1
|
Hanashima S, Yamanaka A, Ibata Y, Yasuda T, Umegawa Y, Murata M. Lipid Compositions of Liquid-Ordered and Liquid-Disordered Phases in Ternary Membranes of Sphingomyelin, Cholesterol, and Dioleoylphosphatidylcholine Determined by 2H NMR: Stearoyl-Sphingomyelin Compared with Its Palmitoyl Counterpart. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22973-22981. [PMID: 39429033 DOI: 10.1021/acs.langmuir.4c03104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Sphingomyelin (SM) and cholesterol are the major lipids in the signaling platforms of cell membranes, known as lipid rafts. In particular, SM with a stearoyl chain (C18-SM) is abundant in specific tissues such as the brain, the most cholesterol-rich organ, whereas the distribution of palmitoyl (C16)-SM is ubiquitous. Here, we reveal the differences between palmitoyl- and stearoyl-SM in lipid-lipid interactions based on the tie lines obtained from the 2H solid-state NMR spectra of bilayer systems composed of SM/dioleoylphosphatidylcholine/cholesterol 33:33:33 and 40:40:20. Lipid probes carrying position-selective deuterations, 10',10'-d2-SM, 24-d1-cholesterol, and 6″,6″-d2-dioleoyl-phosphatidylcholine, were incorporated into the membranes. 2H NMR peaks from these probes in the membranes directly provide the lipid compositions of the liquid-ordered (Lo) and liquid-disordered (Ld) regions. Without using bulky fluorescent groups, these probes allow us to obtain the end points of the tie lines in a ternary phase diagram based on the lever rule. Consequently, the tie lines of the stearoyl-SM membranes were steeper than those of the palmitoyl-SM membranes, indicating that cholesterol content was higher in the Lo domains of stearoyl-SM, regardless of the total concentration of unsaturated phospholipids. When comparing the content of unsaturated lipids in the Lo domain, the stearoyl-SM membranes had a higher content than palmitoyl-SM membranes. These results revealed that stearoyl-SM is suitable for stabilizing biologically functional microdomains in cholesterol-rich organs, whereas palmitoyl-SM may be better suited for stabilizing domains in tissue membranes with normal cholesterol content. The small but significant differences in the lipid interactions between stearoyl-SM and palmitoyl-SM may be related to the spatiotemporal formation of functional domains in biological environments.
Collapse
Affiliation(s)
- Shinya Hanashima
- Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Koyamacho-minami 4-101, Tottori 680-8550, Japan
- Center for Research on Green Sustainable Chemistry, Tottori University, Koyamacho-minami 4-101, Tottori 680-8550, Japan
| | - Ayana Yamanaka
- Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan
| | - Yuki Ibata
- Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan
| | - Tomokazu Yasuda
- Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan
| | - Yuichi Umegawa
- Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan
| | - Michio Murata
- Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan
- Forefront Research Centre for Fundamental Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
2
|
DiPasquale M, Marquardt D. Perceiving the functions of vitamin E through neutron and X-ray scattering. Adv Colloid Interface Sci 2024; 330:103189. [PMID: 38824717 DOI: 10.1016/j.cis.2024.103189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 06/04/2024]
Abstract
Take your vitamins, or don't? Vitamin E is one of the few lipophilic vitamins in the human diet and is considered an essential nutrient. Over the years it has proven to be a powerful antioxidant and is commercially used as such, but this association is far from linear in physiology. It is increasingly more likely that vitamin E has multiple legitimate biological roles. Here, we review past and current work using neutron and X-ray scattering to elucidate the influence of vitamin E on key features of model membranes that can translate to the biological function(s) of vitamin E. Although progress is being made, the hundred year-old mystery remains unsolved.
Collapse
Affiliation(s)
| | - Drew Marquardt
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada; Department of Physics, University of Windsor, Windsor, Ontario, Canada.
| |
Collapse
|
3
|
Biswas B, Shah D, Cox-Vázquez SJ, Vázquez RJ. Sensing cholesterol-induced rigidity in model membranes with time-resolved fluorescence spectroscopy and microscopy. J Mater Chem B 2024; 12:6570-6576. [PMID: 38899544 DOI: 10.1039/d4tb00872c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Here, we report the characterization of cholesterol levels on membrane fluidity with a twisted intramolecular charge transfer (TICT) membrane dye, namely DI-8-ANEPPS, using fluorescence lifetime techniques such as time-correlated single photon counting (TCSPC) and fluorescence lifetime imaging microscopy (FLIM). The characterized liposomes comprised a 3 : 1 ratio of POPC and POPG, respectively, 1% DI-8-ANEPPS, and increasing cholesterol levels from 0% to 50%. Fluorescence lifetime characterization revealed that increasing the cholesterol levels from 0% to 50% increases the fluorescence lifetime of DI-8-ANEPPS from 2.36 ns to 3.65 ns, a 55% increment. Such lengthening in the fluorescence lifetime is concomitant with reduced Stokes shifts and higher quantum yield, revealing that localized excitation (LE) dominates over TICT states with increased cholesterol levels. Fluorescence anisotropy measurements revealed a less isotropic environment in the membrane upon increasing cholesterol levels, suggesting a shift from liquid-disorder (Lα) to liquid-order (LO) upon adding cholesterol. Local electrostatic and dipole characterization experiments revealed that changes in the zeta-potential (ζ-potential) and transmembrane dipole potential (Ψd) induced by changes in cholesterol levels or the POPC : POPG ratio play a minimal role in the fluorescence lifetime outcome of DI-8-ANEPPS. Instead, these results indicate that the cholesterol's effect in restricting the degree of movement of DI-8-ANEPPS dominates its photophysics over the cholesterol effect on the local dipole strength. We envision that time-resolved spectroscopy and microscopy, coupled with TICT dyes, could be a convenient tool in exploring the complex interplay between membrane lipids, sterols, and proteins and provide novel insights into membrane fluidity, organization, and function.
Collapse
Affiliation(s)
- Bidisha Biswas
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
| | - Dhari Shah
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
| | - Sarah J Cox-Vázquez
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
| | | |
Collapse
|
4
|
Kang C, Fujioka K, Sun R. Atomistic Insight into the Lipid Nanodomains of Synaptic Vesicles. J Phys Chem B 2024; 128:2707-2716. [PMID: 38325816 DOI: 10.1021/acs.jpcb.3c07982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Membrane curvature, once regarded as a passive consequence of membrane composition and cellular architecture, has been shown to actively modulate various properties of the cellular membrane. These changes could also lead to segregation of the constituents of the membrane, generating nanodomains with precise biological properties. Proteins often linked with neurodegeneration (e.g., tau, alpha-synuclein) exhibit an unintuitive affinity for synaptic vesicles in neurons, which are reported to lack distinct, ordered nanodomains based on their composition. In this study, all-atom molecular dynamics simulations are used to study a full-scale synaptic vesicle of realistic Gaussian curvature and its effect on the membrane dynamics and lipid nanodomain organization. Compelling indicators of nanodomain formation, from the perspective of composition, surface areas per lipid, order parameter, and domain lifetime, are identified in the vesicle membrane, which are absent in a flat bilayer of the same lipid composition. Therefore, our study supports the idea that curvature may induce phase separation in an otherwise fluid, disordered membrane.
Collapse
Affiliation(s)
- Christopher Kang
- Department of Chemistry, The University of Hawai'i, Ma̅noa, 2545 McCarthy Mall, Honolulu, Hawaii 96822, United States
| | - Kazuumi Fujioka
- Department of Chemistry, The University of Hawai'i, Ma̅noa, 2545 McCarthy Mall, Honolulu, Hawaii 96822, United States
| | - Rui Sun
- Department of Chemistry, The University of Hawai'i, Ma̅noa, 2545 McCarthy Mall, Honolulu, Hawaii 96822, United States
| |
Collapse
|
5
|
Enoki TA, Heberle FA. Experimentally determined leaflet-leaflet phase diagram of an asymmetric lipid bilayer. Proc Natl Acad Sci U S A 2023; 120:e2308723120. [PMID: 37939082 PMCID: PMC10655556 DOI: 10.1073/pnas.2308723120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023] Open
Abstract
We have determined the partial leaflet-leaflet phase diagram of an asymmetric lipid bilayer at ambient temperature using asymmetric giant unilamellar vesicles (aGUVs). Symmetric GUVs with varying amounts of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) were hemifused to a supported lipid bilayer (SLB) composed of DOPC, resulting in lipid exchange between their outer leaflets. The GUVs and SLB contained a red and green lipid fluorophore, respectively, thus enabling the use of confocal fluorescence imaging to determine both the extent of lipid exchange (quantified for individual vesicles by the loss of red intensity and gain of green intensity) and the presence or absence of phase separation in aGUVs. Consistent with previous reports, we found that hemifusion results in large variation in outer leaflet exchange for individual GUVs, which allowed us to interrogate the phase behavior at multiple points within the asymmetric composition space of the binary mixture. When initially symmetric GUVs showed coexisting gel and fluid domains, aGUVs with less than ~50% outer leaflet exchange were also phase-separated. In contrast, aGUVs with greater than 50% outer leaflet exchange were uniform and fluid. In some cases, we also observed three coexisting bilayer-spanning phases: two registered phases and an anti-registered phase. These results suggest that a relatively large unfavorable midplane interaction between ordered and disordered phases in opposing leaflets (i.e., a midplane surface tension) can overwhelm the driving force for lateral phase separation within one of the leaflets, resulting in an asymmetric bilayer with two uniformly mixed leaflets that is poised to phase-separate upon leaflet scrambling.
Collapse
Affiliation(s)
- Thais A. Enoki
- Department of Chemistry, University of Tennessee, Knoxville, TN37996
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY14853
| | | |
Collapse
|
6
|
Kwon S, Pantelopulos GA, Straub JE. Efficient calculation of the free energy for protein partitioning using restraining potentials. Biophys J 2023; 122:1914-1925. [PMID: 35962549 PMCID: PMC10257010 DOI: 10.1016/j.bpj.2022.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/14/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022] Open
Abstract
An approach for the efficient simulation of phase-separated lipid bilayers, for use in the calculation of equilibrium free energies of partitioning between lipid domains, is proposed. The methodology exploits restraint potentials and rectangular aspect ratios that enforce lipid phase separation, allowing for the simulation of smaller systems that approximately reproduce bulk behavior. The utility of this approach is demonstrated through the calculation of potentials of mean force for the translation of a transmembrane protein between lipid domains. The impact of the imposed restraints on lipid tail ordering and lipid packing are explored, providing insight into how restraints can best be employed to compute accurate free-energy surfaces. This approach should be useful in the accurate calculation of equilibrium partition coefficients for transmembrane protein partitioning in heterogeneous membranes, providing insight into the thermodynamic driving forces that control this fundamental biophysical phenomenon.
