1
|
Hibler W, Merlino G, Yu Y. CAR NK Cell Therapy for the Treatment of Metastatic Melanoma: Potential & Prospects. Cells 2023; 12:2750. [PMID: 38067178 PMCID: PMC10706172 DOI: 10.3390/cells12232750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
Melanoma is among the most lethal forms of cancer, accounting for 80% of deaths despite comprising just 5% of skin cancer cases. Treatment options remain limited due to the genetic and epigenetic mechanisms associated with melanoma heterogeneity that underlie the rapid development of secondary drug resistance. For this reason, the development of novel treatments remains paramount to the improvement of patient outcomes. Although the advent of chimeric antigen receptor-expressing T (CAR-T) cell immunotherapies has led to many clinical successes for hematological malignancies, these treatments are limited in their utility by their immune-induced side effects and a high risk of systemic toxicities. CAR natural killer (CAR-NK) cell immunotherapies are a particularly promising alternative to CAR-T cell immunotherapies, as they offer a more favorable safety profile and have the capacity for fine-tuned cytotoxic activity. In this review, the discussion of the prospects and potential of CAR-NK cell immunotherapies touches upon the clinical contexts of melanoma, the immunobiology of NK cells, the immunosuppressive barriers preventing endogenous immune cells from eliminating tumors, and the structure and design of chimeric antigen receptors, then finishes with a series of proposed design innovations that could improve the efficacy CAR-NK cell immunotherapies in future studies.
Collapse
Affiliation(s)
| | | | - Yanlin Yu
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Liu X, Ding XF, Wen B, Ma TF, Qin-Wang, Li ZJ, Zhang YS, Gao JZ, Chen ZZ. Genome-wide identification and skin expression of immunoglobulin superfamily in discus fish (Symphysodon aequifasciatus) reveal common genes associated with vertebrate lactation. Gene 2023; 862:147260. [PMID: 36775217 DOI: 10.1016/j.gene.2023.147260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/12/2022] [Accepted: 02/03/2023] [Indexed: 02/12/2023]
Abstract
Discus Symphysodon spp. employs an unusual parental care behavior where fry feed on parental skin mucus after hatching. Studies on discus immunoglobulin superfamily (IgSF) especially during parental care are scarce. Here, a total of 518 IgSF members were identified based on discus genome and clustered into 12 groups, unevenly distributing on 30 linkage groups. A total of 92 pairs of tandem duplication and 40 pairs of segmental duplication that underwent purifying selection were identified. IgSF genes expressed differentially in discus skin during different care stages and between male and female parents. Specifically, the transcription of btn1a1, similar with mammalian lactation, increased after spawning, reached a peak when fry started biting on parents' skin mucus, and then decreased. The expression of btn2a1 and other immune members, e.g., nect4, fcl5 and cd22, were up-regulated when fry stopped biting on mucus. These results suggest the expression differentiation of IgSF genes in skin of discus fish during parental care.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Xiang-Fei Ding
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Bin Wen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Teng-Fei Ma
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Qin-Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Zhong-Jun Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Yan-Shen Zhang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Jian-Zhong Gao
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Zai-Zhong Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
3
|
Scur M, Parsons BD, Dey S, Makrigiannis AP. The diverse roles of C-type lectin-like receptors in immunity. Front Immunol 2023; 14:1126043. [PMID: 36923398 PMCID: PMC10008955 DOI: 10.3389/fimmu.2023.1126043] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/14/2023] [Indexed: 03/03/2023] Open
Abstract
Our understanding of the C-type lectin-like receptors (CTLRs) and their functions in immunity have continued to expand from their initial roles in pathogen recognition. There are now clear examples of CTLRs acting as scavenger receptors, sensors of cell death and cell transformation, and regulators of immune responses and homeostasis. This range of function reflects an extensive diversity in the expression and signaling activity between individual CTLR members of otherwise highly conserved families. Adding to this diversity is the constant discovery of new receptor binding capabilities and receptor-ligand interactions, distinct cellular expression profiles, and receptor structures and signaling mechanisms which have expanded the defining roles of CTLRs in immunity. The natural killer cell receptors exemplify this functional diversity with growing evidence of their activity in other immune populations and tissues. Here, we broadly review select families of CTLRs encoded in the natural killer cell gene complex (NKC) highlighting key receptors that demonstrate the complex multifunctional capabilities of these proteins. We focus on recent evidence from research on the NKRP1 family of CTLRs and their interaction with the related C-type lectin (CLEC) ligands which together exhibit essential immune functions beyond their defined activity in natural killer (NK) cells. The ever-expanding evidence for the requirement of CTLR in numerous biological processes emphasizes the need to better understand the functional potential of these receptor families in immune defense and pathological conditions.
Collapse
Affiliation(s)
- Michal Scur
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Brendon D Parsons
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Sayanti Dey
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Andrew P Makrigiannis
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
4
|
Abbasi B, Shamsasenjan K, Ahmadi M, Beheshti SA, Saleh M. Mesenchymal stem cells and natural killer cells interaction mechanisms and potential clinical applications. Stem Cell Res Ther 2022; 13:97. [PMID: 35255980 PMCID: PMC8900412 DOI: 10.1186/s13287-022-02777-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/09/2021] [Indexed: 12/29/2022] Open
Abstract
Natural killer cells (NK cells) are innate immune cells that are activated to fight tumor cells and virus-infected cells. NK cells also play an important role in the graft versus leukemia response. However, they can over-develop inflammatory reactions by secreting inflammatory cytokines and increasing Th1 differentiation, eventually leading to tissue damage. Today, researchers have attributed some autoimmune diseases and GVHD to NK cells. On the other hand, it has been shown that mesenchymal stem cells (MSCs) can modulate the activity of NK cells, while some researchers have shown that NK cells can cause MSCs to lysis. Therefore, we considered it is necessary to investigate the effect of these two cells and their signaling pathway in contact with each other, also their clinical applications.
Collapse
Affiliation(s)
- Batol Abbasi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Karim Shamsasenjan
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyedeh Ameneh Beheshti
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahshid Saleh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Moesin: A novel receptor on NK lymphocytes binds to TOMM40 on K562 leukemia cells initiating cytolysis. Hum Immunol 2022; 83:418-427. [DOI: 10.1016/j.humimm.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 11/04/2022]
|
6
|
The HLA-G Immune Checkpoint Plays a Pivotal Role in the Regulation of Immune Response in Autoimmune Diseases. Int J Mol Sci 2021; 22:ijms222413348. [PMID: 34948145 PMCID: PMC8706866 DOI: 10.3390/ijms222413348] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 12/11/2022] Open
Abstract
The human G-leukocyte antigen (HLA-G) molecule is a non-classical major histocompatibility complex (MHC) class I molecule. The pertinence of HLA-G has been investigated in numerous studies which have sought to elucidate the relevance of HLA-G in pathologic conditions, such as autoimmune diseases, cancers, and hematologic malignancies. One of the main goals of the current research on HLA-G is to use this molecule in clinical practice, either in diagnostics or as a therapeutic target. Since HLA-G antigens are currently considered as immunomodulatory molecules that are involved in reducing inflammatory and immune responses, in this review, we decided to focus on this group of antigens as potential determinants of progression in autoimmune diseases. This article highlights what we consider as recent pivotal findings on the immunomodulatory function of HLA-G, not only to establish the role of HLA-G in the human body, but also to explain how these proteins mediate the immune response.
Collapse
|
7
|
Rowaiye AB, Asala T, Oli AN, Uzochukwu IC, Akpa A, Esimone CO. The Activating Receptors of Natural Killer Cells and Their Inter-Switching Potentials. Curr Drug Targets 2021; 21:1733-1751. [PMID: 32914713 DOI: 10.2174/1389450121666200910160929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/14/2020] [Accepted: 07/24/2020] [Indexed: 12/18/2022]
Abstract
The global incidence of cancer is on the increase and researchers are prospecting for specific and non-selective therapies derived from the immune system. The killer activating receptors of NK cells are known to be involved in immunosurveillance against tumor and virally-infected cells. These receptors belong to two main categories, namely the immunoglobulin like and C-lectin like families. Though they have different signal pathways, all the killer activating receptors have similar effector functions which include direct cytotoxicity and the release of inflammatory cytokines such as IFN-gamma and TNF-alpha. To transduce signals that exceed the activation threshold for cytotoxicity, most of these receptors require synergistic effort. This review profiles 21 receptors: 13 immunoglobulin-like, 5 lectin-like, and 3 others. It critically explores their structural uniqueness, role in disease, respective transduction signal pathways and their status as current and prospective targets for cancer immunotherapy. While the native ligands of most of these receptors are known, much work is required to prospect for specific antibodies, peptides and multi-target small molecules with high binding affinities.
Collapse
Affiliation(s)
| | - Titilayo Asala
- Department of Medical Biotechnology, National Biotechnology Development Agency, Abuja, Nigeria
| | - Angus Nnamdi Oli
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Agulu, Anambra state, Nigeria
| | - Ikemefuna Chijioke Uzochukwu
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical sciences, Nnamdi Azikiwe University, Agulu, Anambra state, Nigeria
| | - Alex Akpa
- Department of Medical Biotechnology, National Biotechnology Development Agency, Abuja, Nigeria
| | - Charles Okechukwu Esimone
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Agulu, Anambra state, Nigeria
| |
Collapse
|
8
|
Martin EM, Zuidscherwoude M, Morán LA, Di Y, García A, Watson SP. The structure of CLEC-2: mechanisms of dimerization and higher-order clustering. Platelets 2021; 32:733-743. [PMID: 33819136 DOI: 10.1080/09537104.2021.1906407] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/04/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023]
Abstract
The platelet C-type lectin-like receptor CLEC-2 drives inflammation-driven venous thrombosis in mouse models of thrombo-inflammatory disease with a minimal effect on hemostasis identifying it as a target for a new class of antiplatelet agent. Here, we discuss how the protein structure and dynamic arrangement of CLEC-2 on the platelet membrane helps the receptor, which has a single YxxL motif (known as a hemITAM), to trigger intracellular signaling. CLEC-2 exists as a monomer and homo-dimer within resting platelets and forms higher-order oligomers following ligand activation, a process that is mediated by the multivalent nature of its ligands and the binding of the tandem SH2 domains of Syk to the phosphorylated hemITAM and concomitantly to PIP2 or PIP3 to localize it to the membrane. We propose that a low level of active Syk is present at the membrane in resting platelets due to phosphorylation by Src family kinases and that clustering of receptors disturbs the equilibrium between kinases and phosphatases, triggering phosphorylation of the CLEC-2 hemITAM and recruitment of Syk. Knowledge of the structure of CLEC-2 and the mechanism of platelet activation has important implications for development of therapeutics.
