1
|
Ming K, Xing B, Ren X, Hu Y, Wei L, Wang Z, Mei M, Weng J, Wei Z. De novo design of mini-binder proteins against IL-2 receptor β chain. Int J Biol Macromol 2024; 276:133834. [PMID: 39002899 DOI: 10.1016/j.ijbiomac.2024.133834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/27/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
IL-2 regulates the immune response by interacting with different IL-2 receptor (IL-2R) subunits. High dose of IL-2 binds to IL-2Rβγc heterodimer, which induce various side effects while activating immune function. Disrupting IL-2 and IL-2R interactions can block IL-2 mediated immune response. Here, we used a computational approach to de novo design mini-binder proteins against IL-2R β chain (IL-2Rβ) to block IL-2 signaling. The hydrophobic region where IL-2 binds to IL-2Rβ was selected and the promising binding mode was broadly explored. Three mini-binders with amino acid numbers ranging from 55 to 65 were obtained and binder 1 showed the best effects in inhibiting CTLL-2 cells proliferation and STAT5 phosphorylation. Molecular dynamics simulation showed that the binding of binder 1 to IL-2Rβ was stable; the free energy of binder1/IL-2Rβ complex was lower, indicating that the affinity of binder 1 to IL-2Rβ was higher than that of IL-2. Free energy decomposition suggested that the ARG35 and ARG131 of IL-2Rβ might be the key to improve the affinity of binder. Our efforts provided new insights in developing of IL-2R blocker, offering a potential strategy for ameliorating the side effects of IL-2 treatment.
Collapse
Affiliation(s)
- Ke Ming
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, PR China; Hubei Jiangxia Laboratory, Wuhan, Hubei, PR China
| | - Banbin Xing
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, PR China
| | - Xinyi Ren
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, PR China
| | - Yang Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, PR China
| | - Lin Wei
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, PR China; Hubei Jiangxia Laboratory, Wuhan, Hubei, PR China
| | - Zhizheng Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, PR China; Hubei Jiangxia Laboratory, Wuhan, Hubei, PR China
| | - Meng Mei
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, PR China; Hubei Jiangxia Laboratory, Wuhan, Hubei, PR China
| | - Jun Weng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, PR China; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Zigong Wei
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, PR China; Hubei Jiangxia Laboratory, Wuhan, Hubei, PR China; Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of life sciences, Hubei University, Wuhan, Hubei, PR China.
| |
Collapse
|
2
|
Markmann V, Pan J, Hansen BL, Haubro ML, Nimmrich A, Lenzen P, Levantino M, Katayama T, Adachi SI, Gorski-Bilke S, Temps F, Dohn AO, Møller KB, Nielsen MM, Haldrup K. Real-time structural dynamics of the ultrafast solvation process around photo-excited aqueous halides. Chem Sci 2024; 15:11391-11401. [PMID: 39055005 PMCID: PMC11268492 DOI: 10.1039/d4sc01912a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/11/2024] [Indexed: 07/27/2024] Open
Abstract
This work investigates and describes the structural dynamics taking place following charge-transfer-to-solvent photo-abstraction of electrons from I- and Br- ions in aqueous solution following single- and 2-photon excitation at 202 nm and 400 nm, respectively. A Time-Resolved X-ray Solution Scattering (TR-XSS) approach with direct sensitivity to the structure of the surrounding solvent as the water molecules adopt a new equilibrium configuration following the electron-abstraction process is utilized to investigate the structural dynamics of solvent shell expansion and restructuring in real-time. The structural sensitivity of the scattering data enables a quantitative evaluation of competing models for the interaction between the nascent neutral species and surrounding water molecules. Taking the I0-O distance as the reaction coordinate, we find that the structural reorganization is delayed by 0.1 ps with respect to the photoexcitation and completes on a time scale of 0.5-1 ps. On longer time scales we determine from the evolution of the TR-XSS difference signal that I0: e- recombination takes place on two distinct time scales of ∼20 ps and 100 s of picoseconds. These dynamics are well captured by a simple model of diffusive evolution of the initial photo-abstracted electron population where the charge-transfer-to-solvent process gives rise to a broad distribution of electron ejection distances, a significant fraction of which are in the close vicinity of the nascent halogen atoms and recombine on short time scales.
Collapse
Affiliation(s)
- Verena Markmann
- Technical University of Denmark Anker Engelunds Vej 1 2800 Lyngby Denmark
| | - Jaysree Pan
- Technical University of Denmark Anker Engelunds Vej 1 2800 Lyngby Denmark
| | - Bianca L Hansen
- Technical University of Denmark Anker Engelunds Vej 1 2800 Lyngby Denmark
| | - Morten L Haubro
- Technical University of Denmark Anker Engelunds Vej 1 2800 Lyngby Denmark
| | - Amke Nimmrich
- Technical University of Denmark Anker Engelunds Vej 1 2800 Lyngby Denmark
- Department of Chemistry and Molecular Biology, University of Gothenburg Gothenburg Sweden
| | - Philipp Lenzen
- Technical University of Denmark Anker Engelunds Vej 1 2800 Lyngby Denmark
| | - Matteo Levantino
- European Synchrotron Radiation Facility CS40220 Grenoble 38043 Cedex 9 France
| | - Tetsuo Katayama
- Japan Synchrotron Radiation Research Institute Kouto 1-1-1, Sayo Hyogo 679-5198 Japan
- RIKEN SPring-8 Center 1-1-1 Kouto, Sayo Hyogo 679-5148 Japan
| | - Shin-Ichi Adachi
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK) 1-1 Oho, Tsukuba Ibaraki 305-0801 Japan
- Department of Materials Structure Science, School of High Energy Accelerator Science 1-1 Oho, Tsukuba Ibaraki 305-0801 Japan
| | | | - Friedrich Temps
- Christian-Albrechts-University Kiel Olshausenstr. 40 24098 Kiel Germany
| | - Asmus O Dohn
- Technical University of Denmark Anker Engelunds Vej 1 2800 Lyngby Denmark
- Science Institute, University of Iceland 107 Reykjavík Iceland
| | - Klaus B Møller
- Technical University of Denmark Anker Engelunds Vej 1 2800 Lyngby Denmark
| | - Martin M Nielsen
- Technical University of Denmark Anker Engelunds Vej 1 2800 Lyngby Denmark
| | - Kristoffer Haldrup
- Technical University of Denmark Anker Engelunds Vej 1 2800 Lyngby Denmark
| |
Collapse
|
3
|
Sherefedin U, Belay A, Gudishe K, Kebede A, Kumela AG, Wakjira TL, Asemare S, Gurumurthi T, Gelanu D. Investigating the effects of solvent polarity and temperature on the molecular, photophysical, and thermodynamic properties of sinapic acid using DFT and TDDFT. RSC Adv 2024; 14:23364-23377. [PMID: 39049890 PMCID: PMC11267253 DOI: 10.1039/d4ra04829f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024] Open
Abstract
Sinapic acid (SA) is widely used in cosmetics, foods, and pharmaceuticals due to its antioxidant, anti-inflammatory, neuroprotective, antimicrobial, antifungal, anticancer, and cardioprotective properties. However, environmental factors such as solvent polarity and temperature can influence its biological activity. This work determined how solvent polarity and temperature affected the molecular, photophysical, and thermodynamic properties of SA in gas and various solvents using semi-empirical (MP6), Hartree-Fock (HF) with the B3LYP method and a 6-311++G(d,p) basis set, and density functional theory (DFT) with various basis sets, such as 3TO-3G*, 3-21G+, 6-31G++G(d,p), 6-311++G(d,p), aug-CC-PVDZ, LanL2DZ, SDD, and DGD2VP. The results indicated that solvent polarity influences molecular and spectroscopic properties, such as bond angles, dihedral angles, bond lengths, FTIR spectra, solvation energy, dipole moments, HOMO-LUMO band gaps, chemical reactivity, and thermodynamic properties, resulting from interactions between the drug and solvent molecules. The findings suggested that increasing the temperature within the range of 100 to 1000 Kelvin leads to an increase in heat capacity, enthalpy, and entropy due to molecular vibrations, ultimately causing degradation and instability in SA. Furthermore, the results showed that SA underwent a redshift in the absorption peak (from 320.18 to 356.26 nm) and a shift in the fluorescence peak (from 381 to 429 nm) in the solvent phase compared to those in the gas phase. Overall, this study provides background knowledge on how solvent polarity and temperature affect the properties of SA molecules.