Collapse
Affiliation(s)
- Seulki Kwon
- Department of Chemistry, Boston University, Boston, Massachusetts
| | - George A Pantelopulos
- Department of Chemistry, Boston University, Boston, Massachusetts; Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - John E Straub
- Department of Chemistry, Boston University, Boston, Massachusetts.
| |
Collapse
|
7
|
Small Angle X-ray Scattering Sensing Membrane Composition: The Role of Sphingolipids in Membrane-Amyloid β-Peptide Interaction. BIOLOGY 2021; 11:biology11010026. [PMID: 35053023 PMCID: PMC8772848 DOI: 10.3390/biology11010026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/09/2021] [Accepted: 12/22/2021] [Indexed: 12/02/2022]
Abstract
Simple Summary The early impairments in Alzheimer’s disease are related to neuronal membrane damage. Different lipids are present in biological membranes, playing relevant physiological roles. Some of them, such as sphingomyelin, cholesterol, and ganglioside GM1, interact with each other and, importantly, with the Aβ peptide. Here, these interactions are studied using small angle X-ray scattering in model membrane systems, such as large unilamellar liposomes. This technique gives information on the width of the bilayer and reveals structural differences due to the different lipid compositions, as well as some small differences due to the presence of the Aβ peptide. The analysis highlights the concentration-dependent effect of GM1 on membrane thickness and the interaction with the Aβ-peptide, together with the inhibiting effect that the presence of sphingomyelin has on the GM1–Aβ interaction. Abstract The early impairments appearing in Alzheimer’s disease are related to neuronal membrane damage. Both aberrant Aβ species and specific membrane components play a role in promoting aggregation, deposition, and signaling dysfunction. Ganglioside GM1, present with cholesterol and sphingomyelin in lipid rafts, preferentially interacts with the Aβ peptide. GM1 at physiological conditions clusters in the membrane, the assembly also involves phospholipids, sphingomyelin, and cholesterol. The structure of large unilamellar vesicles (LUV), made of a basic POPC:POPS matrix in a proportion of 9:1, and containing different amounts of GM1 (1%, 3%, and 4% mol/mol) in the presence of 5% mol/mol sphingomyelin and 15% mol/mol cholesterol, was studied using small angle X-ray scattering (SAXS). The effect of the membrane composition on the LUVs–Aβ-peptide interaction, both for Aβ1–40 and Aβ1–42 variants, was, thus, monitored. The presence of GM1 leads to a significant shift of the main peak, towards lower scattering angles, up to 6% of the initial value with SM and 8% without, accompanied by an opposite shift of the first minimum, up to 21% and 24% of the initial value, respectively. The analysis of the SAXS spectra, using a multi-Gaussian model for the electronic density profile, indicated differences in the bilayer of the various compositions. An increase in the membrane thickness, by 16% and 12% when 2% and 3% mol/mol GM1 was present, without and with SM, respectively, was obtained. Furthermore, in these cases, in the presence of Aβ40, a very small decrease of the bilayer thickness, less than 4% and 1%, respectively, was derived, suggesting the inhibiting effect that the presence of sphingomyelin has on the GM1–Aβ interaction.
Collapse
|
8
|
Wang Y, Xu X, Chen X, Li J. Multifunctional Biomedical Materials Derived from Biological Membranes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 34:e2107406. [PMID: 34739155 DOI: 10.1002/adma.202107406] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/24/2021] [Indexed: 02/06/2023]
Abstract
The delicate structure and fantastic functions of biological membranes are the successful evolutionary results of a long-term natural selection process. Their excellent biocompatibility and biofunctionality are widely utilized to construct multifunctional biomedical materials mainly by directly camouflaging materials with single or mixed biological membranes, decorating or incorporating materials with membrane-derived vesicles (e.g., exosomes), and designing multifunctional materials with the structure/functions of biological membranes. Here, the structure-function relationship of some important biological membranes and biomimetic membranes are discussed, such as various cell membranes, extracellular vesicles, and membranes from bacteria and organelles. Selected literature examples of multifunctional biomaterials derived from biological membranes for biomedical applications, such as drug- and gene-delivery systems, tissue-repair scaffolds, bioimaging, biosensors, and biological detection, are also highlighted. These designed materials show excellent properties, such as long circulation time, disease-targeted therapy, excellent biocompatibility, and selective recognition. Finally, perspectives and challenges associated with the clinical applications of biological-membrane-derived materials are discussed.
Collapse
Affiliation(s)
- Yuemin Wang
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 P. R. China
| | - Xinyuan Xu
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 P. R. China
| | - Xingyu Chen
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 P. R. China
- College of Medicine Southwest Jiaotong University Chengdu 610003 China
| | - Jianshu Li
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 P. R. China
- State Key Laboratory of Oral Diseases West China Hospital of Stomatology Med‐X Center for Materials Sichuan University Chengdu 610041 China
| |
Collapse
|
9
|
Feigenson GW. On the small size of liquid-disordered + liquid-ordered nanodomains. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183685. [PMID: 34175299 DOI: 10.1016/j.bbamem.2021.183685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/09/2021] [Accepted: 06/17/2021] [Indexed: 11/15/2022]
Abstract
Four-component phase diagrams reveal that Liquid-disordered + liquid-ordered (Ld + Lo) nanodomains are exclusively found adjacent to a three-phase region, and so cannot be a one-phase microemulsion. Of importance for understanding biological membranes, a small change in lipid bilayer composition can change the size of these coexisting phase domains hundreds of fold, between tens of nanometers and microns. Nanodomain diameter, measured from small angle neutron scattering, is in the range 15-35 nm, consistent with stabilization by repulsive dipole fields. Ld/Lo line tension controls the Ld + Lo domain size transition. Other than size, chemical and physical properties of the phase domains do not seem to change during the transition. Unfavorable lipid-lipid pairwise interactions, rather than phase thickness mismatch, seem to be the main reason for Ld + Lo immiscibility. Pairwise interactions of cholesterol-phospholipid seem to be favorable, whereas pairwise interactions of high-melting phospholipid with low-melting phospholipid are unfavorable. Measured Ld/Lo line tension, like the phase separation, is created mainly by unfavorable lipid-lipid pairwise interactions. Lipid dipole-dipole repulsion opposes these unfavorable lipid-lipid pairwise interactions and thus, in a sense, is the reason that nanodomains form. Bilayer physical and chemical properties measured from macroscopic domains of coexisting Ld + Lo phases should be good approximations for the properties of coexisting nanoscopic domains.
Collapse
Affiliation(s)
- Gerald W Feigenson
- Cornell University Department of Molecular Biology and Genetics, Room 201 Biotechnology Building, 215 Tower Rd. Ithaca, New York 14853, United States.
| |
Collapse
|
10
|
Gupta R, Singh A, Srihari V, Ghosh SK. Ionic Liquid-Induced Phase-Separated Domains in Lipid Multilayers Probed by X-ray Scattering Studies. ACS OMEGA 2021; 6:4977-4987. [PMID: 33644605 PMCID: PMC7905935 DOI: 10.1021/acsomega.0c06014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/28/2021] [Indexed: 05/16/2023]
Abstract
A cellular membrane, primarily a lipid bilayer, surrounds the internal components of a biological cell from the external components. This self-assembled bilayer is known to be perturbed by ionic liquids (ILs) causing malfunctioning of a cellular organism. In the present study, surface-sensitive X-ray scattering techniques have been employed to understand this structural perturbation in a lipid multilayer system formed by a zwitterionic phospholipid, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine. The ammonium and phosphonium-based ILs with methanesulfonate anions are observed to induce phase-separated domains in the plane of a bilayer. The lamellar X-ray diffraction peaks suggest these domains to correlate across the bilayers in a smectic liquid crystalline phase. This induced IL-rich lamellar phase has a very low lamellar repeat distance, suggesting the formation of an interdigitated bilayer. The IL-poor phase closely related to the pristine lipid phase shows a decrement in the in-plane chain lattice parameters with a reduced tilt angle. The ammonium and phosphonium-based ILs with a relatively bulky anion, p-toluenemethanesulfonate, have shown a similar effect.
Collapse
Affiliation(s)
- Ritika Gupta
- Department
of Physics, School of Natural Sciences, Shiv Nadar University, NH 92, Tehsil Dadri, G. B. Nagar, Uttar Pradesh 201314, India
| | - Arnab Singh
- Surface
Physics and Material Science Division, Saha
Institute of Nuclear Physics, AF Block, Bidhannagar, Kolkata 700064, India
| | - Velaga Srihari
- High
Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Sajal K. Ghosh
- Department
of Physics, School of Natural Sciences, Shiv Nadar University, NH 92, Tehsil Dadri, G. B. Nagar, Uttar Pradesh 201314, India
| |
Collapse
|
11
|
Staneva G, Watanabe C, Puff N, Yordanova V, Seigneuret M, Angelova MI. Amyloid-β Interactions with Lipid Rafts in Biomimetic Systems: A Review of Laboratory Methods. Methods Mol Biol 2021; 2187:47-86. [PMID: 32770501 DOI: 10.1007/978-1-0716-0814-2_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Biomimetic lipid bilayer systems are a useful tool for modeling specific properties of cellular membranes in order to answer key questions about their structure and functions. This approach has prompted scientists from all over the world to create more and more sophisticated model systems in order to decipher the complex lateral and transverse organization of cellular plasma membranes. Among a variety of existing biomembrane domains, lipid rafts are defined as small, dynamic, and ordered assemblies of lipids and proteins, enriched in cholesterol and sphingolipids. Lipid rafts appear to be involved in the development of Alzheimer's disease (AD) by affecting the aggregation of the amyloid-β (Aβ) peptide at neuronal membranes thereby forming toxic oligomeric species. In this review, we summarize the laboratory methods which allow to study the interaction of Aβ with lipid rafts. We describe step by step protocols to form giant (GUVs) and large unilamellar vesicles (LUVs) containing raft-mimicking domains surrounded by membrane nonraft regions. Using fluorescence microscopy GUV imaging protocols, one can design experiments to visualize micron-scale raft-like domains, to determine the micron-scale demixing temperature of a given lipid mixture, construct phase diagram, and photogenerate domains in order to assess the dynamics of raft formation and raft size distribution. LUV fluorescence spectroscopy protocols with proper data analysis can be used to measure molecular packing of raft/nonraft regions of the membrane, to report on nanoscale raft formation and determine nanoscale demixing temperature. Because handling of the Aβ requires dedicated laboratory experience, we present illustrated protocols for Aβ-stock aliquoting, Aβ aqueous solubilization, oligomer preparation, determination of the Aβ concentration before and after filtration. Thioflavin binding, dynamic light scattering, and transmission electron microscopy protocols are described as complementary methods to detect Aβ aggregation kinetics, aggregate sizes, and morphologies of observed aggregates.