Collapse
Affiliation(s)
- Eleyna M Martin
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham
| | - Malou Zuidscherwoude
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham
| | - Luis A Morán
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham
- Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade De Santiago De Compostela, Spain
| | - Ying Di
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham
| | - Angel García
- Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade De Santiago De Compostela, Spain
| | - Steve P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands
| |
Collapse
|
9
|
van der Heide SL, Xi Y, Upham JW. Natural Killer Cells and Host Defense Against Human Rhinoviruses Is Partially Dependent on Type I IFN Signaling. Front Cell Infect Microbiol 2020; 10:510619. [PMID: 33194777 PMCID: PMC7609819 DOI: 10.3389/fcimb.2020.510619] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 10/02/2020] [Indexed: 12/12/2022] Open
Abstract
Rhinovirus (RV), the causative agent of the common cold, causes only mild upper respiratory tract infections in healthy individuals, but can cause longer lasting and more severe pulmonary infections in people with chronic lung diseases and in the setting of immune suppression or immune deficiency. RV-infected lung structural cells release type I interferon (IFN-I), initiating the immune response, leading to protection against viruses in conjunction with migratory immune cells. However, IFN-I release is deficient in some people with asthma. Innate immune cells, such as natural killer (NK) cells, are proposed to play major roles in the control of viral infections, and may contribute to exacerbations of chronic lung diseases, such as asthma. In this study, we characterized the NK cell response to RV infection using an in vitro model of infection in healthy individuals, and determined the extent to which IFN-I signaling mediates this response. The results indicate that RV stimulation in vitro induces NK cell activation in healthy donors, leading to degranulation and the release of cytotoxic mediators and cytokines. IFN-I signaling was partly responsible for NK cell activation and functional responses to RV. Overall, our findings suggest the involvement of NK cells in the control of RV infection in healthy individuals. Further understanding of NK cell regulation may deepen our understanding of the mechanisms that contribute to susceptibility to RV infections in asthma and other chronic lung diseases.
Collapse
Affiliation(s)
- Saskia L van der Heide
- Lung and Allergy Research Centre, Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Yang Xi
- Lung and Allergy Research Centre, Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - John W Upham
- Lung and Allergy Research Centre, Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia.,Department of Respiratory Medicine, Princess Alexandra Hospital, Brisbane, QLD, Australia
| |
Collapse
|
10
|
Research Progress on NK Cell Receptors and Their Signaling Pathways. Mediators Inflamm 2020; 2020:6437057. [PMID: 32774149 PMCID: PMC7396059 DOI: 10.1155/2020/6437057] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/25/2020] [Accepted: 06/20/2020] [Indexed: 12/17/2022] Open
Abstract
Natural killer cells (NK cells) play an important role in innate immunity. NK cells recognize self and nonself depending on the balance of activating receptors and inhibitory receptors. After binding to their ligands, NK cell receptors trigger subsequent signaling conduction and then determine whether NK is activated or inhibited. Furthermore, NK cell response includes cytotoxicity and cytokine release, which is tightly related to the activation of NK cell-activating receptors and the inhibition of inhibitory receptors on the surfaces of NK cells. The expression and function of NK cell surface receptors also alter in virus infection, tumor, and autoimmune diseases and influence the occurrence and development of diseases. So, it is important to understand the mechanism of recognition between NK receptors and their ligands in pathological conditions and the signaling pathways of NK cell receptors. This review mainly summarizes the research progress on NK cell surface receptors and their signal pathways.
Collapse
|
11
|
Panda AK, Gangaplara A, Buszko M, Natarajan K, Boyd LF, Sharma S, Margulies DH, Shevach EM. Cutting Edge: Inhibition of the Interaction of NK Inhibitory Receptors with MHC Class I Augments Antiviral and Antitumor Immunity. THE JOURNAL OF IMMUNOLOGY 2020; 205:567-572. [PMID: 32601097 DOI: 10.4049/jimmunol.2000412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/22/2020] [Indexed: 01/10/2023]
Abstract
NK cells recognize MHC class I (MHC-I) Ags via stochastically expressed MHC-I-specific inhibitory receptors that prevent NK cell activation via cytoplasmic ITIM. We have identified a pan anti-MHC-I mAb that blocks NK cell inhibitory receptor binding at a site distinct from the TCR binding site. Treatment of unmanipulated mice with this mAb disrupted immune homeostasis, markedly activated NK and memory phenotype T cells, enhanced immune responses against transplanted tumors, and augmented responses to acute and chronic viral infection. mAbs of this type represent novel checkpoint inhibitors in tumor immunity, potent tools for the eradication of chronic infection, and may function as adjuvants for the augmentation of the immune response to weak vaccines.
Collapse
Affiliation(s)
- Abir K Panda
- Cellular Immunology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892
| | - Arunakumar Gangaplara
- Laboratory of Early Sickle Mortality Prevention, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Maja Buszko
- Cellular Immunology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892
| | - Kannan Natarajan
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892
| | - Lisa F Boyd
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892
| | - Suveena Sharma
- Cellular Immunology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892
| | - David H Margulies
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892
| | - Ethan M Shevach
- Cellular Immunology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892;
| |
Collapse
|
12
|
Abstract
Cluster of differentiation 8 (CD8) is a cell surface glycoprotein, which is expressed as 2 forms, αα homodimer or αβ heterodimer. Peptide-loaded major histocompatibility complex class I (pMHC-I) molecules are major ligands for both forms of CD8. CD8αβ is a coreceptor for the T cell receptor (TCR) and binds to the same cognate pMHC-I as the TCR, thus enabling or augmenting T cell responses. The function of CD8αα homodimers is largely unknown. While CD8αβ heterodimer is expressed exclusively on CD8+ T cells, the CD8αα homodimer is present in subsets of T cells and human natural killer (NK) cells. Here, we report that the CD8αα homodimer functions as a coreceptor for KIR3DL1, an inhibitory receptor of NK cells that is specific for certain MHC-I allotypes. CD8αα enhances binding of pMHC-I to KIR3DL1, increases KIR3DL1 clustering at the immunological synapse, and augments KIR3DL1-mediated inhibition of NK cell activation. Additionally, interactions between pMHC-I and CD8αα homodimers regulate KIR3DL1+ NK cell education. Together, these findings reveal another dimension to the modulation of NK cell activity.
Collapse
|
13
|
Wroblewski EE, Parham P, Guethlein LA. Two to Tango: Co-evolution of Hominid Natural Killer Cell Receptors and MHC. Front Immunol 2019; 10:177. [PMID: 30837985 PMCID: PMC6389700 DOI: 10.3389/fimmu.2019.00177] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/21/2019] [Indexed: 12/16/2022] Open
Abstract
Natural killer (NK) cells have diverse roles in hominid immunity and reproduction. Modulating these functions are the interactions between major histocompatibility complex (MHC) class I molecules that are ligands for two NK cell surface receptor types. Diverse killer cell immunoglobulin-like receptors (KIR) bind specific motifs encoded within the polymorphic MHC class I cell surface glycoproteins, while, in more conserved interactions, CD94:NKG2A receptors recognize MHC-E with bound peptides derived from MHC class I leader sequences. The hominid lineage presents a choreographed co-evolution of KIR with their MHC class I ligands. MHC-A, -B, and -C are present in all great apes with species-specific haplotypic variation in gene content. The Bw4 epitope recognized by lineage II KIR is restricted to MHC-B but also present on some gorilla and human MHC-A. Common to great apes, but rare in humans, are MHC-B possessing a C1 epitope recognized by lineage III KIR. MHC-C arose from duplication of MHC-B and is fixed in all great apes except orangutan, where it exists on approximately 50% of haplotypes and all allotypes are C1-bearing. Recent study showed that gorillas possess yet another intermediate MHC organization compared to humans. Like orangutans, but unlike the Pan-Homo species, duplication of MHC-B occurred. However, MHC-C is fixed, and the MHC-C C2 epitope (absent in orangutans) emerges. The evolution of MHC-C drove expansion of its cognate lineage III KIR. Recently, position −21 of the MHC-B leader sequence has been shown to be critical in determining NK cell educational outcome. In humans, methionine (−21M) results in CD94:NKG2A-focused education whereas threonine (−21T) produces KIR-focused education. This is another dynamic position among hominids. Orangutans have exclusively −21M, consistent with their intermediate stage in lineage III KIR-focused evolution. Gorillas have both −21M and −21T, like humans, but they are unequally encoded by their duplicated B genes. Chimpanzees have near-fixed −21T, indicative of KIR-focused NK education. Harmonious with this observation, chimpanzee KIR exhibit strong binding and, compared to humans, smaller differences between binding levels of activating and inhibitory KIR. Consistent between these MHC-NK cell receptor systems over the course of hominid evolution is the evolution of polymorphism favoring the more novel and dynamic KIR system.
Collapse
Affiliation(s)
- Emily E Wroblewski
- Department of Anthropology, Washington University, St. Louis, MO, United States
| | - Peter Parham
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, United States
| | - Lisbeth A Guethlein
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
14
|
Jiang J, Natarajan K, Margulies DH. MHC Molecules, T cell Receptors, Natural Killer Cell Receptors, and Viral Immunoevasins-Key Elements of Adaptive and Innate Immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1172:21-62. [PMID: 31628650 DOI: 10.1007/978-981-13-9367-9_2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Molecules encoded by the Major Histocompatibility Complex (MHC) bind self or foreign peptides and display these at the cell surface for recognition by receptors on T lymphocytes (designated T cell receptors-TCR) or on natural killer (NK) cells. These ligand/receptor interactions govern T cell and NK cell development as well as activation of T memory and effector cells. Such cells participate in immunological processes that regulate immunity to various pathogens, resistance and susceptibility to cancer, and autoimmunity. The past few decades have witnessed the accumulation of a huge knowledge base of the molecular structures of MHC molecules bound to numerous peptides, of TCRs with specificity for many different peptide/MHC (pMHC) complexes, of NK cell receptors (NKR), of MHC-like viral immunoevasins, and of pMHC/TCR and pMHC/NKR complexes. This chapter reviews the structural principles that govern peptide/MHC (pMHC), pMHC/TCR, and pMHC/NKR interactions, for both MHC class I (MHC-I) and MHC class II (MHC-II) molecules. In addition, we discuss the structures of several representative MHC-like molecules. These include host molecules that have distinct biological functions, as well as virus-encoded molecules that contribute to the evasion of the immune response.
