai Institute, Renhuai, Guizhou, China
- Agriculture Science Institute of Bijie, Bijie, Guizhou, China
| | - Anping Yuan
- Department of Food Science and Engineering, Moutai Institute, Renhuai, Guizhou, China
| | - Zongyue Nie
- Agriculture Science Institute of Bijie, Bijie, Guizhou, China
| | - Moli Chu
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources/College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Yanlin An
- Department of Food Science and Engineering, Moutai Institute, Renhuai, Guizhou, China
| |
Collapse
|
29
|
Liu L, Liu X, Bai Z, Tanveer M, Zhang Y, Chen W, Shabala S, Huang L. Small but powerful: RALF peptides in plant adaptive and developmental responses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 343:112085. [PMID: 38588983 DOI: 10.1016/j.plantsci.2024.112085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/10/2024]
Abstract
Plants live in a highly dynamic environment and require to rapidly respond to a plethora of environmental stimuli, so that to maintain their optimal growth and development. A small plant peptide, rapid alkalization factor (RALF), can rapidly increase the pH value of the extracellular matrix in plant cells. RALFs always function with its corresponding receptors. Mechanistically, effective amount of RALF is induced and released at the critical period of plant growth and development or under different external environmental factors. Recent studies also highlighted the role of RALF peptides as important regulators in plant intercellular communications, as well as their operation in signal perception and as ligands for different receptor kinases on the surface of the plasma membrane, to integrate various environmental cues. In this context, understanding the fine-print of above processes may be essential to solve the problems of crop adaptation to various harsh environments under current climate trends scenarios, by genetic means. This paper summarizes the current knowledge about the structure and diversity of RALF peptides and their roles in plant development and response to stresses, highlighting unanswered questions and problems to be solved.
Collapse
Affiliation(s)
- Lining Liu
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Xing Liu
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Zhenkun Bai
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Mohsin Tanveer
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Yujing Zhang
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Wenjie Chen
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Sergey Shabala
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China; School of Biological Science, University of Western Australia, Crawley, Perth, Australia.
| | - Liping Huang
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China.
| |
Collapse
|
30
|
Gaschignard G, Millet M, Bruley A, Benzerara K, Dezi M, Skouri-Panet F, Duprat E, Callebaut I. AlphaFold2-guided description of CoBaHMA, a novel family of bacterial domains within the heavy-metal-associated superfamily. Proteins 2024; 92:776-794. [PMID: 38258321 DOI: 10.1002/prot.26668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/22/2023] [Accepted: 01/01/2024] [Indexed: 01/24/2024]
Abstract
Three-dimensional (3D) structure information, now available at the proteome scale, may facilitate the detection of remote evolutionary relationships in protein superfamilies. Here, we illustrate this with the identification of a novel family of protein domains related to the ferredoxin-like superfold, by combining (i) transitive sequence similarity searches, (ii) clustering approaches, and (iii) the use of AlphaFold2 3D structure models. Domains of this family were initially identified in relation with the intracellular biomineralization of calcium carbonates by Cyanobacteria. They are part of the large heavy-metal-associated (HMA) superfamily, departing from the latter by specific sequence and structural features. In particular, most of them share conserved basic amino acids (hence their name CoBaHMA for Conserved Basic residues HMA), forming a positively charged surface, which is likely to interact with anionic partners. CoBaHMA domains are found in diverse modular organizations in bacteria, existing in the form of monodomain proteins or as part of larger proteins, some of which are membrane proteins involved in transport or lipid metabolism. This suggests that the CoBaHMA domains may exert a regulatory function, involving interactions with anionic lipids. This hypothesis might have a particular resonance in the context of the compartmentalization observed for cyanobacterial intracellular calcium carbonates.
Collapse
Affiliation(s)
- Geoffroy Gaschignard
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | - Maxime Millet
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | - Apolline Bruley
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | - Karim Benzerara
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | - Manuela Dezi
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | - Feriel Skouri-Panet
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | - Elodie Duprat
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | - Isabelle Callebaut
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| |
Collapse
|
31
|
Contreras RG, Torres-Carrillo A, Flores-Maldonado C, Shoshani L, Ponce A. Na +/K +-ATPase: More than an Electrogenic Pump. Int J Mol Sci 2024; 25:6122. [PMID: 38892309 PMCID: PMC11172918 DOI: 10.3390/ijms25116122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
The sodium pump, or Na+/K+-ATPase (NKA), is an essential enzyme found in the plasma membrane of all animal cells. Its primary role is to transport sodium (Na+) and potassium (K+) ions across the cell membrane, using energy from ATP hydrolysis. This transport creates and maintains an electrochemical gradient, which is crucial for various cellular processes, including cell volume regulation, electrical excitability, and secondary active transport. Although the role of NKA as a pump was discovered and demonstrated several decades ago, it remains the subject of intense research. Current studies aim to delve deeper into several aspects of this molecular entity, such as describing its structure and mode of operation in atomic detail, understanding its molecular and functional diversity, and examining the consequences of its malfunction due to structural alterations. Additionally, researchers are investigating the effects of various substances that amplify or decrease its pumping activity. Beyond its role as a pump, growing evidence indicates that in various cell types, NKA also functions as a receptor for cardiac glycosides like ouabain. This receptor activity triggers the activation of various signaling pathways, producing significant morphological and physiological effects. In this report, we present the results of a comprehensive review of the most outstanding studies of the past five years. We highlight the progress made regarding this new concept of NKA and the various cardiac glycosides that influence it. Furthermore, we emphasize NKA's role in epithelial physiology, particularly its function as a receptor for cardiac glycosides that trigger intracellular signals regulating cell-cell contacts, proliferation, differentiation, and adhesion. We also analyze the role of NKA β-subunits as cell adhesion molecules in glia and epithelial cells.