Collapse
Affiliation(s)
- Galya Staneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | - Chiho Watanabe
- Komaba Institute for Science, The University of Tokyo, Tokyo, Japan
| | - Nicolas Puff
- Faculty of Science and Engineering, UFR 925 Physics, Sorbonne Université, Paris, France
- Laboratoire Matière et Systèmes Complexes (MSC) UMR 7057 CNRS, Université Paris Diderot - Paris 7, Université de Paris, Paris, France
| | - Vesela Yordanova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Michel Seigneuret
- Laboratoire Matière et Systèmes Complexes (MSC) UMR 7057 CNRS, Université Paris Diderot - Paris 7, Université de Paris, Paris, France
| | - Miglena I Angelova
- Faculty of Science and Engineering, UFR 925 Physics, Sorbonne Université, Paris, France
- Laboratoire Matière et Systèmes Complexes (MSC) UMR 7057 CNRS, Université Paris Diderot - Paris 7, Université de Paris, Paris, France
| |
Collapse
|
12
|
Melzak KA, Moreno-Flores S, Bieback K. Spicule movement on RBCs during echinocyte formation and possible segregation in the RBC membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183338. [PMID: 32485161 DOI: 10.1016/j.bbamem.2020.183338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 11/30/2022]
Abstract
We use phase contrast microscopy of red blood cells to observe the transition between the initial discocyte shape and a spiculated echinocyte form. During the early stages of this change, spicules can move across the surface of the cell; individual spicules can also split apart into pairs. One possible explanation of this behaviour is that the membrane forms large scale domains in association with the spicules. The spicules are formed initially at the rim of the cell and then move at speeds of up to 3 μm/min towards the centre of the disc. Spicule formation that was reversed and then allowed to proceed a second time resulted in spicules at reproducible places, a shape memory effect that implies that the cytoskeleton contributes towards stopping the spicule movement. The splitting of the spicules produces a well-defined shape change with an increase in membrane curvature associated with formation of the daughter pair of spicules; the total boundary length around the spicules also increases. Following the model in which the spicules are associated with lipid domains, these observations suggest an experimental procedure that could potentially be applied to the calculation of the line tension of lipid domains in living cells.
Collapse
Affiliation(s)
- K A Melzak
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany.
| | | | - K Bieback
- Institute for Transfusion Medicine and Immunology, Flowcore Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
13
|
Direct label-free imaging of nanodomains in biomimetic and biological membranes by cryogenic electron microscopy. Proc Natl Acad Sci U S A 2020; 117:19943-19952. [PMID: 32759206 DOI: 10.1073/pnas.2002200117] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The nanoscale organization of biological membranes into structurally and compositionally distinct lateral domains is believed to be central to membrane function. The nature of this organization has remained elusive due to a lack of methods to directly probe nanoscopic membrane features. We show here that cryogenic electron microscopy (cryo-EM) can be used to directly image coexisting nanoscopic domains in synthetic and bioderived membranes without extrinsic probes. Analyzing a series of single-component liposomes composed of synthetic lipids of varying chain lengths, we demonstrate that cryo-EM can distinguish bilayer thickness differences as small as 0.5 Å, comparable to the resolution of small-angle scattering methods. Simulated images from computational models reveal that features in cryo-EM images result from a complex interplay between the atomic distribution normal to the plane of the bilayer and imaging parameters. Simulations of phase-separated bilayers were used to predict two sources of contrast between coexisting ordered and disordered phases within a single liposome, namely differences in membrane thickness and molecular density. We observe both sources of contrast in biomimetic membranes composed of saturated lipids, unsaturated lipids, and cholesterol. When extended to isolated mammalian plasma membranes, cryo-EM reveals similar nanoscale lateral heterogeneities. The methods reported here for direct, probe-free imaging of nanodomains in unperturbed membranes open new avenues for investigation of nanoscopic membrane organization.
Collapse
|
14
|
DiPasquale M, Nguyen MHL, Rickeard BW, Cesca N, Tannous C, Castillo SR, Katsaras J, Kelley EG, Heberle FA, Marquardt D. The antioxidant vitamin E as a membrane raft modulator: Tocopherols do not abolish lipid domains. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2020; 1862:183189. [PMID: 31954106 PMCID: PMC10443432 DOI: 10.1016/j.bbamem.2020.183189] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 01/06/2023]
Abstract
The antioxidant vitamin E is a commonly used vitamin supplement. Although the multi-billion dollar vitamin and nutritional supplement industry encourages the use of vitamin E, there is very little evidence supporting its actual health benefits. Moreover, vitamin E is now marketed as a lipid raft destabilizing anti-cancer agent, in addition to its antioxidant behaviour. Here, we studied the influence of vitamin E and some of its vitamers on membrane raft stability using phase separating unilamellar lipid vesicles in conjunction with small-angle scattering techniques and fluorescence microscopy. We find that lipid phase behaviour remains unperturbed well beyond physiological concentrations of vitamin E (up to a mole fraction of 0.10). Our results are consistent with a proposed line active role of vitamin E at the domain boundary. We discuss the implications of these findings as they pertain to lipid raft modification in native membranes, and propose a new hypothesis for the antioxidant mechanism of vitamin E.
Collapse
Affiliation(s)
- Mitchell DiPasquale
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario,Canada
| | - Michael H L Nguyen
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario,Canada
| | - Brett W Rickeard
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario,Canada
| | - Nicole Cesca
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario,Canada
| | - Christopher Tannous
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario,Canada
| | - Stuart R Castillo
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario,Canada
| | - John Katsaras
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; Joint Institute for Neutron Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA
| | - Elizabeth G Kelley
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | | | - Drew Marquardt
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario,Canada; Department of Physics, University of Windsor, Windsor, Ontario, Canada.
| |
Collapse
|
15
|
Rofeh J, Theogarajan L. Instantaneous tension measurements in droplet interface bilayers using an inexpensive, integrated pendant drop camera. SOFT MATTER 2020; 16:4484-4493. [PMID: 32337523 DOI: 10.1039/d0sm00418a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recently, droplet interface bilayers (DIBs) have been used to determine bilayer tension and thickness in situ by automated image analysis using a microscope and an applied voltage. In this paper, we demonstrate improvements to these measurements by integrating an inexpensive pendant drop setup onto the microscope stage, which allows for simultaneous imaging of DIBs from both the bottom and side. By using pendant drop shape analysis in situ to determine the monolayer tension of the droplets, we avoid the reliance on applied voltages to determine tension. The integrated system also allows for direct measurement of both the major and minor diameter of the elliptical contact region, which produces a more direct measurement of the bilayer specific capacitance. Additionally, we demonstrate a technique for measuring the instantaneous monolayer tension of DIBs using shape analysis despite the assumed requirement for axial symmetry in pendant drop tensiometry. Compared to previous DIB measurements, the integrated pendant drop-microscope system provides improved accuracy accompanied by a fivefold to twentyfold improvement in precision while considerably decreasing the experiment time.
Collapse
Affiliation(s)
- Justin Rofeh
- Department of Physics, University of California, Santa Barbara, California 93106, USA
| | - Luke Theogarajan
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106, USA.
| |
Collapse
|
16
|
de Mendoza D, Pilon M. Control of membrane lipid homeostasis by lipid-bilayer associated sensors: A mechanism conserved from bacteria to humans. Prog Lipid Res 2019; 76:100996. [DOI: 10.1016/j.plipres.2019.100996] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 12/31/2022]
|
17
|
Study of the conformational behaviour of trehalose mycolates by FT-IR spectroscopy. Chem Phys Lipids 2019; 223:104789. [DOI: 10.1016/j.chemphyslip.2019.104789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 06/22/2019] [Accepted: 06/25/2019] [Indexed: 11/24/2022]
|
18
|
Okur HI, Tarun OB, Roke S. Chemistry of Lipid Membranes from Models to Living Systems: A Perspective of Hydration, Surface Potential, Curvature, Confinement and Heterogeneity. J Am Chem Soc 2019; 141:12168-12181. [DOI: 10.1021/jacs.9b02820] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Halil I. Okur
- Laboratory for Fundamental BioPhotonics
(LBP), Institute of Bioengineering (IBI) and Institute of Materials
Science (IMX), School of Engineering (STI) and Lausanne Center for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Orly B. Tarun
- Laboratory for Fundamental BioPhotonics
(LBP), Institute of Bioengineering (IBI) and Institute of Materials
Science (IMX), School of Engineering (STI) and Lausanne Center for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Sylvie Roke
- Laboratory for Fundamental BioPhotonics
(LBP), Institute of Bioengineering (IBI) and Institute of Materials
Science (IMX), School of Engineering (STI) and Lausanne Center for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
19
|
Guo HY, Cao B, Deng G, Hao XL, Wu FG, Yu ZW. Effect of Imidazolium-Based Ionic Liquids on the Structure and Phase Behavior of Palmitoyl-oleoyl-phosphatidylethanolamine. J Phys Chem B 2019; 123:5474-5482. [PMID: 31244097 DOI: 10.1021/acs.jpcb.9b03562] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Among various applications, ionic liquids (ILs) have been used as antimicrobial agents in laboratories, possibly through induction of the leakage of bacteria. A molecular-level understanding of the mechanism that describes how ILs enhance the permeation of membranes is still lacking. In this study, the effects of imidazolium-based ILs with different alky chain lengths on the structure and phase behavior of 1-palmitoyl-2-oleoyl-phosphatidylethanolamine (POPE), which is a representative bacteria-membrane-rich lipid, have been investigated. By employing differential scanning calorimetry and synchrotron small- and wide-angle X-ray scattering techniques, we found that ILs with longer alkyl chains influenced the phase behavior more effectively, and lower IL concentrations are needed to induce phase separation for both lamellar liquid crystalline phase and nonlamellar inverted hexagonal phase of POPE. Interestingly, the IL with an alkyl chain of 12 carbon atoms ([C12mim]Cl) shows a difference. It exhibits a stronger disturbing effect on the POPE bilayer structure than [C16mim]Cl, indicating that the ability of ILs to influence the membrane structures is dependent not only on the alkyl chain length of ILs, but also on the degree of matching of the alkyl chain lengths of ILs and lipids. The new lamellar and nonlamellar structures induced by ILs both have smaller repeat distances than that of pure POPE, implying thinner membrane structures. Data of the fluorescence-based vesicle dye leakage assay are consistent with these results, particularly the defects caused by IL-induced phase separation can enhance the membrane permeability markedly. The present work may shed light on our understanding of the antimicrobial mechanism of ILs.
