1
|
Khalifeh DM, Czeglédi L, Gulyas G. Investigating the potential role of the pituitary adenylate cyclase-activating polypeptide (PACAP) in regulating the ubiquitin signaling pathway in poultry. Gen Comp Endocrinol 2024; 356:114577. [PMID: 38914296 DOI: 10.1016/j.ygcen.2024.114577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/13/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
The physiological processes in animal production are regulated through biologically active molecules like peptides, proteins, and hormones identified through the development of the fundamental sciences and their application. One of the main polypeptides that plays an essential role in regulating physiological responses is the pituitary adenylate cyclase-activating polypeptide (PACAP). PACAP belongs to the glucagon/growth hormone-releasing hormone (GHRH)/vasoactive intestinal proteins (VIP) family and regulates feed intake, stress, and immune response in birds. Most of these regulations occur after PACAP stimulates the cAMP signaling pathway, which can regulate the expression of genes like MuRF1, FOXO1, Atrogin 1, and other ligases that are essential members of the ubiquitin system. On the other hand, PACAP stimulates the secretion of CRH in response to stress, activating the ubiquitin signaling pathway that plays a vital role in protein degradation and regulates oxidative stress and immune responses. Many studies conducted on rodents, mammals, and other models confirm the regulatory effects of PACAP, cAMP, and the ubiquitin pathway; however, there are no studies testing whether PACAP-induced cAMP signaling in poultry regulates the ubiquitin pathway. Besides, it would be interesting to investigate if PACAP can regulate ubiquitin signaling during stress response via CRH altered by HPA axis stimulation. Therefore, this review highlights a summary of research studies that indicate the potential interaction of the PACAP and ubiquitin signaling pathways on different molecular and physiological parameters in poultry species through the cAMP and stress signaling pathways.
Collapse
Affiliation(s)
- Doha Mohamad Khalifeh
- Department of Animal Science, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, Debrecen 4032 Hungary; Doctoral School of Animal Science, University of Debrecen, Böszörményi Street 138, 4032, Debrecen, Hungary.
| | - Levente Czeglédi
- Department of Animal Science, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, Debrecen 4032 Hungary
| | - Gabriella Gulyas
- Department of Animal Science, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, Debrecen 4032 Hungary
| |
Collapse
|
2
|
Zheng J, Zhao J, Li C, Zhang F, Saiding Q, Zhang X, Wang G, Qi J, Cui W, Deng L. Targeted Protein Fate Modulating Functional Microunits Promotes Intervertebral Fusion. SMALL METHODS 2024; 8:e2301375. [PMID: 38143276 DOI: 10.1002/smtd.202301375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/03/2023] [Indexed: 12/26/2023]
Abstract
Stable regulation of protein fate is a prerequisite for successful bone tissue repair. As a ubiquitin-specific protease (USP), USP26 can stabilize the protein fate of β-catenin to promote the osteogenic activity of mesenchymal cells (BMSCs) and significantly increased bone regeneration in bone defects in aged mice. However, direct transfection of Usp26 in vivo is inefficient. Therefore, improving the efficient expression of USP26 in target cells is the key to promoting bone tissue repair. Herein, 3D printing combined with microfluidic technology is applied to construct a functional microunit (protein fate regulating functional microunit, denoted as PFFM), which includes GelMA microspheres loaded with BMSCs overexpressing Usp26 and seeded into PCL 3D printing scaffolds. The PFFM provides a microenvironment for BMSCs, significantly promotes adhesion, and ensures cell activity and Usp26 supplementation that stabilizes β-catenin protein significantly facilitates BMSCs to express osteogenic phenotypes. In vivo experiments have shown that PFFM effectively accelerates intervertebral bone fusion. Therefore, PFFM can provide new ideas and alternatives for using USP26 for intervertebral fusion and other hard-to-repair bone defect diseases and is expected to provide clinical translational potential in future treatments.
Collapse
Affiliation(s)
- Jiancheng Zheng
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Jian Zhao
- Department of Neurosurgery, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, 271000, China
| | - Cuidi Li
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Fangke Zhang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Qimanguli Saiding
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Xingkai Zhang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Guojun Wang
- Department of Neurosurgery, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, 271000, China
| | - Jin Qi
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Lianfu Deng
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| |
Collapse
|
3
|
He L, Chen H, Ruan B, He L, Luo M, Fu Y, Zou R. UBQLN4 promotes the proliferation and invasion of non-small cell lung cancer cell by regulating PI3K/AKT pathway. J Cancer Res Clin Oncol 2024; 150:335. [PMID: 38969831 PMCID: PMC11226510 DOI: 10.1007/s00432-024-05862-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/19/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Ubiquilin-4 (UBQLN4), a member of the ubiquilin family, has received limited attention in cancer research to date. Here, we investigated for the first time the functional role and mechanism of UBQLN4 in non-small cell lung cancer (NSCLC). METHODS The Cancer Genome Atlas (TCGA) database was employed to validate UBQLN4 as a differentially expressed gene. Expression differences of UBQLN4 in NSCLC cells and tissues were assessed using immunohistochemistry (IHC) experiment and western blotting (WB) experiment. Kaplan-Meier analysis was conducted to examine the association between UBQLN4 expression and NSCLC prognosis. Functional analyses of UBQLN4 were performed through cell counting kit-8 (CCK-8), colony formation, and transwell invasion assays. The impact of UBQLN4 on tumor-associated signaling pathways was assessed using the path scan intracellular signaling array. In vivo tumorigenesis experiments were conducted to further investigate the influence of UBQLN4 on tumor formation. RESULTS UBQLN4 exhibited up-regulation in both NSCLC tissues and cells. Additionally, over-expression of UBQLN4 was associated with an unfavorable prognosis in NSCLC patients. Functional loss analyses demonstrated that inhibiting UBQLN4 could suppress the proliferation and invasion of NSCLC cells in both in vitro and in vivo settings. Conversely, functional gain experiments yielded opposite results. Path scan intracellular signaling array results suggested that the role of UBQLN4 is associated with the PI3K/AKT pathway, a correlation substantiated by in vitro and in vivo tumorigenesis experiments. CONCLUSION We validated that UBQLN4 promotes proliferation and invasion of NSCLC cells by activating the PI3K/AKT pathway, thereby facilitating the progression of NSCLC. These findings underscore the potential of targeting UBQLN4 as a therapeutic strategy for NSCLC.
Collapse
Affiliation(s)
- Li He
- Department of Oncology, The People's Hospital of Xinyu City, Xinyu, Jiangxi, 338099, People's Republic of China
| | - Heng Chen
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical Collge, Nanchang University, 17 Yongwai Street, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Bin Ruan
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical Collge, Nanchang University, 17 Yongwai Street, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Li He
- Department of Pathology, Jingdezhen First People's Hospital, Jingdezhen, Jiangxi, 333000, People's Republic of China
| | - Ming Luo
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical Collge, Nanchang University, 17 Yongwai Street, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Yulun Fu
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical Collge, Nanchang University, 17 Yongwai Street, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Rui Zou
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical Collge, Nanchang University, 17 Yongwai Street, Nanchang, Jiangxi, 330006, People's Republic of China.
| |
Collapse
|
4
|
Oppenheimer KG, Hager NA, McAtee CK, Filiztekin E, Shang C, Warnick JA, Bruchez MP, Brodsky JL, Prosser DC, Kwiatkowski AV, O’Donnell AF. Optimization of the fluorogen-activating protein tag for quantitative protein trafficking and colocalization studies in S. cerevisiae. Mol Biol Cell 2024; 35:mr5. [PMID: 38809589 PMCID: PMC11244157 DOI: 10.1091/mbc.e24-04-0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024] Open
Abstract
Spatial and temporal tracking of fluorescent proteins (FPs) in live cells permits visualization of proteome remodeling in response to extracellular cues. Historically, protein dynamics during trafficking have been visualized using constitutively active FPs fused to proteins of interest. While powerful, such FPs label all cellular pools of a protein, potentially masking the dynamics of select subpopulations. To help study protein subpopulations, bioconjugate tags, including the fluorogen activation proteins (FAPs), were developed. FAPs are comprised of two components: a single-chain antibody (SCA) fused to the protein of interest and a malachite-green (MG) derivative, which fluoresces only when bound to the SCA. Importantly, the MG derivatives can be either cell-permeant or -impermeant, thus permitting isolated detection of SCA-tagged proteins at the cell surface and facilitating quantitative endocytic measures. To expand FAP use in yeast, we optimized the SCA for yeast expression, created FAP-tagging plasmids, and generated FAP-tagged organelle markers. To demonstrate FAP efficacy, we coupled the SCA to the yeast G-protein coupled receptor Ste3. We measured Ste3 endocytic dynamics in response to pheromone and characterized cis- and trans-acting regulators of Ste3. Our work significantly expands FAP technology for varied applications in S. cerevisiae.
Collapse
Affiliation(s)
| | - Natalie A. Hager
- Department of Biological Sciences, University of Pittsburgh, PA 15260
| | - Ceara K. McAtee
- Department of Biological Sciences, University of Pittsburgh, PA 15260
| | - Elif Filiztekin
- Department of Biological Sciences, University of Pittsburgh, PA 15260
| | - Chaowei Shang
- Department of Biological Sciences, University of Pittsburgh, PA 15260
| | | | - Marcel P. Bruchez
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, PA 15213
| | | | - Derek C. Prosser
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Adam V. Kwiatkowski
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | | |
Collapse
|
5
|
Ríos-Medina Y, Rico-Chávez P, Martínez-Vieyra I, Durán-Álvarez JC, Rodriguez-Varela M, Rincón-Heredia R, Reyes-López C, Cerecedo D. Altered Plasma Membrane Lipid Composition in Hypertensive Neutrophils Impacts Epithelial Sodium Channel (ENaC) Endocytosis. Int J Mol Sci 2024; 25:4939. [PMID: 38732158 PMCID: PMC11084340 DOI: 10.3390/ijms25094939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Biological membranes are composed of a lipid bilayer with embedded proteins, including ion channels like the epithelial sodium channel (ENaC), which are critical for sodium homeostasis and implicated in arterial hypertension (HTN). Changes in the lipid composition of the plasma membrane can significantly impact cellular processes related to physiological functions. We hypothesized that the observed overexpression of ENaC in neutrophils from HTN patients might result from alterations in the structuring domains within the plasma membrane, disrupting the endocytic processes responsible for ENaC retrieval. This study assessed the structural lipid composition of neutrophil plasma membranes from HTN patients along with the expression patterns of key elements regulating ENaC at the plasma membrane. Our findings suggest alterations in microdomain structure and SGK1 kinase activity, which could prolong ENaC presence on the plasma membrane. Additionally, we propose that the proteasomal and lysosomal degradation pathways are insufficient to diminish ENaC presence at the plasma membrane in HTN. These results highlight the importance of understanding ENaC retrieval mechanisms and suggest that targeting these mechanisms could provide insights for developing drugs to prevent and treat HTN.