Collapse
Affiliation(s)
| | | | | | | | - Arturo Ponce
- Department of Physiology, Biophysics and Neurosciences, CINVESTAV-IPN, Mexico City 07360, Mexico; (R.G.C.); (A.T.-C.); (C.F.-M.); (L.S.)
| |
Collapse
|
32
|
Duan HD, Li H. Consensus, controversies, and conundrums of P4-ATPases: The emerging face of eukaryotic lipid flippases. J Biol Chem 2024; 300:107387. [PMID: 38763336 PMCID: PMC11225554 DOI: 10.1016/j.jbc.2024.107387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/21/2024] Open
Abstract
The cryo-EM resolution revolution has heralded a new era in our understanding of eukaryotic lipid flippases with a rapidly growing number of high-resolution structures. Flippases belong to the P4 family of ATPases (type IV P-type ATPases) that largely follow the reaction cycle proposed for the more extensively studied cation-transporting P-type ATPases. However, unlike the canonical P-type ATPases, no flippase cargos are transported in the phosphorylation half-reaction. Instead of being released into the intracellular or extracellular milieu, lipid cargos are transported to their destination at the inner leaflet of the membrane. Recent flippase structures have revealed multiple conformational states during the lipid transport cycle. Nonetheless, critical conformational states capturing the lipid cargo "in transit" are still missing. In this review, we highlight the amazing structural advances of these lipid transporters, discuss various perspectives on catalytic and regulatory mechanisms in the literature, and shed light on future directions in further deciphering the detailed molecular mechanisms of lipid flipping.
Collapse
Affiliation(s)
- H Diessel Duan
- Department of Structural Biology, Van Andel Institute, Grand Rapids, Michigan, USA.
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, Michigan, USA.
| |
Collapse
|
33
|
Khan NM, Ali A, Wan Y, Zhou G. Genome-wide identification of heavy-metal ATPases genes in Areca catechu: investigating their functionality under heavy metal exposure. BMC PLANT BIOLOGY 2024; 24:484. [PMID: 38822228 PMCID: PMC11141028 DOI: 10.1186/s12870-024-05201-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/26/2024] [Indexed: 06/02/2024]
Abstract
Heavy-metal ATPases (HMAs) play a vital role in plants, helping to transport heavy metal ions across cell membranes.However, insufficient data exists concerning HMAs genes within the Arecaceae family.In this study, 12 AcHMA genes were identified within the genome of Areca catechu, grouped into two main clusters based on their phylogenetic relationships.Genomic distribution analysis reveals that the AcHMA genes were unevenly distributed across six chromosomes. We further analyzed their physicochemical properties, collinearity, and gene structure.Furthermore, RNA-seq data analysis exhibited varied expressions in different tissues of A. catechu and found that AcHMA1, AcHMA2, and AcHMA7 were highly expressed in roots, leaves, pericarp, and male/female flowers. A total of six AcHMA candidate genes were selected based on gene expression patterns, and their expression in the roots and leaves was determined using RT-qPCR under heavy metal stress. Results showed that the expression levels of AcHMA1 and AcHMA3 genes were significantly up-regulated under Cd2 + and Zn2 + stress. Similarly, in response to Cu2+, the AcHMA5 and AcHMA8 revealed the highest expression in roots and leaves, respectively. In conclusion, this study will offer a foundation for exploring the role of the HMAs gene family in dealing with heavy metal stress conditions in A. catechu.
Collapse
Affiliation(s)
- Noor Muhammad Khan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Akhtar Ali
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Yinglang Wan
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Guangzhen Zhou
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China.
| |
Collapse
|
34
|
Ji J, Cui MK, Zou R, Wu MZ, Ge MX, Li J, Zhang ZR. An ATP13A1-assisted topogenesis pathway for folding multi-spanning membrane proteins. Mol Cell 2024; 84:1917-1931.e15. [PMID: 38723633 DOI: 10.1016/j.molcel.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 02/15/2024] [Accepted: 04/17/2024] [Indexed: 05/19/2024]
Abstract
Many multi-spanning membrane proteins contain poorly hydrophobic transmembrane domains (pTMDs) protected from phospholipid in mature structure. Nascent pTMDs are difficult for translocon to recognize and insert. How pTMDs are discerned and packed into mature, muti-spanning configuration remains unclear. Here, we report that pTMD elicits a post-translational topogenesis pathway for its recognition and integration. Using six-spanning protein adenosine triphosphate-binding cassette transporter G2 (ABCG2) and cultured human cells as models, we show that ABCG2's pTMD2 can pass through translocon into the endoplasmic reticulum (ER) lumen, yielding an intermediate with inserted yet mis-oriented downstream TMDs. After translation, the intermediate recruits P5A-ATPase ATP13A1, which facilitates TMD re-orientation, allowing further folding and the integration of the remaining lumen-exposed pTMD2. Depleting ATP13A1 or disrupting pTMD-characteristic residues arrests intermediates with mis-oriented and exposed TMDs. Our results explain how a "difficult" pTMD is co-translationally skipped for insertion and post-translationally buried into the final correct structure at the late folding stage to avoid excessive lipid exposure.