Collapse
Affiliation(s)
- Hao-Yue Guo
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry , Tsinghua University , Beijing 100084 , People's Republic of China
| | - Bobo Cao
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry , Tsinghua University , Beijing 100084 , People's Republic of China
| | - Geng Deng
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry , Tsinghua University , Beijing 100084 , People's Republic of China
| | - Xiao-Lei Hao
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry , Tsinghua University , Beijing 100084 , People's Republic of China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , People's Republic of China
| | - Zhi-Wu Yu
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry , Tsinghua University , Beijing 100084 , People's Republic of China
| |
Collapse
|
20
|
Abstract
This Review illustrates the evaluation of permeability of lipid membranes from molecular dynamics (MD) simulation primarily using water and oxygen as examples. Membrane entrance, translocation, and exit of these simple permeants (one hydrophilic and one hydrophobic) can be simulated by conventional MD, and permeabilities can be evaluated directly by Fick's First Law, transition rates, and a global Bayesian analysis of the inhomogeneous solubility-diffusion model. The assorted results, many of which are applicable to simulations of nonbiological membranes, highlight the limitations of the homogeneous solubility diffusion model; support the utility of inhomogeneous solubility diffusion and compartmental models; underscore the need for comparison with experiment for both simple solvent systems (such as water/hexadecane) and well-characterized membranes; and demonstrate the need for microsecond simulations for even simple permeants like water and oxygen. Undulations, subdiffusion, fractional viscosity dependence, periodic boundary conditions, and recent developments in the field are also discussed. Last, while enhanced sampling methods and increasingly sophisticated treatments of diffusion add substantially to the repertoire of simulation-based approaches, they do not address directly the critical need for force fields with polarizability and multipoles, and constant pH methods.
Collapse
Affiliation(s)
- Richard M Venable
- Laboratory of Computational Biology, National Lung, Heart, and Blood Institute , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Andreas Krämer
- Laboratory of Computational Biology, National Lung, Heart, and Blood Institute , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Richard W Pastor
- Laboratory of Computational Biology, National Lung, Heart, and Blood Institute , National Institutes of Health , Bethesda , Maryland 20892 , United States
| |
Collapse
|
21
|
Zhang Z, Yang Y, Pincet F, Llaguno MC, Lin C. Placing and shaping liposomes with reconfigurable DNA nanocages. Nat Chem 2019. [PMID: 28644472 DOI: 10.1038/nchem.2802] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The diverse structure and regulated deformation of lipid bilayer membranes are among a cell's most fascinating features. Artificial membrane-bound vesicles, known as liposomes, are versatile tools for modelling biological membranes and delivering foreign objects to cells. To fully mimic the complexity of cell membranes and optimize the efficiency of delivery vesicles, controlling liposome shape (both statically and dynamically) is of utmost importance. Here we report the assembly, arrangement and remodelling of liposomes with designer geometry: all of which are exquisitely controlled by a set of modular, reconfigurable DNA nanocages. Tubular and toroid shapes, among others, are transcribed from DNA cages to liposomes with high fidelity, giving rise to membrane curvatures present in cells yet previously difficult to construct in vitro. Moreover, the conformational changes of DNA cages drive membrane fusion and bending with predictable outcomes, opening up opportunities for the systematic study of membrane mechanics.
Collapse
Affiliation(s)
- Zhao Zhang
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06510, USA.,Nanobiology Institute, Yale University; West Haven, Connecticut 06516, USA
| | - Yang Yang
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06510, USA.,Nanobiology Institute, Yale University; West Haven, Connecticut 06516, USA
| | - Frederic Pincet
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06510, USA.,Nanobiology Institute, Yale University; West Haven, Connecticut 06516, USA.,Laboratoire de Physique Statistique, Ecole Normale Supérieure, PSL Research University, Université Paris Diderot Sorbonne Paris Cité, Sorbonne Universités UPMC Univ Paris 06, CNRS, 24 rue Lhomond, 75005 Paris, France
| | - Marc C Llaguno
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06510, USA
| | - Chenxiang Lin
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06510, USA.,Nanobiology Institute, Yale University; West Haven, Connecticut 06516, USA
| |
Collapse
|
22
|
Peres Valgas da Silva C, Hernández-Saavedra D, White JD, Stanford KI. Cold and Exercise: Therapeutic Tools to Activate Brown Adipose Tissue and Combat Obesity. BIOLOGY 2019; 8:biology8010009. [PMID: 30759802 PMCID: PMC6466122 DOI: 10.3390/biology8010009] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 12/11/2022]
Abstract
The rise in obesity over the last several decades has reached pandemic proportions. Brown adipose tissue (BAT) is a thermogenic organ that is involved in energy expenditure and represents an attractive target to combat both obesity and type 2 diabetes. Cold exposure and exercise training are two stimuli that have been investigated with respect to BAT activation, metabolism, and the contribution of BAT to metabolic health. These two stimuli are of great interest because they have both disparate and converging effects on BAT activation and metabolism. Cold exposure is an effective mechanism to stimulate BAT activity and increase glucose and lipid uptake through mitochondrial uncoupling, resulting in metabolic benefits including elevated energy expenditure and increased insulin sensitivity. Exercise is a therapeutic tool that has marked benefits on systemic metabolism and affects several tissues, including BAT. Compared to cold exposure, studies focused on BAT metabolism and exercise display conflicting results; the majority of studies in rodents and humans demonstrate a reduction in BAT activity and reduced glucose and lipid uptake and storage. In addition to investigations of energy uptake and utilization, recent studies have focused on the effects of cold exposure and exercise on the structural lipids in BAT and secreted factors released from BAT, termed batokines. Cold exposure and exercise induce opposite responses in terms of structural lipids, but an important overlap exists between the effects of cold and exercise on batokines. In this review, we will discuss the similarities and differences of cold exposure and exercise in relation to their effects on BAT activity and metabolism and its relevance for the prevention of obesity and the development of type 2 diabetes.
Collapse
Affiliation(s)
- Carmem Peres Valgas da Silva
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Diego Hernández-Saavedra
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Joseph D White
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Kristin I Stanford
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| |
Collapse
|
23
|
Seo S, Shinoda W. SPICA Force Field for Lipid Membranes: Domain Formation Induced by Cholesterol. J Chem Theory Comput 2018; 15:762-774. [PMID: 30514078 DOI: 10.1021/acs.jctc.8b00987] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Heterogeneity is essential for multicomponent lipid membranes. Especially, sterol-induced domain formation in membranes has recently attracted attention because of its biological importance. To investigate such membrane domains at the molecular level, coarse-grained molecular dynamics (CG-MD) simulations are a promising approach since they allow one to consider the temporal and spatial scales involved in domain formation. In this work, we present a new CG force field, named SPICA, which can accurately predict domain formation within various lipids in membranes. The SPICA force field was developed as an extension of a previous CG model, known as SDK (Shinoda-DeVane-Klein), in which membrane properties such as tension, elasticity, and structure are well reproduced. By examining domain formation in a series of ternary lipid bilayers, we observed a separation into liquid-ordered and liquid-disordered phases fully consistent with experimental observations. Importantly, it is shown that the SPICA force field can detect the different phase behavior that results from subtle differences in the lipid composition of the bilayer.
Collapse
Affiliation(s)
- Sangjae Seo
- Department of Materials Chemistry , Nagoya University , Furo-cho, Chikusa-ku, Nagoya 464-8603 , Japan
| | - Wataru Shinoda
- Department of Materials Chemistry , Nagoya University , Furo-cho, Chikusa-ku, Nagoya 464-8603 , Japan
| |
Collapse
|
24
|
Tsai WC, Feigenson GW. Lowering line tension with high cholesterol content induces a transition from macroscopic to nanoscopic phase domains in model biomembranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1861:478-485. [PMID: 30529459 DOI: 10.1016/j.bbamem.2018.11.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 11/25/2022]
Abstract
Chemically simplified lipid mixtures are used here as models of the cell plasma membrane exoplasmic leaflet. In such models, phase separation and morphology transitions controlled by line tension in the liquid-disordered (Ld) + liquid-ordered (Lo) coexistence regime have been described [1]. Here, we study two four-component lipid mixtures at different cholesterol fractions: brain sphingomyelin (BSM) or 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)/1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/cholesterol (Chol). On giant unilamellar vesicles (GUVs) display a nanoscopic-to-macroscopic transition of Ld + Lo phase domains as POPC is replaced by DOPC, and this transition also depends on the cholesterol fraction. Line tension decreases with increasing cholesterol mole fractions in both lipid mixtures. For the ternary BSM/DOPC/Chol mixture, the published phase diagram [19] requires a modification to show that when cholesterol mole fraction is >~0.33, coexisting phase domains become nanoscopic.