Collapse
Affiliation(s)
- Jiansheng Jiang
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 10, Room 11D07, 10 Center Drive, Bethesda, MD, 20892-1892, USA.
| | - Kannan Natarajan
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 10, Room 11D07, 10 Center Drive, Bethesda, MD, 20892-1892, USA
| | - David H Margulies
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 10, Room 11D12, 10 Center Drive, Bethesda, MD, 20892-1892, USA
| |
Collapse
|
15
|
Human MHC-II with Shared Epitope Motifs Are Optimal Epstein-Barr Virus Glycoprotein 42 Ligands-Relation to Rheumatoid Arthritis. Int J Mol Sci 2018; 19:ijms19010317. [PMID: 29361739 PMCID: PMC5796260 DOI: 10.3390/ijms19010317] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 01/15/2018] [Accepted: 01/17/2018] [Indexed: 12/14/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disorder of unknown etiology, which is characterized by inflammation in the synovium and joint damage. Although the pathogenesis of RA remains to be determined, a combination of environmental (e.g., viral infections) and genetic factors influence disease onset. Especially genetic factors play a vital role in the onset of disease, as the heritability of RA is 50–60%, with the human leukocyte antigen (HLA) alleles accounting for at least 30% of the overall genetic risk. Some HLA-DR alleles encode a conserved sequence of amino acids, referred to as the shared epitope (SE) structure. By analyzing the structure of a HLA-DR molecule in complex with Epstein-Barr virus (EBV), the SE motif is suggested to play a vital role in the interaction of MHC II with the viral glycoprotein (gp) 42, an essential entry factor for EBV. EBV has been repeatedly linked to RA by several lines of evidence and, based on several findings, we suggest that EBV is able to induce the onset of RA in predisposed SE-positive individuals, by promoting entry of B-cells through direct contact between SE and gp42 in the entry complex.
Collapse
|
16
|
Uppendahl LD, Dahl CM, Miller JS, Felices M, Geller MA. Natural Killer Cell-Based Immunotherapy in Gynecologic Malignancy: A Review. Front Immunol 2018; 8:1825. [PMID: 29354116 PMCID: PMC5760535 DOI: 10.3389/fimmu.2017.01825] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/04/2017] [Indexed: 12/20/2022] Open
Abstract
Harnessing the immune system has proven an effective therapy in treating malignancies. Since the discovery of natural killer (NK) cells, strategies aimed to manipulate and augment their effector function against cancer have been the subject of intense research. Recent progress in the immunobiology of NK cells has led to the development of promising therapeutic approaches. In this review, we will focus on the recent advances in NK cell immunobiology and the clinical application of NK cell immunotherapy in ovarian, cervical, and uterine cancer.
Collapse
Affiliation(s)
- Locke D Uppendahl
- Department of Obstetrics, Gynecology and Women's Health, Division of Gynecologic Oncology, University of Minnesota School of Medicine, Minneapolis, MN, United States
| | - Carly M Dahl
- University of Minnesota School of Medicine, Minneapolis, MN, United States
| | - Jeffrey S Miller
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota School of Medicine, Minneapolis, MN, United States
| | - Martin Felices
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota School of Medicine, Minneapolis, MN, United States
| | - Melissa A Geller
- Department of Obstetrics, Gynecology and Women's Health, Division of Gynecologic Oncology, University of Minnesota School of Medicine, Minneapolis, MN, United States
| |
Collapse
|
17
|
Nour-Eldine W, Joffre J, Zibara K, Esposito B, Giraud A, Zeboudj L, Vilar J, Terada M, Bruneval P, Vivier E, Ait-Oufella H, Mallat Z, Ugolini S, Tedgui A. Genetic Depletion or Hyperresponsiveness of Natural Killer Cells Do Not Affect Atherosclerosis Development. Circ Res 2018; 122:47-57. [DOI: 10.1161/circresaha.117.311743] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/12/2017] [Accepted: 10/17/2016] [Indexed: 01/20/2023]
Abstract
Rationale:
Chronic inflammation is central in the development of atherosclerosis. Both innate and adaptive immunities are involved. Although several studies have evaluated the functions of natural killer (NK) cells in experimental animal models of atherosclerosis, it is not yet clear whether NK cells behave as protective or proatherogenic effectors. One of the main caveats of previous studies was the lack of specificity in targeting loss or gain of function of NK cells.
Objectives:
We used 2 selective genetic approaches to investigate the role of NK cells in atherosclerosis: (1)
Ncr1
iCre/+
R26
lsl−
DTA/+
mice in which NK cells were depleted and (2)
Noé
mice in which NK cells are hyperresponsive.
Methods and Results:
No difference in atherosclerotic lesion size was found in
Ldlr
−/−
(low-density lipoprotein receptor null) mice transplanted with bone marrow (BM) cells from
Ncr1
iCre
R26R
lsl−
DTA
,
Noé
, or wild-type mice. Also, no difference was observed in plaque composition in terms of collagen content, macrophage infiltration, or the immune profile, although
Noé
chimera had more IFN (interferon)-γ–producing NK cells, compared with wild-type mice. Then, we investigated the NK-cell selectivity of anti–asialoganglioside M1 antiserum, which was previously used to conclude the proatherogenicity of NK cells. Anti–asialoganglioside M1 treatment decreased atherosclerosis in both
Ldlr
−/−
mice transplanted with
Ncr1
iCre
R26R
lsl−
DTA
or wild-type bone marrow, indicating that its antiatherogenic effects are unrelated to NK-cell depletion, but to CD8
+
T and NKT cells. Finally, to determine whether NK cells could contribute to the disease in conditions of pathological NK-cell overactivation, we treated irradiated
Ldlr
−/−
mice reconstituted with either wild-type or
Ncr1
iCre
R26R
lsl−
DTA
bone marrow with the viral mimic polyinosinic:polycytidylic acid and found a significant reduction of plaque size in NK-cell–deficient chimeric mice.
Conclusions:
Our findings, using state-of-the-art mouse models, demonstrate that NK cells have no direct effect on the natural development of hypercholesterolemia-induced atherosclerosis, but may play a role when an additional systemic NK-cell overactivation occurs.
Collapse
Affiliation(s)
- Wared Nour-Eldine
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris-Cardiovascular Research Center, Université Paris-Descartes, France (W.N.-E., J.J., B.E., A.G., L.Z., J.V., P.B., H.A.-O., Z.M., A.T.); ER045, PRASE (W.N.-E., K.Z.) and Biology Department, Faculty of Sciences-I (K.Z.), Lebanese University, Beirut, Lebanon; Department of Anatomopathology, Hôpital Européen Georges Pompidou, Assistance Publique-Hopitaux de Paris, France (M.T., P.B.); Centre d’Immunologie de
| | - Jérémie Joffre
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris-Cardiovascular Research Center, Université Paris-Descartes, France (W.N.-E., J.J., B.E., A.G., L.Z., J.V., P.B., H.A.-O., Z.M., A.T.); ER045, PRASE (W.N.-E., K.Z.) and Biology Department, Faculty of Sciences-I (K.Z.), Lebanese University, Beirut, Lebanon; Department of Anatomopathology, Hôpital Européen Georges Pompidou, Assistance Publique-Hopitaux de Paris, France (M.T., P.B.); Centre d’Immunologie de
| | - Kazem Zibara
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris-Cardiovascular Research Center, Université Paris-Descartes, France (W.N.-E., J.J., B.E., A.G., L.Z., J.V., P.B., H.A.-O., Z.M., A.T.); ER045, PRASE (W.N.-E., K.Z.) and Biology Department, Faculty of Sciences-I (K.Z.), Lebanese University, Beirut, Lebanon; Department of Anatomopathology, Hôpital Européen Georges Pompidou, Assistance Publique-Hopitaux de Paris, France (M.T., P.B.); Centre d’Immunologie de
| | - Bruno Esposito
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris-Cardiovascular Research Center, Université Paris-Descartes, France (W.N.-E., J.J., B.E., A.G., L.Z., J.V., P.B., H.A.-O., Z.M., A.T.); ER045, PRASE (W.N.-E., K.Z.) and Biology Department, Faculty of Sciences-I (K.Z.), Lebanese University, Beirut, Lebanon; Department of Anatomopathology, Hôpital Européen Georges Pompidou, Assistance Publique-Hopitaux de Paris, France (M.T., P.B.); Centre d’Immunologie de
| | - Andréas Giraud
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris-Cardiovascular Research Center, Université Paris-Descartes, France (W.N.-E., J.J., B.E., A.G., L.Z., J.V., P.B., H.A.-O., Z.M., A.T.); ER045, PRASE (W.N.-E., K.Z.) and Biology Department, Faculty of Sciences-I (K.Z.), Lebanese University, Beirut, Lebanon; Department of Anatomopathology, Hôpital Européen Georges Pompidou, Assistance Publique-Hopitaux de Paris, France (M.T., P.B.); Centre d’Immunologie de
| | - Lynda Zeboudj
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris-Cardiovascular Research Center, Université Paris-Descartes, France (W.N.-E., J.J., B.E., A.G., L.Z., J.V., P.B., H.A.-O., Z.M., A.T.); ER045, PRASE (W.N.-E., K.Z.) and Biology Department, Faculty of Sciences-I (K.Z.), Lebanese University, Beirut, Lebanon; Department of Anatomopathology, Hôpital Européen Georges Pompidou, Assistance Publique-Hopitaux de Paris, France (M.T., P.B.); Centre d’Immunologie de
| | - José Vilar
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris-Cardiovascular Research Center, Université Paris-Descartes, France (W.N.-E., J.J., B.E., A.G., L.Z., J.V., P.B., H.A.-O., Z.M., A.T.); ER045, PRASE (W.N.-E., K.Z.) and Biology Department, Faculty of Sciences-I (K.Z.), Lebanese University, Beirut, Lebanon; Department of Anatomopathology, Hôpital Européen Georges Pompidou, Assistance Publique-Hopitaux de Paris, France (M.T., P.B.); Centre d’Immunologie de
| | - Megumi Terada
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris-Cardiovascular Research Center, Université Paris-Descartes, France (W.N.-E., J.J., B.E., A.G., L.Z., J.V., P.B., H.A.-O., Z.M., A.T.); ER045, PRASE (W.N.-E., K.Z.) and Biology Department, Faculty of Sciences-I (K.Z.), Lebanese University, Beirut, Lebanon; Department of Anatomopathology, Hôpital Européen Georges Pompidou, Assistance Publique-Hopitaux de Paris, France (M.T., P.B.); Centre d’Immunologie de
| | - Patrick Bruneval
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris-Cardiovascular Research Center, Université Paris-Descartes, France (W.N.-E., J.J., B.E., A.G., L.Z., J.V., P.B., H.A.-O., Z.M., A.T.); ER045, PRASE (W.N.-E., K.Z.) and Biology Department, Faculty of Sciences-I (K.Z.), Lebanese University, Beirut, Lebanon; Department of Anatomopathology, Hôpital Européen Georges Pompidou, Assistance Publique-Hopitaux de Paris, France (M.T., P.B.); Centre d’Immunologie de