Collapse
Affiliation(s)
- Umer Sherefedin
- Department of Applied Physics, School of Applied Natural Sciences, Adama Science and Technology University Adama P.O. Box 1888 Ethiopia
| | - Abebe Belay
- Department of Applied Physics, School of Applied Natural Sciences, Adama Science and Technology University Adama P.O. Box 1888 Ethiopia
| | - Kusse Gudishe
- Department of Applied Physics, School of Applied Natural and Computational Sciences, Jinka University Jinka Ethiopia
| | - Alemu Kebede
- Department of Applied Physics, School of Applied Natural Sciences, Adama Science and Technology University Adama P.O. Box 1888 Ethiopia
| | - Alemayehu Getahun Kumela
- Department of Applied Physics, School of Applied Natural Sciences, Adama Science and Technology University Adama P.O. Box 1888 Ethiopia
- Department of Applied Physics, College of Natural and Computational Sciences, Mekdela Amba University Tullu Awulia Ethiopia
| | - Tadesse Lemma Wakjira
- Department of Applied Physics, School of Applied Natural Sciences, Adama Science and Technology University Adama P.O. Box 1888 Ethiopia
| | - Semahegn Asemare
- Department of Applied Physics, School of Applied Natural Sciences, Adama Science and Technology University Adama P.O. Box 1888 Ethiopia
| | - T Gurumurthi
- Department of Applied Physics, School of Applied Natural Sciences, Adama Science and Technology University Adama P.O. Box 1888 Ethiopia
| | - Dereje Gelanu
- Department of Applied Physics, School of Applied Natural Sciences, Adama Science and Technology University Adama P.O. Box 1888 Ethiopia
| |
Collapse
|
4
|
Bossa GV, Caetano DLZ. Differential capacitance of curved electrodes: role of hydration interactions and charge regulation. Phys Chem Chem Phys 2024; 26:16774-16781. [PMID: 38819431 DOI: 10.1039/d4cp00372a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The functioning of supercapacitors relies on establishing electrostatic double-layer capacitance across a larger surface area, offering numerous advantages over conventional batteries, such as an extended lifespan and elevated safety standards. The differential capacitance is a fundamental property within the electrical double layer, playing a pivotal role in the advancement of electrical double-layer supercapacitors. In addition to electrostatic interactions, multiple theoretical and experimental studies have indicated that the differential capacitance is influenced by factors such as the physical structure of the electrode, solvent-mediated hydration interactions, and the specific type of electrolyte utilized. In this work, we incorporate hydration interactions into the Poisson-Boltzmann theory to explore curved electrodes whose surfaces can be covered by either acidic or basic groups. We examine how the electrostatic interaction, charge regulation, hydration effects, and the finite size of ions collectively modify the differential capacitance. Furthermore, we explore different scenarios of electrode curvature and how it may be used to achieve larger capacitance depending on the electrolyte type and pH.
Collapse
Affiliation(s)
- Guilherme Volpe Bossa
- Instituto de Ciencias Físicas y Matemáticas, Universidad Austral de Chile, Valdivia, Chile.
| | | |
Collapse
|
5
|
Jin J, Reichman DR. Perturbative Expansion in Reciprocal Space: Bridging Microscopic and Mesoscopic Descriptions of Molecular Interactions. J Phys Chem B 2024; 128:1061-1078. [PMID: 38232134 DOI: 10.1021/acs.jpcb.3c06048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Determining the Fourier representation of various molecular interactions is important for constructing density-based field theories from a microscopic point of view, enabling a multiscale bridge between microscopic and mesoscopic descriptions. However, due to the strongly repulsive nature of short-ranged interactions, interparticle interactions cannot be formally defined in Fourier space, which renders coarse-grained (CG) approaches in k-space somewhat ambiguous. In this paper, we address this issue by designing a perturbative expansion of pair interactions in reciprocal space. Our perturbation theory, starting from reciprocal space, elucidates the microscopic origins underlying zeroth-order (long-range attractions) and divergent repulsive interactions from higher order contributions. We propose a systematic framework for constructing a faithful Fourier-space representation of molecular interactions, capturing key structural correlations in various systems, including simple model systems and molecular CG models of liquids. Building upon the Ornstein-Zernike equation, our approach can be combined with appropriate closure relations, and to further improve the closure approximations, we develop a bottom-up parameterization strategy for inferring the bridge function from microscopic statistics. By incorporating the bridge function into the Fourier representation, our findings suggest a systematic, bottom-up approach to performing coarse-graining in reciprocal space, leading to the systematic construction of a bottom-up classical field theory of complex aqueous systems.
Collapse
Affiliation(s)
- Jaehyeok Jin
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - David R Reichman
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| |
Collapse
|
6
|
Ming K, Xing B, Hu Y, Mei M, Huang W, Hu X, Wei Z. De novo design of a protein binder against Staphylococcus enterotoxin B. Int J Biol Macromol 2024; 257:128666. [PMID: 38070805 DOI: 10.1016/j.ijbiomac.2023.128666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 01/26/2024]
Abstract
Staphylococcus enterotoxin B (SEB) interacts with MHC-II molecules to overactivate immune cells and thereby to produce excessive pro-inflammatory cytokines. Disrupting the interactions between SEB and MHC-II helps eliminate the lethal threat posed by SEB. In this study, a de novo computational approach was used to design protein binders targeting SEB. The MHC-II binding domain of SEB was selected as the target, and the possible promising binding mode was broadly explored. The obtained original binder was folded into triple-helix bundles and contained 56 amino acids with molecular weight 5.9 kDa. The interface of SEB and the binder was highly hydrophobic. ProteinMPNN optimization further enlarged the hydrophobic region of the binder and improved the stability of the binder-SEB complex. In vitro study demonstrated that the optimized binder significantly inhibited the inflammatory response induced by SEB. Overall, our research demonstrated the applicability of this approach in de novo designing protein binders against SEB, and thereby providing potential therapeutics for SEB induced diseases.
Collapse
Affiliation(s)
- Ke Ming
- School of life sciences, Hubei University, Wuhan, Hubei, PR China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, PR China; Hubei Jiangxia Laboratory, Wuhan, Hubei, PR China
| | - Banbin Xing
- School of life sciences, Hubei University, Wuhan, Hubei, PR China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, PR China
| | - Yang Hu
- School of life sciences, Hubei University, Wuhan, Hubei, PR China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, PR China
| | - Meng Mei
- School of life sciences, Hubei University, Wuhan, Hubei, PR China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, PR China
| | - Wenli Huang
- School of life sciences, Hubei University, Wuhan, Hubei, PR China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, PR China
| | - Xiaoyu Hu
- School of life sciences, Hubei University, Wuhan, Hubei, PR China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, PR China
| | - Zigong Wei
- School of life sciences, Hubei University, Wuhan, Hubei, PR China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, PR China; Hubei Jiangxia Laboratory, Wuhan, Hubei, PR China; Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of life sciences, Hubei University, Wuhan, Hubei, PR China.
| |
Collapse
|
7
|
Kumar S, Bagchi B. Anomalous Concentration Dependence of Viscosity: Hidden Role of Cross-Correlations in Aqueous Electrolyte Solutions. J Phys Chem B 2023; 127:11031-11044. [PMID: 38101333 DOI: 10.1021/acs.jpcb.3c05117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
The viscosity of aqueous electrolyte solutions exhibits well-known composition-dependent anomalies that show certain definitive trends and universal features. The viscosity of LiCl and NaCl solutions increases with concentration in a monotonic fashion, while solutions of KCl, RbCl, and CsCl exhibit a more complex behavior. Here, the viscosity first decreases and then increases with increasing concentration, with a rather broad minimum at intermediate concentrations (ca. 1-3 m). To unearth the origin of such puzzling behavior, we carried out detailed molecular-level analyses by interrogating the exact Green-Kubo expression of viscosity in terms of the stress-stress time correlation function (SS-TCF). The total SS-TCF can be decomposed into a collection of three self- and three cross-SS-TCFs arising from the three constituent components (water, cations, and anions). Mode coupling theory (MCT) analysis for the friction on ions and the viscosity of the solution suggests the possible importance of two-particle static and time-dependent cross-correlations between water and the ions. We calculate the viscosity and other dynamical properties for all five electrolyte (LiCl, NaCl, KCl, RbCl, and CsCl) solutions over a range of concentrations, using two models of water (SPC/E and TIP4P/2005). The total viscosity derives non-negligible contributions from all of the terms. The cross-correlations are found to be surprisingly large and seen to play a hidden role in the concentration dependence. However, the importance of cross-correlations is often not discussed. Our study leads to a theoretical understanding of the microscopic origin of the observed anomalies in the composition dependence of viscosity across all five electrolytes.
Collapse
Affiliation(s)
- Shubham Kumar
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Biman Bagchi
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
8
|
Drici N. The influence of the hydrogen-bond network on the structure and dynamics of the RAPRKKG heptapeptide and its mutants. J Mol Graph Model 2023; 125:108598. [PMID: 37586130 DOI: 10.1016/j.jmgm.2023.108598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 08/18/2023]
Abstract
The structural behaviour of the RAPRKKG heptapeptide after individual or multiple mutations was inspected through molecular dynamics simulation. The nature of the mutations provided information on the flexibility of the heptapeptide and on how water molecules establish hydrogen bonds with it. The structural behaviour of the wild-type and the mutated structures were measured through the analysis of protein‒protein and protein‒solvent hydrogen bonds. The conformational behaviours of the different structures were analysed through free energy landscape analysis. The flexibility characteristics of the mutants seem to depend on the reorganization of water molecules and their static or dynamic behaviour around amino acid side chains.