Collapse
Affiliation(s)
- Wen-Chyan Tsai
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States of America
| | - Gerald W Feigenson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States of America.
| |
Collapse
|
25
|
Yasuda T, Slotte JP, Murata M. Nanosized Phase Segregation of Sphingomyelin and Dihydrosphigomyelin in Unsaturated Phosphatidylcholine Binary Membranes without Cholesterol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:13426-13437. [PMID: 30350701 DOI: 10.1021/acs.langmuir.8b02637] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this study, we applied fluorescence spectroscopy, differential scanning calorimetry (DSC), and 2H NMR to elucidate the properties of nanoscopic segregated domains in stearoylsphingomyelin (SSM)/dioleoylphosphatidylcholine (DOPC) and dihydrostearoylsphingomyelin (dhSSM)/DOPC binary membranes. The results obtained from fluorescence measurements suggest the existence of gel-like domains with high fluidity in both SSM and dhSSM macroscopic gel phases. The DSC thermograms showed that DOPC destabilizes SM-rich gel-like domains to a much lesser extent compared to the same amount of cholesterol. It was also found that a stable lateral segregation occurs without cholesterol, indicating that SSM itself undergoes homophilic interactions to form small gel-like domains. 2H NMR experiments disclosed differences in the temperature-dependent ordering of SSM/DOPC and dhSSM/DOPC bilayers; the dhSSM membrane showed less miscibility with the DOPC fluid phase, higher thermal stability, and tighter packing. In addition, the NMR results suggest the formation of mid-sized gel-like aggregates consisting of dhSSM. These differences could be accounted for by homophilic interactions, as previously reported ( Yasuda Biophys. J. 2016 , 110 , 431 - 440 ). In the absence of cholesterol, the moderately strong sphingomyelin (SM)/SM affinity results in the formation of small gel-like domains, whereas a stronger dhSSM/dhSSM affinity leads to larger gel-like domains. Considering the similar physicochemical features of SSM and dhSSM, the present results suggest that the formation of nanosized domains of SM is better characterized by homophilic interactions than by SM-cholesterol interplay. These effects are considered important to the ordered domain formation of SMs in biological membranes.
Collapse
Affiliation(s)
- Tomokazu Yasuda
- Department of Chemistry, Graduate School of Science , Osaka University , Toyonaka , Osaka 560-0043 , Japan
- Biochemistry, Faculty of Science and Engineering , Åbo Akademi University , Tykistökatu 6A , Turku FIN-20520 , Finland
| | - J Peter Slotte
- Biochemistry, Faculty of Science and Engineering , Åbo Akademi University , Tykistökatu 6A , Turku FIN-20520 , Finland
| | - Michio Murata
- Department of Chemistry, Graduate School of Science , Osaka University , Toyonaka , Osaka 560-0043 , Japan
| |
Collapse
|
26
|
Small-Molecule Modulation of Lipid-Dependent Cellular Processes against Cancer: Fats on the Gunpoint. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6437371. [PMID: 30186863 PMCID: PMC6114229 DOI: 10.1155/2018/6437371] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 07/22/2018] [Indexed: 12/27/2022]
Abstract
Lipid cell membrane composed of various distinct lipids and proteins act as a platform to assemble various signaling complexes regulating innumerous cellular processes which are strongly downregulated or altered in cancer cells emphasizing the still-underestimated critical function of lipid biomolecules in cancer initiation and progression. In this review, we outline the current understanding of how membrane lipids act as signaling hot spots by generating distinct membrane microdomains called rafts to initiate various cellular processes and their modulation in cancer phenotypes. We elucidate tangible drug targets and pathways all amenable to small-molecule perturbation. Ranging from targeting membrane rafts organization/reorganization to rewiring lipid metabolism and lipid sorting in cancer, the work summarized here represents critical intervention points being attempted for lipid-based anticancer therapy and future directions.
Collapse
|
27
|
Wang M, Liu Z, Zhan W. Janus Liposomes: Gel-Assisted Formation and Bioaffinity-Directed Clustering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:7509-7518. [PMID: 29852065 DOI: 10.1021/acs.langmuir.8b00798] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This article reports a high-yield procedure for preparing microsized (giant) Janus liposomes via gel-assisted lipid swelling and clustering behavior of these liposomes directed by biotin-avidin affinity binding. Confocal fluorescence microscopy reveals in detail that these new lipid colloidal particles display broken symmetry and heterogeneous surface chemistry similar to other types of Janus particles. An optimized formation procedure is presented, which reproducibly yields large liposome populations dominated by a single-domain configuration. This work further demonstrates that biotin-conjugated 1,2-dioleoyl- sn-glycero-3-phosphoethanolamine preferentially partitions into the liquid-disordered phase of the lipid matrix, rendering these Janus liposomes asymmetrical binding capacity toward avidin. This affinity binding drives irreversible and domain-specific cluster formation among Janus liposomes, whose structure and size are found to depend on the domain configuration of individual liposomes and incubation time.
Collapse
Affiliation(s)
- Mingming Wang
- Department of Chemistry and Biochemistry , Auburn University , Auburn , Alabama 36849 , United States
| | - Zening Liu
- Department of Chemistry and Biochemistry , Auburn University , Auburn , Alabama 36849 , United States
| | - Wei Zhan
- Department of Chemistry and Biochemistry , Auburn University , Auburn , Alabama 36849 , United States
| |
Collapse
|
28
|
Bennett WFD, Shea JE, Tieleman DP. Phospholipid Chain Interactions with Cholesterol Drive Domain Formation in Lipid Membranes. Biophys J 2018; 114:2595-2605. [PMID: 29874610 PMCID: PMC6129184 DOI: 10.1016/j.bpj.2018.04.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 03/16/2018] [Accepted: 04/12/2018] [Indexed: 01/13/2023] Open
Abstract
Cholesterol is a key component of eukaryotic membranes, but its role in cellular biology in general and in lipid rafts in particular remains controversial. Model membranes are used extensively to determine the phase behavior of ternary mixtures of cholesterol, a saturated lipid, and an unsaturated lipid with liquid-ordered and liquid-disordered phase coexistence. Despite many different experiments that determine lipid-phase diagrams, we lack an understanding of the molecular-level driving forces for liquid phase coexistence in bilayers with cholesterol. Here, we use atomistic molecular dynamics computer simulations to address the driving forces for phase coexistence in ternary lipid mixtures. Domain formation is directly observed in a long-timescale simulation of a mixture of 1,2-distearoyl-sn-glycero-3-phosphocholine, unsaturated 1,2-dilinoleoyl-sn-glycero-3-phosphocholine, and cholesterol. Free-energy calculations for the exchange of the saturated and unsaturated lipids between the ordered and disordered phases give insight into the mixing behavior. We show that a large energetic contribution to domain formation is favorable enthalpic interactions of the saturated lipid in the ordered phase. This favorable energy for forming an ordered, cholesterol-rich phase is opposed by a large unfavorable entropy. Martini coarse-grained simulations capture the unfavorable free energy of mixing but do not reproduce the entropic contribution because of the reduced representation of the phospholipid tails. Phospholipid tails and their degree of unsaturation are key energetic contributors to lipid phase separation.
Collapse
Affiliation(s)
- W F Drew Bennett
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California.
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California
| | - D Peter Tieleman
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
29
|
Hribar-Lee B, Lukšič M. Replica Ornstein-Zernike Theory Applied for Studying the Equilibrium Distribution of Electrolytes across Model Membranes. J Phys Chem B 2018; 122:5500-5507. [PMID: 29304550 DOI: 10.1021/acs.jpcb.7b11791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
By means of replica Ornstein-Zernike theory (supplemented in a few cases by Monte Carlo simulations) we examined the distribution of an annealed primitive model +1:-1 electrolyte in a mixture with uncharged hard spheres, or another model +1:-1 or +2:-1 electrolyte inside and outside the quenched vesicles, decorated by a model membrane, and across the membrane phase. We explored the influence of the size and charge of the annealed fluid on the partition equilibrium, as well as the effect of the vesicle size and membrane interaction parameters (repulsive barrier height, attractive depth, and membrane width). A hydrophobic cation, present in the mixture with NaCl, slightly enhanced the concentration of sodium ions inside the model vesicle, compared to pure NaCl solution. The replica theory was in good agreement with computer simulations and as such adequate for studying partitioning of small and hydrophobic ions or hydrophobic solutes across model membranes.
Collapse
Affiliation(s)
- Barbara Hribar-Lee
- Faculty of Chemistry and Chemical Technology , University of Ljubljana , Večna pot 113 , SI-1000 Ljubljana , Slovenia
| | - Miha Lukšič
- Faculty of Chemistry and Chemical Technology , University of Ljubljana , Večna pot 113 , SI-1000 Ljubljana , Slovenia
| |
Collapse
|
30
|
Tiwari A, Prince A, Arakha M, Jha S, Saleem M. Passive membrane penetration by ZnO nanoparticles is driven by the interplay of electrostatic and phase boundary conditions. NANOSCALE 2018; 10:3369-3384. [PMID: 29388654 DOI: 10.1039/c7nr08351c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The internalization of nanoparticles through the biological membrane is of immense importance for biomedical applications. A fundamental understanding of the lipid specificity and the role of the membrane biochemical and physical forces at play in modulating penetration are lacking. The current understanding of nanoparticle-membrane interaction is drawn mostly from computational studies and lacks sufficient experimental evidence. Herein, using confocal fluorescence imaging and potentiometric dye-based fluorimetry, we first investigated the interaction of ZnONP in both multi-component and individual lipid membranes using cell-like giant unilamellar vesicles to dissect the lipid specificity; also, we investigated the changes in membrane order, anisotropy and hydrophobicity. ZnONP was found to interact with phosphatidylinositol and phosphatidylcholine head-group-containing lipids specifically. We further investigated the interaction of ZnONP with three physiologically relevant membrane conditions varying in composition and dipole potential. We found that ZnONP interaction leads to a photoinduced enhancement of the partial-to-complete phase separation depending upon the membrane composition and cholesterol content. Interestingly, while the lipid order of a partially-phase-separated membrane remained unchanged upon ZnONP crowding, a fully-phase-separated membrane showed an increase in the lipid order. Strikingly, ZnONP crowding induced a contrasting effect on the fluorescence anisotropy of the membrane upon binding to the two membrane conditions, in line with the measured diffusion coefficient. ZnONP seems to preferentially penetrate through the liquid disordered areas of the membrane and the boundaries of the phase-separated regions driven by the interplay between the electrostatics and phase boundary conditions, which are collectively dictated by the composition and ZnONP-induced lipid reorganization. The results may lead to a greater understanding of the interplay of membrane parameters and ZnONP interaction in driving passive penetration.