| | - Eric Vivier
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris-Cardiovascular Research Center, Université Paris-Descartes, France (W.N.-E., J.J., B.E., A.G., L.Z., J.V., P.B., H.A.-O., Z.M., A.T.); ER045, PRASE (W.N.-E., K.Z.) and Biology Department, Faculty of Sciences-I (K.Z.), Lebanese University, Beirut, Lebanon; Department of Anatomopathology, Hôpital Européen Georges Pompidou, Assistance Publique-Hopitaux de Paris, France (M.T., P.B.); Centre d’Immunologie de
| | - Hafid Ait-Oufella
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris-Cardiovascular Research Center, Université Paris-Descartes, France (W.N.-E., J.J., B.E., A.G., L.Z., J.V., P.B., H.A.-O., Z.M., A.T.); ER045, PRASE (W.N.-E., K.Z.) and Biology Department, Faculty of Sciences-I (K.Z.), Lebanese University, Beirut, Lebanon; Department of Anatomopathology, Hôpital Européen Georges Pompidou, Assistance Publique-Hopitaux de Paris, France (M.T., P.B.); Centre d’Immunologie de
| | - Ziad Mallat
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris-Cardiovascular Research Center, Université Paris-Descartes, France (W.N.-E., J.J., B.E., A.G., L.Z., J.V., P.B., H.A.-O., Z.M., A.T.); ER045, PRASE (W.N.-E., K.Z.) and Biology Department, Faculty of Sciences-I (K.Z.), Lebanese University, Beirut, Lebanon; Department of Anatomopathology, Hôpital Européen Georges Pompidou, Assistance Publique-Hopitaux de Paris, France (M.T., P.B.); Centre d’Immunologie de
| | - Sophie Ugolini
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris-Cardiovascular Research Center, Université Paris-Descartes, France (W.N.-E., J.J., B.E., A.G., L.Z., J.V., P.B., H.A.-O., Z.M., A.T.); ER045, PRASE (W.N.-E., K.Z.) and Biology Department, Faculty of Sciences-I (K.Z.), Lebanese University, Beirut, Lebanon; Department of Anatomopathology, Hôpital Européen Georges Pompidou, Assistance Publique-Hopitaux de Paris, France (M.T., P.B.); Centre d’Immunologie de
| | - Alain Tedgui
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris-Cardiovascular Research Center, Université Paris-Descartes, France (W.N.-E., J.J., B.E., A.G., L.Z., J.V., P.B., H.A.-O., Z.M., A.T.); ER045, PRASE (W.N.-E., K.Z.) and Biology Department, Faculty of Sciences-I (K.Z.), Lebanese University, Beirut, Lebanon; Department of Anatomopathology, Hôpital Européen Georges Pompidou, Assistance Publique-Hopitaux de Paris, France (M.T., P.B.); Centre d’Immunologie de
| |
Collapse
|
18
|
Targeting Intramembrane Protein-Protein Interactions: Novel Therapeutic Strategy of Millions Years Old. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 111:61-99. [PMID: 29459036 PMCID: PMC7102818 DOI: 10.1016/bs.apcsb.2017.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Intramembrane protein-protein interactions (PPIs) are involved in transmembrane signal transduction mediated by cell surface receptors and play an important role in health and disease. Recently, receptor-specific modulatory peptides rationally designed using a general platform of transmembrane signaling, the signaling chain homooligomerization (SCHOOL) model, have been proposed to therapeutically target these interactions in a variety of serious diseases with unmet needs including cancer, sepsis, arthritis, retinopathy, and thrombosis. These peptide drug candidates use ligand-independent mechanisms of action (SCHOOL mechanisms) and demonstrate potent efficacy in vitro and in vivo. Recent studies surprisingly revealed that in order to modify and/or escape the host immune response, human viruses use similar mechanisms and modulate cell surface receptors by targeting intramembrane PPIs in a ligand-independent manner. Here, I review these intriguing mechanistic similarities and discuss how the viral strategies optimized over a billion years of the coevolution of viruses and their hosts can help to revolutionize drug discovery science and develop new, disruptive therapies. Examples are given.
Collapse
|
19
|
Friede ME, Leibelt S, Dudziak D, Steinle A. Select Clr-g Expression on Activated Dendritic Cells Facilitates Cognate Interaction with a Minor Subset of Splenic NK Cells Expressing the Inhibitory Nkrp1g Receptor. THE JOURNAL OF IMMUNOLOGY 2017; 200:983-996. [DOI: 10.4049/jimmunol.1701180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/13/2017] [Indexed: 11/19/2022]
|
20
|
Simmonds MJ. Using Genetic Variation to Predict and Extend Long-term Kidney Transplant Function. Transplantation 2016; 99:2038-48. [PMID: 26262502 DOI: 10.1097/tp.0000000000000836] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Renal transplantation has transformed the life of patients with end-stage renal disease and other chronic kidney disorders by returning endogenous kidney function and enabling patients to cease dialysis. Several clinical indicators of graft outcome and long-term function have been established. Although rising creatinine levels and graft biopsy can be used to determine graft loss, identifying early predictors of graft function will not only improve our ability to predict long-term graft outcome but importantly provide a window of opportunity to therapeutically intervene to preserve graft function before graft failure has occurred. Since understanding the importance of matching genetic variation at the HLA region between donors and recipients and translating this into clinical practise to improve transplant outcome, much focus has been placed on trying to identify additional genetic predictors of transplant outcome/function. This review will focus on how candidate gene studies have identified variants within immunosuppression, immune response, fibrotic pathways, and specific ethnic groups, which correlate with graft outcome. We will also discuss the challenges faced by candidate gene studies, such as differences in donor and recipient selection criteria and use of small data sets, which have led to many genes failing to be consistently associated with transplant outcome. This review will also look at how recent advances in our understanding of and ability to screen the genome are starting to provide new insights into the mechanisms behind long-term graft loss and with it the opportunity to target these pathways therapeutically to ultimately increase graft lifespan and the associated benefits to patients.
Collapse
Affiliation(s)
- Matthew J Simmonds
- 1 Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Churchill Hospital, Headington, Oxford, United Kingdom
| |
Collapse
|
21
|
Mosaad YM. Clinical Role of Human Leukocyte Antigen in Health and Disease. Scand J Immunol 2015; 82:283-306. [PMID: 26099424 DOI: 10.1111/sji.12329] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/02/2015] [Accepted: 06/12/2015] [Indexed: 12/19/2022]
Abstract
Most of the genes in the major histocompatibility complex (MHC) region express high polymorphism that is fundamental for their function. The most important function of human leukocyte antigen (HLA) molecule is in the induction, regulation of immune responses and the selection of the T cell repertoire. A clinician's attention is normally drawn to a system only when it malfunctions. The HLA system is no exception in this regard, but in contrast to other systems, it also arouses interest when it functions well - too well, in fact. Population studies carried out over the last several decades have identified a long list of human diseases that are significantly more common among individuals that carry particular HLA alleles including inflammatory, autoimmune and malignant disorders. HLA-disease association is the name of this phenomenon, and the mechanism underlying is still a subject of hot debate. Social behaviours are affected by HLA genes and preference for HLA disparate mates may provide 'good genes' for an individual's offspring. Also, certain HLA genes may be associated with shorter life and others with longer lifespan, but the effects depend both on the genetic background and on the environmental conditions. The following is a general overview of the important functional aspects of HLA in health and diseases.
Collapse
Affiliation(s)
- Y M Mosaad
- Clinical Immunology Unit, Clinical Pathology Department & Mansoura Research Center for Cord Stem Cell (MARC_CSC), Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
22
|
Mahdi BM. Role of HLA typing on Crohn's disease pathogenesis. Ann Med Surg (Lond) 2015; 4:248-53. [PMID: 26288728 PMCID: PMC4537883 DOI: 10.1016/j.amsu.2015.07.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 07/10/2015] [Accepted: 07/15/2015] [Indexed: 02/07/2023] Open
Abstract
Crohn's disease (CD) is the main type of chronic inflammatory bowel disease of unknown etiology. Evidence from family and twin studies suggests that genetics plays a significant role in predisposing an individual to develop Crohn's disease. A susceptibility locus for Crohn's disease has been mapped 3 to chromosome 16: a frameshift variant and two missense variants of NOD2, encoding a member of the Apaf-1/Ced-4 superfamily of apoptosis regulators which is expressed in hematopoietic compartment cells and intestinal epithelial cells as well as in paneth cells, where NOD2 may play an important role in the pathogenesis of Crohn disease in the gastrointestinal system. This leads to alteration the structure of either the leucine-rich repeat domain of the protein or the adjacent region. NOD2 activates nuclear factor NF-kB; this activating function is regulated by the carboxy-terminal leucine-rich repeat domain, which has two functions, first an inhibitory role and also acts as an intracellular receptor for components of microbial pathogens. Thus, NOD2 gene product confers susceptibility to Crohn's disease by altering the recognition of these components and/or by over-activating NF-kB in intestinal epithelial cells as well as in paneth cells. Further confirmation of a genetic predisposition comes from studies of the association between the human leukocyte antigen (HLA) system and CD. The immunogenetic predisposition may be considered an important requirement for the development of CD, as several alleles of human major histocompatibility complex had an association with CD. Although it is difficult to estimate the importance of this region in determining overall genetic susceptibility in a population, studies of HLA allele sharing within families suggest that this region contributes between 10% and 33% of the total genetic risk of Crohn's disease.