Collapse
Affiliation(s)
- Jia Ji
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100101, China
| | - Meng-Ke Cui
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100101, China
| | - Rong Zou
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100101, China
| | - Ming-Zhi Wu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100101, China
| | - Man-Xi Ge
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100101, China
| | - Jiqiang Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100101, China
| | - Zai-Rong Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100101, China.
| |
Collapse
|
35
|
Flannery KP, Safwat S, Matsell E, Battula N, Hamed AAA, Mohamed IN, Elseed MA, Koko M, Abubaker R, Abozar F, Elsayed LEO, Bhise V, Molday RS, Salih MA, Yahia A, Manzini MC. A novel missense variant in the ATPase domain of ATP8A2 and review of phenotypic variability of ATP8A2-related disorders caused by missense changes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.15.24306843. [PMID: 38798571 PMCID: PMC11118633 DOI: 10.1101/2024.05.15.24306843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
ATPase, class 1, type 8A, member 2 (ATP8A2) is a P4-ATPase with a critical role in phospholipid translocation across the plasma membrane. Pathogenic variants in ATP8A2 are known to cause cerebellar ataxia, mental retardation, and disequilibrium syndrome 4 (CAMRQ4) which is often associated with encephalopathy, global developmental delay, and severe motor deficits. Here, we present a family with two siblings presenting with global developmental delay, intellectual disability, spasticity, ataxia, nystagmus, and thin corpus callosum. Whole exome sequencing revealed a homozygous missense variant in the nucleotide binding domain of ATP8A2 (p.Leu538Pro) that results in near complete loss of protein expression. This is in line with other missense variants in the same domain leading to protein misfolding and loss of ATPase function. In addition, by performing diffusion-weighted imaging, we identified bilateral hyperintensities in the posterior limbs of the internal capsule suggesting possible microstructural changes in axon tracts that had not been appreciated before and could contribute to the sensorimotor deficits in these individuals.
Collapse
Affiliation(s)
- Kyle P. Flannery
- Department of Neuroscience & Cell Biology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901
| | - Sylvia Safwat
- Department of Neuroscience & Cell Biology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Eli Matsell
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, B.C., Canada
| | - Namarata Battula
- Department of Neuroscience & Cell Biology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901
| | | | | | - Maha A. Elseed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Mahmoud Koko
- Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Rayan Abubaker
- Sudanese Neurogenetics Research group, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Fatima Abozar
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Liena E. O. Elsayed
- Department of Basic Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, P.O.Box 84428, Riyadh 11671, Saudi Arabia
| | - Vikram Bhise
- Department of Pediatrics and Neurology, Rutgers – Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Robert S. Molday
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, B.C., Canada
| | - Mustafa A. Salih
- Consultant Pediatric Neurologist, Health Sector, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Ashraf Yahia
- Department of Biochemistry, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women’s and Children’s Health, Karolinska Institutet and Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Solna, Sweden
| | - M. Chiara Manzini
- Department of Neuroscience & Cell Biology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901
| |
Collapse
|
36
|
Zhao CR, You ZL, Bai L. Fungal Plasma Membrane H +-ATPase: Structure, Mechanism, and Drug Discovery. J Fungi (Basel) 2024; 10:273. [PMID: 38667944 PMCID: PMC11051447 DOI: 10.3390/jof10040273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
The fungal plasma membrane H+-ATPase (Pma1) pumps protons out of the cell to maintain the transmembrane electrochemical gradient and membrane potential. As an essential P-type ATPase uniquely found in fungi and plants, Pma1 is an attractive antifungal drug target. Two recent Cryo-EM studies on Pma1 have revealed its hexameric architecture, autoinhibitory and activation mechanisms, and proton transport mechanism. These structures provide new perspectives for the development of antifungal drugs targeting Pma1. In this article, we review the history of Pma1 structure determination, the latest structural insights into Pma1, and drug discoveries targeting Pma1.
Collapse
Affiliation(s)
- Chao-Ran Zhao
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing 100005, China
| | - Zi-Long You
- Department of Biophysics, School of Basic Medical Sciences, Peking University, Beijing 100083, China
| | - Lin Bai
- Department of Biophysics, School of Basic Medical Sciences, Peking University, Beijing 100083, China
| |
Collapse
|
37
|
Vishnu N, Venkatesan M, Madaris TR, Venkateswaran MK, Stanley K, Ramachandran K, Chidambaram A, Madesh AK, Yang W, Nair J, Narkunan M, Muthukumar T, Karanam V, Joseph LC, Le A, Osidele A, Aslam MI, Morrow JP, Malicdan MC, Stathopulos PB, Madesh M. ERMA (TMEM94) is a P-type ATPase transporter for Mg 2+ uptake in the endoplasmic reticulum. Mol Cell 2024; 84:1321-1337.e11. [PMID: 38513662 PMCID: PMC10997467 DOI: 10.1016/j.molcel.2024.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 10/16/2023] [Accepted: 02/27/2024] [Indexed: 03/23/2024]
Abstract
Intracellular Mg2+ (iMg2+) is bound with phosphometabolites, nucleic acids, and proteins in eukaryotes. Little is known about the intracellular compartmentalization and molecular details of Mg2+ transport into/from cellular organelles such as the endoplasmic reticulum (ER). We found that the ER is a major iMg2+ compartment refilled by a largely uncharacterized ER-localized protein, TMEM94. Conventional and AlphaFold2 predictions suggest that ERMA (TMEM94) is a multi-pass transmembrane protein with large cytosolic headpiece actuator, nucleotide, and phosphorylation domains, analogous to P-type ATPases. However, ERMA uniquely combines a P-type ATPase domain and a GMN motif for ERMg2+ uptake. Experiments reveal that a tyrosine residue is crucial for Mg2+ binding and activity in a mechanism conserved in both prokaryotic (mgtB and mgtA) and eukaryotic Mg2+ ATPases. Cardiac dysfunction by haploinsufficiency, abnormal Ca2+ cycling in mouse Erma+/- cardiomyocytes, and ERMA mRNA silencing in human iPSC-cardiomyocytes collectively define ERMA as an essential component of ERMg2+ uptake in eukaryotes.