Collapse
Affiliation(s)
- Anuj Tiwari
- Department of Life Sciences, National Institute of Technology, Rourkela, India - 769008.
| | | | | | | | | |
Collapse
|
31
|
Pantelopulos GA, Nagai T, Bandara A, Panahi A, Straub JE. Critical size dependence of domain formation observed in coarse-grained simulations of bilayers composed of ternary lipid mixtures. J Chem Phys 2017; 147:095101. [PMID: 28886648 PMCID: PMC5648569 DOI: 10.1063/1.4999709] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/19/2017] [Indexed: 12/13/2022] Open
Abstract
Model cellular membranes are known to form micro- and macroscale lipid domains dependent on molecular composition. The formation of macroscopic lipid domains by lipid mixtures has been the subject of many simulation investigations. We present a critical study of system size impact on lipid domain phase separation into liquid-ordered and liquid-disordered macroscale domains in ternary lipid mixtures. In the popular di-C16:0 PC:di-C18:2 PC:cholesterol at 35:35:30 ratio mixture, we find systems with a minimum of 1480 lipids to be necessary for the formation of macroscopic phase separated domains and systems of 10 000 lipids to achieve structurally converged conformations similar to the thermodynamic limit. To understand these results and predict the behavior of any mixture forming two phases, we develop and investigate an analytical Flory-Huggins model which is recursively validated using simulation and experimental data. We find that micro- and macroscale domains can coexist in ternary mixtures. Additionally, we analyze the distributions of specific lipid-lipid interactions in each phase, characterizing domain structures proposed based on past experimental studies. These findings offer guidance in selecting appropriate system sizes for the study of phase separations and provide new insights into the nature of domain structure for a popular ternary lipid mixture.
Collapse
Affiliation(s)
- George A Pantelopulos
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA
| | - Tetsuro Nagai
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Asanga Bandara
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA
| | - Afra Panahi
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA
| | - John E Straub
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA
| |
Collapse
|
32
|
Mouritsen OG, Bagatolli LA, Duelund L, Garvik O, Ipsen JH, Simonsen AC. Effects of seaweed sterols fucosterol and desmosterol on lipid membranes. Chem Phys Lipids 2017; 205:1-10. [PMID: 28365392 DOI: 10.1016/j.chemphyslip.2017.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 03/27/2017] [Accepted: 03/27/2017] [Indexed: 12/14/2022]
Abstract
Higher sterols are universally present in large amounts (20-30%) in the plasma membranes of all eukaryotes whereas they are universally absent in prokaryotes. It is remarkable that each kingdom of the eukaryotes has chosen, during the course of evolution, its preferred sterol: cholesterol in animals, ergosterol in fungi and yeast, phytosterols in higher plants, and e.g., fucosterol and desmosterol in algae. The question arises as to which specific properties do sterols impart to membranes and to which extent do these properties differ among the different sterols. Using a range of biophysical techniques, including calorimetry, fluorescence microscopy, vesicle-fluctuation analysis, and atomic force microscopy, we have found that fucosterol and desmosterol, found in red and brown macroalgae (seaweeds), similar to cholesterol support liquid-ordered membrane phases and induce coexistence between liquid-ordered and liquid-disordered domains in lipid bilayers. Fucosterol and desmosterol induce acyl-chain order in liquid membranes, but less effectively than cholesterol and ergosterol in the order: cholesterol>ergosterol>desmosterol>fucosterol, possibly reflecting the different molecular structure of the sterols at the hydrocarbon tail.
Collapse
Affiliation(s)
- Ole G Mouritsen
- MEMPHYS - Center for Biomembrane Physics, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
| | - Luis A Bagatolli
- MEMPHYS - Center for Biomembrane Physics, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark; Yachay EP and Yachay Tech, Yachay City of Knowledge, Ecuador(1)
| | - Lars Duelund
- MEMPHYS - Center for Biomembrane Physics, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Olav Garvik
- MEMPHYS - Center for Biomembrane Physics, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - John H Ipsen
- MEMPHYS - Center for Biomembrane Physics, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Adam Cohen Simonsen
- MEMPHYS - Center for Biomembrane Physics, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| |
Collapse
|
33
|
Meng F, Liu Y, Niu J, Lin W. Novel alkyl chain-based fluorescent probes with large Stokes shifts used for imaging the cell membrane and mitochondria in different living cell lines. RSC Adv 2017. [DOI: 10.1039/c7ra00661f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In this study, we describe two novel alkyl chains-based fluorescent probes with large Stokes shift. Both probes have been successfully applied for sensing the cell membrane and mitochondria in different living cell lines.
Collapse
Affiliation(s)
- Fangfang Meng
- Institute of Fluorescent Probes for Biological Imaging
- School of Materials Science and Engineering
- School of Chemistry and Chemical Engineering
- University of Jinan
- Shandong 250022
| | - Yong Liu
- Institute of Fluorescent Probes for Biological Imaging
- School of Materials Science and Engineering
- School of Chemistry and Chemical Engineering
- University of Jinan
- Shandong 250022
| | - Jie Niu
- Institute of Fluorescent Probes for Biological Imaging
- School of Materials Science and Engineering
- School of Chemistry and Chemical Engineering
- University of Jinan
- Shandong 250022
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging
- School of Materials Science and Engineering
- School of Chemistry and Chemical Engineering
- University of Jinan
- Shandong 250022
| |
Collapse
|
34
|
Schmid F. Physical mechanisms of micro- and nanodomain formation in multicomponent lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1859:509-528. [PMID: 27823927 DOI: 10.1016/j.bbamem.2016.10.021] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/19/2016] [Accepted: 10/27/2016] [Indexed: 12/17/2022]
Abstract
This article summarizes a variety of physical mechanisms proposed in the literature, which can generate micro- and nanodomains in multicomponent lipid bilayers and biomembranes. It mainly focusses on lipid-driven mechanisms that do not involve direct protein-protein interactions. Specifically, it considers (i) equilibrium mechanisms based on lipid-lipid phase separation such as critical cluster formation close to critical points, and multiple domain formation in curved geometries, (ii) equilibrium mechanisms that stabilize two-dimensional microemulsions, such as the effect of linactants and the effect of curvature-composition coupling in bilayers and monolayers, and (iii) non-equilibrium mechanisms induced by the interaction of a biomembrane with the cellular environment, such as membrane recycling and the pinning effects of the cytoplasm. Theoretical predictions are discussed together with simulations and experiments. The presentation is guided by the theory of phase transitions and critical phenomena, and the appendix summarizes the mathematical background in a concise way within the framework of the Ginzburg-Landau theory. This article is part of a Special Issue entitled: Lipid order/lipid defects and lipid-control of protein activity edited by Dirk Schneider.
Collapse
Affiliation(s)
- Friederike Schmid
- Institute of Physics, Johannes Gutenberg University, 55099 Mainz, Germany
| |
Collapse
|
35
|
Effects of Membrane Charge and Order on Membrane Binding of the Retroviral Structural Protein Gag. J Virol 2016; 90:9518-32. [PMID: 27512076 DOI: 10.1128/jvi.01102-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/05/2016] [Indexed: 12/28/2022] Open
Abstract
UNLABELLED The retroviral structural protein Gag binds to the inner leaflet of the plasma membrane (PM), and many cellular proteins do so as well. We used Rous sarcoma virus (RSV) Gag together with membrane sensors to study the principles governing peripheral protein membrane binding, including electrostatics, specific recognition of phospholipid headgroups, sensitivity to phospholipid acyl chain compositions, preference for membrane order, and protein multimerization. We used an in vitro liposome-pelleting assay to test protein membrane binding properties of Gag, the well-characterized MARCKS peptide, a series of fluorescent electrostatic sensor proteins (mNG-KRn), and the specific phosphatidylserine (PS) binding protein Evectin2. RSV Gag and mNG-KRn bound well to membranes with saturated and unsaturated acyl chains, whereas the MARCKS peptide and Evectin2 preferentially bound to membranes with unsaturated acyl chains. To further discriminate whether the primary driving force for Gag membrane binding is electrostatic interactions or preference for membrane order, we measured protein binding to giant unilamellar vesicles (GUVs) containing the same PS concentration in both disordered (Ld) and ordered (Lo) phases. RSV Gag and mNG-KRn membrane association followed membrane charge, independent of membrane order. Consistent with pelleting data, the MARCKS peptide showed preference for the Ld domain. Surprisingly, the PS sensor Evectin2 bound to the PS-rich Ld domain with 10-fold greater affinity than to the PS-rich Lo domain. In summary, we found that RSV Gag shows no preference for membrane order, while proteins with reported membrane-penetrating domains show preference for disordered membranes. IMPORTANCE Retroviral particles assemble on the PM and bud from infected cells. Our understanding of how Gag interacts with the PM and how different membrane properties contribute to overall Gag assembly is incomplete. This study examined how membrane charge and membrane order influence Gag membrane association. Consistent with previous work on RSV Gag, we report here that electrostatic interactions provide the primary driving force for RSV Gag membrane association. Using phase-separated GUVs with known lipid composition of the Ld and Lo phases, we demonstrate for the first time that RSV Gag is sensitive to membrane charge but not membrane order. In contrast, the cellular protein domain MARCKS and the PS sensor Evectin2 show preference for disordered membranes. We also demonstrate how to define GUV phase composition, which could serve as a tool in future studies of protein membrane interactions.