Collapse
Affiliation(s)
- Yolanda Ríos-Medina
- Laboratorio de Hematobiología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07230, Mexico; (Y.R.-M.); (P.R.-C.); (I.M.-V.)
| | - Pedro Rico-Chávez
- Laboratorio de Hematobiología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07230, Mexico; (Y.R.-M.); (P.R.-C.); (I.M.-V.)
| | - Ivette Martínez-Vieyra
- Laboratorio de Hematobiología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07230, Mexico; (Y.R.-M.); (P.R.-C.); (I.M.-V.)
| | - Juan C. Durán-Álvarez
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (J.C.D.-Á.); (M.R.-V.)
| | - Mario Rodriguez-Varela
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (J.C.D.-Á.); (M.R.-V.)
| | - Ruth Rincón-Heredia
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - César Reyes-López
- Laboratorio de Bioquímica Estructural, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07230, Mexico;
| | - Doris Cerecedo
- Laboratorio de Hematobiología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07230, Mexico; (Y.R.-M.); (P.R.-C.); (I.M.-V.)
| |
Collapse
|
6
|
Ahmed MZ, Alqahtani AS. Cell surface expression of Ribophorin I, an endoplasmic reticulum protein, over different cell types. Int J Biol Macromol 2024; 264:130278. [PMID: 38373565 DOI: 10.1016/j.ijbiomac.2024.130278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Ribophorin-1 serves as one of the subunits of the oligosaccharyltransferase (OST) complex located in the endoplasmic reticulum (ER). Until now, RPN-1 was considered an ER protein. However, our findings reveal that a minor fraction of RPN-1 escapes from the lumen of the ER and is ectopically expressed on the surface of different cell lines. The precise mechanism of protein translocation is unknown. The expression of RPN-1 was demonstrated through the isolation of membrane proteins using surface biotinylation and sucrose density gradient techniques. The confirmation of RPN-1 was obtained through surface staining using a specific antibody, revealing its expression on various cell lines. Additionally, we examined the expression of RPN-1 in different populations of PBMCs and observed a differential regulation of RPN-1 within PBMC subpopulations. Notably, there was a significant expression of RPN-1 on monocytes and B cells, but there was little to no population of T cells expressing RPN-1. We confirmed the expression of RPN-1 on THP-1, U937, and Jurkat cells. We also confirmed their surface expression through si-RNA knockdown. Our study shows RPN-1 expression on various cell surfaces, suggesting varied regulation among cell types. In the future, we may uncover its roles in immune function, signaling, and differentiation/proliferation.
Collapse
Affiliation(s)
- Mohammad Z Ahmed
- King Saud University College of Pharmacy, Department of Pharmacognosy, Riyadh 11451, Saudi Arabia.
| | - Ali S Alqahtani
- King Saud University College of Pharmacy, Department of Pharmacognosy, Riyadh 11451, Saudi Arabia
| |
Collapse
|
7
|
Taler K, Zatari N, Lone MI, Rotem-Bamberger S, Inbal A. Identification of Small Molecules for Prevention of Lens Epithelium-Derived Cataract Using Zebrafish. Cells 2023; 12:2540. [PMID: 37947618 PMCID: PMC10650733 DOI: 10.3390/cells12212540] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/16/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023] Open
Abstract
Cataract is the leading cause of blindness worldwide. It can be treated by surgery, whereby the damaged crystalline lens is replaced by a synthetic lens. Although cataract surgery is highly effective, a relatively common complication named posterior capsular opacification (PCO) leads to secondary loss of vision. PCO is caused by abnormal proliferation and migration of residual lens epithelial cells (LECs) that were not removed during the surgery, which results in interruption to the passage of light. Despite technical improvements to the surgery, this complication has not been eradicated. Efforts are being made to identify drugs that can be applied post-surgery, to inhibit PCO development. Towards the goal of identifying such drugs, we used zebrafish embryos homozygous for a mutation in plod3 that develop a lens phenotype with characteristics of PCO. Using both biased and unbiased approaches, we identified small molecules that can block the lens phenotype of the mutants. Our findings confirm the relevance of zebrafish plod3 mutants' lens phenotype as a model for lens epithelium-derived cataract and add to our understanding of the molecular mechanisms that contribute to the development of this pathology. This understanding should help in the development of strategies for PCO prevention.
Collapse
Affiliation(s)
| | | | | | | | - Adi Inbal
- Department of Medical Neurobiology, Institute for Medical Research—Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 9112002, Israel; (K.T.); (N.Z.); (M.I.L.); (S.R.-B.)
| |
Collapse
|
8
|
Huh YE, Usnich T, Scherzer CR, Klein C, Chung SJ. GBA1 Variants and Parkinson's Disease: Paving the Way for Targeted Therapy. J Mov Disord 2023; 16:261-278. [PMID: 37302978 PMCID: PMC10548077 DOI: 10.14802/jmd.23023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/28/2023] [Accepted: 06/09/2023] [Indexed: 06/13/2023] Open
Abstract
Glucosylceramidase beta 1 (GBA1) variants have attracted enormous attention as the most promising and important genetic candidates for precision medicine in Parkinson's disease (PD). A substantial correlation between GBA1 genotypes and PD phenotypes could inform the prediction of disease progression and promote the development of a preventive intervention for individuals at a higher risk of a worse disease prognosis. Moreover, the GBA1-regulated pathway provides new perspectives on the pathogenesis of PD, such as dysregulated sphingolipid metabolism, impaired protein quality control, and disrupted endoplasmic reticulum-Golgi trafficking. These perspectives have led to the development of novel disease-modifying therapies for PD targeting the GBA1-regulated pathway by repositioning treatment strategies for Gaucher's disease. This review summarizes the current hypotheses on a mechanistic link between GBA1 variants and PD and possible therapeutic options for modulating GBA1-regulated pathways in PD patients.
Collapse
Affiliation(s)
- Young Eun Huh
- Department of Neurology, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Tatiana Usnich
- Institute of Neurogenetics, University of Lübeck and University Hospital of Schleswig-Holstein, Lübeck, Germany
| | - Clemens R. Scherzer
- Advanced Center for Parkinson’s Disease Research, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck and University Hospital of Schleswig-Holstein, Lübeck, Germany
| | - Sun Ju Chung
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
9
|
Paul D, Stern O, Vallis Y, Dhillon J, Buchanan A, McMahon H. Cell surface protein aggregation triggers endocytosis to maintain plasma membrane proteostasis. Nat Commun 2023; 14:947. [PMID: 36854675 PMCID: PMC9974993 DOI: 10.1038/s41467-023-36496-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/03/2023] [Indexed: 03/02/2023] Open
Abstract
The ability of cells to manage consequences of exogenous proteotoxicity is key to cellular homeostasis. While a plethora of well-characterised machinery aids intracellular proteostasis, mechanisms involved in the response to denaturation of extracellular proteins remain elusive. Here we show that aggregation of protein ectodomains triggers their endocytosis via a macroendocytic route, and subsequent lysosomal degradation. Using ERBB2/HER2-specific antibodies we reveal that their cross-linking ability triggers specific and fast endocytosis of the receptor, independent of clathrin and dynamin. Upon aggregation, canonical clathrin-dependent cargoes are redirected into the aggregation-dependent endocytosis (ADE) pathway. ADE is an actin-driven process, which morphologically resembles macropinocytosis. Physical and chemical stress-induced aggregation of surface proteins also triggers ADE, facilitating their degradation in the lysosome. This study pinpoints aggregation of extracellular domains as a trigger for rapid uptake and lysosomal clearance which besides its proteostatic function has potential implications for the uptake of pathological protein aggregates and antibody-based therapies.
Collapse
Affiliation(s)
- David Paul
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Omer Stern
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Yvonne Vallis
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Jatinder Dhillon
- AstraZeneca, R&D BioPharma, Antibody Discovery & Protein Engineering, Granta Park, Cambridge, CB21 6GH, UK
| | - Andrew Buchanan
- AstraZeneca, R&D BioPharma, Antibody Discovery & Protein Engineering, Granta Park, Cambridge, CB21 6GH, UK
| | - Harvey McMahon
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
10
|
Chiuso F, Delle Donne R, Giamundo G, Rinaldi L, Borzacchiello D, Moraca F, Intartaglia D, Iannucci R, Senatore E, Lignitto L, Garbi C, Conflitti P, Catalanotti B, Conte I, Feliciello A. Ubiquitylation of BBSome is required for ciliary assembly and signaling. EMBO Rep 2023; 24:e55571. [PMID: 36744302 PMCID: PMC10074118 DOI: 10.15252/embr.202255571] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/27/2022] [Accepted: 01/17/2023] [Indexed: 02/07/2023] Open
Abstract
Bardet-Biedl syndrome (BBS) is a ciliopathy characterized by retinal degeneration, obesity, renal abnormalities, postaxial polydactyly, and developmental defects. Genes mutated in BBS encode for components and regulators of the BBSome, an octameric complex that controls the trafficking of cargos and receptors within the primary cilium. Although both structure and function of the BBSome have been extensively studied, the impact of ubiquitin signaling on BBSome is largely unknown. We identify the E3 ubiquitin ligase PJA2 as a novel resident of the ciliary compartment and regulator of the BBSome. Upon GPCR-cAMP stimulation, PJA2 ubiquitylates BBSome subunits. We demonstrate that ubiquitylation of BBS1 at lysine 143 increases the stability of the BBSome and promotes its binding to BBS3, an Arf-like GTPase protein controlling the targeting of the BBSome to the ciliary membrane. Downregulation of PJA2 or expression of a ubiquitylation-defective BBS1 mutant (BBS1K143R ) affects the trafficking of G-protein-coupled receptors (GPCRs) and Shh-dependent gene transcription. Expression of BBS1K143R in vivo impairs cilium formation, embryonic development, and photoreceptors' morphogenesis, thus recapitulating the BBS phenotype in the medaka fish model.
Collapse
Affiliation(s)
- Francesco Chiuso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Rossella Delle Donne
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Giuliana Giamundo
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Department of Biology, University of Naples Federico II, Naples, Italy
| | - Laura Rinaldi
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Domenica Borzacchiello
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Federica Moraca
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy.,Net4Science srl, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | | | - Rosa Iannucci
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Emanuela Senatore
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Luca Lignitto
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy.,Cancer Research Center of Marseille (CRCM), CNRS, Aix Marseille Univ, INSERM, Institut Paoli-Calmettes, Marseille, France
| | - Corrado Garbi
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Paolo Conflitti
- Faculty of Biomedical Sciences, Institute of Computational Science, Università della Svizzera Italiana (USI), Lugano, Switzerland
| | - Bruno Catalanotti
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Ivan Conte
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Department of Biology, University of Naples Federico II, Naples, Italy
| | - Antonio Feliciello
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
11
|
Sulimai NH, Brown J, Lominadze D. Fibrinogen, Fibrinogen-like 1 and Fibrinogen-like 2 Proteins, and Their Effects. Biomedicines 2022; 10:1712. [PMID: 35885017 PMCID: PMC9313381 DOI: 10.3390/biomedicines10071712] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 12/05/2022] Open
Abstract
Fibrinogen (Fg) and its derivatives play a considerable role in many diseases. For example, increased levels of Fg have been found in many inflammatory diseases, such as Alzheimer's disease, multiple sclerosis, traumatic brain injury, rheumatoid arthritis, systemic lupus erythematosus, and cancer. Although associations of Fg, Fg chains, and its derivatives with various diseases have been established, their specific effects and the mechanisms of actions involved are still unclear. The present review is the first attempt to discuss the role of Fg, Fg chains, its derivatives, and other members of Fg family proteins, such as Fg-like protein 1 and 2, in inflammatory diseases and their effects in immunomodulation.