Collapse
Affiliation(s)
- Neelanjan Vishnu
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Manigandan Venkatesan
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Travis R Madaris
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Mridula K Venkateswaran
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Kristen Stanley
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Karthik Ramachandran
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Adhishree Chidambaram
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Abitha K Madesh
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Wenli Yang
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jyotsna Nair
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Melanie Narkunan
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Tharani Muthukumar
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Varsha Karanam
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Leroy C Joseph
- Department of Medicine, College of Physicians and Surgeons of Columbia University, 650 W 168 Street, New York, NY 10032, USA
| | - Amy Le
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Ayodeji Osidele
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - M Imran Aslam
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - John P Morrow
- Department of Medicine, College of Physicians and Surgeons of Columbia University, 650 W 168 Street, New York, NY 10032, USA
| | - May C Malicdan
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA; NIH Undiagnosed Diseases Program, Office of the Clinical Director, National Human Genome Research Institute, and the Common Fund, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter B Stathopulos
- Department of Physiology and Pharmacology, Western University, London, ON N6A 5C1, Canada
| | - Muniswamy Madesh
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
38
|
Chatterjee D, Panda AP, Daya Manasi AR, Ghosh AS. P-type ATPase zinc transporter Rv3270 of Mycobacterium tuberculosis enhances multi-drug efflux activity. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001441. [PMID: 38373028 PMCID: PMC10924464 DOI: 10.1099/mic.0.001441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
Metal homeostasis is maintained by the uptake, storage and efflux of metal ions that are necessary for the survival of the bacterium. Homeostasis is mostly regulated by a group of transporters categorized as ABC transporters and P-type ATPases. On the other hand, efflux pumps often play a role in drug-metal cross-resistance. Here, with the help of antibiotic sensitivity, antibiotic/dye accumulation and semi-quantitative biofilm formation assessments we report the ability of Rv3270, a P-type ATPase known for its role in combating Mn2+ and Zn2+ metal ion toxicity in Mycobacterium tuberculosis, in influencing the extrusion of multiple structurally unrelated drugs and enhancing the biofilm formation of Escherichia coli and Mycobacterium smegmatis. Overexpression of Rv3270 increased the tolerance of host cells to norfloxacin, ofloxacin, sparfloxacin, ampicillin, oxacillin, amikacin and isoniazid. A significantly lower accumulation of norfloxacin, ethidium bromide, bocillin FL and levofloxacin in cells harbouring Rv3270 as compared to host cells indicated its role in enhancing efflux activity. Although over-expression of Rv3270 did not alter the susceptibility levels of levofloxacin, rifampicin and apramycin, the presence of a sub-inhibitory concentration of Zn2+ resulted in low-level tolerance towards these drugs. Of note, the expression of Rv3270 enhanced the biofilm-forming ability of the host cells strengthening its role in antimicrobial resistance. Therefore, the study indicated that the over-expression of Rv3270 enhances the drug efflux activity of the micro-organism where zinc might facilitate drug-metal cross-resistance for some antibiotics.
Collapse
Affiliation(s)
- Debasmita Chatterjee
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Aditya Prasad Panda
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - A. R. Daya Manasi
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Anindya S. Ghosh
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
39
|
Zhou Y, Bennett TM, Ruzycki PA, Guo Z, Cao YQ, Shahidullah M, Delamere NA, Shiels A. A Cataract-Causing Mutation in the TRPM3 Cation Channel Disrupts Calcium Dynamics in the Lens. Cells 2024; 13:257. [PMID: 38334649 PMCID: PMC10854584 DOI: 10.3390/cells13030257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/10/2024] Open
Abstract
TRPM3 belongs to the melastatin sub-family of transient receptor potential (TRPM) cation channels and has been shown to function as a steroid-activated, heat-sensitive calcium ion (Ca2+) channel. A missense substitution (p.I65M) in the TRPM3 gene of humans (TRPM3) and mice (Trpm3) has been shown to underlie an inherited form of early-onset, progressive cataract. Here, we model the pathogenetic effects of this cataract-causing mutation using 'knock-in' mutant mice and human cell lines. Trpm3 and its intron-hosted micro-RNA gene (Mir204) were strongly co-expressed in the lens epithelium and other non-pigmented and pigmented ocular epithelia. Homozygous Trpm3-mutant lenses displayed elevated cytosolic Ca2+ levels and an imbalance of sodium (Na+) and potassium (K+) ions coupled with increased water content. Homozygous TRPM3-mutant human lens epithelial (HLE-B3) cell lines and Trpm3-mutant lenses exhibited increased levels of phosphorylated mitogen-activated protein kinase 1/extracellular signal-regulated kinase 2 (MAPK1/ERK2/p42) and MAPK3/ERK1/p44. Mutant TRPM3-M65 channels displayed an increased sensitivity to external Ca2+ concentration and an altered dose response to pregnenolone sulfate (PS) activation. Trpm3-mutant lenses shared the downregulation of genes involved in insulin/peptide secretion and the upregulation of genes involved in Ca2+ dynamics. By contrast, Trpm3-deficient lenses did not replicate the pathophysiological changes observed in Trpm3-mutant lenses. Collectively, our data suggest that a cataract-causing substitution in the TRPM3 cation channel elicits a deleterious gain-of-function rather than a loss-of-function mechanism in the lens.