Collapse
|
36
|
Stuhr-Hansen N, Madl J, Villringer S, Aili U, Römer W, Blixt O. Synthesis of Cholesterol-Substituted Glycopeptides for Tailor-Made Glycocalyxification of Artificial Membrane Systems. Chembiochem 2016; 17:1403-6. [PMID: 27168414 DOI: 10.1002/cbic.201600258] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Indexed: 11/07/2022]
Abstract
Synthetic minimal membrane systems are extremely useful for better understanding of complex cellular structures and cell surface processes. We have developed a facile method for synthesis of cholesterylated peptides, each bearing a carbohydrate moiety and a fluorescent tag. The position of the cholesterol moiety on the peptide can be controlled by using a new Fmoc-protected cholesterol-triazole-lysine group, which we constructed by means of solid-phase peptide synthesis. We succeeded in integrating the glyco modules into giant unilamellar vesicles by electroformation or infusion in buffer solution. The glyco-decorated liposomes were recognized by a lectin and had unique topological membrane features. In conclusion, this work is a proof of principle for the functionalization of artificial membranes with a primitive synthetic glycocalyx useful for studying carbohydrate-protein interactions on a simplified cell-like membrane surface.
Collapse
Affiliation(s)
- Nicolai Stuhr-Hansen
- Department of Chemistry, Chemical Biology, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Josef Madl
- Albert-Ludwigs-University Freiburg, Faculty of Biology, Centre for Biological Signalling Studies (BIOSS) and, Freiburg Centre for Interactive Materials and Bioinspired Technology (FIT), Schänzlestrasse 18, 79104, Freiburg, Germany
| | - Sarah Villringer
- Albert-Ludwigs-University Freiburg, Faculty of Biology, Centre for Biological Signalling Studies (BIOSS) and, Freiburg Centre for Interactive Materials and Bioinspired Technology (FIT), Schänzlestrasse 18, 79104, Freiburg, Germany
| | - Ulrika Aili
- Department of Chemistry, Chemical Biology, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Winfried Römer
- Albert-Ludwigs-University Freiburg, Faculty of Biology, Centre for Biological Signalling Studies (BIOSS) and, Freiburg Centre for Interactive Materials and Bioinspired Technology (FIT), Schänzlestrasse 18, 79104, Freiburg, Germany
| | - Ola Blixt
- Department of Chemistry, Chemical Biology, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| |
Collapse
|
37
|
Sodt AJ, Pastor RW, Lyman E. Hexagonal Substructure and Hydrogen Bonding in Liquid-Ordered Phases Containing Palmitoyl Sphingomyelin. Biophys J 2016; 109:948-55. [PMID: 26331252 DOI: 10.1016/j.bpj.2015.07.036] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 07/11/2015] [Accepted: 07/14/2015] [Indexed: 10/23/2022] Open
Abstract
All-atom simulation data are presented for ternary mixtures of palmitoyl sphingomyelin (PSM), cholesterol, and either palmitoyl oleoyl phosphatidyl choline or dioleoyl phosphatidyl choline (DOPC). For comparison, data for a mixture of dipalmitoyl phosphatidyl choline (DPPC), cholesterol, and DOPC are also presented. Compositions corresponding to the liquid-ordered phase, the liquid-disordered phase, and coexistence of the two phases are simulated for each mixture. Within the liquid-ordered phase, cholesterol is preferentially solvated by DOPC if it is available, but if DOPC is replaced by POPC, cholesterol is preferentially solvated by PSM. In the DPPC mixtures, cholesterol interacts preferentially with the saturated chains via its smooth face, whereas in the PSM mixtures, cholesterol interacts preferentially with PSM via its rough face. Interactions between cholesterol and PSM have a very particular character: hydrogen bonding between cholesterol and the amide of PSM rotates the tilt of the amide plane, which primes it for more robust hydrogen bonding with other PSM. Cholesterol-PSM hydrogen bonding also locally modifies the hexagonal packing of hydrocarbon chains in the liquid-ordered phase of PSM mixtures.
Collapse
Affiliation(s)
- Alexander J Sodt
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Richard W Pastor
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Edward Lyman
- Department of Physics and Astronomy and Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware.
| |
Collapse
|
38
|
Mariani ME, Sánchez-Borzone ME, García DA. Effects of bioactive monoterpenic ketones on membrane organization. A langmuir film study. Chem Phys Lipids 2016; 198:39-45. [DOI: 10.1016/j.chemphyslip.2016.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/13/2016] [Accepted: 05/03/2016] [Indexed: 10/21/2022]
|
39
|
Membrane Binding of HIV-1 Matrix Protein: Dependence on Bilayer Composition and Protein Lipidation. J Virol 2016; 90:4544-4555. [PMID: 26912608 DOI: 10.1128/jvi.02820-15] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/15/2016] [Indexed: 01/10/2023] Open
Abstract
UNLABELLED By assembling in a protein lattice on the host's plasma membrane, the retroviral Gag polyprotein triggers formation of the viral protein/membrane shell. The MA domain of Gag employs multiple signals--electrostatic, hydrophobic, and lipid-specific-to bring the protein to the plasma membrane, thereby complementing protein-protein interactions, located in full-length Gag, in lattice formation. We report the interaction of myristoylated and unmyristoylated HIV-1 Gag MA domains with bilayers composed of purified lipid components to dissect these complex membrane signals and quantify their contributions to the overall interaction. Surface plasmon resonance on well-defined planar membrane models is used to quantify binding affinities and amounts of protein and yields free binding energy contributions, ΔG, of the various signals. Charge-charge interactions in the absence of the phosphatidylinositide PI(4,5)P2 attract the protein to acidic membrane surfaces, and myristoylation increases the affinity by a factor of 10; thus, our data do not provide evidence for a PI(4,5)P2 trigger of myristate exposure. Lipid-specific interactions with PI(4,5)P2, the major signal lipid in the inner plasma membrane, increase membrane attraction at a level similar to that of protein lipidation. While cholesterol does not directly engage in interactions, it augments protein affinity strongly by facilitating efficient myristate insertion and PI(4,5)P2 binding. We thus observe that the isolated MA protein, in the absence of protein-protein interaction conferred by the full-length Gag, binds the membrane with submicromolar affinities. IMPORTANCE Like other retroviral species, the Gag polyprotein of HIV-1 contains three major domains: the N-terminal, myristoylated MA domain that targets the protein to the plasma membrane of the host; a central capsid-forming domain; and the C-terminal, genome-binding nucleocapsid domain. These domains act in concert to condense Gag into a membrane-bounded protein lattice that recruits genomic RNA into the virus and forms the shell of a budding immature viral capsid. In binding studies of HIV-1 Gag MA to model membranes with well-controlled lipid composition, we dissect the multiple interactions of the MA domain with its target membrane. This results in a detailed understanding of the thermodynamic aspects that determine membrane association, preferential lipid recruitment to the viral shell, and those aspects of Gag assembly into the membrane-bound protein lattice that are determined by MA.
Collapse
|
40
|
Analyzing Protein Clusters on the Plasma Membrane: Application of Spatial Statistical Analysis Methods on Super-Resolution Microscopy Images. FOCUS ON BIO-IMAGE INFORMATICS 2016; 219:95-122. [DOI: 10.1007/978-3-319-28549-8_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
41
|
Preparing giant unilamellar vesicles (GUVs) of complex lipid mixtures on demand: Mixing small unilamellar vesicles of compositionally heterogeneous mixtures. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:3175-80. [DOI: 10.1016/j.bbamem.2015.09.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 08/16/2015] [Accepted: 09/22/2015] [Indexed: 11/18/2022]
|
42
|
Khadka NK, Ho CS, Pan J. Macroscopic and Nanoscopic Heterogeneous Structures in a Three-Component Lipid Bilayer Mixtures Determined by Atomic Force Microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:12417-12425. [PMID: 26506226 DOI: 10.1021/acs.langmuir.5b02863] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Much of lipid raft properties can be inferred from phase behavior of multicomponent lipid membranes. We use liquid compatible atomic force microscopy (AFM) to study a three-component system composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), egg sphingomyelin (eSM), and cholesterol. Specifically, we obtain macroscopic and nanoscopic heterogeneous structures in a broad compositional space of DOPC/eSM/cholesterol (23 °C). In the macroscopic liquid coexisting region, we quantify area fraction of the coexisting phases and determine a set of thermodynamic tie-lines. When lipid compositions are near the critical point, we obtain fluctuation-like nanoscopic structures. We also use AFM height images to explore the hypothetical three-phase coexisting region. Finally, we use fluorescence microscopy to compare the phase behavior from our AFM measurements to that in free-floating giant unilamellar vesicles (GUVs). Our results highlight the role of lipid composition in mediating lipid domain formation and stability.
Collapse
Affiliation(s)
- Nawal K Khadka
- Department of Physics, University of South Florida , Tampa, Florida 33620, United States
| | - Chian Sing Ho
- Department of Physics, University of South Florida , Tampa, Florida 33620, United States
| | - Jianjun Pan
- Department of Physics, University of South Florida , Tampa, Florida 33620, United States
| |
Collapse
|
43
|
Rusinova R, Koeppe RE, Andersen OS. A general mechanism for drug promiscuity: Studies with amiodarone and other antiarrhythmics. ACTA ACUST UNITED AC 2015; 146:463-75. [PMID: 26573624 PMCID: PMC4664825 DOI: 10.1085/jgp.201511470] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/13/2015] [Indexed: 01/14/2023]
Abstract
Amiodarone is a widely prescribed antiarrhythmic drug used to treat the most prevalent type of arrhythmia, atrial fibrillation (AF). At therapeutic concentrations, amiodarone alters the function of many diverse membrane proteins, which results in complex therapeutic and toxicity profiles. Other antiarrhythmics, such as dronedarone, similarly alter the function of multiple membrane proteins, suggesting that a multipronged mechanism may be beneficial for treating AF, but raising questions about how these antiarrhythmics regulate a diverse range of membrane proteins at similar concentrations. One possible mechanism is that these molecules regulate membrane protein function by altering the common environment provided by the host lipid bilayer. We took advantage of the gramicidin (gA) channels' sensitivity to changes in bilayer properties to determine whether commonly used antiarrhythmics--amiodarone, dronedarone, propranolol, and pindolol, whose pharmacological modes of action range from multi-target to specific--perturb lipid bilayer properties at therapeutic concentrations. Using a gA-based fluorescence assay, we found that amiodarone and dronedarone are potent bilayer modifiers at therapeutic concentrations; propranolol alters bilayer properties only at supratherapeutic concentration, and pindolol has little effect. Using single-channel electrophysiology, we found that amiodarone and dronedarone, but not propranolol or pindolol, increase bilayer elasticity. The overlap between therapeutic and bilayer-altering concentrations, which is observed also using plasma membrane-like lipid mixtures, underscores the need to explore the role of the bilayer in therapeutic as well as toxic effects of antiarrhythmic agents.