Collapse
Affiliation(s)
- Nurul H. Sulimai
- Departments of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA; (N.H.S.); (J.B.)
| | - Jason Brown
- Departments of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA; (N.H.S.); (J.B.)
| | - David Lominadze
- Departments of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA; (N.H.S.); (J.B.)
- Departments of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| |
Collapse
|
12
|
Partridge BR, Kani Y, Lorenzo MF, Campelo SN, Allen IC, Hinckley J, Hsu FC, Verbridge SS, Robertson JL, Davalos RV, Rossmeisl JH. High-Frequency Irreversible Electroporation (H-FIRE) Induced Blood-Brain Barrier Disruption Is Mediated by Cytoskeletal Remodeling and Changes in Tight Junction Protein Regulation. Biomedicines 2022; 10:1384. [PMID: 35740406 PMCID: PMC9220673 DOI: 10.3390/biomedicines10061384] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 12/25/2022] Open
Abstract
Glioblastoma is the deadliest malignant brain tumor. Its location behind the blood-brain barrier (BBB) presents a therapeutic challenge by preventing effective delivery of most chemotherapeutics. H-FIRE is a novel tumor ablation method that transiently disrupts the BBB through currently unknown mechanisms. We hypothesized that H-FIRE mediated BBB disruption (BBBD) occurs via cytoskeletal remodeling and alterations in tight junction (TJ) protein regulation. Intracranial H-FIRE was delivered to Fischer rats prior to sacrifice at 1-, 24-, 48-, 72-, and 96 h post-treatment. Cytoskeletal proteins and native and ubiquitinated TJ proteins (TJP) were evaluated using immunoprecipitation, Western blotting, and gene-expression arrays on treated and sham control brain lysates. Cytoskeletal and TJ protein expression were further evaluated with immunofluorescent microscopy. A decrease in the F/G-actin ratio, decreased TJP concentrations, and increased ubiquitination of TJP were observed 1-48 h post-H-FIRE compared to sham controls. By 72-96 h, cytoskeletal and TJP expression recovered to pretreatment levels, temporally corresponding with increased claudin-5 and zonula occludens-1 gene expression. Ingenuity pathway analysis revealed significant dysregulation of claudin genes, centered around claudin-6 in H-FIRE treated rats. In conclusion, H-FIRE is capable of permeating the BBB in a spatiotemporal manner via cytoskeletal-mediated TJP modulation. This minimally invasive technology presents with applications for localized and long-lived enhanced intracranial drug delivery.
Collapse
Affiliation(s)
- Brittanie R. Partridge
- Department of Small Animal Clinical Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (B.R.P.); (Y.K.); (J.H.)
| | - Yukitaka Kani
- Department of Small Animal Clinical Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (B.R.P.); (Y.K.); (J.H.)
| | - Melvin F. Lorenzo
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA; (M.F.L.); (S.N.C.)
| | - Sabrina N. Campelo
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA; (M.F.L.); (S.N.C.)
| | - Irving C. Allen
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA 24061, USA; (I.C.A.); (S.S.V.); (J.L.R.); (R.V.D.)
- Center of Engineered Health, Virginia Tech, Blacksburg, VA 24061, USA
| | - Jonathan Hinckley
- Department of Small Animal Clinical Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (B.R.P.); (Y.K.); (J.H.)
| | - Fang-Chi Hsu
- Department of Biostatistics and Data Sciences, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA;
| | - Scott S. Verbridge
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA 24061, USA; (I.C.A.); (S.S.V.); (J.L.R.); (R.V.D.)
- Center of Engineered Health, Virginia Tech, Blacksburg, VA 24061, USA
| | - John L. Robertson
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA 24061, USA; (I.C.A.); (S.S.V.); (J.L.R.); (R.V.D.)
| | - Rafael V. Davalos
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA; (M.F.L.); (S.N.C.)
- Center of Engineered Health, Virginia Tech, Blacksburg, VA 24061, USA
| | - John H. Rossmeisl
- Department of Small Animal Clinical Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (B.R.P.); (Y.K.); (J.H.)
- Center of Engineered Health, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
13
|
Non-proteolytic ubiquitylation in cellular signaling and human disease. Commun Biol 2022; 5:114. [PMID: 35136173 PMCID: PMC8826416 DOI: 10.1038/s42003-022-03060-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 01/18/2022] [Indexed: 12/18/2022] Open
Abstract
Ubiquitylation is one of the most common post-translational modifications (PTMs) of proteins that frequently targets substrates for proteasomal degradation. However it can also result in non-proteolytic events which play important functions in cellular processes such as intracellular signaling, membrane trafficking, DNA repair and cell cycle. Emerging evidence demonstrates that dysfunction of non-proteolytic ubiquitylation is associated with the development of multiple human diseases. In this review, we summarize the current knowledge and the latest concepts on how non-proteolytic ubiquitylation pathways are involved in cellular signaling and in disease-mediating processes. Our review, may advance our understanding of the non-degradative ubiquitylation process. Evanthia Pangou and co-authors review recent insights into the important roles of non-proteolytic ubiquitylation in cellular signaling as well as in physiology and disease.
Collapse
|
14
|
Cruz L, Soares P, Correia M. Ubiquitin-Specific Proteases: Players in Cancer Cellular Processes. Pharmaceuticals (Basel) 2021; 14:ph14090848. [PMID: 34577547 PMCID: PMC8469789 DOI: 10.3390/ph14090848] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 12/14/2022] Open
Abstract
Ubiquitination represents a post-translational modification (PTM) essential for the maintenance of cellular homeostasis. Ubiquitination is involved in the regulation of protein function, localization and turnover through the attachment of a ubiquitin molecule(s) to a target protein. Ubiquitination can be reversed through the action of deubiquitinating enzymes (DUBs). The DUB enzymes have the ability to remove the mono- or poly-ubiquitination signals and are involved in the maturation, recycling, editing and rearrangement of ubiquitin(s). Ubiquitin-specific proteases (USPs) are the biggest family of DUBs, responsible for numerous cellular functions through interactions with different cellular targets. Over the past few years, several studies have focused on the role of USPs in carcinogenesis, which has led to an increasing development of therapies based on USP inhibitors. In this review, we intend to describe different cellular functions, such as the cell cycle, DNA damage repair, chromatin remodeling and several signaling pathways, in which USPs are involved in the development or progression of cancer. In addition, we describe existing therapies that target the inhibition of USPs.
Collapse
Affiliation(s)
- Lucas Cruz
- i3S—Instituto de Investigação e Inovação Em Saúde, Universidade Do Porto, 4200-135 Porto, Portugal; (L.C.); (P.S.)
- Ipatimup—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4250-475 Porto, Portugal
- FCUP—Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Paula Soares
- i3S—Instituto de Investigação e Inovação Em Saúde, Universidade Do Porto, 4200-135 Porto, Portugal; (L.C.); (P.S.)
- Ipatimup—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4250-475 Porto, Portugal
- FCUP—Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
- Departamento de Patologia, Faculdade de Medicina da Universidade Do Porto, 4200-139 Porto, Portugal
| | - Marcelo Correia
- i3S—Instituto de Investigação e Inovação Em Saúde, Universidade Do Porto, 4200-135 Porto, Portugal; (L.C.); (P.S.)
- Ipatimup—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4250-475 Porto, Portugal
- Correspondence:
| |
Collapse
|
15
|
Du Y, Wang T, Guo J, Li W, Yang T, Szendrey M, Zhang S. Kv1.5 channels are regulated by PKC-mediated endocytic degradation. J Biol Chem 2021; 296:100514. [PMID: 33676894 PMCID: PMC8050386 DOI: 10.1016/j.jbc.2021.100514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 11/28/2022] Open
Abstract
The voltage-gated potassium channel Kv1.5 plays important roles in the repolarization of atrial action potentials and regulation of the vascular tone. While the modulation of Kv1.5 function has been well studied, less is known about how the protein levels of Kv1.5 on the cell membrane are regulated. Here, through electrophysiological and biochemical analyses of Kv1.5 channels heterologously expressed in HEK293 cells and neonatal rat ventricular myocytes, as well as native Kv1.5 in human induced pluripotent stem cell (iPSC)-derived atrial cardiomyocytes, we found that activation of protein kinase C (PKC) with phorbol 12-myristate 13-acetate (PMA, 10 nM) diminished Kv1.5 current (IKv1.5) and protein levels of Kv1.5 in the plasma membrane. Mechanistically, PKC activation led to monoubiquitination and degradation of the mature Kv1.5 proteins. Overexpression of Vps24, a protein that sorts transmembrane proteins into lysosomes via the multivesicular body (MVB) pathway, accelerated, whereas the lysosome inhibitor bafilomycin A1 completely prevented PKC-mediated Kv1.5 degradation. Kv1.5, but not Kv1.1, Kv1.2, Kv1.3, or Kv1.4, was uniquely sensitive to PMA treatment. Sequence alignments suggested that residues within the N terminus of Kv1.5 are essential for PKC-mediated Kv1.5 reduction. Using N-terminal truncation as well as site-directed mutagenesis, we identified that Thr15 is the target site for PKC that mediates endocytic degradation of Kv1.5 channels. These findings indicate that alteration of protein levels in the plasma membrane represents an important regulatory mechanism of Kv1.5 channel function under PKC activation conditions.
Collapse
Affiliation(s)
- Yuan Du
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Tingzhong Wang
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Jun Guo
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Wentao Li
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Tonghua Yang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Mark Szendrey
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Shetuan Zhang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
16
|
Sharma M, Yadav P, Doshi A, Brahmbhatt HD, Prabha CR. Probing the effects of double mutations on the versatile protein ubiquitin in Saccharomyces cerevisiae. Int J Biol Macromol 2021; 179:299-308. [PMID: 33662424 DOI: 10.1016/j.ijbiomac.2021.02.208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/21/2021] [Accepted: 02/27/2021] [Indexed: 11/17/2022]
Abstract
Ubiquitin is an indispensable protein of eukaryotic origin with an extraordinarily high degree of sequence conservation. It is used to tag proteins post-translationally and the process of ubiquitination regulates the activity of the modified proteins or drives them for degradation. Double mutations produce varied effects in proteins, depending on the structural relationship of the mutated residues, their role in the overall structure and functions of a protein. Six double mutants derived from the ubiquitin mutant UbEP42, namely S20F-A46S, S20F-L50P, S20F-I61T, A46S-L50P, A46S-I61T, and L50P-I61T, have been studied here to understand how they influence the ubiquitination related functions, by analysing their growth and viability, Cdc28 levels, K-48 linked polyubiquitination, UFD pathway, lysosomal degradation, endosomal sorting, survival under heat, and antibiotic stresses. The double mutation L50P-I61T is the most detrimental, followed by S20F-I61T and A46S-I61T. The double mutations studied here, in general, make cells more sensitive than the wild type to one or the other stress. However, the excessive negative effects of L50P and I61T are compensated under certain conditions by S20F and A46S mutations. The competitive inhibition produced by these substitutions could be used to manage certain ubiquitination associated diseases.