Collapse
Affiliation(s)
- Nedjoua Drici
- University of Mostaganem, Abdelhamid Ibn Badis, Faculty of Exact Sciences and Informatics, Chemin des cretes ex INES, Mostaganem, 27000, Algeria; Laboratoire de Chimie Physique Macromoleculaire LCPM, University of Oran1 Ahmed benbella, Oran, 31000, Algeria.
| |
Collapse
|
9
|
Urbic T, Dill KA. Simple Model of Liquid Water Dynamics. J Phys Chem B 2023; 127:7996-8001. [PMID: 37672327 PMCID: PMC10518820 DOI: 10.1021/acs.jpcb.3c05212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/17/2023] [Indexed: 09/07/2023]
Abstract
We develop an analytical statistical-mechanical model to study the dynamic properties of liquid water. In this two-dimensional model, neighboring waters can interact through a hydrogen bond, a van der Waals contact, or an ice-like cage structure or have no interaction. We calculate the diffusion coefficient, viscosity, and thermal conductivity versus temperature and pressure. The trends follow those seen in the water experiments. The model explains that in warm water, heating drives faster diffusion but less interaction, so the viscosity and conductivity decrease. Cooling cold water causes poorer energy exchange because water's ice-like cages are big and immobile and collide infrequently. The main antagonism in water dynamics is not between vdW and H bonds, but it is an interplay between both those pair interactions, multibody cages, and no interaction. The value of this simple model is that it is analytical, so calculations are immediate, and it gives interpretations based on molecular physics.
Collapse
Affiliation(s)
- Tomaz Urbic
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Ken A. Dill
- Laufer
Center for Physical and Quantitative Biology, and Departments of Chemistry
and of Physics & Astronomy, Stony Brook
University, Stony
Brook, New York 11794-5252, United States
| |
Collapse
|
10
|
Urbic T. Ben Naim's four-arm model with density anomaly: Theory and computer simulations. Phys Rev E 2023; 108:014136. [PMID: 37583205 DOI: 10.1103/physreve.108.014136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/01/2023] [Indexed: 08/17/2023]
Abstract
Molecular dynamics, Wertheim's integral equation theory (IET), and thermodynamics perturbation theory (TPT) were used to study the thermodynamics and structure of particles interacting through angle-dependent potential. The particles are modeled as two-dimensional Lennard-Jones disks with four hydrogen bonding arms arranged symmetrically. The model was introduced by Ben-Naim and we call it the BN4 model. The BN4 model exhibits density anomaly and other anomalous properties similar to those in water and in the Mercedes-Benz (MB) model. The IET is based on the orientationally averaged version of the Ornstein-Zernike equation and correctly predicts the pair correlation function of the model at high temperatures. Both TPT and IET are in semiquantitative agreement with the simulation values of the molar volume, isothermal compressibility, thermal expansion coefficient, and heat capacity.
Collapse
Affiliation(s)
- Tomaz Urbic
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
11
|
Volkov AA, Chuchupal SV. Isochores and Heat Capacity of Liquid Water in Terms of the Ion–Molecular Model. Int J Mol Sci 2023; 24:ijms24065630. [PMID: 36982704 PMCID: PMC10051472 DOI: 10.3390/ijms24065630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Thermodynamics of liquid water in terms of a non-standard approach—the ion–molecular model—is considered. Water is represented as a dense gas of neutral H2O molecules and single charged H3O+ and OH− ions. The molecules and ions perform thermal collisional motion and interconvert due to ion exchange. The energy-rich process—vibrations of an ion in a hydration shell of molecular dipoles—well known to spectroscopists with its dielectric response at 180 cm−1 (5 THz), is suggested to be key for water dynamics. Taking into account this ion–molecular oscillator, we compose an equation of state of liquid water to obtain analytical expressions for the isochores and heat capacity.
Collapse
|
12
|
Ding Y, Xi Y, Wang Y, Zhang R, Li D. Research progress on supramolecular structures of asphalt. JOURNAL OF TRAFFIC AND TRANSPORTATION ENGINEERING (ENGLISH EDITION) 2023. [DOI: 10.1016/j.jtte.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
13
|
Improved Assessment of Globularity of Protein Structures and the Ellipsoid Profile of the Biological Assemblies from the PDB. Biomolecules 2023; 13:biom13020385. [PMID: 36830752 PMCID: PMC9953691 DOI: 10.3390/biom13020385] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
In this paper, we present an update to the ellipsoid profile algorithm (EP), a simple technique for the measurement of the globularity of protein structures without the calculation of molecular surfaces. The globularity property is understood in this context as the ability of the molecule to fill a minimum volume enclosing ellipsoid (MVEE) that approximates its assumed globular shape. The more of the interior of this ellipsoid is occupied by the atoms of the protein, the better are its globularity metrics. These metrics are derived from the comparison of the volume of the voxelized representation of the atoms and the volume of all voxels that can fit inside that ellipsoid (a uniform unit Å cube lattice). The so-called ellipsoid profile shows how the globularity changes with the distance from the center. Two of its values, the so-called ellipsoid indexes, are used to classify the structure as globular, semi-globular or non-globular. Here, we enhance the workflow of the EP algorithm via an improved outlier detection subroutine based on principal component analysis. It is capable of robust distinguishing between the dense parts of the molecules and, for example, disordered chain fragments fully exposed to the solvent. The PCA-based method replaces the current approach based on kernel density estimation. The improved EP algorithm was tested on 2124 representatives of domain superfamilies from SCOP 2.08. The second part of this work is dedicated to the survey of globularity of 3594 representatives of biological assemblies from molecules currently deposited in the PDB and analyzed by the 3DComplex database (monomers and complexes up to 60 chains).
Collapse
|
14
|
Pršlja P, Žibert T, Urbic T. Monte Carlo simulations of simple two dimensional water-alcohol mixtures. J Mol Liq 2022; 368:120692. [PMID: 37731590 PMCID: PMC10508878 DOI: 10.1016/j.molliq.2022.120692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Simple alcohols such as methanol and ethanol, are organic chemicals that can be used to store energy, which can be used as an alternative to fossil fuels. Each alcohol has at least one hydroxyl group attached to a carbon atom of an alkyl group. They can be considered as organic derivatives of water in which one of the hydrogen atoms is replaced by an alkyl group. In this work, we determined the thermodynamic and structural properties of two dimensional water-alcohol mixtures using the Monte Carlo method. We used two-dimensional Mercedes-Benz (MB) model for water and MB based models for lower alcohols. The structural and thermodynamic properties of the mixtures were studied by Monte Carlo simulations in the isothermal-isobaric ensemble. We show that 2D models display similar trends in the density maxima as in real water-alcohol mixtures. With increasing content of alcohols, the temperature of maxima increases and upon further increase starts to decrease and at high concentrations, the density maxima disappears.
Collapse
Affiliation(s)
- Paulina Pršlja
- Department of Electrical Engineering and Automation, School of Electrical Engineering, Aalto University, 02150 Espoo, Finland
| | - Taja Žibert
- Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Vecna pot 113, SI-1000, Slovenia
| | - Tomaz Urbic
- Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Vecna pot 113, SI-1000, Slovenia
| |
Collapse
|
15
|
Volkov AA, Chuchupal SV. Dielectric spectra of liquid water: Ultrabroadband modeling and interpretation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
16
|
Yue K. Modeling protein structure as a stable static equilibrium. Phys Rev E 2022; 106:024410. [PMID: 36110022 DOI: 10.1103/physreve.106.024410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
We present evidence that the protein structure can be modeled as a stable static equilibrium, determined mainly by compressive supports in the nonpolar interior. That is, protein structures derive their structural strength through the same mechanical principles as do conventional structures like bridges and buildings. This is based on the observation that the experimentally elucidated structural determinants, the interior nonpolar side chains, are engaged in strong compressions in static terms. At the same time, major substructures in proteins, helices and h-bonded strands, because of their geometry, inherently leave gaps in the space they occupy. Under the compressive force, nonpolar side chains from one substructure can protrude into the gaps of another neighboring substructure and block its motion. As a result, interlocking of substructures can form, which builds up the nonpolar core assembly. The native structure then is the one with the structurally most stable core assembly. While intuitively appealing, this is a radical departure from the prevailing thinking that protein native structure is determined by global energy minimum, which is founded on thermodynamic hypothesis. Furthermore, to develop an effective model for analyzing protein structure with conventional tools, a proper mechanical representation must be established. By proving that the stability of the equilibrium in compressive interactions is conditioned on a form of mechanical energy minimum, we show that our notion of native structure can be equally consistent with the thermodynamic hypothesis. By mathematically treating the blocking action, an interaction, as a bar, a physical object, we succeed in representing and analyzing the core assembly as truss, a conventional structure. In this paper we define and expound step-by-step increasingly integrated interlocking patterns. We then analyze the core assemblies of a large set of diverse protein database structures. A native structure can be distinguished from decoys by comparing the composition and strength of their core assemblies. We show the results for two sets of native structures vs decoys.