Collapse
|
23
|
McLornan DP, Khan AA, Harrison CN. Immunological Consequences of JAK Inhibition: Friend or Foe? Curr Hematol Malig Rep 2015. [PMID: 26292803 DOI: 10.1007/s11899-015-0284-z.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Over the last decade, unparalleled advances have been made within the field of 'Philadelphia chromosome'-negative myeloproliferative neoplasms (MPN) regarding both disease pathogenesis and therapeutic targeting. The discovery of deregulated JAK-STAT signalling in MPN led to the rapid development of JAK inhibitor agents, targeting both mutated and wild-type JAK, which have significantly altered the therapeutic paradigm for patients with MPN. Although the largest population treated with these agents incorporates those with myelofibrosis, increasing data supports potential usage in other MPNs such as essential thromocythaemia and polycythaemia vera. Many MPNs are associated with a hyperinflammatory state and deregulation of immune homeostasis. Over the last few years, research has focused on attempting to decipher the complex and context-dependent changes that contribute to this immune deregulation. Moreover, very recent studies have demonstrated significant JAK inhibitor-mediated effects within the T cell, natural killer cell and dendritic cell compartments following exposure to JAK inhibitors. In parallel, case reports of infections occurring following exposure to ruxolitinib, many of which are atypical, have focused research efforts on delineating JAK inhibitor-associated immunological consequences. Within this review article, we will describe what is currently known about MPN-associated immune deregulation and JAK inhibitor-mediated immunomodulation.
Collapse
Affiliation(s)
- Donal P McLornan
- Department of Haematology, Guy's and St. Thomas' NHS Foundation Trust, London, SE1 7EH, UK. .,Department of Haematological Medicine, King's College Hospital NHS Foundation Trust, London, SE5 9NU, UK.
| | - Alesia A Khan
- Department of Haematology, Guy's and St. Thomas' NHS Foundation Trust, London, SE1 7EH, UK
| | - Claire N Harrison
- Department of Haematology, Guy's and St. Thomas' NHS Foundation Trust, London, SE1 7EH, UK
| |
Collapse
|
24
|
McLornan DP, Khan AA, Harrison CN. Immunological Consequences of JAK Inhibition: Friend or Foe? Curr Hematol Malig Rep 2015; 10:370-9. [PMID: 26292803 DOI: 10.1007/s11899-015-0284-z] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Donal P McLornan
- Department of Haematology, Guy's and St. Thomas' NHS Foundation Trust, London, SE1 7EH, UK.
- Department of Haematological Medicine, King's College Hospital NHS Foundation Trust, London, SE5 9NU, UK.
| | - Alesia A Khan
- Department of Haematology, Guy's and St. Thomas' NHS Foundation Trust, London, SE1 7EH, UK
| | - Claire N Harrison
- Department of Haematology, Guy's and St. Thomas' NHS Foundation Trust, London, SE1 7EH, UK
| |
Collapse
|
25
|
Leung WH, Vong QP, Lin W, Bouck D, Wendt S, Sullivan E, Li Y, Bari R, Chen T, Leung W. PRL-3 mediates the protein maturation of ULBP2 by regulating the tyrosine phosphorylation of HSP60. THE JOURNAL OF IMMUNOLOGY 2015; 194:2930-41. [PMID: 25687758 DOI: 10.4049/jimmunol.1400817] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Many malignant cells release the NKG2D ligand ULBP2 from their cell surface to evade immunosurveillance by NK cells and CD8 T cells. Although the shedding mechanism remains unclear, various inhibitors of matrix metalloproteinases have been shown to efficiently block the release of soluble ULBP2. The clinical use of these inhibitors, however, is limited because of adverse side effects. Using high-throughput screening technique, we identified a specific inhibitor of phosphatase of regenerating liver 3 (PRL-3) that could reduce the level of soluble ULBP2 in the culture supernatant of various cancer cell lines. Inhibition or gene knockdown of PRL-3 did not reduce ULBP2 shedding, but rather suppressed posttranslational maturation of ULBP2, resulting in intracellular retention of immature ULBP2. We then found that ULBP2 was constitutively associated with heat shock protein HSP60. Complete maturation of ULBP2 required tyrosine phosphorylation of HSP60 which was mediated by PRL-3.
Collapse
Affiliation(s)
- Wai-Hang Leung
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Queenie P Vong
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Wenwei Lin
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105; and
| | - David Bouck
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105; and
| | - Susanne Wendt
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Erin Sullivan
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Ying Li
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Rafijul Bari
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105; and
| | - Wing Leung
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105; Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103
| |
Collapse
|
26
|
Nagae M, Morita-Matsumoto K, Kato M, Kaneko MK, Kato Y, Yamaguchi Y. A platform of C-type lectin-like receptor CLEC-2 for binding O-glycosylated podoplanin and nonglycosylated rhodocytin. Structure 2014; 22:1711-1721. [PMID: 25458834 DOI: 10.1016/j.str.2014.09.009] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/13/2014] [Accepted: 09/17/2014] [Indexed: 11/18/2022]
Abstract
Podoplanin is a transmembrane O-glycoprotein that binds to C-type lectin-like receptor 2 (CLEC-2). The O-glycan-dependent interaction seems to play crucial roles in various biological processes, such as platelet aggregation. Rhodocytin, a snake venom, also binds to CLEC-2 and aggregates platelets in a glycan-independent manner. To elucidate the structural basis of the glycan-dependent and independent interactions, we performed comparative crystallographic studies of podoplanin and rhodocytin in complex with CLEC-2. Both podoplanin and rhodocytin bind to the noncanonical "side" face of CLEC-2. There is a common interaction mode between consecutive acidic residues on the ligands and the same arginine residues on CLEC-2. Other interactions are ligand-specific. Carboxyl groups from the sialic acid residue on podoplanin and from the C terminus of the rhodocytin α subunit interact differently at this "second" binding site on CLEC-2. The unique and versatile binding modes open a way to understand the functional consequences of CLEC-2-ligand interactions.
Collapse
Affiliation(s)
- Masamichi Nagae
- Structural Glycobiology Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, RIKEN Global Research Cluster, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kana Morita-Matsumoto
- Structural Glycobiology Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, RIKEN Global Research Cluster, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Masaki Kato
- Structural Glycobiology Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, RIKEN Global Research Cluster, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Mika Kato Kaneko
- Department of Regional Innovation, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Yukinari Kato
- Department of Regional Innovation, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Yoshiki Yamaguchi
- Structural Glycobiology Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, RIKEN Global Research Cluster, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
27
|
Mogl MT, Albert K, Pascher A, Sauer I, Puhl G, Gül S, Schönemann C, Neuhaus P, Guckelberger O. Survival without biliary complications after liver transplant for primary sclerosing cholangitis. EXP CLIN TRANSPLANT 2014; 11:510-21. [PMID: 24344944 DOI: 10.6002/ect.2013.0051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Patients who have a liver transplant for primary sclerosing cholangitis may develop recurrent disease and biliary complications, organ loss necessitating revision liver transplant, or death. We evaluated long-term outcomes in patients who had liver transplant for primary sclerosing cholangitis. MATERIALS AND METHODS In 71 patients who had a liver transplant for end-stage liver disease because of primary sclerosing cholangitis, a retrospective review was done to evaluate biliary complication-free survival, transplanted organ survival, and death. Human leukocyte antigen typing and matching were reviewed. RESULTS There were 39 patients (55%) who had biliary complications, loss of the liver transplant, or death at a mean 12.1 years after transplant. The 5- and 10-year event-free survival reached 74.6% and 45% (53 patients after 5 years, and 32 patients after 10 years). Male sex of transplant recipients was a significant risk factor for biliary complications, revision liver transplant, or death. Most patients had inflammatory bowel disease, primarily ulcerative colitis. The human leukocyte antigen profile or number of mismatches had no effect on complication-free survival. CONCLUSIONS Biliary complications, revision liver transplant, and death are a useful combined primary endpoint for recurrent primary sclerosing cholangitis after liver transplant.
Collapse
Affiliation(s)
- Martina T Mogl
- Department of General, Visceral and Transplantation Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Backteman K, Ernerudh J, Jonasson L. Natural killer (NK) cell deficit in coronary artery disease: no aberrations in phenotype but sustained reduction of NK cells is associated with low-grade inflammation. Clin Exp Immunol 2014; 175:104-12. [PMID: 24298947 DOI: 10.1111/cei.12210] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2013] [Indexed: 12/11/2022] Open
Abstract
Although reduced natural killer (NK) cell levels have been reported consistently in patients with coronary artery disease (CAD), the clinical significance and persistence of this immune perturbation is not clarified. In this study we characterized the NK cell deficit further by determining (i) differentiation surface markers and cytokine profile of NK cell subsets and (ii) ability to reconstitute NK cell levels over time. Flow cytometry was used to analyse NK cell subsets and the intracellular cytokine profile in 31 patients with non-ST elevation myocardial infarction (non-STEMI), 34 patients with stable angina (SA) and 37 healthy controls. In blood collected prior to coronary angiography, the proportions of NK cells were reduced significantly in non-STEMI and SA patients compared with controls, whereas NK cell subset analyses or cytokine profile measurements did not reveal any differences across groups. During a 12-month follow-up, the proportions of NK cells increased, although not in all patients. Failure to reconstitute NK cell levels was associated with several components of metabolic syndrome. Moreover, interleukin (IL)-6 levels remained high in patients with sustained NK cell deficit, whereas a decline in IL-6 (P < 0·001) was seen in patients with a pronounced increase in NK cells. In conclusion, we found no evidence that reduction of NK cells in CAD patients was associated with aberrations in NK cell phenotype at any clinical stage of the disease. Conversely, failure to reconstitute NK cell levels was associated with a persistent low-grade inflammation, suggesting a protective role of NK cells in CAD.
Collapse
Affiliation(s)
- K Backteman
- Division of Clinical Immunology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden; Department of Clinical Immunology and Transfusion Medicine, County Council of Östergötland, Linköping, Sweden
| | | | | |
Collapse
|
29
|
Abstract
Natural killer (NK) cells are key components of innate immune responses, providing surveillance against cells undergoing tumorigenesis or infection, by viruses or internal pathogens. NK cells can directly eliminate compromised cells and regulate downstream responses of the innate and acquired immune systems through the release of immune modulators (cytokines, interferons). The importance of the role NK cells play in immune defense was demonstrated originally in herpes viral infections, usually mild or localized, which become severe and life threatening in NK-deficient patients . NK cell effector functions are governed by balancing opposing signals from a diverse array of activating and inhibitory receptors. Many NK receptors occur in paired activating and inhibitory isoforms and recognize major histocompatibility complex (MHC) class I proteins with varying degrees of peptide specificity. Structural studies have made considerable inroads into understanding the molecular mechanisms employed to broadly recognize multiple MHC ligands or specific pathogen-associated antigens and the strategies employed by viruses to thwart these defenses. Although many details of NK development, signaling, and integration remain mysterious, it is clear that NK receptors are key components of a system exquisitely tuned to sense any dysregulation in MHC class I expression, or the expression of certain viral antigens, resulting in the elimination of affected cells.