Collapse
Affiliation(s)
- Mrinal Sharma
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, India
| | - Prranshu Yadav
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, India
| | - Ankita Doshi
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, India
| | - Hemang D Brahmbhatt
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, India
| | - C Ratna Prabha
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, India.
| |
Collapse
|
17
|
Atukorala I, Mathivanan S. The Role of Post-Translational Modifications in Targeting Protein Cargo to Extracellular Vesicles. Subcell Biochem 2021; 97:45-60. [PMID: 33779913 DOI: 10.1007/978-3-030-67171-6_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Extracellular vesicles (EVs) are naturally occurring nanoparticles that contain proteins and nucleic acids. It is speculated that cells release EVs loaded with a selective cargo of proteins through highly regulated processes. Several proteomic and biochemical studies have highlighted phosphorylated, glycosylated, ubiquitinated, SUMOylated, oxidated and palmitoylated proteins within the EVs. Emerging evidences suggest that post-translational modifications (PTMs) can regulate the sorting of specific proteins into EVs and such proteins with specific PTMs have also been identified in clinical samples. Hence, it has been proposed that EV proteins with PTMs could be used as potential biomarkers of disease conditions. Among the other cellular mechanisms, the endosomal sorting complex required for transport (ESCRT) is also implicated in cargo sorting into EVs. In this chapter, various PTMs that are shown to regulate protein cargo sorting into EVs will be discussed.
Collapse
Affiliation(s)
- Ishara Atukorala
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia.
| | - Suresh Mathivanan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
18
|
Wang S, Qi S, Kogure Y, Kanda H, Tian L, Yamamoto S, Noguchi K, Dai Y. The ubiquitin E3 ligase Nedd4-2 relieves mechanical allodynia through the ubiquitination of TRPA1 channel in db/db mice. Eur J Neurosci 2020; 53:1691-1704. [PMID: 33236491 DOI: 10.1111/ejn.15062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 11/09/2020] [Accepted: 11/17/2020] [Indexed: 01/25/2023]
Abstract
Neural precursor cell-expressed developmentally downregulated protein 4-2 (Nedd4-2) is a member of the E3 ubiquitin ligase family that is highly expressed in sensory neurons and involved in pain modulation via downregulation of ion channels in excitable membranes. Ubiquitination involving Nedd4-2 is regulated by adenosine monophosphate-activated protein kinase (AMPK), which is impaired in the dorsal root ganglion (DRG) neurons of db/db mice. AMPK negatively regulates the expression of transient receptor potential ankyrin 1 (TRPA1), a recognised pain sensor expressed on the membrane of DRG neurons, consequently relieving mechanical allodynia in db/db mice. Herein, we studied the involvement of Nedd4-2 in painful diabetic neuropathy and observed that Nedd4-2 negatively regulated diabetic mechanical allodynia. Nedd4-2 was co-expressed with TRPA1 in mouse DRG neurons. Nedd4-2 was involved in TRPA1 ubiquitination, this ubiquitination, as well as Nedd4-2-TRPA1 interaction, was decreased in db/db mice. Moreover, Nedd4-2 levels were decreased in db/db mice, while an abnormal intracellular distribution was observed in short-term high glucose-cultured DRG neurons. AMPK activators not only restored Nedd4-2 distribution but also increased Nedd4-2 expression. These findings demonstrate that Nedd4-2 is a potent regulator of TRPA1 and that the abnormal expression of Nedd4-2 in DRG neurons contributes to diabetic neuropathic pain.
Collapse
Affiliation(s)
- Shenglan Wang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China.,Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe, Hyogo, Japan
| | - Simin Qi
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Yoko Kogure
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe, Hyogo, Japan
| | - Hirosato Kanda
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe, Hyogo, Japan.,Traditional Medicine Research Center, Chinese Medicine Confucius Institute at Hyogo College of Medicine, Kobe, Hyogo, Japan.,Department of Anatomy and Neuroscience, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Lin Tian
- Department of Gerontology, Guang'anmen Hospital, China Academy of Chinese Medical Science, Beijing, China
| | - Satoshi Yamamoto
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe, Hyogo, Japan
| | - Koichi Noguchi
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Yi Dai
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe, Hyogo, Japan.,Traditional Medicine Research Center, Chinese Medicine Confucius Institute at Hyogo College of Medicine, Kobe, Hyogo, Japan.,Department of Anatomy and Neuroscience, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| |
Collapse
|
19
|
Taguchi K, Kaneko M, Motoike S, Harada K, Hide I, Tanaka S, Sakai N. Role of the E3 ubiquitin ligase HRD1 in the regulation of serotonin transporter function. Biochem Biophys Res Commun 2020; 534:583-589. [PMID: 33243462 DOI: 10.1016/j.bbrc.2020.11.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 11/11/2020] [Indexed: 11/30/2022]
Abstract
To elucidate the regulation of serotonin transporter (SERT) function via its membrane trafficking, we investigated the involvement of the ubiquitin E3 ligase HRD1 (HMG-CoA reductase degradation protein), which participates in endoplasmic reticulum (ER)-associated degradation (ERAD), in the functional regulation of SERT. Cells transiently expressing wild-type SERT or a SERT C-terminal deletion mutant (SERTΔCT), a SERT protein predicted to be misfolded, were used for experiments. Studies using HRD1-overexpressing or HRD1-knockdown cells demonstrated that HRD1 is involved in SERT proteolysis. Overexpression of HRD1 promoted SERT ubiquitination, the effect of which was augmented by treatment with the proteasome inhibitor MG132. Immunoprecipitation studies revealed that HRD1 interacts with SERT in the presence of MG132. In addition, HRD1 was intracellularly colocalized with SERT, especially with aggregates of SERTΔCT in the ER. HRD1 also affected SERT uptake activity in accordance with the expression levels of the SERT protein. These results suggest that HRD1 contributes to the membrane trafficking and functional regulation of SERT through its involvement in ERAD-mediated SERT degradation.
Collapse
Affiliation(s)
- Kei Taguchi
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Masayuki Kaneko
- Department of Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan; Department of Pharmacology and Therapeutic Innovation, Nagasaki University Graduate School of Biomedical Sciences
| | - Serika Motoike
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan; Department of Dental Anesthesiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Kana Harada
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Izumi Hide
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Shigeru Tanaka
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Norio Sakai
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan.
| |
Collapse
|
20
|
Abstract
Aspergilli have been widely used in the production of organic acids, enzymes, and secondary metabolites for almost a century. Today, several GRAS (generally recognized as safe) Aspergillus species hold a central role in the field of industrial biotechnology with multiple profitable applications. Since the 1990s, research has focused on the use of Aspergillus species in the development of cell factories for the production of recombinant proteins mainly due to their natively high secretion capacity. Advances in the Aspergillus-specific molecular toolkit and combination of several engineering strategies (e.g., protease-deficient strains and fusions to carrier proteins) resulted in strains able to generate high titers of recombinant fungal proteins. However, the production of non-fungal proteins appears to still be inefficient due to bottlenecks in fungal expression and secretion machinery. After a brief overview of the different heterologous expression systems currently available, this review focuses on the filamentous fungi belonging to the genus Aspergillus and their use in recombinant protein production. We describe key steps in protein synthesis and secretion that may limit production efficiency in Aspergillus systems and present genetic engineering approaches and bioprocessing strategies that have been adopted in order to improve recombinant protein titers and expand the potential of Aspergilli as competitive production platforms.
Collapse
|
21
|
He H, Kondo Y, Ishiyama K, Alatrash G, Lu S, Cox K, Qiao N, Clise-Dwyer K, St John L, Sukhumalchandra P, Ma Q, Molldrem JJ. Two unique HLA-A*0201 restricted peptides derived from cyclin E as immunotherapeutic targets in leukemia. Leukemia 2020; 34:1626-1636. [PMID: 31908357 PMCID: PMC10602224 DOI: 10.1038/s41375-019-0698-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 12/02/2019] [Accepted: 12/12/2019] [Indexed: 02/03/2023]
Abstract
Immunotherapy targeting leukemia-associated antigens has shown promising results. Because of the heterogeneity of leukemia, vaccines with a single peptide have elicited only a limited immune response. Targeting several peptides together elicited peptide-specific cytotoxic T lymphocytes (CTLs) in leukemia patients, and this was associated with clinical responses. Thus, the discovery of novel antigens is essential. In the current study, we investigated cyclin E as a novel target for immunotherapy. Cyclin E1 and cyclin E2 were found to be highly expressed in hematologic malignancies, according to reverse transcription polymerase chain reaction and western blot analysis. We identified two HLA-A*0201 binding nonameric peptides, CCNE1M from cyclin E1 and CCNE2L from cyclin E2, which both elicited the peptide-specific CTLs. The peptide-specific CTLs specifically kill leukemia cells. Furthermore, CCNE1M and CCNE2L CTLs were increased in leukemia patients who underwent allogeneic hematopoietic stem cell transplantation, and this was associated with desired clinical outcomes. Our findings suggest that cyclin E1 and cyclin E2 are potential targets for immunotherapy in leukemia.