Collapse
Affiliation(s)
- Yuefang Zhou
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Thomas M. Bennett
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Philip A. Ruzycki
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zhaohua Guo
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yu-Qing Cao
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mohammad Shahidullah
- Department of Physiology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Nicholas A. Delamere
- Department of Physiology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Alan Shiels
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
40
|
Gómez-Gallego T, Molina-Luzón MJ, Conéjéro G, Berthomieu P, Ferrol N. The arbuscular mycorrhizal fungus Rhizophagus irregularis uses the copper exporting ATPase RiCRD1 as a major strategy for copper detoxification. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122990. [PMID: 37992950 DOI: 10.1016/j.envpol.2023.122990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi establish a mutualistic symbiosis with most land plants. AM fungi regulate plant copper (Cu) acquisition both in Cu deficient and polluted soils. Here, we report characterization of RiCRD1, a Rhizophagus irregularis gene putatively encoding a Cu transporting ATPase. Based on its sequence analysis, RiCRD1 was identified as a plasma membrane Cu + efflux protein of the P1B1-ATPase subfamily. As revealed by heterologous complementation assays in yeast, RiCRD1 encodes a functional protein capable of conferring increased tolerance against Cu. In the extraradical mycelium, RiCRD1 expression was highly up-regulated in response to high concentrations of Cu in the medium. Comparison of the expression patterns of different players of metal tolerance in R. irregularis under high Cu levels suggests that this fungus could mainly use a metal efflux based-strategy to cope with Cu toxicity. RiCRD1 was also expressed in the intraradical fungal structures and, more specifically, in the arbuscules, which suggests a role for RiCRD1 in Cu release from the fungus to the symbiotic interface. Overall, our results show that RiCRD1 encodes a protein which could have a pivotal dual role in Cu homeostasis in R. irregularis, playing a role in Cu detoxification in the extraradical mycelium and in Cu transfer to the apoplast of the symbiotic interface in the arbuscules.
Collapse
Affiliation(s)
- Tamara Gómez-Gallego
- Soil and Plant Microbiology Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - María Jesús Molina-Luzón
- Soil and Plant Microbiology Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Genevieve Conéjéro
- Institut des Sciences des Plantes de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique, Institut Agro Montpellier, Institut National de Recherche pour l'Agriculture l'Alimentation et l'Environnement, Montpellier, France
| | - Pierre Berthomieu
- Institut des Sciences des Plantes de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique, Institut Agro Montpellier, Institut National de Recherche pour l'Agriculture l'Alimentation et l'Environnement, Montpellier, France
| | - Nuria Ferrol
- Soil and Plant Microbiology Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain.
| |
Collapse
|
41
|
Nørrevang AF, Shabala S, Palmgren M. A two-sequence motif-based method for the inventory of gene families in fragmented and poorly annotated genome sequences. BMC Genomics 2024; 25:26. [PMID: 38172704 PMCID: PMC10763278 DOI: 10.1186/s12864-023-09859-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
Databases of genome sequences are growing exponentially, but, in some cases, assembly is incomplete and genes are poorly annotated. For evolutionary studies, it is important to identify all members of a given gene family in a genome. We developed a method for identifying most, if not all, members of a gene family from raw genomes in which assembly is of low quality, using the P-type ATPase superfamily as an example. The method is based on the translation of an entire genome in all six reading frames and the co-occurrence of two family-specific sequence motifs that are in close proximity to each other. To test the method's usability, we first used it to identify P-type ATPase members in the high-quality annotated genome of barley (Hordeum vulgare). Subsequently, after successfully identifying plasma membrane H+-ATPase family members (P3A ATPases) in various plant genomes of varying quality, we tested the hypothesis that the number of P3A ATPases correlates with the ability of the plant to tolerate saline conditions. In 19 genomes of glycophytes and halophytes, the total number of P3A ATPase genes was found to vary from 7 to 22, but no significant difference was found between the two groups. The method successfully identified P-type ATPase family members in raw genomes that are poorly assembled.
Collapse
Affiliation(s)
- Anton Frisgaard Nørrevang
- NovoCrops Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, DK-1871, Denmark
| | - Sergey Shabala
- School of Biological Sciences, University of Western Australia, Crawley, WA6009, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, China
| | - Michael Palmgren
- NovoCrops Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, DK-1871, Denmark.
| |
Collapse
|
42
|
Villagrana R, López-Marqués RL. Plant P4-ATPase lipid flippases: How are they regulated? BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119599. [PMID: 37741575 DOI: 10.1016/j.bbamcr.2023.119599] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/22/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
P4 ATPases are active membrane transporters that translocate lipids towards the cytosolic side of the biological membranes in eukaryotic cells. Due to their essential cellular functions, P4 ATPase activity is expected to be tightly controlled, but fundamental aspects of the regulation of plant P4 ATPases remain unstudied. In this mini-review, our knowledge of the regulatory mechanisms of yeast and mammalian P4 ATPases will be summarized, and sequence comparison and structural modelling will be used as a basis to discuss the putative regulation of the corresponding plant lipid transporters.