Collapse
Affiliation(s)
- Kaizhi Yue
- Conformational Search Solutions, Palo Alto, California 94306, USA
| |
Collapse
|
17
|
Gardeniers M, Mani M, de Boer E, Hermida-Merino D, Graf R, Rastogi S, Harings JAW. Hydration, Refinement, and Dissolution of the Crystalline Phase in Polyamide 6 Polymorphs for Ultimate Thermomechanical Properties. Macromolecules 2022; 55:5080-5093. [PMID: 35784656 PMCID: PMC9245196 DOI: 10.1021/acs.macromol.2c00211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/25/2022] [Indexed: 11/29/2022]
Abstract
![]()
Timescales of polyamide
6 melt-shaping technologies, relative to
the dynamics of conformational rearrangements upon crystallization,
challenge the formation of the most thermodynamically favorable chain
packing and thus optimum performance. In this publication, we make
use of the mediation of hydrogen bonding by water molecules in the
superheated state of water, i.e., above 100 °C in a closed environment,
in the structural refinement of polyamide 6 for enhanced thermomechanical
performance. The paper addresses dissolution and (re)crystallization
of different polyamide 6 polymorphs in the superheated state of water
by time-resolved simultaneous small- and wide-angle X-ray scattering
and solid-state 1H NMR spectroscopy and the effect on mechanical
properties. The experiments reveal that upon heating in the superheated
state of water, the pseudo-hexagonal phase dissolves at relatively
low temperature and instantly crystallizes in a defected monoclinic
phase that successively refines to a perfected monoclinic structure.
The dissolution temperature of the pseudo-hexagonal phase of polyamide
6 is found to be dependent on the degree of crystal perfection originating
from conformational disorder and misalignment of hydrogen bonding
in the lattice, retrospectively, to the Brill transition temperature.
The perfected monoclinic phase below the dissolution temperature can
be preserved upon cooling but is plasticized by hydration of the amide
moieties in the crystalline phase. The removal of water from the hydrated
crystals, in the proximity of Brill transition temperature, strengthening
the hydrogen bonding, occurs. Retrospectively, the most thermodynamically
stable crystallographic phase is preserved and renders an increase
in mechanical properties and dimensional stability of the product.
The insight obtained on the influence of superheated water on the
structural refinement of imperfected crystallographic states assists
in polyamide 6 postprocessing strategies for enhanced performance.
Collapse
Affiliation(s)
- Milo Gardeniers
- Aachen-Maastricht Institute for Biobased Materials, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Mohanraj Mani
- Aachen-Maastricht Institute for Biobased Materials, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Ele de Boer
- Aachen-Maastricht Institute for Biobased Materials, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Daniel Hermida-Merino
- European Synchrotron Radiation Facility (ESRF), DUBBLE-CRG, FR-38043 Grenoble Cedex, France
- Departamento de Física Aplicada, CINBIO, Universidade de Vigo, Campus Lagoas-Marcosende, E36310 Vigo, Galicia, Spain
| | - Robert Graf
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Sanjay Rastogi
- Aachen-Maastricht Institute for Biobased Materials, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
- King Abdullah University of Science and Technology, 4700 KAUST, Thuwal 23955-6900, Saudi Arabia
| | - Jules A. W. Harings
- Aachen-Maastricht Institute for Biobased Materials, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
18
|
Giles MB, Hong JKY, Liu Y, Tang J, Li T, Beig A, Schwendeman A, Schwendeman SP. Efficient aqueous remote loading of peptides in poly(lactic-co-glycolic acid). Nat Commun 2022; 13:3282. [PMID: 35676271 PMCID: PMC9177552 DOI: 10.1038/s41467-022-30813-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 05/16/2022] [Indexed: 11/29/2022] Open
Abstract
Poly(lactic-co-glycolic acid) (PLGA) long-acting release depots are effective for extending the duration of action of peptide drugs. We describe efficient organic-solvent-free remote encapsulation based on the capacity of common uncapped PLGA to bind and absorb into the polymer phase net positively charged peptides from aqueous solution after short exposure at modest temperature. Leuprolide encapsulated by this approach in low-molecular-weight PLGA 75/25 microspheres slowly and continuously released peptide for over 56 days in vitro and suppressed testosterone production in rats in an equivalent manner as the 1-month Lupron Depot®. The technique is generalizable to encapsulate a number of net cationic peptides of various size, including octreotide, with competitive loading and encapsulation efficiencies to traditional methods. In certain cases, in vitro and in vivo performance of remote-loaded PLGA microspheres exceeded that relative to marketed products. Remote absorption encapsulation further removes the need for a critical organic solvent removal step after encapsulation, allowing for simple and cost-effective sterilization of the drug-free microspheres before encapsulation of the peptide.
Collapse
Affiliation(s)
- Morgan B Giles
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Justin K Y Hong
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Yayuan Liu
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Jie Tang
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Tinghui Li
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Avital Beig
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Steven P Schwendeman
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA.
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
19
|
Papez P, Urbic T. Simple two-dimensional models of alcohols. Phys Rev E 2022; 105:054608. [PMID: 35706252 PMCID: PMC10040488 DOI: 10.1103/physreve.105.054608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/11/2022] [Indexed: 05/03/2023]
Abstract
Alcohols are organic compounds characterized by one or more hydroxyl groups attached to a carbon atom of an alkyl group. They can be considered as organic derivatives of water in which one of the hydrogen atoms is replaced by an alkyl group. In this work, the Mercedes-Benz model of water is used to design simple two-dimensional (2D) models of lower alcohols. The structural and thermodynamic properties of the constructed simple models are studied by conducting Monte Carlo simulations in the isothermal-isobaric ensemble. We show that 2D models display similar trends in structuring and thermodynamics as in experiments. The present work on the smallest amphiphilc organic solutes provides a simple testing ground to study the competition between polar and non-polar effects within the molecule and physical properties.
Collapse
Affiliation(s)
- Petra Papez
- Laboratory for Molecular Modeling, National Institute of Chemistry, Hajdrihova 19, SI-1001, Slovenia and Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1000, Slovenia
| | - Tomaz Urbic
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Vecna Pot 113, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
20
|
Ogrin P, Urbic T. Isothermal-isobaric algorithm to study the effects of rotational degrees of freedom-Benz water model. J Mol Liq 2022; 349:118152. [PMID: 37727581 PMCID: PMC10508877 DOI: 10.1016/j.molliq.2021.118152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have developed isothermal-isobaric algorithm for non-equilibrium Monte Carlo simulations. As first we have shown that the new method correctly predict density by comparing it to the density determined in canonical Monte Carlo simulations through the virial pressure. The new method was then used to study the effect of translational and rotational degrees of freedom on the structural and thermodynamic properties of the simple Mercedes-Benz water model. By holding one of the temperatures constant and varying the other one, we investigated how the position of the density maxima changes. We have observed that upon increase of rotational temperature the fluid become more Lennard-Jones like and the density maxima disappears.
Collapse
Affiliation(s)
- Peter Ogrin
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Vecna Pot 113, SI-1000 Ljubljana, Slovenia
| | - Tomaz Urbic
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Vecna Pot 113, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
21
|
Gabas F, Conte R, Ceotto M. Quantum Vibrational Spectroscopy of Explicitly Solvated Thymidine in Semiclassical Approximation. J Phys Chem Lett 2022; 13:1350-1355. [PMID: 35109652 PMCID: PMC8842300 DOI: 10.1021/acs.jpclett.1c04087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
In this paper, we demonstrate the possibility to perform spectroscopy simulations of solvated biological species taking into consideration quantum effects and explicit solvation. We achieve this goal by interfacing our recently developed divide-and-conquer approach for semiclassical initial value representation molecular dynamics with the polarizable AMOEBABIO18 force field. The method is applied to the study of solvation of the thymidine nucleoside in two different polar solvents, water and N,N-dimethylformamide. Such systems are made of up to 2476 atoms. Experimental evidence concerning the different behavior of thymidine in the two solvents is well reproduced by our study, even though quantitative estimates are hampered by the limited accuracy of the classical force field employed. Overall, this study shows that semiclassically approximate quantum dynamical studies of explicitly solvated biological systems are both computationally affordable and insightful.
Collapse
|
22
|
Hervø-Hansen S, Heyda J, Lund M, Matubayasi N. Anion-cation contrast of small molecule solvation in salt solutions. Phys Chem Chem Phys 2022; 24:3238-3249. [PMID: 35044392 PMCID: PMC8809138 DOI: 10.1039/d1cp04129k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/24/2021] [Indexed: 11/21/2022]
Abstract
The contributions from anions and cations from salt are inseparable in their perturbation of molecular systems by experimental and computational methods, rendering it difficult to dissect the effects exerted by the anions and cations individually. Here we investigate the solvation of a small molecule, caffeine, and its perturbation by monovalent salts from various parts of the Hofmeister series. Using molecular dynamics and the energy-representation theory of solvation, we estimate the solvation free energy of caffeine and decompose it into the contributions from anions, cations, and water. We also decompose the contributions arising from the solute-solvent and solute-ions interactions and that from excluded volume, enabling us to pin-point the mechanism of salt. Anions and cations revealed high contrast in their perturbation of caffeine solvation, with the cations salting-in caffeine via binding to the polar ketone groups, while the anions were found to be salting-out via perturbations of water. In agreement with previous findings, the perturbation by salt is mostly anion dependent, with the magnitude of the excluded-volume effect found to be the governing mechanism. The free-energy decomposition as conducted in the present work can be useful to understand ion-specific effects and the associated Hofmeister series.