Collapse
Affiliation(s)
- Hong He
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Yukio Kondo
- Department of Internal Medicine, Toyama Prefectural Central Hospital, Toyama, Japan
| | - Ken Ishiyama
- Department of Hematology, Kanazawa University Hospital, Kanazawa, Japan
| | - Gheath Alatrash
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Sijie Lu
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Kathryn Cox
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Na Qiao
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Karen Clise-Dwyer
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Lisa St John
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Pariya Sukhumalchandra
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Qing Ma
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Jeffrey J Molldrem
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.
| |
Collapse
|
22
|
Delprat B, Crouzier L, Su TP, Maurice T. At the Crossing of ER Stress and MAMs: A Key Role of Sigma-1 Receptor? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:699-718. [PMID: 31646531 DOI: 10.1007/978-3-030-12457-1_28] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Calcium exchanges and homeostasis are finely regulated between cellular organelles and in response to physiological signals. Besides ionophores, including voltage-gated Ca2+ channels, ionotropic neurotransmitter receptors, or Store-operated Ca2+ entry, activity of regulatory intracellular proteins finely tune Calcium homeostasis. One of the most intriguing, by its unique nature but also most promising by the therapeutic opportunities it bears, is the sigma-1 receptor (Sig-1R). The Sig-1R is a chaperone protein residing at mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs), where it interacts with several partners involved in ER stress response, or in Ca2+ exchange between the ER and mitochondria. Small molecules have been identified that specifically and selectively activate Sig-1R (Sig-1R agonists or positive modulators) at the cellular level and that also allow effective pharmacological actions in several pre-clinical models of pathologies. The present review will summarize the recent data on the mechanism of action of Sig-1R in regulating Ca2+ exchanges and protein interactions at MAMs and the ER. As MAMs alterations and ER stress now appear as a common track in most neurodegenerative diseases, the intracellular action of Sig-1R will be discussed in the context of the recently reported efficacy of Sig-1R drugs in pathologies like Alzheimer's disease, Parkinson's disease, Huntington's disease, or amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Benjamin Delprat
- MMDN, University of Montpellier, EPHE, INSERM, U1198, Montpellier, France.
| | - Lucie Crouzier
- MMDN, University of Montpellier, EPHE, INSERM, U1198, Montpellier, France
| | - Tsung-Ping Su
- Cellular Pathobiology Section, Integrative Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, IRP, NIDA/NIH, Baltimore, MD, USA
| | - Tangui Maurice
- MMDN, University of Montpellier, EPHE, INSERM, U1198, Montpellier, France
| |
Collapse
|
23
|
Park S, Zuber C, Roth J. Selective autophagy of cytosolic protein aggregates involves ribosome-free rough endoplasmic reticulum. Histochem Cell Biol 2019; 153:89-99. [PMID: 31720797 DOI: 10.1007/s00418-019-01829-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2019] [Indexed: 10/25/2022]
Abstract
Autophagy is a degradative cellular process that can be both non-selective and selective and begins with the formation of a unique smooth double-membrane phagophore which wraps around a portion of the cytoplasm. Excess and damaged organelles and cytoplasmic protein aggregates are degraded by selective autophagy. Previously, we reported that in fed HepG2 cells, cytoplasmic aggregates of EDEM1 and surplus fibrinogen Aα-γ assembly intermediates are targets of selective autophagy receptors and become degraded by a selective autophagy called aggrephagy. Here, we show by multiple confocal immunofluorescence and colocalization panels the codistribution of cytoplasmic protein aggregates with the selective autophagy receptors p62/SQSTM1 and NBR1 and with the phagophore marker LC3, and that phagophores induced by vinblastine treatment contain complexes of protein aggregates and selective autophagy receptors. By combined serial ultrathin section analysis and immunoelectron microscopy, we found that in fed HepG2 cells, a basically ribosome-free subdomain of rough endoplasmic reticulum (RER) cisternae forms a cradle that engulfs the cytoplasmic protein aggregates. This RER subdomain appears structurally different from omegasomes formed by the RER, which were suggested to provide a membrane platform from which the phagophore is derived in starvation-induced autophagy. Taken together, our observations provide further evidence for the importance of RER subdomains as a site and membrane source for phagophore formation and show their involvement in selective autophagy.
Collapse
Affiliation(s)
- Sujin Park
- Biozentrum, University of Basel, 4056, Basel, Switzerland.,Department of Integrated OMICS for Biomedical Science, WCU Program of Graduate School, Yonsei University, Seoul, 120-749, South Korea
| | - Christian Zuber
- Division of Cell and Molecular Pathology, Department of Pathology, University of Zurich, 8091, Zurich, Switzerland
| | - Jürgen Roth
- Department of Integrated OMICS for Biomedical Science, WCU Program of Graduate School, Yonsei University, Seoul, 120-749, South Korea. .,Division of Cell and Molecular Pathology, Department of Pathology, University of Zurich, 8091, Zurich, Switzerland.
| |
Collapse
|
24
|
Khattar V, Lee JH, Wang H, Bastola S, Ponnazhagan S. Structural determinants and genetic modifications enhance BMP2 stability and extracellular secretion. FASEB Bioadv 2019. [PMID: 31225515 DOI: 10.1096/fba.2018‐00023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The short half-life and use of recombinant bone morphogenetic protein (BMP)-2 in large doses poses major limitations in the clinic. Events regulating post-translational processing and degradation of BMP2 in situ, linked to its secretion, have not been understood. Towards identifying mechanisms regulating intracellular BMP2 stability, we first discovered that inhibiting proteasomal degradation enhances both intracellular BMP2 level and its extracellular secretion. Next, we identified BMP2 degradation occurs through an ubiquitin-mediated mechanism. Since ubiquitination precedes proteasomal turnover and mainly occurs on lysine residues of nascent proteins, we systematically mutated individual lysine residues within BMP2 and tested them for enhanced stability. Results revealed that substitutions on four lysine residues within the pro-BMP2 region and three in the mature region increased both BMP2 turnover and extracellular secretion. Structural modeling revealed key lysine residues involved in proteasomal degradation occupy a lysine cluster near proprotein convertase cleavage site. Interestingly, mutations within these residues did not affect biological activity of BMP2. These data suggest preventing intracellular proteasomal loss of BMP2 through genetic modifications can overcome limitations related to its short half-life.
Collapse
Affiliation(s)
- Vinayak Khattar
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL 35294
| | - Joo Hyoung Lee
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL 35294
| | - Hong Wang
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL 35294
| | - Soniya Bastola
- Department of Neurosurgery, The University of Alabama at Birmingham, Birmingham, AL 35294
| | | |
Collapse
|
25
|
Ubiquitination of MBNL1 Is Required for Its Cytoplasmic Localization and Function in Promoting Neurite Outgrowth. Cell Rep 2019; 22:2294-2306. [PMID: 29490267 DOI: 10.1016/j.celrep.2018.02.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 10/19/2017] [Accepted: 02/06/2018] [Indexed: 12/20/2022] Open
Abstract
The Muscleblind-like protein family (MBNL) plays an important role in regulating the transition between differentiation and pluripotency and in the pathogenesis of myotonic dystrophy type 1 (DM1), a CTG expansion disorder. How different MBNL isoforms contribute to the differentiation and are affected in DM1 has not been investigated. Here, we show that the MBNL1 cytoplasmic, but not nuclear, isoform promotes neurite morphogenesis and reverses the morphological defects caused by expanded CUG RNA. Cytoplasmic MBNL1 is polyubiquitinated by lysine 63 (K63). Reduced cytoplasmic MBNL1 in the DM1 mouse brain is consistent with the reduced extent of K63 ubiquitination. Expanded CUG RNA induced the deubiqutination of cytoplasmic MBNL1, which resulted in nuclear translocation and morphological impairment that could be ameliorated by inhibiting K63-linked polyubiquitin chain degradation. Our results suggest that K63-linked ubiquitination of MBNL1 is required for its cytoplasmic localization and that deubiquitination of cytoplasmic MBNL1 is pathogenic in the DM1 brain.
Collapse
|
26
|
Malhotra P, Soni V, Yamanashi Y, Takada T, Suzuki H, Gill RK, Saksena S, Dudeja PK, Alrefai WA. Mechanisms of Niemann-Pick type C1 Like 1 protein degradation in intestinal epithelial cells. Am J Physiol Cell Physiol 2019; 316:C559-C566. [PMID: 30789754 PMCID: PMC6482670 DOI: 10.1152/ajpcell.00465.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/24/2018] [Accepted: 02/12/2019] [Indexed: 01/06/2023]
Abstract
Intestinal Niemann-Pick C1 Like 1 (NPC1L1) protein plays a key role in cholesterol absorption. A decrease in NPC1L1 expression has been implicated in lowering plasma cholesterol and mitigating the risk for coronary heart disease. Little is known about the mechanisms responsible for NPC1L1 protein degradation that upon activation may lead to a reduction in NPC1L1 protein levels in intestinal epithelial cells (IECs). In current studies, the human intestinal Caco-2 and HuTu-80 cell lines expressing NPC1L1-hemagglutinin fusion protein were used to investigate the mechanisms of NPC1L1 protein degradation. Incubation with the proteasome inhibitors MG-132 and lactacystin (10 μM, 24 h) significantly increased NPC1L1 protein levels in IECs. Also, the inhibition of the lysosomal pathway with bafilomycin A1 (80 nM, 24 h) resulted in a significant increase in NPC1L1 protein levels. Immunoprecipitation studies showed that NPC1L1 protein is both a poly- and monoubiquinated polypeptide and that the inhibition of the proteasomal pathway remarkably increased the level of the polyubiquinated NPC1L1. The surface expression of NPC1L1 was increased by the inhibition of both proteasomal and lysosomal pathways. Furthermore, the pharmacological inhibition of mitogen-activated protein kinase pathway (PD-98059, 15 μM, 24 h) and siRNA silencing of ERK1/2 resulted in a significant decrease in NPC1L1 protein levels in IECs. In conclusion, our results showed that basal level of intestinal cholesterol transporter NPC1L1 protein is modulated by both ubiquitin proteasome- and lysosome-dependent degradation as well as by ERK1/2-dependent pathway. The modulation of these pathways may provide novel clues for therapeutic intervention to inhibit cholesterol absorption and lower plasma cholesterol.
Collapse
Affiliation(s)
- Pooja Malhotra
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
| | - Vinay Soni
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
| | - Yoshihide Yamanashi
- Department of Pharmacy, The University of Tokyo Hospital , Tokyo , Japan
- Faculty of Medicine, The University of Tokyo , Tokyo , Japan
| | - Tappei Takada
- Department of Pharmacy, The University of Tokyo Hospital , Tokyo , Japan
- Faculty of Medicine, The University of Tokyo , Tokyo , Japan
| | - Hiroshi Suzuki
- Department of Pharmacy, The University of Tokyo Hospital , Tokyo , Japan
- Faculty of Medicine, The University of Tokyo , Tokyo , Japan
| | - Ravinder K Gill
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
| | - Seema Saksena
- Jesse Brown Veterans Affairs Medical Center , Chicago, Illinois
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
| | - Pradeep K Dudeja
- Jesse Brown Veterans Affairs Medical Center , Chicago, Illinois
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
| | - Waddah A Alrefai
- Jesse Brown Veterans Affairs Medical Center , Chicago, Illinois
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
| |
Collapse
|
27
|
Khattar V, Lee JH, Wang H, Bastola S, Ponnazhagan S. Structural determinants and genetic modifications enhance BMP2 stability and extracellular secretion. FASEB Bioadv 2019; 1:180-190. [PMID: 31225515 PMCID: PMC6586023 DOI: 10.1096/fba.2018-00023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/06/2018] [Accepted: 11/12/2018] [Indexed: 12/12/2022] Open
Abstract
The short half-life and use of recombinant bone morphogenetic protein (BMP)-2 in large doses poses major limitations in the clinic. Events regulating post-translational processing and degradation of BMP2 in situ, linked to its secretion, have not been understood. Towards identifying mechanisms regulating intracellular BMP2 stability, we first discovered that inhibiting proteasomal degradation enhances both intracellular BMP2 level and its extracellular secretion. Next, we identified BMP2 degradation occurs through an ubiquitin-mediated mechanism. Since ubiquitination precedes proteasomal turnover and mainly occurs on lysine residues of nascent proteins, we systematically mutated individual lysine residues within BMP2 and tested them for enhanced stability. Results revealed that substitutions on four lysine residues within the pro-BMP2 region and three in the mature region increased both BMP2 turnover and extracellular secretion. Structural modeling revealed key lysine residues involved in proteasomal degradation occupy a lysine cluster near proprotein convertase cleavage site. Interestingly, mutations within these residues did not affect biological activity of BMP2. These data suggest preventing intracellular proteasomal loss of BMP2 through genetic modifications can overcome limitations related to its short half-life.