Collapse
Affiliation(s)
- Kathryn A Finton
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | |
Collapse
|
30
|
Abstract
NKG2D is an activating receptor expressed by all NK cells and subsets of T cells. It serves as a major recognition receptor for detection and elimination of transformed and infected cells and participates in the genesis of several inflammatory diseases. The ligands for NKG2D are self-proteins that are induced by pathways that are active in certain pathophysiological states. NKG2D ligands are regulated transcriptionally, at the level of mRNA and protein stability, and by cleavage from the cell surface. In some cases, ligand induction can be attributed to pathways that are activated specifically in cancer cells or infected cells. We review the numerous pathways that have been implicated in the regulation of NKG2D ligands, discuss the pathologic states in which those pathways are likely to act, and attempt to synthesize the findings into general schemes of NKG2D ligand regulation in NK cell responses to cancer and infection.
Collapse
Affiliation(s)
- David H Raulet
- Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California, Berkeley, California 94720-3200, USA.
| | | | | | | | | |
Collapse
|
31
|
Wang R, Natarajan K, Revilleza MJR, Boyd LF, Zhi L, Zhao H, Robinson H, Margulies DH. Structural basis of mouse cytomegalovirus m152/gp40 interaction with RAE1γ reveals a paradigm for MHC/MHC interaction in immune evasion. Proc Natl Acad Sci U S A 2012; 109:E3578-87. [PMID: 23169621 PMCID: PMC3529088 DOI: 10.1073/pnas.1214088109] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Natural killer (NK) cells are activated by engagement of the NKG2D receptor with ligands on target cells stressed by infection or tumorigenesis. Several human and rodent cytomegalovirus (CMV) immunoevasins down-regulate surface expression of NKG2D ligands. The mouse CMV MHC class I (MHC-I)-like m152/gp40 glycoprotein down-regulates retinoic acid early inducible-1 (RAE1) NKG2D ligands as well as host MHC-I. Here we describe the crystal structure of an m152/RAE1γ complex and confirm the intermolecular contacts by mutagenesis. m152 interacts in a pincer-like manner with two sites on the α1 and α2 helices of RAE1 reminiscent of the NKG2D interaction with RAE1. This structure of an MHC-I-like immunoevasin/MHC-I-like ligand complex explains the binding specificity of m152 for RAE1 and allows modeling of the interaction of m152 with classical MHC-I and of related viral immunoevasins.
Collapse
Affiliation(s)
- Rui Wang
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Kannan Natarajan
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Maria Jamela R. Revilleza
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Lisa F. Boyd
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Li Zhi
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Huaying Zhao
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomolecular Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892; and
| | - Howard Robinson
- National Synchrotron Light Source, Brookhaven National Laboratories, Upton, NY 11973
| | - David H. Margulies
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
32
|
Parasa VRR, Sikhamani R, Raja A. Effect of recombinant cytokines on the expression of natural killer cell receptors from patients with TB or/and HIV infection. PLoS One 2012; 7:e37448. [PMID: 22715368 PMCID: PMC3371021 DOI: 10.1371/journal.pone.0037448] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Accepted: 04/19/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND NK cells express several specialized receptors through which they recognize and discriminate virally-infected/tumor cells efficiently from healthy cells and kill them. This ability to lyse is regulated by an array of inhibitory or activating receptors. The present study investigated the frequency of various NK receptors expressed by NK cell subsets from HIV-infected TB patients. The effect of IL-15+IL-12 stimulation on the expression of NK receptors was also studied. METHODOLOGY/PRINCIPAL FINDINGS The study included 15 individuals each from normal healthy subjects, pulmonary tuberculosis patients, HIV-infected individuals and patients with HIV and tuberculosis co-infection. The expression of NK cell receptors was analyzed on two NK cell subsets within the peripheral blood: CD16+CD3- and CD56+CD3- using flow cytometry. The expression of inhibitory receptors (CD158a, CD158b, KIRp70, CD85j and NKG2A) on NK subsets was increased in HIV, when compared to NHS. But the response in HIV-TB was not uniform. Stimulation with IL-15+IL-12 dropped (p<0.05) the expression of CD85j and NKG2A in HIV. The basal expression of natural cytotoxicity receptors (NKp30 and NKp46) on NK cell subsets was lowered (p<0.05) in HIV and HIV-TB as compared to NHS. However, the expression of NKp44 and NKG2D was elevated in HIV. Enhanced NKp46 and NKG2D expression was observed in HIV with IL-15+IL-12 stimulation. The coreceptor NKp80 was found to be expressed in higher numbers on NK subsets from HIV compared to NHS, which elevated with IL-15+IL-12 stimulation. The expression of NK receptors and response to stimulation was primarily on CD56+CD3- subset. CONCLUSIONS/SIGNIFICANCE IL-15+IL-12 has an immunomodulatory effect on NK cell subsets from HIV-infected individuals viz down-regulation of iNKRs, elevation of activatory receptors NKp46 and NKG2D, and induction of coreceptor NKp80. IL-15+IL-12 is not likely to be of value when co-infected with TB probably due to the influence of tuberculosis.
Collapse
Affiliation(s)
- Venkata Ramana Rao Parasa
- Department of Immunology, National Institute for Research in Tuberculosis (ICMR), Formerly Tuberculosis Research Centre, Chetput, Chennai, India
| | | | - Alamelu Raja
- Department of Immunology, National Institute for Research in Tuberculosis (ICMR), Formerly Tuberculosis Research Centre, Chetput, Chennai, India
| |
Collapse
|
33
|
Wang R, Jaw JJ, Stutzman NC, Zou Z, Sun PD. Natural killer cell-produced IFN-γ and TNF-α induce target cell cytolysis through up-regulation of ICAM-1. J Leukoc Biol 2011; 91:299-309. [PMID: 22045868 DOI: 10.1189/jlb.0611308] [Citation(s) in RCA: 198] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
NK cells control tumor and virus-infected cells through releasing cytotoxic granules and proinflammatory cytokines. IFN-γ and TNF-α secretions and cytotoxicity are regarded as two distinct functions of NK cells with little synergy in between as results of early association of the two functions with distinct subsets of NK populations and of the studies showing target cells developing NK resistance upon IFN-γ treatment. Here, we show that IFN-γ and TNF-α synergistically enhance NK cell cytotoxicity through NF-κB-dependent up-regulation of ICAM-1 expression in target cells, thereby promoting their conjugate formation with NK cells. Neutralizing IFN-γ and TNF-α during cytolysis significantly impaired NK cell lysis of the target cells. Further, tumor cells exhibiting IFN-γ-inducible lysis are generally less-sensitive NK target cells but express inducible levels of ICAM-1. In contrast, sensitive NK targets tend to express higher but less-inducible ICAM-1. Their preferential induction in the lysis of insensitive NK target cells suggests that IFN-γ and TNF-α are functionally linked to and should be regarded as an integral part of NK cytolytic function.
Collapse
Affiliation(s)
- Ruipeng Wang
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | | | | | | | | |
Collapse
|
34
|
Gough SCL, Simmonds MJ. The HLA Region and Autoimmune Disease: Associations and Mechanisms of Action. Curr Genomics 2011; 8:453-65. [PMID: 19412418 PMCID: PMC2647156 DOI: 10.2174/138920207783591690] [Citation(s) in RCA: 310] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/11/2007] [Accepted: 10/19/2007] [Indexed: 01/01/2023] Open
Abstract
The HLA region encodes several molecules that play key roles in the immune system. Strong association between the HLA region and autoimmune disease (AID) has been established for over fifty years. Association of components of the HLA class II encoded HLA-DRB1-DQA1-DQB1 haplotype has been detected with several AIDs, including rheumatoid arthritis, type 1 diabetes and Graves' disease. Molecules encoded by this region play a key role in exogenous antigen presentation to CD4+ Th cells, indicating the importance of this pathway in AID initiation and progression. Although other components of the HLA class I and III regions have also been investigated for association with AID, apart from the association of HLA-B*27 with ankylosing spondylitis, it has been difficult to determine additional susceptibility loci independent of the strong linkage disequilibrium (LD) with the HLA class II genes. Recent advances in the statistical analysis of LD and the recruitment of large AID datasets have allowed investigation of the HLA class I and III regions to be re-visited. Association of the HLA class I region, independent of known HLA class II effects, has now been detected for several AIDs, including strong association of HLA-B with type 1 diabetes and HLA-C with multiple sclerosis and Graves' disease. These results provide further evidence of a possible role for bacterial or viral infection and CD8+ T cells in AID onset. The advances being made in determining the primary associations within the HLA region and AIDs will not only increase our understanding of the mechanisms behind disease pathogenesis but may also aid in the development of novel therapeutic targets in the future.
Collapse
Affiliation(s)
- S C L Gough
- Division of Medical Sciences, University of Birmingham, Institute of Biomedical Research, Birmingham, B15 2TT, UK
| | | |
Collapse
|
35
|
Abstract
The ageing process is very complex. Human longevity is a multifactorial trait which is determined by genetic and environmental factors. Twin and family studies imply that up to 25% of human lifespan is heritable. The longevity gene candidates have generally fallen into the following categories: inflammatory and immune-related factors, stress response elements, mediators of glucose and lipid metabolism, components of DNA repair and cellular proliferation and mitochondrial DNA haplogroups. Because of the central role of HLA molecules in the development of protective immunity and the extraordinary degree of polymorphism of HLA genes, many studies have addressed the possible impact of these genes on human longevity. Most of the data available so far demonstrated a possible role of HLA class II specificities in human longevity but definitive evidence has remained elusive. Although the data are limited and controversial, it has been hypothesized that longevity could be associated with cytokine gene polymorphisms correlating with different levels of cytokine production, thereby modulating immune responses in health and disease. Because of the essential role of cytokines in immune responses, the regulation of cytokine gene expression and their polymorphic nature, the genetic variations of these loci with functional significance could be appropriate immunogenetic candidate markers implicated in the mechanism of successful ageing and longevity. In addition, several other genes such as Toll-like receptor genes, Cycloxygenases (COX)/Lipoxygenases (LOX), CCR5, NK receptor genes and MBL2 have been assessed as a possible biomarkers associated with ageing. This review will summarize the data on the role of these immune genes in human longevity.