Collapse
Affiliation(s)
- Stefan Hervø-Hansen
- Division of Theoretical Chemistry, Department of Chemistry, Lund University, Lund SE 221 00, Sweden.
| | - Jan Heyda
- Department of Physical Chemistry, University of Chemistry and Technology, Prague CZ-16628, Czech Republic.
| | - Mikael Lund
- Division of Theoretical Chemistry, Department of Chemistry, Lund University, Lund SE 221 00, Sweden.
- Lund Institute for Advanced Neutron and X-ray Science (LINXS), Lund University, Lund, Sweden
| | - Nobuyuki Matubayasi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.
| |
Collapse
|
23
|
Singh O, Chakraborty D. Preferential binding affinity of ions and their effect on structure and dynamics of water near antimicrobial peptide. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Prelesnik J, Maibaum L. Effects of Salts on the Solvation of Hydrophobic Objects in Water. J Phys Chem B 2021; 125:11036-11043. [PMID: 34583505 DOI: 10.1021/acs.jpcb.1c06833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The solvation of large, hydrophobic objects in water is facilitated by the formation of a low-density region surrounding the solute that is separated from the bulk liquid by an interface, which has a structure that resembles that between a liquid and its vapor. We study the effect of dissolved sodium chloride on the thermodynamics of solvation and on the solvent structure surrounding hydrophobic solutes in the size regime where this interface is not yet fully formed. Using biased Molecular Dynamics computer simulations, we calculate solvation free energies and orientational distributions of water molecules at different salt concentrations and solute sizes. We find that while the effects of sodium chloride on thermodynamic properties are small, the ions' response to the presence of a hydrophobic solute differs significantly from that of the water. Our findings provide mechanistic insight into how our understanding of hydrophobic solvation in water can be extended to electrolyte solutions.
Collapse
Affiliation(s)
- Jesse Prelesnik
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Lutz Maibaum
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
25
|
Vasin AA, Volkov AA. The Current Understanding of the Properties of Liquid Water: A Possible Alternative Solution. Biophysics (Nagoya-shi) 2021. [DOI: 10.1134/s0006350921050262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
26
|
|
27
|
Heinz LP, Grubmüller H. Spatially resolved free-energy contributions of native fold and molten-globule-like Crambin. Biophys J 2021; 120:3470-3482. [PMID: 34087209 PMCID: PMC8391029 DOI: 10.1016/j.bpj.2021.05.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 05/15/2021] [Accepted: 05/21/2021] [Indexed: 11/15/2022] Open
Abstract
The folding stability of a protein is governed by the free-energy difference between its folded and unfolded states, which results from a delicate balance of much larger but almost compensating enthalpic and entropic contributions. The balance can therefore easily be shifted by an external disturbance, such as a mutation of a single amino acid or a change of temperature, in which case the protein unfolds. Effects such as cold denaturation, in which a protein unfolds because of cooling, provide evidence that proteins are strongly stabilized by the solvent entropy contribution to the free-energy balance. However, the molecular mechanisms behind this solvent-driven stability, their quantitative contribution in relation to other free-energy contributions, and how the involved solvent thermodynamics is affected by individual amino acids are largely unclear. Therefore, we addressed these questions using atomistic molecular dynamics simulations of the small protein Crambin in its native fold and a molten-globule-like conformation, which here served as a model for the unfolded state. The free-energy difference between these conformations was decomposed into enthalpic and entropic contributions from the protein and spatially resolved solvent contributions using the nonparametric method Per|Mut. From the spatial resolution, we quantified the local effects on the solvent free-energy difference at each amino acid and identified dependencies of the local enthalpy and entropy on the protein curvature. We identified a strong stabilization of the native fold by almost 500 kJ mol-1 due to the solvent entropy, revealing it as an essential contribution to the total free-energy difference of (53 ± 84) kJ mol-1. Remarkably, more than half of the solvent entropy contribution arose from induced water correlations.
Collapse
Affiliation(s)
- Leonard P Heinz
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
| | - Helmut Grubmüller
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
| |
Collapse
|
28
|
A Complex of LaoA and LaoB Acts as a Tat-Dependent Dehydrogenase for Long-Chain Alcohols in Pseudomonas aeruginosa. Appl Environ Microbiol 2021; 87:e0076221. [PMID: 34085859 DOI: 10.1128/aem.00762-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa can utilize unusual carbon sources, like sodium dodecyl sulfate (SDS) and alkanes. Whereas the initiating enzymatic steps of the corresponding degradation pathways have been characterized in detail, the oxidation of the emerging long-chain alcohols has received little attention. Recently, the genes for the Lao (long-chain-alcohol/aldehyde oxidation) system were discovered to be involved in the oxidation of long-chain alcohols derived from SDS and alkane degradation. In the Lao system, LaoA is predicted to be an alcohol dehydrogenase/oxidase; however, according to genetic studies, efficient long-chain-alcohol oxidation additionally required the Tat-dependent protein LaoB. In the present study, the Lao system was further characterized. In vivo analysis revealed that the Lao system complements the substrate spectrum of the well-described Exa system, which is required for growth with ethanol and other short-chain alcohols. Mutational analysis revealed that the Tat site of LaoB was required for long-chain-alcohol oxidation activity, strongly suggesting a periplasmic localization of the complex. Purified LaoA was fully active only when copurified with LaoB. Interestingly, in vitro activity of the purified LaoAB complex also depended on the presence of the Tat site. The copurified LaoAB complex contained a flavin cofactor and preferentially oxidized a range of saturated, unbranched primary alcohols. Furthermore, the LaoAB complex could reduce cytochrome c550-type redox carriers like ExaB, a subunit of the Exa alcohol dehydrogenase system. LaoAB complex activity was stimulated by rhamnolipids in vitro. In summary, LaoAB constitutes an unprecedented protein complex with specific properties apparently required for oxidizing long-chain alcohols. IMPORTANCE Pseudomonas aeruginosa is a major threat to public health. Its ability to thrive in clinical settings, water distribution systems, or even jet fuel tanks is linked to detoxification and degradation of diverse hydrophobic substrates that are metabolized via alcohol intermediates. Our study illustrates a novel flavoprotein long-chain-alcohol dehydrogenase consisting of a facultative two-subunit complex, which is unique among related enzymes, while the homologs of the corresponding genes are found in numerous bacterial genomes. Understanding the catalytic and compartmentalization processes involved is of great interest for biotechnological and hygiene research, as it may be a potential starting point for rationally designing novel antibacterial substances with high specificity against this opportunistic pathogen.
Collapse
|
29
|
André C, Guillaume YC. Development of nano affinity columns for the study of ligand (including SARS-CoV-2 related proteins) binding to heparan sulfate proteoglycans. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3050-3058. [PMID: 34132262 DOI: 10.1039/d1ay00506e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The interactions of heparan sulfate proteoglycans (HSPGs) present on the cell surface with target proteins lead to cell signaling and they are considered as viral receptors. The analysis of the recognition mechanism between HSPG and its potential ligands and high-throughput screening in drug discovery thus remain important challenges. Glycidyl methacrylate-based monoliths were thus prepared in situ in miniaturized capillary columns (internal diameter 75 μm) and HSPG was grafted onto them by the use of the Schiff base method. The quantity of grafted HSPG was in the nanogram range (11 nanograms per cm of capillary length). This is of significant importance when working with less available or expensive biological material. Other advantages of our miniaturized capillary column are as follows: (i) the immobilization process of HSPG onto the organic monolithic support was reliable and reproducible. (ii) The resultant affinity capillary column showed a strong resistance to changes in temperature and pH and a negligible non-specific interaction. So as to confirm the proper functioning of our miniaturized capillary column, the molecular recognition by HSPG of five selected compounds including three ligands of interest related to SARS-CoV-2 was studied.
Collapse
Affiliation(s)
- Claire André
- Univ Franche - Comté, F-25000 Besançon, France. and EA481 Neurosciences Intégratives et Cliniques/Pôle Chimie Analytique Bioanalytique et Physique (PCABP), F-25000 Besançon, France and CHRU Besançon, Pôle Pharmaceutique, F-25000 Besançon, France
| | - Yves Claude Guillaume
- Univ Franche - Comté, F-25000 Besançon, France. and EA481 Neurosciences Intégratives et Cliniques/Pôle Chimie Analytique Bioanalytique et Physique (PCABP), F-25000 Besançon, France and CHRU Besançon, Pôle Pharmaceutique, F-25000 Besançon, France
| |
Collapse
|
30
|
Identifying hydrophobic protein patches to inform protein interaction interfaces. Proc Natl Acad Sci U S A 2021; 118:2018234118. [PMID: 33526682 DOI: 10.1073/pnas.2018234118] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Interactions between proteins lie at the heart of numerous biological processes and are essential for the proper functioning of the cell. Although the importance of hydrophobic residues in driving protein interactions is universally accepted, a characterization of protein hydrophobicity, which informs its interactions, has remained elusive. The challenge lies in capturing the collective response of the protein hydration waters to the nanoscale chemical and topographical protein patterns, which determine protein hydrophobicity. To address this challenge, here, we employ specialized molecular simulations wherein water molecules are systematically displaced from the protein hydration shell; by identifying protein regions that relinquish their waters more readily than others, we are then able to uncover the most hydrophobic protein patches. Surprisingly, such patches contain a large fraction of polar/charged atoms and have chemical compositions that are similar to the more hydrophilic protein patches. Importantly, we also find a striking correspondence between the most hydrophobic protein patches and regions that mediate protein interactions. Our work thus establishes a computational framework for characterizing the emergent hydrophobicity of amphiphilic solutes, such as proteins, which display nanoscale heterogeneity, and for uncovering their interaction interfaces.