Collapse
Affiliation(s)
- Vinayak Khattar
- Department of PathologyThe University of Alabama at BirminghamBirminghamAL
| | - Joo Hyoung Lee
- Department of PathologyThe University of Alabama at BirminghamBirminghamAL
| | - Hong Wang
- Department of PathologyThe University of Alabama at BirminghamBirminghamAL
| | - Soniya Bastola
- Department of NeurosurgeryThe University of Alabama at BirminghamBirminghamAL
| | | |
Collapse
|
28
|
Ares GR. cGMP induces degradation of NKCC2 in the thick ascending limb via the ubiquitin-proteasomal system. Am J Physiol Renal Physiol 2019; 316:F838-F846. [PMID: 30810355 DOI: 10.1152/ajprenal.00287.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The thick ascending limb of Henle's loop (TAL) reabsorbs NaCl via the apical Na+-K+-2Cl- cotransporter (NKCC2). NKCC2 activity is regulated by surface NKCC2 levels. The second messenger cGMP decreases NKCC2 activity by decreasing surface NKCC2 levels. We found that surface NKCC2 undergoes constitutive degradation. Therefore, we hypothesized that cGMP decreases NKCC2 levels by increasing NKCC2 ubiquitination and proteasomal degradation. We measured surface NKCC2 levels by biotinylation of surface proteins, immunoprecipitation of NKCC2, and ubiquitin in TALs. First, we found that inhibition of proteasomal degradation blunts the cGMP-dependent decrease in surface NKCC2 levels [vehicle: 100%, db-cGMP (500 µM): 70.3 ± 9.8%, MG132 (20 µM): 97.7 ± 5.0%, and db-cGMP + MG132: 103.3 ± 3.4%, n = 5, P < 0.05]. We then found that cGMP decreased the internalized NKCC2 pool and that this effect was prevented by inhibition of the proteasome but not the lysosome. Finally, we found that NKCC2 is constitutively ubiquitinated in TALs and that cGMP enhances the rate of NKCC2 ubiquitination [vehicle: 59 ± 14% and db-cGMP (500 µM): 111 ± 25%, n = 5, P < 0.05]. We conclude that NKCC2 is constitutively ubiquitinated and that cGMP stimulates NKCC2 ubiquitination and proteasomal degradation. Our data suggest that the cGMP-induced NKCC2 ubiquitination and degradation may contribute to the cGMP-induced decrease of the NKCC2-dependent NaCl reabsorption in TALs.
Collapse
Affiliation(s)
- Gustavo R Ares
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital , Detroit, Michigan
| |
Collapse
|
29
|
Martínez-Puente DH, Pérez-Trujillo JJ, Gutiérrez-Puente Y, Rodríguez-Rocha H, García-García A, Saucedo-Cárdenas O, Montes-de-Oca-Luna R, Loera-Arias MJ. Targeting HPV-16 antigens to the endoplasmic reticulum induces an endoplasmic reticulum stress response. Cell Stress Chaperones 2019; 24:149-158. [PMID: 30604352 PMCID: PMC6363615 DOI: 10.1007/s12192-018-0952-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 01/01/2023] Open
Abstract
Very promising results have been observed with a deoxyribonucleic acid (DNA) vaccine based on human papillomavirus type-16 (HPV-16) antigen retention and delivery system in the endoplasmic reticulum (ER). However, the mechanism by which these antigens are processed once they reach this organelle is still unknown. Therefore, we evaluated whether this system awakens a stress response in the ER. Different DNA constructs based on E6 and E7 mutant antigens fused to an ER signal peptide (SP), a signal for retention in the ER (KDEL), or both signals (SPK), were transfected into HEK-293 cells. Overexpression of E6 and E7 antigens targeted to the ER (SP, and SPK constructs) induced ER stress, which was indicated by an increase of the ER-stress markers GRP78/BiP and CHOP. Additionally, the ER stress response was mediated by the ATF4 transcription factor, which was translocated into the nucleus. Besides, the overexpressed antigens were degraded by the proteasome. Through a cycloheximide-chase assay, we demonstrated that when both protein synthesis and proteasome were inhibited, the overexpressed antigens were degraded. Interestingly, when proteasome was blocked autophagy was increased and the ER stress response decreased. Taken together, these results indicate that the antigens are initially degraded by the ERAD pathway, and autophagy degradation pathway can be induced to compensate the proteasome inhibition. Therefore, we provided a new insight into the mechanism by which E6 and E7 mutant antigens are processed once they reach the ER, which will help to improve the development of more effective vaccines against cancer.
Collapse
Affiliation(s)
- David H Martínez-Puente
- Departamento de Histología, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Madero y Aguirre Pequeño s/n Mitras Centro, 66460, Monterrey, Nuevo León, México
| | - José J Pérez-Trujillo
- Departamento de Histología, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Madero y Aguirre Pequeño s/n Mitras Centro, 66460, Monterrey, Nuevo León, México
| | - Yolanda Gutiérrez-Puente
- Departamento de Química, Facultad de Ciencias Biológicas, Universidad Autonoma de Nuevo Leon, San Nicolás de los Garza, México
| | - Humberto Rodríguez-Rocha
- Departamento de Histología, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Madero y Aguirre Pequeño s/n Mitras Centro, 66460, Monterrey, Nuevo León, México
| | - Aracely García-García
- Departamento de Histología, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Madero y Aguirre Pequeño s/n Mitras Centro, 66460, Monterrey, Nuevo León, México
| | - Odila Saucedo-Cárdenas
- Departamento de Histología, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Madero y Aguirre Pequeño s/n Mitras Centro, 66460, Monterrey, Nuevo León, México
- Departamento de Genética Molecular, Centro de Investigación Biomédica del Noreste, Delegación Nuevo León, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Roberto Montes-de-Oca-Luna
- Departamento de Histología, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Madero y Aguirre Pequeño s/n Mitras Centro, 66460, Monterrey, Nuevo León, México
| | - María J Loera-Arias
- Departamento de Histología, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Madero y Aguirre Pequeño s/n Mitras Centro, 66460, Monterrey, Nuevo León, México.
| |
Collapse
|
30
|
Yang CK, Feng CC, Lo JF, Chen JW, Padma VV, Lai CH, Chen TS, Chen RJ, Liao PH, Huang CY. C-terminus of Hsc70-interacting protein (CHIP) enhances stemness properties of human Wharton’s jelly mesenchymal stem cell. Biotech Histochem 2018; 93:632-639. [PMID: 30260250 DOI: 10.1080/10520295.2018.1521990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Affiliation(s)
- C-K Yang
- Division of Colorectal Surgery, Department of Surgery, Mackay Memorial Hospital, Taipei, Taiwan
| | - C-C Feng
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
| | - J-F Lo
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | - J-W Chen
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - V. V Padma
- Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - C-H Lai
- Cardiology Department, Taichung Armed Forced General Hospital, Taichung, Taiwan
| | - T-S Chen
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - R-J Chen
- Department of Surgery, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - P-H Liao
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- Medical Research Center of Exosomes and Mitochondria’s Related-Diseases, China Medical University Hospital, Taichung, Taiwan
| | - C-Y Huang
- Division of Colorectal Surgery, Department of Surgery, Mackay Memorial Hospital, Taipei, Taiwan
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- Medical Research Center of Exosomes and Mitochondria’s Related-Diseases, China Medical University Hospital, Taichung, Taiwan
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangdong, China, and 11Department of Biological Science, Asia University, Taichung, Taiwan
| |
Collapse
|
31
|
Parmar N, Chandrakar P, Vishwakarma P, Singh K, Mitra K, Kar S. Leishmania donovani Exploits Tollip, a Multitasking Protein, To Impair TLR/IL-1R Signaling for Its Survival in the Host. THE JOURNAL OF IMMUNOLOGY 2018; 201:957-970. [DOI: 10.4049/jimmunol.1800062] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/21/2018] [Indexed: 01/10/2023]
|
32
|
Wu Y, Guo XP, Kanemoto S, Maeoka Y, Saito A, Asada R, Matsuhisa K, Ohtake Y, Imaizumi K, Kaneko M. Sec16A, a key protein in COPII vesicle formation, regulates the stability and localization of the novel ubiquitin ligase RNF183. PLoS One 2018; 13:e0190407. [PMID: 29300766 PMCID: PMC5754088 DOI: 10.1371/journal.pone.0190407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 12/14/2017] [Indexed: 01/06/2023] Open
Abstract
We identified 37 ubiquitin ligases containing RING-finger and transmembrane domains. Of these, we found that RNF183 is abundantly expressed in the kidney. RNF183 predominantly localizes to the endoplasmic reticulum (ER), Golgi, and lysosome. We identified Sec16A, which is involved in coat protein complex II vesicle formation, as an RNF183-interacting protein. RNF183 colocalized with Sec16A and interacted through the central conserved domain (CCD) of Sec16A. Although Sec16A is not a substrate for RNF183, RNF183 was more rapidly degraded by the ER-associated degradation (ERAD) in the absence of Sec16A. Sec16A also stabilized the interacting ubiquitin ligase RNF152, which localizes to the lysosome and has structural similarity with RNF183. These results suggest that Sec16A appears to regulate the protein stability and localization of lysosomal ubiquitin ligases.
Collapse
Affiliation(s)
- Yan Wu
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Xiao Peng Guo
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Soshi Kanemoto
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yujiro Maeoka
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Atsushi Saito
- Department of Stress Protein Processing, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Rie Asada
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Koji Matsuhisa
- Department of Stress Protein Processing, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yosuke Ohtake
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazunori Imaizumi
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- * E-mail: (MK); (KI)
| | - Masayuki Kaneko
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- * E-mail: (MK); (KI)
| |
Collapse
|
33
|
Kwon DH, Kim YK, Kook H. New Aspects of Vascular Calcification: Histone Deacetylases and Beyond. J Korean Med Sci 2017; 32:1738-1748. [PMID: 28960024 PMCID: PMC5639052 DOI: 10.3346/jkms.2017.32.11.1738] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/19/2017] [Indexed: 11/20/2022] Open
Abstract
Vascular calcification is a pathologic phenomenon in which calcium phosphate is ectopically deposited in the arteries. Previously, calcification was considered to be a passive process in response to metabolic diseases, vascular or valvular diseases, or even aging. However, now calcification is recognized as a highly-regulated consequence, like bone formation, and many clinical trials have been carried out to elucidate the correlation between vascular calcification and cardiovascular events and mortality. As a result, vascular calcification has been implicated as an independent risk factor in cardiovascular diseases. Many molecules are now known to be actively associated with this process. Recently, our laboratory found that posttranslational modification of histone deacetylase (HDAC) 1 is actively involved in the development of vascular calcification. In addition, we found that modulation of the activity of HDAC as well as its protein stability by MDM2, an HDAC1-E3 ligase, may be a therapeutic target in vascular calcification. In the present review, we overview the pathomechanism of vascular calcification and the involvement of posttranslational modification of epigenetic regulators.