Collapse
Affiliation(s)
- E Naumova
- Department of Clinical Immunology, University Hospital Alexandovska, Sofia, Bulgaria.
| | | | | |
Collapse
|
36
|
Kaplan A, Kotzer S, Almeida CR, Kohen R, Halpert G, Salmon-Divon M, Köhler K, Höglund P, Davis DM, Mehr R. Simulations of the NK cell immune synapse reveal that activation thresholds can be established by inhibitory receptors acting locally. THE JOURNAL OF IMMUNOLOGY 2011; 187:760-73. [PMID: 21690326 DOI: 10.4049/jimmunol.1002208] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NK cell activation is regulated by a balance between activating and inhibitory signals. To address the question of how these signals are spatially integrated, we created a computer simulation of activating and inhibitory NK cell immunological synapse (NKIS) assembly, implementing either a "quantity-based" inhibition model or a "distance-based" inhibition model. The simulations mimicked the observed molecule distributions in inhibitory and activating NKIS and yielded several new insights. First, the total signal is highly influenced by activating complex dissociation rates but not by adhesion and inhibitory complex dissociation rates. Second, concerted motion of receptors in clusters significantly accelerates NKIS maturation. Third, when the potential of a cis interaction between Ly49 receptors and MHC class I on murine NK cells was added to the model, the integrated signal as a function of receptor and ligand numbers was only slightly increased, at least up to the level of 50% cis-bound Ly49 receptors reached in the model. Fourth, and perhaps most importantly, the integrated signal behavior obtained when using the distance-based inhibition signal model was closer to the experimentally observed behavior, with an inhibition radius of the order 3-10 molecules. Microscopy to visualize Vav activation in NK cells on micropatterned surfaces of activating and inhibitory strips revealed that Vav is only locally activated where activating receptors are ligated within a single NK cell contact. Taken together, these data are consistent with a model in which inhibitory receptors act locally; that is, that every bound inhibitory receptor acts on activating receptors within a certain radius around it.
Collapse
Affiliation(s)
- Asya Kaplan
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Champagne E. γδ T cell receptor ligands and modes of antigen recognition. Arch Immunol Ther Exp (Warsz) 2011; 59:117-37. [PMID: 21298486 DOI: 10.1007/s00005-011-0118-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 12/02/2010] [Indexed: 01/03/2023]
Abstract
T lymphocytes expressing the γδ-type of T cell receptors (TCRs) for antigens contribute to all aspects of immune responses, including defenses against viruses, bacteria, parasites and tumors, allergy and autoimmunity. Multiple subsets have been individualized in humans as well as in mice and they appear to recognize in a TCR-dependent manner antigens as diverse as small non-peptidic molecules, soluble or membrane-anchored polypeptides and molecules related to MHC antigens on cell surfaces, implying diverse modes of antigen recognition. We review here the γδ TCR ligands which have been identified along the years and their characteristics, with emphasis on a few systems which have been extensively studied such as human γδ T cells responding to phosphoantigens or murine γδ T cells activated by allogeneic MHC antigens. We discuss a speculative model of antigen recognition involving simultaneous TCR recognition of MHC-like and non-MHC ligands which could fit with most available data and shares many similarities with the classical model of MHC-restricted antigen recognition for peptides or lipids by T cells subsets with αβ-type TCRs.
Collapse
Affiliation(s)
- Eric Champagne
- INSERM U1043/CNRS U5282; Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan, Toulouse, France.
| |
Collapse
|
38
|
Inhibitory C-type lectin receptors in myeloid cells. Immunol Lett 2010; 136:1-12. [PMID: 20934454 PMCID: PMC3061320 DOI: 10.1016/j.imlet.2010.10.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 10/01/2010] [Accepted: 10/01/2010] [Indexed: 01/31/2023]
Abstract
C-type lectin receptors encoded by the natural killer gene complex play critical roles in enabling NK cell discrimination between self and non-self. In recent years, additional genes at this locus have been identified with patterns of expression that extend to cells of the myeloid lineage where many of the encoded inhibitory receptors have equally important functions as regulators of immune homeostasis. In the present review we highlight the roles of some of these receptors including recent insights gained with regard to the identification of exogenous and endogenous ligands, mechanisms of cellular inhibition and activation, regulated expression within different cellular and immune contexts, as well as functions that include the regulation of bone homeostasis and involvement in autoimmunity.
Collapse
|
39
|
Parsons MS, Zipperlen K, Gallant M, Grant M. Killer cell immunoglobulin-like receptor 3DL1 licenses CD16-mediated effector functions of natural killer cells. J Leukoc Biol 2010; 88:905-912. [DOI: 10.1189/jlb.1009687] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Abstract
Antibody-dependent cellular cytotoxicity levels reflect a formative interaction between killer cell immunoglobulin-like receptor 3DL1 and the class I human leukocyte antigen Bw4 epitope.
Activating receptor-mediated recognition of stress-induced ligands or IgG antibody bridging of tumor or pathogen-associated antigens to the FcγRIII CD16 triggers NK cells to kill transformed and infected cells with reduced HLA-I expression. According to the licensing hypothesis, NK cells become competent for activating receptor-mediated triggering after a formative encounter between a NK inhibitory receptor and its ligand. This general hypothesis is supported by murine and human studies, but to date, evidence of a role for such licensing in human ADCC is ambiguous. Inhibitory receptor interactions with HLA-C promote NK cell ADCC licensing, but interactions between KIR3DL1 and its HLA-Bw4 ligand may be insufficient. We investigated the impact of KIR3DL1 and HLA-Bw4 coexpression on NK cell ADCC using a robust, genuine target system of antibody-bearing EBV-transformed B lymphocytes. Although numbers of KIR3DL1+ NK cells were similar in HLA-Bw4+ and HLA-Bw4– individuals, general levels of ADCC mediated against target cells were significantly higher in a group of HLA-Bw4+KIR3DL1+ individuals than in a comparable HLA-Bw4– group. Flow cytometry demonstrated directly that a significantly higher fraction of KIR3DL1+ NK cells derived from HLA-Bw4+ compared with HLA-Bw4– individuals produced IFN-γ following stimulation with ADCC targets. Murine FcR-bearing P815 target cells also triggered higher levels of CD16-mediated cytotoxicity by NK cells from HLA-Bw4+KIR3DL1+ individuals. These results indicate a prominent role for KIR3DL1/HLA-Bw4 interactions in licensing NK cells for CD16-mediated effector function.
Collapse
Affiliation(s)
- Matthew S Parsons
- Immunology and Infectious Disease Program, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland , St. Johnˈs, Newfoundland & Labrador, Canada
| | - Katrin Zipperlen
- Immunology and Infectious Disease Program, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland , St. Johnˈs, Newfoundland & Labrador, Canada
| | - Maureen Gallant
- Immunology and Infectious Disease Program, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland , St. Johnˈs, Newfoundland & Labrador, Canada
| | - Michael Grant
- Immunology and Infectious Disease Program, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland , St. Johnˈs, Newfoundland & Labrador, Canada
| |
Collapse
|
40
|
Ling S, Cheng A, Pumpens P, Michalak M, Holoshitz J. Identification of the rheumatoid arthritis shared epitope binding site on calreticulin. PLoS One 2010; 5:e11703. [PMID: 20661469 PMCID: PMC2908537 DOI: 10.1371/journal.pone.0011703] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 06/29/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The rheumatoid arthritis (RA) shared epitope (SE), a major risk factor for severe disease, is a five amino acid motif in the third allelic hypervariable region of the HLA-DRbeta chain. The molecular mechanisms by which the SE affects susceptibility to--and severity of--RA are unknown. We have recently demonstrated that the SE acts as a ligand that interacts with cell surface calreticulin (CRT) and activates innate immune signaling. In order to better understand the molecular basis of SE-RA association, here we have undertaken to map the SE binding site on CRT. PRINCIPAL FINDINGS Surface plasmon resonance (SPR) experiments with domain deletion mutants suggested that the SE binding site is located in the P-domain of CRT. The role of this domain as a SE-binding region was further confirmed by a sulfosuccinimidyl-2-[6-(biotinamido)-2-(p-azido-benzamido) hexanoamido] ethyl-1,3-dithiopropionate (sulfo-SBED) photoactive cross-linking method. In silico analysis of docking interactions between a conformationally intact SE ligand and the CRT P-domain predicted the region within amino acid residues 217-224 as a potential SE binding site. Site-directed mutagenesis demonstrated involvement of residues Glu(217) and Glu(223)--and to a lesser extent residue Asp(220)--in cell-free SPR-based binding and signal transduction assays. SIGNIFICANCE We have characterized here the molecular basis of a novel ligand-receptor interaction between the SE and CRT. The interaction represents a structurally and functionally well-defined example of cross talk between the adaptive and innate immune systems that could advance our understanding of the pathogenesis of autoimmunity.
Collapse
Affiliation(s)
- Song Ling
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan, United States of America
| | - Andrew Cheng
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan, United States of America
| | - Paul Pumpens
- Latvian Biomedical Research and Study Center, Riga, Latvia
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Joseph Holoshitz
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan, United States of America
| |
Collapse
|
41
|
Csorba TR, Lyon AW, Hollenberg MD. Autoimmunity and the pathogenesis of type 1 diabetes. Crit Rev Clin Lab Sci 2010; 47:51-71. [DOI: 10.3109/10408361003787171] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
42
|
Sigalov AB. The SCHOOL of nature: I. Transmembrane signaling. SELF/NONSELF 2010; 1:4-39. [PMID: 21559175 PMCID: PMC3091606 DOI: 10.4161/self.1.1.10832] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 11/30/2009] [Accepted: 12/01/2009] [Indexed: 11/19/2022]
Abstract
Receptor-mediated transmembrane signaling plays an important role in health and disease. Recent significant advances in our understanding of the molecular mechanisms linking ligand binding to receptor activation revealed previously unrecognized striking similarities in the basic structural principles of function of numerous cell surface receptors. In this work, I demonstrate that the Signaling Chain Homooligomerization (SCHOOL)-based mechanism represents a general biological mechanism of transmembrane signal transduction mediated by a variety of functionally unrelated single- and multichain activating receptors. within the SCHOOL platform, ligand binding-induced receptor clustering is translated across the membrane into protein oligomerization in cytoplasmic milieu. This platform resolves a long-standing puzzle in transmembrane signal transduction and reveals the major driving forces coupling recognition and activation functions at the level of protein-protein interactions-biochemical processes that can be influenced and controlled. The basic principles of transmembrane signaling learned from the SCHOOL model can be used in different fields of immunology, virology, molecular and cell biology and others to describe, explain and predict various phenomena and processes mediated by a variety of functionally diverse and unrelated receptors. Beyond providing novel perspectives for fundamental research, the platform opens new avenues for drug discovery and development.