Collapse
Affiliation(s)
- Richard Villagrana
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Rosa Laura López-Marqués
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| |
Collapse
|
43
|
Aguilella M, Garciadeblás B, Fernández Pacios L, Benito B. Phylogenetic and Structure-Function Analyses of ENA ATPases: A Case Study of the ENA1 Protein from the Fungus Neurospora crassa. Int J Mol Sci 2023; 25:514. [PMID: 38203685 PMCID: PMC10779151 DOI: 10.3390/ijms25010514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
ENA transporters are a group of P-type ATPases that are characterized by actively moving Na+ or K+ out of the cell against their concentration gradient. The existence of these transporters was initially attributed to some fungi, although more recently they have also been identified in mosses, liverworts, and some protozoa. Given the current increase in the number of organisms whose genomes are completely sequenced, we set out to expand our knowledge about the existence of ENA in organisms belonging to other phylogenetic groups. For that, a hidden Markov model profile was constructed to identify homologous sequences to ENA proteins in protein databases. This analysis allowed us to identify the existence of ENA-type ATPases in the most primitive groups of fungi, as well as in other eukaryotic organisms not described so far. In addition, this study has allowed the identification of a possible new group of P-ATPases, initially proposed as ENA but which maintain phylogenetic distances with these proteins. Finally, this work has also addressed this study of the structure of ENA proteins, which remained unknown due to the lack of crystallographic data. For this purpose, a 3D structure prediction of the NcENA1 protein of the fungus Neurospora crassa was performed using AlphaFold2 software v2.3.1. From this structure, the electrostatic potential of the protein was analyzed. With all these data, the protein regions and the amino acids involved in the transport of Na+ or K+ ions across the membrane were proposed for the first time. Targeted mutagenesis of some of these residues has confirmed their relevant participation in the transport function of ENA proteins.
Collapse
Affiliation(s)
- Marcos Aguilella
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain;
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain;
| | - Blanca Garciadeblás
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain;
| | - Luis Fernández Pacios
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain;
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain;
| | - Begoña Benito
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain;
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain;
| |
Collapse
|
44
|
Dieudonné T, Kümmerer F, Laursen MJ, Stock C, Flygaard RK, Khalid S, Lenoir G, Lyons JA, Lindorff-Larsen K, Nissen P. Activation and substrate specificity of the human P4-ATPase ATP8B1. Nat Commun 2023; 14:7492. [PMID: 37980352 PMCID: PMC10657443 DOI: 10.1038/s41467-023-42828-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/23/2023] [Indexed: 11/20/2023] Open
Abstract
Asymmetric distribution of phospholipids in eukaryotic membranes is essential for cell integrity, signaling pathways, and vesicular trafficking. P4-ATPases, also known as flippases, participate in creating and maintaining this asymmetry through active transport of phospholipids from the exoplasmic to the cytosolic leaflet. Here, we present a total of nine cryo-electron microscopy structures of the human flippase ATP8B1-CDC50A complex at 2.4 to 3.1 Å overall resolution, along with functional and computational studies, addressing the autophosphorylation steps from ATP, substrate recognition and occlusion, as well as a phosphoinositide binding site. We find that the P4-ATPase transport site is occupied by water upon phosphorylation from ATP. Additionally, we identify two different autoinhibited states, a closed and an outward-open conformation. Furthermore, we identify and characterize the PI(3,4,5)P3 binding site of ATP8B1 in an electropositive pocket between transmembrane segments 5, 7, 8, and 10. Our study also highlights the structural basis of a broad lipid specificity of ATP8B1 and adds phosphatidylinositol as a transport substrate for ATP8B1. We report a critical role of the sn-2 ester bond of glycerophospholipids in substrate recognition by ATP8B1 through conserved S403. These findings provide fundamental insights into ATP8B1 catalytic cycle and regulation, and substrate recognition in P4-ATPases.
Collapse
Affiliation(s)
- Thibaud Dieudonné
- DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| | - Felix Kümmerer
- Structural Biology and NMR Laboratory & Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Michelle Juknaviciute Laursen
- DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Charlott Stock
- DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Rasmus Kock Flygaard
- DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Syma Khalid
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Guillaume Lenoir
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Joseph A Lyons
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Interdisciplinary Nanoscience Centre (iNANO) Aarhus University, Aarhus, Denmark
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory & Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Poul Nissen
- DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
45
|
Palmgren M. P-type ATPases: Many more enigmas left to solve. J Biol Chem 2023; 299:105352. [PMID: 37838176 PMCID: PMC10654040 DOI: 10.1016/j.jbc.2023.105352] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/16/2023] Open
Abstract
P-type ATPases constitute a large ancient super-family of primary active pumps that have diverse substrate specificities ranging from H+ to phospholipids. The significance of these enzymes in biology cannot be overstated. They are structurally related, and their catalytic cycles alternate between high- and low-affinity conformations that are induced by phosphorylation and dephosphorylation of a conserved aspartate residue. In the year 1988, all P-type sequences available by then were analyzed and five major families, P1 to P5, were identified. Since then, a large body of knowledge has accumulated concerning the structure, function, and physiological roles of members of these families, but only one additional family, P6 ATPases, has been identified. However, much is still left to be learned. For each family a few remaining enigmas are presented, with the intention that they will stimulate interest in continued research in the field. The review is by no way comprehensive and merely presents personal views with a focus on evolution.