Collapse
Affiliation(s)
- Duk Hwa Kwon
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Korea
- Basic Research Laboratory for Cardiac Remodeling, Chonnam National University Medical School, Gwangju, Korea
| | - Young Kook Kim
- Basic Research Laboratory for Cardiac Remodeling, Chonnam National University Medical School, Gwangju, Korea
- Center for Creative Biomedical Scientists at Chonnam National University, Gwangju, Korea
- Department of Biochemistry, Chonnam National University Medical School, Gwangju, Korea
| | - Hyun Kook
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Korea
- Basic Research Laboratory for Cardiac Remodeling, Chonnam National University Medical School, Gwangju, Korea.
| |
Collapse
|
34
|
p53 stability is regulated by diverse deubiquitinating enzymes. Biochim Biophys Acta Rev Cancer 2017; 1868:404-411. [PMID: 28801249 DOI: 10.1016/j.bbcan.2017.08.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/21/2017] [Accepted: 08/05/2017] [Indexed: 02/01/2023]
Abstract
The tumor suppressor protein p53 has a variety of roles in responses to various stress signals. In such responses, p53 activates specific transcriptional targets that control cell cycle arrest, DNA repair, angiogenesis, autophagy, metabolism, migration, aging, senescence, and apoptosis. Since p53 has been identified as the most frequently altered gene in human cancers, regulation and stabilization of its normal functions are important. Stability of p53 is regulated by the ubiquitin-proteasome pathway (UPP). Furthermore, it is readjusted by deubiquitination via deubiquitinating enzymes (DUBs) that can eliminate ubiquitin from p53. Diverse DUBs directly or indirectly affect the ubiquitination of p53 and, consequently, regulate various cellular processes associated with p53. As maintenance of p53 is regulated by a variety of DUBs, the interaction of DUBs and p53 can affect diseases such as cancer. Currently, DUBs have a central role in our understanding of various cancers, and some have potential in the development of effective therapeutic strategies. This review summarizes the current knowledge of p53 and of the interconnection between p53 and DUBs.
Collapse
|
35
|
Xu D, You G. Loops and layers of post-translational modifications of drug transporters. Adv Drug Deliv Rev 2017; 116:37-44. [PMID: 27174152 DOI: 10.1016/j.addr.2016.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 05/03/2016] [Indexed: 12/19/2022]
Abstract
Drug transporters encoded by solute carrier (SLC) family are distributed in multiple organs including kidney, liver, placenta, brain, and intestine, where they mediate the absorption, distribution, and excretion of a diverse array of environmental toxins and clinically important drugs. Alterations in the expression and function of these transporters play important roles in intra- and inter-individual variability of the therapeutic efficacy and the toxicity of many drugs. Consequently, the activity of these transporters must be highly regulated to carry out their normal functions. While it is clear that the regulation of these transporters tightly depends on genetic mechanisms, many studies have demonstrated that these transporters are the target of various post-translational modifications. This review article summarizes the recent advances in identifying the posttranslational modifications underlying the regulation of the drug transporters of SLC family. Such mechanisms are pivotal not only in physiological conditions, but also in diseases.
Collapse
|
36
|
Doshi A, Sharma M, Prabha CR. Structural changes induced by L50P and I61T single mutations of ubiquitin affect cell cycle progression while impairing its regulatory and degradative functions in Saccharomyces cerevisiae. Int J Biol Macromol 2017; 99:128-140. [DOI: 10.1016/j.ijbiomac.2017.02.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 02/07/2017] [Accepted: 02/13/2017] [Indexed: 12/23/2022]
|
37
|
Torres-Quesada O, Mayrhofer JE, Stefan E. The many faces of compartmentalized PKA signalosomes. Cell Signal 2017; 37:1-11. [PMID: 28528970 DOI: 10.1016/j.cellsig.2017.05.012] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 01/03/2023]
Abstract
Cellular signal transmission requires the dynamic formation of spatiotemporally controlled molecular interactions. At the cell surface information is received by receptor complexes and relayed through intracellular signaling platforms which organize the actions of functionally interacting signaling enzymes and substrates. The list of hormone or neurotransmitter pathways that utilize the ubiquitous cAMP-sensing protein kinase A (PKA) system is expansive. This requires that the specificity, duration, and intensity of PKA responses are spatially and temporally restricted. Hereby, scaffolding proteins take the center stage for ensuring proper signal transmission. They unite second messenger sensors, activators, effectors, and kinase substrates within cellular micro-domains to precisely control and route signal propagation. A-kinase anchoring proteins (AKAPs) organize such subcellular signalosomes by tethering the PKA holoenzyme to distinct cell compartments. AKAPs differ in their modular organization showing pathway specific arrangements of interaction motifs or domains. This enables the cell- and compartment- guided assembly of signalosomes with unique enzyme composition and function. The AKAP-mediated clustering of cAMP and other second messenger sensing and interacting signaling components along with functional successive enzymes facilitates the rapid and precise dissemination of incoming signals. This review article delineates examples for different means of PKA regulation and for snapshots of compartmentalized PKA signalosomes.
Collapse
Affiliation(s)
- Omar Torres-Quesada
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Johanna E Mayrhofer
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Eduard Stefan
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
38
|
Suzuki M, Everett ET, Whitford GM, Bartlett JD. 4-phenylbutyrate Mitigates Fluoride-Induced Cytotoxicity in ALC Cells. Front Physiol 2017; 8:302. [PMID: 28553235 PMCID: PMC5425599 DOI: 10.3389/fphys.2017.00302] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/25/2017] [Indexed: 12/13/2022] Open
Abstract
Chronic fluoride over-exposure during pre-eruptive enamel development can cause dental fluorosis. Severe dental fluorosis is characterized by porous, soft enamel that is vulnerable to erosion and decay. The prevalence of dental fluorosis among the population in the USA, India and China is increasing. Other than avoiding excessive intake, treatments to prevent dental fluorosis remain unknown. We previously reported that high-dose fluoride induces endoplasmic reticulum (ER) stress and oxidative stress in ameloblasts. Cell stress induces gene repression, mitochondrial damage and apoptosis. An aromatic fatty acid, 4-phenylbutyrate (4PBA) is a chemical chaperone that interacts with misfolded proteins to prevent ER stress. We hypothesized that 4PBA ameliorates fluoride-induced ER stress in ameloblasts. To determine whether 4PBA protects ameloblasts from fluoride toxicity, we analyzed gene expression of Tgf-β1, Bcl2/Bax ratio and cytochrome-c release in vitro. In vivo, we measured fluorosis levels, enamel hardness and fluoride concentration. Fluoride treated Ameloblast-lineage cells (ALC) had decreased Tgf-β1 expression and this was reversed by 4PBA treatment. The anti-apoptotic Blc2/Bax ratio was significantly increased in ALC cells treated with fluoride/4PBA compared to fluoride treatment alone. Fluoride treatment induced cytochrome-c release from mitochondria into the cytosol and this was inhibited by 4PBA treatment. These results suggest that 4PBA mitigates fluoride-induced gene suppression, apoptosis and mitochondrial damage in vitro. In vivo, C57BL/6J mice were provided fluoridated water for six weeks with either fluoride free control-chow or 4PBA-containing chow (7 g/kg 4PBA). With few exceptions, enamel microhardness, fluorosis levels, and fluoride concentrations of bone and urine did not differ significantly between fluoride treated animals fed with control-chow or 4PBA-chow. Although 4PBA mitigated high-dose fluoride toxicity in vitro, a diet rich in 4PBA did not attenuate dental fluorosis in rodents. Perhaps, not enough intact 4PBA reaches the rodent ameloblasts necessary to reverse the effects of fluoride toxicity. Further studies will be required to optimize protocols for 4PBA administration in vivo in order to evaluate the effect of 4PBA on dental fluorosis.
Collapse
Affiliation(s)
- Maiko Suzuki
- Division of Biosciences, College of Dentistry, The Ohio State UniversityColumbus, OH, USA
| | - Eric T Everett
- Department of Pediatric Dentistry and The Carolina Center for Genome Sciences, University of North CarolinaChapel Hill, NC, USA
| | - Gary M Whitford
- Department of Oral Biology, College of Dental Medicine, Georgia Regents UniversityAugusta, GA, USA
| | - John D Bartlett
- Division of Biosciences, College of Dentistry, The Ohio State UniversityColumbus, OH, USA
| |
Collapse
|
39
|
Kaneko M. Physiological Roles of Ubiquitin Ligases Related to the Endoplasmic Reticulum. YAKUGAKU ZASSHI 2017; 136:805-9. [PMID: 27252059 DOI: 10.1248/yakushi.15-00292-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Studies on endoplasmic reticulum (ER)-associated degradation (ERAD), in which unfolded proteins accumulated in the ER are selectively transported to the cytosol for degradation by the ubiquitin-proteasome system, have been focused on molecular mechanisms in yeast. In human, disruption of the ER quality control system causes various diseases, such as neurodegenerative disease, lifestyle disease, and cancer. However, there are many ERAD genes with unknown physiological and pathological functions. We identified the novel ubiquitin ligase HRD1 involved in ERAD. HRD1 is expressed in brain neurons and protects against ER stress-induced apoptosis. In familial Parkinson's disease, accumulation of Parkin-associated endothelin receptor-like receptor (Pael-R), a substrate of ubiquitin ligase Parkin involved in ERAD, causes ER stress and apoptosis. We demonstrated that HRD1 promotes ubiquitination and degradation of Pael-R and suppresses ER stress and apoptosis induced by Pael-R. Amyloid precursor protein (APP) is processed into amyloid β (Aβ) in Alzheimer's disease. We found that HRD1 promotes APP ubiquitination and degradation, resulting in decreased generation of Aβ. Furthermore, suppression of HRD1 expression causes APP accumulation and Aβ generation associated with ER stress and apoptosis. Interestingly, HRD1 protein levels significantly decreased in the cerebral cortex of Alzheimer's disease patients, possibly because of its insolubilization. We demonstrated that HRD1 protein was insolubilized by oxidative stress, resulting in the accumulation of HRD1 into the aggresome. In conclusion, oxidative stress-induced HRD1 insolubilization might be involved in a vicious cycle of increased Aβ production and Aβ-induced oxidative stress in Alzheimer's disease pathogenesis.