Collapse
Affiliation(s)
- Radda Rusinova
- Department of Physiology and Biophysics and Department of Anesthesiology, Weill Cornell Medical College, New York, NY 10065 Department of Physiology and Biophysics and Department of Anesthesiology, Weill Cornell Medical College, New York, NY 10065
| | - Roger E Koeppe
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701
| | - Olaf S Andersen
- Department of Physiology and Biophysics and Department of Anesthesiology, Weill Cornell Medical College, New York, NY 10065
| |
Collapse
|
44
|
Ho CS, Khadka NK, Pan J. Sub-ten-nanometer heterogeneity of solid supported lipid membranes determined by solution atomic force microscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:181-8. [PMID: 26551323 DOI: 10.1016/j.bbamem.2015.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/19/2015] [Accepted: 11/05/2015] [Indexed: 12/18/2022]
Abstract
Visually detecting nanoscopic structures in lipid membranes is important for elucidating lipid-lipid interactions, which are suggested to play a role in mediating membrane rafts. We use solution atomic force microscopy (AFM) to study lateral and normal organization in multicomponent lipid membranes supported by mica substrate. Nanoscopic heterogeneity is observed in a three-component system composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/brain-sphingomyelin (bSM)/cholesterol (Chol). We find sub-ten-nanometer correlation lengths that are used to describe membrane lateral organization. In addition, we find that the correlation length is independent on cholesterol concentration, while the height fluctuation (variation) is not. To explore the mechanism that controls the size of membrane heterogeneity, we extend our study to a four-component system composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/POPC/bSM/Chol. By systematically adjusting the relative amount of DOPC and POPC, we obtain macroscopic-to-nanoscopic size transition of membrane heterogeneity. In contrast to the results from vesicle based fluorescence microscopy, we find that the structural transition is continuous both in the lateral and normal directions. We compare our nanoscopic structures to two theoretical models, and find that both the critical fluctuations and the nanodomain models are not sufficient to account for our solution AFM data. Finally, we propose a nanoheterogeneity model that could serve as the organization principle of the observed nanoscopic structures in multicomponent lipid membranes.
Collapse
Affiliation(s)
- Chian Sing Ho
- Department of Physics, University of South Florida, Tampa, FL 33620, USA
| | - Nawal K Khadka
- Department of Physics, University of South Florida, Tampa, FL 33620, USA
| | - Jianjun Pan
- Department of Physics, University of South Florida, Tampa, FL 33620, USA.
| |
Collapse
|
45
|
Abstract
In the present chapter we discuss the complex mixing behaviour of plasma membrane lipids. To do so, we first introduce the plasma membrane and membrane mixtures often used to model its complexity. We then discuss the nature of lipid phase behaviour in bilayers and the distinction between these phases and other manifestations of non-random mixing found in one-phase mixtures, such as clusters, micelles and microemulsions. Finally, we demonstrate the applicability of Gibbs phase diagrams to the study of increasingly complex model membrane systems, with a focus on phase coexistence, morphology and their implications for the cell plasma membrane.
Collapse
|
46
|
Du H, Samuel RL, Massiah MA, Gillmor SD. The structure and behavior of the NA-CATH antimicrobial peptide with liposomes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015. [DOI: 10.1016/j.bbamem.2015.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Cheng CY, Olijve LLC, Kausik R, Han S. Cholesterol enhances surface water diffusion of phospholipid bilayers. J Chem Phys 2015; 141:22D513. [PMID: 25494784 DOI: 10.1063/1.4897539] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Elucidating the physical effect of cholesterol (Chol) on biological membranes is necessary towards rationalizing their structural and functional role in cell membranes. One of the debated questions is the role of hydration water in Chol-embedding lipid membranes, for which only little direct experimental data are available. Here, we study the hydration dynamics in a series of Chol-rich and depleted bilayer systems using an approach termed (1)H Overhauser dynamic nuclear polarization (ODNP) NMR relaxometry that enables the sensitive and selective determination of water diffusion within 5-10 Å of a nitroxide-based spin label, positioned off the surface of the polar headgroups or within the nonpolar core of lipid membranes. The Chol-rich membrane systems were prepared from mixtures of Chol, dipalmitoyl phosphatidylcholine and/or dioctadecyl phosphatidylcholine lipid that are known to form liquid-ordered, raft-like, domains. Our data reveal that the translational diffusion of local water on the surface and within the hydrocarbon volume of the bilayer is significantly altered, but in opposite directions: accelerated on the membrane surface and dramatically slowed in the bilayer interior with increasing Chol content. Electron paramagnetic resonance (EPR) lineshape analysis shows looser packing of lipid headgroups and concurrently tighter packing in the bilayer core with increasing Chol content, with the effects peaking at lipid compositions reported to form lipid rafts. The complementary capability of ODNP and EPR to site-specifically probe the hydration dynamics and lipid ordering in lipid membrane systems extends the current understanding of how Chol may regulate biological processes. One possible role of Chol is the facilitation of interactions between biological constituents and the lipid membrane through the weakening or disruption of strong hydrogen-bond networks of the surface hydration layers that otherwise exert stronger repulsive forces, as reflected in faster surface water diffusivity. Another is the concurrent tightening of lipid packing that reduces passive, possibly unwanted, diffusion of ions and water across the bilayer.
Collapse
Affiliation(s)
- Chi-Yuan Cheng
- Department of Chemistry and Biochemistry and Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
| | - Luuk L C Olijve
- Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Ravinath Kausik
- Department of Chemistry and Biochemistry and Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
| | - Songi Han
- Department of Chemistry and Biochemistry and Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
48
|
Gordon VD, O'Halloran TJ, Shindell O. Membrane adhesion and the formation of heterogeneities: biology, biophysics, and biotechnology. Phys Chem Chem Phys 2015; 17:15522-33. [PMID: 25866854 PMCID: PMC4465551 DOI: 10.1039/c4cp05876c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Membrane adhesion is essential to many vital biological processes. Sites of membrane adhesion are often associated with heterogeneities in the lipid and protein composition of the membrane. These heterogeneities are thought to play functional roles by facilitating interactions between proteins. However, the causal links between membrane adhesion and membrane heterogeneities are not known. Here we survey the state of the field and indicate what we think are understudied areas ripe for development.
Collapse
Affiliation(s)
- V D Gordon
- The University of Texas at Austin, Department of Physics and Center for Nonlinear Dynamics, 2515 Speedway, Stop C1610, Austin, Texas 78712-1199, USA.
| | | | | |
Collapse
|
49
|
Carravilla P, Nieva JL, Goñi FM, Requejo-Isidro J, Huarte N. Two-photon Laurdan studies of the ternary lipid mixture DOPC:SM:cholesterol reveal a single liquid phase at sphingomyelin:cholesterol ratios lower than 1. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:2808-2817. [PMID: 25658036 DOI: 10.1021/la504251u] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The ternary lipid mixture DOPC:eggSM:cholesterol in excess water has been studied in the form of giant unilamellar vesicles using two-photon fluorescence microscopy. Previous publications based on single-photon fluorescence microscopy had reported heterogeneous phase behavior (phase coexistence) in the region of the triangular phase diagram corresponding to SM:cholesterol molar ratios <1. We have examined this region by two-photon microscopy of Laurdan-labeled mixtures and have found that, under our conditions, only a single liquid phase exists. We have shown that macroscopic phase separation in the above region can be artifactually induced by one-photon excitation of the fluorescent probes and ensuing photooxidation and is prevented using two-photon excitation. The main effect of increasing the concentration of cholesterol in mixtures containing 30 mol % SM was to increase the rigidity of the disordered domains. Increasing the concentration of SM in mixtures containing 20 mol % cholesterol gradually augmented the rigidity of the ordered domains, while the disordered domains reached minimal order at a SM:cholesterol 2.25:1 molar ratio, which then increased again. Moreover, the detailed measurement of Laurdan generalized polarization across the whole phase diagram allowed the representation, for both the single- and two-phase regions, of the gradual variation of membrane lateral packing along the diagram, which we found to be governed largely by SM:cholesterol interactions.
Collapse
Affiliation(s)
- Pablo Carravilla
- Unidad de Biofísica (CSIC, UPV/EHU), Barrio de Sarriena s/n, 48490 Leioa, Spain
| | | | | | | | | |
Collapse
|
50
|
Lin Q, London E. Transmembrane protein (perfringolysin o) association with ordered membrane domains (rafts) depends upon the raft-associating properties of protein-bound sterol. Biophys J 2014; 105:2733-42. [PMID: 24359745 DOI: 10.1016/j.bpj.2013.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 10/29/2013] [Accepted: 11/01/2013] [Indexed: 02/07/2023] Open
Abstract
Because transmembrane (TM) protein localization, or nonlocalization, in ordered membrane domains (rafts) is a key to understanding membrane domain function, it is important to define the origin of protein-raft interaction. One hypothesis is that a tight noncovalent attachment of TM proteins to lipids that have a strong affinity for ordered domains can be sufficient to induce raft-protein interaction. The sterol-binding protein perfringolysin O (PFO) was used to test this hypothesis. PFO binds both to sterols that tend to localize in ordered domains (e.g., cholesterol), and to those that do not (e.g., coprostanol), but it does not bind to epicholesterol, a raft-promoting 3α-OH sterol. Using a fluorescence resonance energy transfer assay in model membrane vesicles containing coexisting ordered and disordered lipid domains, both TM and non-TM forms of PFO were found to concentrate in ordered domains in vesicles containing high and low-Tm lipids plus cholesterol or 1:1 (mol/mol) cholesterol/epicholesterol, whereas they concentrate in disordered domains in vesicles containing high-Tm and low-Tm lipids plus 1:1 (mol/mol) coprostanol/epicholesterol. Combined with previous studies this behavior indicates that TM protein association with ordered domains is dependent upon both the association of the protein-bound sterol with ordered domains and hydrophobic match between TM segments and rafts.
Collapse
Affiliation(s)
- Qingqing Lin
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York
| | - Erwin London
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York.
| |
Collapse
|