Collapse
Affiliation(s)
- Michael Palmgren
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| |
Collapse
|
46
|
López-R M, Maya-Hoyos M, León-Torres A, Cruz-Cacais A, Castillo E, Soto CY. The copper P-type ATPase CtpA is involved in the response of Mycobacterium tuberculosis to redox stress. Biochimie 2023; 221:S0300-9084(23)00288-2. [PMID: 39491178 DOI: 10.1016/j.biochi.2023.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/04/2023] [Accepted: 10/26/2023] [Indexed: 11/05/2024]
Abstract
The functional difference among the three copper-transporting P-type ATPases (CtpA, CtpB, and CtpV) annotated in genome of Mycobacterium tuberculosis (Mtb) remains unclear. Thus, CtpA and CtpB are believed to deliver copper to extracytoplasmic proteins as a cofactor required to overcome redox and copper stress in the Mtb periplasm. This study investigates an alternative role of CtpA-mediated copper transportation and its possible interaction with the activity of the multicopper oxidase, (MmcO), in response to redox stress. Results from RT-qPCR experiments indicate that the ctpA gene is upregulated in low Cu2+ concentrations, and under oxidative (H2O2) and nitrosative (sodium nitroprusside) conditions in vitro, but not in high doses of Cu2+. Furthermore, the ctpA mutant strain (MtbΔctpA) showed impaired growth in the presence of oxidative and nitrosative stress in vitro. However, it did not display such growth impairments in response to high doses of copper in comparison to the wild-type strain. Disruption of the ctpA gene in the Mtb genome did not induce an accumulation of copper in cells under toxic doses of the metal, suggesting that CtpA is not directly involved in copper detoxification. On the other hand, whole-cell lysates of the MtbΔctpA mutant that were previously stimulated with Cu2+, H2O2 and SNP (sodium nitroprusside), displayed reduced ability to oxidize organic substrates (para-phenylenediamine (pPD) and 2,2-azino-bis (3-ethylbenzothiazo-line-6-sulfonic acid) (ABTS). These finding strongly suggest that the efflux of copper transported by CtpA from the cytoplasm is relevant to the response to the redox stress and may be required for metalation and activity of MmcO in Mtb.
Collapse
Affiliation(s)
- Marcela López-R
- Chemistry Department, Faculty of Science, Universidad Nacional de Colombia, Ciudad Universitaria, Bogotá, Colombia
| | - Milena Maya-Hoyos
- Chemistry Department, Faculty of Science, Universidad Nacional de Colombia, Ciudad Universitaria, Bogotá, Colombia
| | - Andrés León-Torres
- Chemistry Department, Faculty of Science, Universidad Nacional de Colombia, Ciudad Universitaria, Bogotá, Colombia
| | - Alver Cruz-Cacais
- Chemistry Department, Faculty of Science, Universidad Nacional de Colombia, Ciudad Universitaria, Bogotá, Colombia
| | - Eliana Castillo
- Chemistry Department, Faculty of Science, Universidad Nacional de Colombia, Ciudad Universitaria, Bogotá, Colombia
| | - Carlos Y Soto
- Chemistry Department, Faculty of Science, Universidad Nacional de Colombia, Ciudad Universitaria, Bogotá, Colombia.
| |
Collapse
|
47
|
Rivera-Morán MA, Sampedro JG. Isolation of the Sarcoplasmic Reticulum Ca 2+-ATPase from Rabbit Fast-Twitch Muscle. Methods Protoc 2023; 6:102. [PMID: 37888034 PMCID: PMC10608927 DOI: 10.3390/mps6050102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
The sarcoendoplasmic reticulum Ca2+-ATPase (SERCA) is a membrane protein that is destabilized during purification in the absence of calcium ions. The disaccharide trehalose is a protein stabilizer that accumulates in the yeast cytoplasm when under stress. In the present work, SERCA was purified by including trehalose in the purification protocol. The purified SERCA showed high protein purity (~95%) and ATPase activity. ATP hydrolysis was dependent on the presence of Ca2+ and the enzyme kinetics showed a hyperbolic dependence on ATP (Km = 12.16 ± 2.25 μM ATP). FITC labeling showed the integrity of the ATP-binding site and the identity of the isolated enzyme as a P-type ATPase. Circular dichroism (CD) spectral changes at a wavelength of 225 nm were observed upon titration with ATP, indicating α-helical rearrangements in the nucleotide-binding domain (N-domain), which correlated with ATP affinity (Km). The presence of Ca2+ did not affect FITC labeling or the ATP-mediated structural changes at the N-domain. The use of trehalose in the SERCA purification protocol stabilized the enzyme. The isolated SERCA appears to be suitable for structural and ligand binding studies, e.g., for testing newly designed or natural inhibitors. The use of trehalose is recommended for the isolation of unstable enzymes.
Collapse
Affiliation(s)
| | - José G. Sampedro
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Avenida Chapultepec 1570, Privadas del Pedregal, San Luis Potosí 78295, Mexico
| |
Collapse
|
48
|
Costa A, Resentini F, Buratti S, Bonza MC. Plant Ca 2+-ATPases: From biochemistry to signalling. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119508. [PMID: 37290725 DOI: 10.1016/j.bbamcr.2023.119508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023]
Abstract
Calcium (Ca2+)-ATPases are ATP-dependent enzymes that transport Ca2+ ions against their electrochemical gradient playing the fundamental biological function of keeping the free cytosolic Ca2+ concentration in the submicromolar range to prevent cytotoxic effects. In plants, type IIB autoinhibited Ca2+-ATPases (ACAs) are localised both at the plasma membrane and at the endomembranes including endoplasmic reticulum (ER) and tonoplast and their activity is primarily regulated by Ca2+-dependent mechanisms. Instead, type IIA ER-type Ca2+-ATPases (ECAs) are present mainly at the ER and Golgi Apparatus membranes and are active at resting Ca2+. Whereas research in plants has historically focused on the biochemical characterization of these pumps, more recently the attention has been also addressed on the physiological roles played by the different isoforms. This review aims to highlight the main biochemical properties of both type IIB and type IIA Ca2+ pumps and their involvement in the shaping of cellular Ca2+ dynamics induced by different stimuli.