Collapse
|
31
|
Del Bene JE, Alkorta I, Elguero J. Microsolvation of the Be-F bond in complexes of BeF2, BeF3–1, and BeF4–2 with nH2O, for n = 1–6. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1933637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Janet E. Del Bene
- Department of Chemistry, Youngstown State University, Youngstown, OH, USA
| | - Ibon Alkorta
- Instituto de Química Médica (IQM-CSIC), Madrid, Spain
| | - José Elguero
- Instituto de Química Médica (IQM-CSIC), Madrid, Spain
| |
Collapse
|
32
|
Thermodynamic perturbation theory for rotational degrees of freedom. Application to the Mercedes–Benz water model. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
33
|
Ogrin P, Urbic T. Integral equation study of the effects of rotational degrees of freedom on properties of the Mercedes–Benz water model. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114880] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Stable Display of Artificially Long Foreign Antigens on Chimeric Bamboo mosaic virus Particles. Viruses 2021; 13:v13040572. [PMID: 33805417 PMCID: PMC8067224 DOI: 10.3390/v13040572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 12/20/2022] Open
Abstract
Plant viruses can be genetically modified to generate chimeric virus particles (CVPs) carrying heterologous peptides fused on the surface of coat protein (CP) subunits as vaccine candidates. However, some factors may be especially significant in determining the properties of chimeras. In this study, peptides from various sources and of various lengths were inserted into the Bamboo mosaic virus-based (BaMV) vector CP N-terminus to examine the chimeras infecting and accumulating in plants. Interestingly, it was found that the two different strains Foot-and-mouth disease virus (FMDV) VP1 antigens with flexible linker peptides (77 or 82 amino acids) were directly expressed on the BaMV CP, and the chimeric particles self-assembled and continued to express FMDV antigens. The chimeric CP, when directly fused with a large foreign protein (117 amino acids), can self-fold into incomplete virus particles or disks. The physicochemical properties of heterologus peptides N-terminus, complex strand structures of heterologus peptides C-terminus and different flexible linker peptides, can affect the chimera accumulation. Based on these findings, using plant virus-based chimeras to express foreign proteins can increase their length limitations, and engineered plant-made CVP-based vaccines have increasing potential for further development as novel vaccines.
Collapse
|
35
|
Jin J, Han Y, Pak AJ, Voth GA. A new one-site coarse-grained model for water: Bottom-up many-body projected water (BUMPer). I. General theory and model. J Chem Phys 2021; 154:044104. [PMID: 33514116 PMCID: PMC7826168 DOI: 10.1063/5.0026651] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/14/2020] [Indexed: 12/26/2022] Open
Abstract
Water is undoubtedly one of the most important molecules for a variety of chemical and physical systems, and constructing precise yet effective coarse-grained (CG) water models has been a high priority for computer simulations. To recapitulate important local correlations in the CG water model, explicit higher-order interactions are often included. However, the advantages of coarse-graining may then be offset by the larger computational cost in the model parameterization and simulation execution. To leverage both the computational efficiency of the CG simulation and the inclusion of higher-order interactions, we propose a new statistical mechanical theory that effectively projects many-body interactions onto pairwise basis sets. The many-body projection theory presented in this work shares similar physics from liquid state theory, providing an efficient approach to account for higher-order interactions within the reduced model. We apply this theory to project the widely used Stillinger-Weber three-body interaction onto a pairwise (two-body) interaction for water. Based on the projected interaction with the correct long-range behavior, we denote the new CG water model as the Bottom-Up Many-Body Projected Water (BUMPer) model, where the resultant CG interaction corresponds to a prior model, the iteratively force-matched model. Unlike other pairwise CG models, BUMPer provides high-fidelity recapitulation of pair correlation functions and three-body distributions, as well as N-body correlation functions. BUMPer extensively improves upon the existing bottom-up CG water models by extending the accuracy and applicability of such models while maintaining a reduced computational cost.
Collapse
Affiliation(s)
- Jaehyeok Jin
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Yining Han
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Alexander J. Pak
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Gregory A. Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
36
|
Hu J, Sun XM, Su JY, Zhao YF, Chen YX. Different phosphorylation and farnesylation patterns tune Rnd3-14-3-3 interaction in distinct mechanisms. Chem Sci 2021; 12:4432-4442. [PMID: 34163708 PMCID: PMC8179448 DOI: 10.1039/d0sc05838f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/21/2021] [Indexed: 11/29/2022] Open
Abstract
Protein posttranslational modifications (PTMs) are often involved in the mediation or inhibition of protein-protein interactions (PPIs) within many cellular signaling pathways. Uncovering the molecular mechanism of PTM-induced multivalent PPIs is vital to understand the regulatory factors to promote inhibitor development. Herein, Rnd3 peptides with different PTM patterns as the binding epitopes and 14-3-3ζ protein were used as models to elucidate the influences of phosphorylation and farnesylation on binding thermodynamics and kinetics and their molecular mechanism. The quantitative thermodynamic results indicate that phosphorylated residues S210 and S218 (pS210 and pS218) and farnesylated C241 (fC241) enhance Rnd3-14-3-3ζ interactions in the presence of the essential pS240. However, distinct PTM patterns greatly affect the binding process. Initial association of pS240 with the phosphate-binding pocket of one monomer of the 14-3-3ζ dimer triggers the binding of pS210 or pS218 to another monomer, whereas the binding of fC241 to the hydrophobic groove on one 14-3-3ζ monomer induces the subsequent binding of pS240 to the adjacent pocket on the same monomer. Based on the experimental and molecular simulation results, we estimate that pS210/pS218 and pS240 mediate the multivalent interaction through an additive mechanism, whereas fC241 and pS240 follow an induced fit mechanism, in which the cooperativity of these two adjacent PTMs is reflected by the index ε described in our established thermodynamic binding model. Besides, these proposed binding models have been further used for describing the interaction between 14-3-3ζ and other substrates containing adjacent phosphorylation and lipidation groups, indicating their potential in general applications. These mechanistic insights are significant for understanding the regulatory factors and the design of PPI modulators.
Collapse
Affiliation(s)
- Jun Hu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Xue-Meng Sun
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Jing-Yun Su
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Yu-Fen Zhao
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Yong-Xiang Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University Beijing 100084 China
| |
Collapse
|
37
|
Escobar L, Ballester P. Molecular Recognition in Water Using Macrocyclic Synthetic Receptors. Chem Rev 2021; 121:2445-2514. [PMID: 33472000 DOI: 10.1021/acs.chemrev.0c00522] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Molecular recognition in water using macrocyclic synthetic receptors constitutes a vibrant and timely research area of supramolecular chemistry. Pioneering examples on the topic date back to the 1980s. The investigated model systems and the results derived from them are key for furthering our understanding of the remarkable properties exhibited by proteins: high binding affinity, superior binding selectivity, and extreme catalytic performance. Dissecting the different effects contributing to the proteins' properties is severely limited owing to its complex nature. Molecular recognition in water is also involved in other appreciated areas such as self-assembly, drug discovery, and supramolecular catalysis. The development of all these research areas entails a deep understanding of the molecular recognition events occurring in aqueous media. In this review, we cover the past three decades of molecular recognition studies of neutral and charged, polar and nonpolar organic substrates and ions using selected artificial receptors soluble in water. We briefly discuss the intermolecular forces involved in the reversible binding of the substrates, as well as the hydrophobic and Hofmeister effects operating in aqueous solution. We examine, from an interdisciplinary perspective, the design and development of effective water-soluble synthetic receptors based on cyclic, oligo-cyclic, and concave-shaped architectures. We also include selected examples of self-assembled water-soluble synthetic receptors. The catalytic performance of some of the presented receptors is also described. The latter process also deals with molecular recognition and energetic stabilization, but instead of binding ground-state species, the targets become elusive counterparts: transition states and other high-energy intermediates.