Collapse
Affiliation(s)
- Alexander B Sigalov
- Department of Pathology; University of Massachusetts Medical School; Worcester, MA USA
| |
Collapse
|
43
|
The structure of the poxvirus A33 protein reveals a dimer of unique C-type lectin-like domains. J Virol 2009; 84:2502-10. [PMID: 20032175 DOI: 10.1128/jvi.02247-09] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The current vaccine against smallpox is an infectious form of vaccinia virus that has significant side effects. Alternative vaccine approaches using recombinant viral proteins are being developed. A target of subunit vaccine strategies is the poxvirus protein A33, a conserved protein in the Chordopoxvirinae subfamily of Poxviridae that is expressed on the outer viral envelope. Here we have determined the structure of the A33 ectodomain of vaccinia virus. The structure revealed C-type lectin-like domains (CTLDs) that occur as dimers in A33 crystals with five different crystal lattices. Comparison of the A33 dimer models shows that the A33 monomers have a degree of flexibility in position within the dimer. Structural comparisons show that the A33 monomer is a close match to the Link module class of CTLDs but that the A33 dimer is most similar to the natural killer (NK)-cell receptor class of CTLDs. Structural data on Link modules and NK-cell receptor-ligand complexes suggest a surface of A33 that could interact with viral or host ligands. The dimer interface is well conserved in all known A33 sequences, indicating an important role for the A33 dimer. The structure indicates how previously described A33 mutations disrupt protein folding and locates the positions of N-linked glycosylations and the epitope of a protective antibody.
Collapse
|
44
|
Garcia KC, Adams JJ, Feng D, Ely LK. The molecular basis of TCR germline bias for MHC is surprisingly simple. Nat Immunol 2009; 10:143-7. [PMID: 19148199 PMCID: PMC3982143 DOI: 10.1038/ni.f.219] [Citation(s) in RCA: 186] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The elusive etiology of germline bias of the T cell receptor (TCR) for major histocompatibility complex (MHC) has been clarified by recent 'proof-of-concept' structural results demonstrating the conservation of specific TCR-MHC interfacial contacts in complexes bearing common variable segments and MHC allotypes. We suggest that each TCR variable-region gene product engages each type of MHC through a 'menu' of structurally coded recognition motifs that have arisen through coevolution. The requirement for MHC-restricted T cell recognition during thymic selection and peripheral surveillance has necessitated the existence of such a coded recognition system. Given these findings, a reconsideration of the TCR-peptide-MHC structural database shows that not only have the answers been there all along but also they were predictable by the first principles of physical chemistry.
Collapse
Affiliation(s)
- K Christopher Garcia
- Department of Molecular & Cellular Physiology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305, USA.
| | | | | | | |
Collapse
|
45
|
Signaling Chain Homooligomerization (SCHOOL) Model. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 640:121-63. [DOI: 10.1007/978-0-387-09789-3_12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
46
|
Wesselkamper SC, Eppert BL, Motz GT, Lau GW, Hassett DJ, Borchers MT. NKG2D is critical for NK cell activation in host defense against Pseudomonas aeruginosa respiratory infection. THE JOURNAL OF IMMUNOLOGY 2008; 181:5481-9. [PMID: 18832705 DOI: 10.4049/jimmunol.181.8.5481] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pseudomonas aeruginosa is a major cause of nosocomial respiratory infections. The eradication of P. aeruginosa from the lung involves the orchestrated actions of the pulmonary epithelium and both resident and recruited immune cells. The NKG2D receptor is constitutively expressed on the surface of circulating and tissue-resident NK cells (and other cytotoxic lymphocytes), and is capable of controlling NK cell activation and production of cytokines, such as IFN-gamma via interactions with ligands expressed on the surface of stressed cells. Previously, we demonstrated that NKG2D mediates pulmonary clearance of P. aeruginosa. In the present study, we investigated the cellular and molecular mechanisms of NKG2D-mediated clearance of P. aeruginosa using a novel transgenic mouse model of doxycycline-inducible conditional expression of NKG2D ligands (retinoic acid early transcript 1, alpha) in pulmonary epithelial cells. NKG2D ligand expression in this model increased pulmonary clearance, cellular phagocytosis, and survival following P. aeruginosa respiratory infection. Additionally, NK cell sensitivity to ex vivo LPS stimulation was greater in lung cells isolated from naive transgenic mice administered doxycycline. We also showed that NK cells are the primary source of lymphocyte-derived IFN-gamma in response to P. aeruginosa respiratory infection. Significantly, we demonstrated that NKG2D is critical to the nonredundant IFN-gamma production by pulmonary NK cells following acute P. aeruginosa infection. These results represent the principal report of NKG2D-mediated activation of lung NK cells following respiratory infection with an opportunistic pathogen and further establish the importance of NKG2D in the host response against P. aeruginosa respiratory infection.
Collapse
Affiliation(s)
- Scott C Wesselkamper
- Department of Environmental Health, Division of Environmental Genetics and Molecular Toxicology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | | | | | | | | | | |
Collapse
|
47
|
Kahraman A, Barreyro FJ, Bronk SF, Werneburg NW, Mott JL, Akazawa Y, Masuoka HC, Howe CL, Gores GJ. TRAIL mediates liver injury by the innate immune system in the bile duct-ligated mouse. Hepatology 2008; 47:1317-30. [PMID: 18220275 PMCID: PMC2570266 DOI: 10.1002/hep.22136] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
UNLABELLED The contribution of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a death ligand expressed by cells of the innate immune system, to cholestatic liver injury has not been explored. Our aim was to ascertain if TRAIL contributes to liver injury in the bile duct-ligated (BDL) mouse. C57/BL6 wild-type (wt), TRAIL heterozygote (TRAIL(+/-)), and TRAIL knockout (TRAIL(-/-)) mice were used for these studies. Liver injury and fibrosis were examined 7 and 14 days after BDL, respectively. Hepatic TRAIL messenger RNA (mRNA) was 6-fold greater in BDL animals versus sham-operated wt animals (P < 0.01). The increased hepatic TRAIL expression was accompanied by an increase in liver accumulation of natural killer 1.1 (NK 1.1)-positive NK and natural killer T (NKT) cells, the predominant cell types expressing TRAIL. Depletion of NK 1.1-positive cells reduced hepatic TRAIL mRNA expression and serum alanine aminotransferase (ALT) values. Consistent with a role for NK/NKT cells in this model of liver injury, stress ligands necessary for their recognition of target cells were also up-regulated in hepatocytes following BDL. Compared to sham-operated wt mice, BDL mice displayed a 13-fold increase in terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) and an 11-fold increase in caspase 3/7-positive hepatocytes (P < 0.01). The number of TUNEL and caspase 3/7-positive cells was reduced by >80% in BDL TRAIL knockout animals (P < 0.05). Likewise, liver histology, number of bile infarcts, serum ALT values, hepatic fibrosis, and animal survival were also improved in BDL TRAIL(-/-) animals as compared to wt animals. CONCLUSION These observations support a pivotal role for TRAIL in cholestatic liver injury mediated by NK 1.1-positive NK/NKT cells.
Collapse
Affiliation(s)
- Alisan Kahraman
- Miles and Shirley Fitterman Center for Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN,Department of Gastroenterology and Hepatology, University Hospital Essen, Essen, Germany
| | - Fernando J. Barreyro
- Miles and Shirley Fitterman Center for Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Steven F. Bronk
- Miles and Shirley Fitterman Center for Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Nathan W. Werneburg
- Miles and Shirley Fitterman Center for Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Justin L. Mott
- Miles and Shirley Fitterman Center for Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Yuko Akazawa
- Miles and Shirley Fitterman Center for Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Howard C. Masuoka
- Miles and Shirley Fitterman Center for Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | | | - Gregory J. Gores
- Miles and Shirley Fitterman Center for Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| |
Collapse
|
48
|
Ling S, Pi X, Holoshitz J. The Rheumatoid Arthritis Shared Epitope Triggers Innate Immune Signaling via Cell Surface Calreticulin. THE JOURNAL OF IMMUNOLOGY 2007; 179:6359-67. [DOI: 10.4049/jimmunol.179.9.6359] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
49
|
|
50
|
Borchers MT, Harris NL, Wesselkamper SC, Vitucci M, Cosman D. NKG2D ligands are expressed on stressed human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2006; 291:L222-31. [PMID: 16473864 DOI: 10.1152/ajplung.00327.2005] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Immune surveillance of the airways is critical to maintain the integrity and health of the lung. We have identified a family of ligands expressed on the surface of stressed airway epithelial cells whose function is to bind the NKG2D-activating receptor found on several pulmonary lymphocytes, including natural killer cells, γδ+ T cells, and CD8+ T cells. We employed real-time PCR and flow cytometry in normal and transformed airway epithelial cell to demonstrate that major histocompatibility complex class I chain-related (MIC) B and the UL-16 binding protein (ULBP) ligands (ULBP1–4) are ubiquitously expressed at the mRNA level in all cell lines. MICA/B surface expression was present on 70% of transformed cell lines but was undetectable on primary cells. We demonstrate that MICA/B and ULBP 1, 2, 3, and 4 expression is rare or absent on the cell surface of unstimulated normal human bronchial epithelial cells although transcripts and intracellular proteins are present. Normal human bronchial epithelial cells exposed to 0.3 mM hydrogen peroxide exhibit an induction of all ligands examined on the cell surface. Surface expression is independent of changes in transcript level or total cellular protein and is mediated by the ERK family of mitogen-activated protein kinases. The induction of NKG2D ligands on stressed airway epithelial cells represents a potentially important mechanism of immune cell activation in regulation of pulmonary health and disease.
Collapse
Affiliation(s)
- Michael T Borchers
- Department of Environmental Health, Division of Environmental Genetics and Molecular Toxicology, University of Cincinnati College of Medicine, OH 45267, USA.
| | | | | | | | | |
Collapse
|