Collapse
Affiliation(s)
- Alex Costa
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milano, Italy; Institute of Biophysics, National Research Council of Italy (CNR), 20133 Milano, Italy.
| | - Francesca Resentini
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milano, Italy
| | - Stefano Buratti
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milano, Italy.
| | - Maria Cristina Bonza
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milano, Italy.
| |
Collapse
|
49
|
Palmgren M. Evolution of the sodium pump. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119511. [PMID: 37301269 DOI: 10.1016/j.bbamcr.2023.119511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/16/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
Eukaryotic plasma membranes (PMs) are energized by electrogenic P-type ATPases that generate either Na+ or H+ motive forces to drive Na+ and H+ dependent transport processes, respectively. For this purpose, animal rely on Na+/K+-ATPases whereas fungi and plants employ PM H+-ATPases. Prokaryotes, on the other hand, depend on H+ or Na+-motive electron transport complexes to energize their cell membranes. This raises the question as to why and when electrogenic Na+ and H+ pumps evolved? Here it is shown that prokaryotic Na+/K+-ATPases have near perfect conservation of binding sites involved in coordination of three Na+ and two K+ ions. Such pumps are rare in Eubacteria but are common in methanogenic Archaea where they often are found together with P-type putative PM H+-ATPases. With some exceptions, Na+/K+-ATPases and PM H+-ATPases are found everywhere in the eukaryotic tree of life, but never together in animals, fungi and land plants. It is hypothesized that Na+/K+-ATPases and PM H+-ATPases evolved in methanogenic Archaea to support the bioenergetics of these ancestral organisms, which can utilize both H+ and Na+ as energy currencies. Both pumps must have been simultaneously present in the first eukaryotic cell, but during diversification of the major eukaryotic kingdoms, and at the time animals diverged from fungi, animals kept Na+/K+-ATPases but lost PM H+-ATPases. At the same evolutionary branch point, fungi did loose Na+/K+-ATPases, and their role was taken over by PM H+-ATPases. An independent but similar scenery emerged during terrestrialization of plants: they lost Na+/K+-ATPases but kept PM H+-ATPases.
Collapse
Affiliation(s)
- Michael Palmgren
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark.
| |
Collapse
|
50
|
Flores-Iga G, Lopez-Ortiz C, Gracia-Rodriguez C, Almeida A, Nimmakayala P, Reddy UK, Balagurusamy N. A Genome-Wide Identification and Comparative Analysis of the Heavy-Metal-Associated Gene Family in Cucurbitaceae Species and Their Role in Cucurbita pepo under Arsenic Stress. Genes (Basel) 2023; 14:1877. [PMID: 37895226 PMCID: PMC10606463 DOI: 10.3390/genes14101877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
The heavy-metal-associated (HMA) proteins are a class of PB1-type ATPases related to the intracellular transport and detoxification of metals. However, due to a lack of information regarding the HMA gene family in the Cucurbitaceae family, a comprehensive genome-wide analysis of the HMA family was performed in ten Cucurbitaceae species: Citrullus amarus, Citrullus colocynthis, Citrullus lanatus, Citrullus mucosospermus, Cucumis melo, Cucumis sativus, Cucurbita maxima, Cucurbita moschata, Cucurbita pepo, and Legenaria siceraria. We identified 103 Cucurbit HMA proteins with various members, ranging from 8 (Legenaria siceraria) to 14 (Cucurbita pepo) across species. The phylogenetic and structural analysis confirmed that the Cucurbitaceae HMA protein family could be further classified into two major clades: Zn/Co/Cd/Pb and Cu/Ag. The GO-annotation-based subcellular localization analysis predicted that all HMA gene family members were localized on membranes. Moreover, the analysis of conserved motifs and gene structure (intron/exon) revealed the functional divergence between clades. The interspecies microsynteny analysis demonstrated that maximum orthologous genes were found between species of the Citrullus genera. Finally, nine candidate HMA genes were selected, and their expression analysis was carried out via qRT-PCR in root, leaf, flower, and fruit tissues of C. pepo under arsenic stress. The expression pattern of the CpeHMA genes showed a distinct pattern of expression in root and shoot tissues, with a remarkable expression of CpeHMA6 and CpeHMA3 genes from the Cu/Ag clade. Overall, this study provides insights into the functional analysis of the HMA gene family in Cucurbitaceae species and lays down the basic knowledge to explore the role and mechanism of the HMA gene family to cope with arsenic stress conditions.
Collapse
Affiliation(s)
- Gerardo Flores-Iga
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón 27275, Coahuila, México; (G.F.-I.); (C.G.-R.)
- Gus R. Douglass Institute, Department of Biology, West Virginia State University, Institute, WV 25112-1000, USA; (C.L.-O.); (P.N.)
| | - Carlos Lopez-Ortiz
- Gus R. Douglass Institute, Department of Biology, West Virginia State University, Institute, WV 25112-1000, USA; (C.L.-O.); (P.N.)
| | - Celeste Gracia-Rodriguez
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón 27275, Coahuila, México; (G.F.-I.); (C.G.-R.)
- Gus R. Douglass Institute, Department of Biology, West Virginia State University, Institute, WV 25112-1000, USA; (C.L.-O.); (P.N.)
| | - Aldo Almeida
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark;
| | - Padma Nimmakayala
- Gus R. Douglass Institute, Department of Biology, West Virginia State University, Institute, WV 25112-1000, USA; (C.L.-O.); (P.N.)
| | - Umesh K. Reddy
- Gus R. Douglass Institute, Department of Biology, West Virginia State University, Institute, WV 25112-1000, USA; (C.L.-O.); (P.N.)
| | - Nagamani Balagurusamy
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón 27275, Coahuila, México; (G.F.-I.); (C.G.-R.)
| |
Collapse
|