Collapse
Affiliation(s)
- Luis Escobar
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain.,Departament de Química Analítica i Química Orgánica, Universitat Rovira i Virgili, c/Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Pablo Ballester
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain.,ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
38
|
Acharyya A, Mukherjee D, Gai F. Assessing the Effect of Hofmeister Anions on the Hydrogen-Bonding Strength of Water via Nitrile Stretching Frequency Shift. J Phys Chem B 2020; 124:11783-11792. [PMID: 33346656 DOI: 10.1021/acs.jpcb.0c06299] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The temperature dependence of the peak frequency (νmax) of the C≡N stretching vibrational spectrum of a hydrogen-bonded C≡N species is known to be a qualitative measure of its hydrogen-bonding strength. Herein, we show that within a two-state framework, this dependence can be analyzed in a more quantitative manner to yield the enthalpy and entropy changes (ΔHHB and ΔSHB) for the corresponding hydrogen-bonding interactions. Using this method, we examine the effect of ten common anions on the strength of the hydrogen-bond(s) formed between water and the C≡N group of an unnatural amino acid, p-cyanophenylalanine (PheCN). We find that based on the ΔHHB values, these anions can be arranged in the following order: HPO42- > OAc- > F- > SO42- ≈ Cl- ≈ (H2O) ≈ ClO4- ≈ NO3- > Br- > SCN- ≈ I-, which differs from the corresponding Hofmeister series. Because PheCN has a relatively small size, the finding that anions having very different charge densities (e.g., SO42- and ClO4-) act similarly suggests that this ranking order is likely the result of specific ion effects. Since proteins contain different backbone and side-chain units, our results highlight the need to assess their individual contributions toward the overall Hofmeister effect in order to achieve a microscopic understanding of how ions affect the physical and chemical properties of such macromolecules. In addition, the analytical method described in the present study is applicable for analyzing the spectral evolution of any vibrational spectra composed of two highly overlapping bands.
Collapse
Affiliation(s)
- Arusha Acharyya
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Debopreeti Mukherjee
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Feng Gai
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
39
|
Cramer DL, Cheng B, Tian J, Clements JH, Wypych RM, Martin SF. Some thermodynamic effects of varying nonpolar surfaces in protein-ligand interactions. Eur J Med Chem 2020; 208:112771. [PMID: 32916312 PMCID: PMC7680455 DOI: 10.1016/j.ejmech.2020.112771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/11/2020] [Accepted: 08/15/2020] [Indexed: 12/18/2022]
Abstract
Understanding how making structural changes in small molecules affects their binding affinities for targeted proteins is central to improving strategies for rational drug design. To assess the effects of varying the nature of nonpolar groups upon binding entropies and enthalpies, we designed and prepared a set of Grb2-SH2 domain ligands, Ac-pTyr-Ac6c-Asn-(CH2)n-R, in which the size and electrostatic nature of R groups at the pTyr+3 site were varied. The complexes of these ligands with the Grb2-SH2 domain were evaluated in a series of studies in which the binding thermodynamics were determined using isothermal titration calorimetry, and binding interactions were examined in crystallographic studies of two different complexes. Notably, adding nonpolar groups to the pTyr+3 site leads to higher binding affinities, but the magnitude and energetic origins of these effects vary with the nature of the R substituent. For example, enhancements to binding affinities using aliphatic R groups are driven by more favorable changes in binding entropies, whereas aryl R groups improve binding free energies through a combination of more favorable changes in binding enthalpies and entropies. However, enthalpy/entropy compensation plays a significant role in these associations and mitigates against any significant variation in binding free energies, which vary by only 0.8 kcal•mol-1, with changes in the electrostatic nature and size of the R group. Crystallographic studies show that differences in ΔG° or ΔH° correlate with buried nonpolar surface area, but they do not correlate with the total number of polar or van der Waals contacts. The relative number of ordered water molecules and relative order in the side chains at pTyr+3 correlate with differences in -TΔS°. Overall, these studies show that burial of nonpolar surface can lead to enhanced binding affinities arising from dominating entropy- or enthalpy-driven hydrophobic effects, depending upon the electrostatic nature of the apolar R group.
Collapse
Affiliation(s)
- David L Cramer
- Department of Chemistry and the Institute of Cellular and Molecular Biology, The University of Texas, Austin, TX 78712, USA
| | - Bo Cheng
- Department of Chemistry and the Institute of Cellular and Molecular Biology, The University of Texas, Austin, TX 78712, USA
| | - Jianhua Tian
- Department of Chemistry and the Institute of Cellular and Molecular Biology, The University of Texas, Austin, TX 78712, USA
| | - John H Clements
- Department of Chemistry and the Institute of Cellular and Molecular Biology, The University of Texas, Austin, TX 78712, USA
| | - Rachel M Wypych
- Department of Chemistry and the Institute of Cellular and Molecular Biology, The University of Texas, Austin, TX 78712, USA
| | - Stephen F Martin
- Department of Chemistry and the Institute of Cellular and Molecular Biology, The University of Texas, Austin, TX 78712, USA.
| |
Collapse
|
40
|
Laurent H, Baker DL, Soper AK, Ries ME, Dougan L. Solute Specific Perturbations to Water Structure and Dynamics in Tertiary Aqueous Solution. J Phys Chem B 2020; 124:10983-10993. [DOI: 10.1021/acs.jpcb.0c07780] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | | | - Alan K. Soper
- ISIS Facility, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | | | | |
Collapse
|
41
|
Stachowicz-Kuśnierz A, Korchowiec B, Korchowiec J. Charge distributions for molecular dynamics simulations from self-consistent polarization method. J Comput Chem 2020; 41:2591-2597. [PMID: 32905633 DOI: 10.1002/jcc.26414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 11/09/2022]
Abstract
Partial atomic charges are important force field parameters. They are usually computed by applying quantum-chemical calculations and the assumed population scheme. In this study polarization consistent scheme of deriving a charge distribution inside solute molecule is proposed. The environment effect is explicitly taken into account by distributing solvent molecules around the solute target. The performed analysis includes a few computational schemes (HF, MP2, B3LYP, and M026X), basis sets (cc-pvnz, n = 2, 3, …, 6), and electrostatically derived charge distributions (KS, CHELP, CHELPG, and HLY). It is demonstrated that the environment effect is very important and cannot be disregarded. The second solvation shell should be included to achieve the charge convergence. Huge corrections to charge distribution are due to induction and dispersion. The B3LYP/cc-pvqz level of theory is recommended for deriving the charges within self-consistent polarization scheme.
Collapse
|
42
|
Bogunia M, Makowski M. Influence of Ionic Strength on Hydrophobic Interactions in Water: Dependence on Solute Size and Shape. J Phys Chem B 2020; 124:10326-10336. [PMID: 33147018 PMCID: PMC7681779 DOI: 10.1021/acs.jpcb.0c06399] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
![]()
Hydrophobicity is a phenomenon of
great importance in biology,
chemistry, and biochemistry. It is defined as the interaction between
nonpolar molecules or groups in water and their low solubility. Hydrophobic
interactions affect many processes in water, for example, complexation,
surfactant aggregation, and coagulation. These interactions play a
pivotal role in the formation and stability of proteins or biological
membranes. In the present study, we assessed the effect of ionic strength,
solute size, and shape on hydrophobic interactions between pairs of
nonpolar particles. Pairs of methane, neopentane, adamantane, fullerene,
ethane, propane, butane, hexane, octane, and decane were simulated
by molecular dynamics in AMBER 16.0 force field. As a solvent, TIP3P
and TIP4PEW water models were used. Potential of mean force (PMF)
plots of these dimers were determined at four values of ionic strength,
0, 0.04, 0.08, and 0.40 mol/dm3, to observe its impact
on hydrophobic interactions. The characteristic shape of PMFs with
three extrema (contact minimum, solvent-separated minimum, and desolvation
maximum) was observed for most of the compounds for hydrophobic interactions.
Ionic strength affected hydrophobic interactions. We observed a tendency
to deepen contact minima with an increase in ionic strength value
in the case of spherical and spheroidal molecules. Additionally, two-dimensional
distribution functions describing water density and average number
of hydrogen bonds between water molecules were calculated in both
water models for adamantane and hexane. It was observed that the density
of water did not significantly change with the increase in ionic strength,
but the average number of hydrogen bonds changed. The latter tendency
strongly depends on the water model used for simulations.
Collapse
Affiliation(s)
- Małgorzata Bogunia
- Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Mariusz Makowski
- Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
43
|
Claire A, Lethier L, Guillaume YC. An organic monolithic capillary column functionalized with human serum albumin and its application for the nano – chromatography study of its binding with universal cancer peptides and its impact on immunogenicity. J LIQ CHROMATOGR R T 2020. [DOI: 10.1080/10826076.2020.1811727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Andre Claire
- EA481 Neurosciences Intégratives et Cliniques/Pôle Chimie Analytique Bioanalytique et Physique (PCABP), Univ Franche – Comté, Besançon, France
- CHRU Besançon, Pôle Pharmaceutique, Besançon, France
| | - Lydie Lethier
- EA481 Neurosciences Intégratives et Cliniques/Pôle Chimie Analytique Bioanalytique et Physique (PCABP), Univ Franche – Comté, Besançon, France
- CHRU Besançon, Pôle Pharmaceutique, Besançon, France
| | - Yves C. Guillaume
- EA481 Neurosciences Intégratives et Cliniques/Pôle Chimie Analytique Bioanalytique et Physique (PCABP), Univ Franche – Comté, Besançon, France
- CHRU Besançon, Pôle Pharmaceutique, Besançon, France
| |
Collapse
|
44
|
Skarmoutsos I, Guardia E. Solvation structure and dynamics of the dimethylammonium cation diluted in liquid water: A molecular dynamics approach. J Chem Phys 2020; 152:234501. [PMID: 32571039 DOI: 10.1063/5.0004204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Classical molecular dynamics simulation techniques were employed to investigate the local solvation structure and related dynamics of the dimethylammonium cation diluted in liquid water at ambient conditions. The translational and orientational order around the dimethylammonium cation was investigated in terms of the corresponding radial and angular distribution functions. The results obtained revealed that the first solvation shell of the dimethylammonium consists mainly of two and, less frequently, three water molecules. The two nearest water neighbors form hydrogen bonds with the ammonium hydrogen atoms of the cation, whereas the third neighbor interacts with the methyl hydrogen atoms as well. The distribution of the trigonal order parameter exhibits a bimodal behavior, signifying the existence of local orientational heterogeneities in the solvation shell of the dimethylammonium cation. The calculated continuous and intermittent residence and hydrogen bond lifetimes for the cation-water pairs have also been found to be longer in comparison with the water-water ones. The very similar self-diffusion coefficients of the dimethylammonium cation and the water molecules in the bulk dilute solution indicate that the translational motions of the cation are mainly controlled by the translational mobility of the surrounding water molecules.
Collapse
Affiliation(s)
- Ioannis Skarmoutsos
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Vass. Constantinou 48, GR-116 35 Athens, Greece
| | - Elvira Guardia
- Departament de Física, Universitat Politècnica de Catalunya, Campus Nord-Edifici B4-B5, Jordi Girona 1-3, Barcelona E 08034, Spain
| |
Collapse
|
45
|
Affiliation(s)
- Zhen Hu
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, TEDA Applied Physics Institute and School of Physics, Nankai University Tianjin 300071 China
| | - Zhi‐Bo Liu
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, TEDA Applied Physics Institute and School of Physics, Nankai University Tianjin 300071 China
- Renewable Energy Conversion and Storage Center, Nankai University Tianjin 300384 China
| | - Jian‐Guo Tian
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, TEDA Applied Physics Institute and School of Physics, Nankai University Tianjin 300071 China
- Renewable Energy Conversion and Storage Center, Nankai University Tianjin 300384 China
| |
Collapse
|
46
|
Interaction of Reactive-Dye Chromophores and DEG on Ink-Jet Printing Performance. MOLECULES (BASEL, SWITZERLAND) 2020; 25:molecules25112507. [PMID: 32481525 PMCID: PMC7321201 DOI: 10.3390/molecules25112507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/17/2020] [Accepted: 05/25/2020] [Indexed: 11/17/2022]
Abstract
Digital inkjet printing has been widely used in textile industry. The quality of dye solutions and ink-jet droplets limits the ink-jet printing performance, which is very important for obtaining high-quality ink-jet printing images on fabrics. In this paper, we introduced diethylene glycol (DEG) into the dye solutions of Reactive Blue 49 and Reactive Orange 13, respectively, and investigated the interaction between dye chromophores and DEG molecules. Results indicated that the dye chromophores were featured in the aggregation. Adding DEG into the dye solution could effectively disaggregate clusters of reactive dyes, and eliminate satellite ink droplets, thus improving the resolution of the ink-jet printing image on fabrics. Under the same DEG concentration, the disaggregation effect was more obvious in Orange 13 than in Reactive Blue 49. Higher DEG concentration was required in Reactive Orange 13 solution for creating complete and stable ink drops. The surface tension and viscosity of the dye solutions were measured, and printing performance on cotton fabrics was evaluated. The interaction mechanism between dye chromophores and DEG molecules was also investigated. Results from this work are useful for high-quality ink-jet printing images on fabrics.
Collapse
|
47
|
Zottig X, Côté-Cyr M, Arpin D, Archambault D, Bourgault S. Protein Supramolecular Structures: From Self-Assembly to Nanovaccine Design. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1008. [PMID: 32466176 PMCID: PMC7281494 DOI: 10.3390/nano10051008] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/19/2022]
Abstract
Life-inspired protein supramolecular assemblies have recently attracted considerable attention for the development of next-generation vaccines to fight against infectious diseases, as well as autoimmune diseases and cancer. Protein self-assembly enables atomic scale precision over the final architecture, with a remarkable diversity of structures and functionalities. Self-assembling protein nanovaccines are associated with numerous advantages, including biocompatibility, stability, molecular specificity and multivalency. Owing to their nanoscale size, proteinaceous nature, symmetrical organization and repetitive antigen display, protein assemblies closely mimic most invading pathogens, serving as danger signals for the immune system. Elucidating how the structural and physicochemical properties of the assemblies modulate the potency and the polarization of the immune responses is critical for bottom-up design of vaccines. In this context, this review briefly covers the fundamentals of supramolecular interactions involved in protein self-assembly and presents the strategies to design and functionalize these assemblies. Examples of advanced nanovaccines are presented, and properties of protein supramolecular structures enabling modulation of the immune responses are discussed. Combining the understanding of the self-assembly process at the molecular level with knowledge regarding the activation of the innate and adaptive immune responses will support the design of safe and effective nanovaccines.
Collapse
Affiliation(s)
- Ximena Zottig
- Department of Chemistry, Université du Québec à Montréal, Montreal, QC H2L 2C4, Canada; (X.Z.); (M.C.-C.); (D.A.)
- The Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Quebec, QC G1V 0A6, Canada
- The Swine and Poultry Infectious Diseases Research Centre, CRIPA, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Mélanie Côté-Cyr
- Department of Chemistry, Université du Québec à Montréal, Montreal, QC H2L 2C4, Canada; (X.Z.); (M.C.-C.); (D.A.)
- The Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Quebec, QC G1V 0A6, Canada
- The Swine and Poultry Infectious Diseases Research Centre, CRIPA, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Dominic Arpin
- Department of Chemistry, Université du Québec à Montréal, Montreal, QC H2L 2C4, Canada; (X.Z.); (M.C.-C.); (D.A.)
- The Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Quebec, QC G1V 0A6, Canada
- The Swine and Poultry Infectious Diseases Research Centre, CRIPA, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Denis Archambault
- The Swine and Poultry Infectious Diseases Research Centre, CRIPA, Saint-Hyacinthe, QC J2S 2M2, Canada
- Department of Biological Sciences, Université du Québec à Montréal, Montreal, QC H2L 2C4, Canada
| | - Steve Bourgault
- Department of Chemistry, Université du Québec à Montréal, Montreal, QC H2L 2C4, Canada; (X.Z.); (M.C.-C.); (D.A.)
- The Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Quebec, QC G1V 0A6, Canada
- The Swine and Poultry Infectious Diseases Research Centre, CRIPA, Saint-Hyacinthe, QC J2S 2M2, Canada
| |
Collapse
|
48
|
Spaight J, Downing R, May S, de Carvalho SJ, Bossa GV. Modeling hydration-mediated ion-ion interactions in electrolytes through oscillating Yukawa potentials. Phys Rev E 2020; 101:052603. [PMID: 32575199 DOI: 10.1103/physreve.101.052603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
Classical Poisson-Boltzmann theory represents a mean-field description of the electric double layer in the presence of only Coulomb interactions. However, aqueous solvents hydrate ions, which gives rise to additional hydration-mediated ion-ion interactions. Experimental and computational studies suggest damped oscillations to be a characteristic feature of these hydration-mediated interactions. We have therefore incorporated oscillating Yukawa potentials into the mean-field description of the electric double layer. This is accomplished by allowing the decay length of the Yukawa potential to be complex valued. Ion specificity emerges from assigning individual strengths and phases to the Yukawa potential for anion-anion, anion-cation, and cation-cation pairs as well as for anions and cations interacting with an electrode or macroion. Excluded volume interactions between ions are approximated by replacing the ideal gas entropy by that of a lattice gas. We derive mean-field equations for the Coulomb and Yukawa potentials and use their solutions to compute the differential capacitance for an isolated planar electrode and the pressure that acts between two planar, like-charged macroion surfaces. Attractive interactions appear if the surface charge density of the macroions is sufficiently small.
Collapse
Affiliation(s)
- John Spaight
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108, USA
| | | | | | - Sidney J de Carvalho
- Department of Physics, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, São José do Rio Preto, São Paulo 15054-000, Brazil
| | - Guilherme Volpe Bossa
- Department of Physics, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, São José do Rio Preto, São Paulo 15054-000, Brazil
| |
Collapse
|
49
|
Poša M, Popović K, Agatić ZF. Influence of cations of the first group of the Periodic Table of Elements on the thermodynamic stabilization of cholic and deoxycholic acid anion micelles. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
50
|
Pan H, Han MY, Li P, Wang L. “On Water” Direct Catalytic Vinylogous Aldol Reaction of Silyl Glyoxylates. J Org Chem 2019; 84:14281-14290. [DOI: 10.1021/acs.joc.9b01945] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hong Pan
- Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China
| | - Man-Yi Han
- Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China
| | - Pinhua Li
- Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China
| | - Lei Wang
- Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P.R. China
| |
Collapse
|