Collapse
Affiliation(s)
- Masayuki Kaneko
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University
| |
Collapse
|
40
|
Elangovan M, Chong HK, Park JH, Yeo EJ, Yoo YJ. The role of ubiquitin-conjugating enzyme Ube2j1 phosphorylation and its degradation by proteasome during endoplasmic stress recovery. J Cell Commun Signal 2017; 11:265-273. [PMID: 28321712 DOI: 10.1007/s12079-017-0386-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 03/08/2017] [Indexed: 11/24/2022] Open
Abstract
The human Ube2j1 and Ube2j2 are the only ubiquitin-conjugating enzymes (E2s) that are localized to endoplasmic reticulum (ER) through its C-terminal transmembrane domains. Ube2j1 is a known substrate of MAPK signalling pathway and it is phosphorylated at serine-184 during ER stress. Here, we demonstrate that Ube2j1, not Ube2j2 is essential for the recovery of cells from transient ER stress. The ectopic expression of wild-type Ube2j1 and phospho-mimic mutant, Ube2j1S184D but not phospho-mutant Ube2j1S184A can recover cells from ER stress. We also found that ubiquitin-ligase (E3), c-IAP1 preferentially interacts with phosphorylated Ube2j1. Moreover, we noticed that phosphorylated Ube2j1 is rapidly degraded by the proteasome during ER stress cell recovery. Taken together, these data suggest that Ube2j1 and its phosphorylation is important for transient ER stress cell recovery and the phosphorylated Ube2j1 is degraded by the proteasome.
Collapse
Affiliation(s)
- Muthukumar Elangovan
- School of Life Sciences, Gwangju Institute of Science & Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea.
| | - Hae Kwan Chong
- School of Life Sciences, Gwangju Institute of Science & Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Jin Hee Park
- School of Life Sciences, Gwangju Institute of Science & Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Eui Ju Yeo
- School of Life Sciences, Gwangju Institute of Science & Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Yung Joon Yoo
- School of Life Sciences, Gwangju Institute of Science & Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
41
|
Quality control of glycoprotein folding and ERAD: the role of N-glycan handling, EDEM1 and OS-9. Histochem Cell Biol 2016; 147:269-284. [DOI: 10.1007/s00418-016-1513-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2016] [Indexed: 02/03/2023]
|
42
|
James AW, Gowsalya R, Nachiappan V. Dolichyl pyrophosphate phosphatase-mediated N -glycosylation defect dysregulates lipid homeostasis in Saccharomyces cerevisiae. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1705-1718. [DOI: 10.1016/j.bbalip.2016.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 08/05/2016] [Accepted: 08/09/2016] [Indexed: 12/28/2022]
|
43
|
Kaneko M, Iwase I, Yamasaki Y, Takai T, Wu Y, Kanemoto S, Matsuhisa K, Asada R, Okuma Y, Watanabe T, Imaizumi K, Nomura Y. Genome-wide identification and gene expression profiling of ubiquitin ligases for endoplasmic reticulum protein degradation. Sci Rep 2016; 6:30955. [PMID: 27485036 PMCID: PMC4971459 DOI: 10.1038/srep30955] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 07/08/2016] [Indexed: 11/30/2022] Open
Abstract
Endoplasmic reticulum (ER)-associated degradation (ERAD) is a mechanism by which unfolded proteins that accumulate in the ER are transported to the cytosol for ubiquitin–proteasome-mediated degradation. Ubiquitin ligases (E3s) are a group of enzymes responsible for substrate selectivity and ubiquitin chain formation. The purpose of this study was to identify novel E3s involved in ERAD. Thirty-seven candidate genes were selected by searches for proteins with RING-finger motifs and transmembrane regions, which are the major features of ERAD E3s. We performed gene expression profiling for the identified E3s in human and mouse tissues. Several genes were specifically or selectively expressed in both tissues; the expression of four genes (RNFT1, RNF185, CGRRF1 and RNF19B) was significantly upregulated by ER stress. To determine the involvement of the ER stress-responsive genes in ERAD, we investigated their ER localisation, in vitro autoubiquitination activity and ER stress resistance. All were partially localised to the ER, whereas CGRRF1 did not possess E3 activity. RNFT1 and RNF185, but not CGRRF1 and RNF19B, exhibited significant resistance to ER stressor in an E3 activity-dependent manner. Thus, these genes are possible candidates for ERAD E3s.
Collapse
Affiliation(s)
- Masayuki Kaneko
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Ikuko Iwase
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Yuki Yamasaki
- Otsuka GEN Research Institute, Otsuka Pharmaceutical Co., Ltd., Tokushima 771-0192, Japan
| | - Tomoko Takai
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Yan Wu
- Department of Biochemistry, Graduate school of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Soshi Kanemoto
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Koji Matsuhisa
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Rie Asada
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Yasunobu Okuma
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Chiba Institute of Science, Choshi, Chiba 288-0025, Japan
| | - Takeshi Watanabe
- Otsuka GEN Research Institute, Otsuka Pharmaceutical Co., Ltd., Tokushima 771-0192, Japan
| | - Kazunori Imaizumi
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Yausyuki Nomura
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| |
Collapse
|
44
|
Choi SI, Lee E, Jeong JB, Akuzum B, Maeng YS, Kim TI, Kim EK. 4-Phenylbutyric acid reduces mutant-TGFBIp levels and ER stress through activation of ERAD pathway in corneal fibroblasts of granular corneal dystrophy type 2. Biochem Biophys Res Commun 2016; 477:841-846. [PMID: 27373828 DOI: 10.1016/j.bbrc.2016.06.146] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 06/28/2016] [Indexed: 11/28/2022]
Abstract
Granular corneal dystrophy type 2 (GCD2) is caused by a point mutation (R124H) in the transforming growth factor β-induced (TGFBI) gene. In GCD2 corneal fibroblasts, secretion of the accumulated mutant TGFBI-encoded protein (TGFBIp) is delayed via the endoplasmic reticulum (ER)/Golgi-dependent secretory pathway. However, ER stress as the pathogenic mechanism underlying GCD2 has not been fully characterized. The aim of this study was to confirm whether ER stress is linked to GCD2 pathogenesis and whether the chemical chaperone, 4-phenylbutyric acid (4-PBA), could be exploited as a therapy for GCD2. We found that the ER chaperone binding immunoglobulin protein (BiP) and the protein disulfide isomerase (PDI) were elevated in GCD2. Western bolt analysis also showed a significant increase in both the protein levels and the phosphorylation of the key ER stress kinases, inositol-requiring enzyme 1α (IRE1α) and double stranded RNA activated protein kinase (PKR)-like ER kinase, as well as in levels of their downstream targets, X box-binding protein 1 (XBP1) and activating transcription factor 4, respectively, in GCD2 corneal fibroblasts. GCD2 cells were found to be more susceptible to ER stress-induced cell death than were wild-type corneal fibroblasts. Treatment with 4-PBA considerably reduced the levels of BiP, IRE1α, and XBP1 in GCD2 cells; notably, 4-PBA treatment significantly reduced the levels of TGFBIp without change in TGFBI mRNA levels. In addition, TGFBIp levels were significantly reduced under ER stress and this reduction was considerably suppressed by the ubiquitin proteasome inhibitor MG132, indicating TGFBIp degradation via the ER-associated degradation pathway. Treatment with 4-PBA not only protected against the GCD2 cell death induced by ER stress but also significantly suppressed the MG132-mediated increase in TGFBIp levels under ER stress. Together, these results suggest that ER stress might comprise an important factor in GCD2 pathophysiology and that the effects of 4-PBA treatment might have important implications for the development of GCD2 therapeutics.
Collapse
Affiliation(s)
- Seung-Il Choi
- Department of Ophthalmology, Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Eunhee Lee
- Department of Ophthalmology, Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Jang Bin Jeong
- Department of Ophthalmology, Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Begum Akuzum
- Department of Ophthalmology, Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Yong-Sun Maeng
- Department of Ophthalmology, Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Tae-Im Kim
- Department of Ophthalmology, Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, South Korea; Institute of Vision Research, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Eung Kweon Kim
- Department of Ophthalmology, Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, South Korea; Institute of Vision Research, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
45
|
Xu D, Wang H, You G. Posttranslational Regulation of Organic Anion Transporters by Ubiquitination: Known and Novel. Med Res Rev 2016; 36:964-79. [PMID: 27291023 DOI: 10.1002/med.21397] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 04/27/2016] [Accepted: 04/27/2016] [Indexed: 12/25/2022]
Abstract
Organic anion transporters (OATs) encoded by solute carrier 22 family are localized in the epithelia of multiple organs, where they mediate the absorption, distribution, and excretion of a diverse array of negatively charged environmental toxins and clinically important drugs. Alterations in the expression and function of OATs play important roles in intra- and interindividual variability of the therapeutic efficacy and the toxicity of many drugs. As a result, the activity of OATs must be under tight regulation so as to carry out their normal functions. The regulation of OAT transport activity in response to various stimuli can occur at several levels such as transcription, translation, and posttranslational modification. Posttranslational regulation is of particular interest, because it usually happens within a very short period of time (minutes to hours) when the body has to deal with rapidly changing amounts of substances as a consequence of variable intake of drugs, fluids, or meals as well as metabolic activity. This review article highlights the recent advances from our laboratory in uncovering several posttranslational mechanisms underlying OAT regulation. These advances offer the promise of identifying targets for novel strategies that will maximize therapeutic efficacy in drug development.
Collapse
Affiliation(s)
- Da Xu
- Department of Pharmaceutics, Rutgers University, Piscataway, New Jersey, 08854
| | - Haoxun Wang
- Department of Pharmaceutics, Rutgers University, Piscataway, New Jersey, 08854
| | - Guofeng You
- Department of Pharmaceutics, Rutgers University, Piscataway, New Jersey, 08854
| |
Collapse
|
46
|
Jing M, Guo B, Li H, Yang B, Wang H, Kong G, Zhao Y, Xu H, Wang Y, Ye W, Dong S, Qiao Y, Tyler BM, Ma W, Wang Y. A Phytophthora sojae effector suppresses endoplasmic reticulum stress-mediated immunity by stabilizing plant Binding immunoglobulin Proteins. Nat Commun 2016; 7:11685. [PMID: 27256489 PMCID: PMC4895818 DOI: 10.1038/ncomms11685] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 04/18/2016] [Indexed: 11/15/2022] Open
Abstract
Phytophthora pathogens secrete an array of specific effector proteins to manipulate host innate immunity to promote pathogen colonization. However, little is known about the host targets of effectors and the specific mechanisms by which effectors increase susceptibility. Here we report that the soybean pathogen Phytophthora sojae uses an essential effector PsAvh262 to stabilize endoplasmic reticulum (ER)-luminal binding immunoglobulin proteins (BiPs), which act as negative regulators of plant resistance to Phytophthora. By stabilizing BiPs, PsAvh262 suppresses ER stress-triggered cell death and facilitates Phytophthora infection. The direct targeting of ER stress regulators may represent a common mechanism of host manipulation by microbes.
Collapse
Affiliation(s)
- Maofeng Jing
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095 Nanjing, China
| | - Baodian Guo
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095 Nanjing, China
| | - Haiyang Li
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095 Nanjing, China
| | - Bo Yang
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095 Nanjing, China
| | - Haonan Wang
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095 Nanjing, China
| | - Guanghui Kong
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095 Nanjing, China
| | - Yao Zhao
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095 Nanjing, China
| | - Huawei Xu
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095 Nanjing, China
| | - Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095 Nanjing, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095 Nanjing, China
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095 Nanjing, China
| | - Yongli Qiao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Brett M. Tyler
- Center for Genome Research and Biocomputing and Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, USA
| | - Wenbo Ma
- Department of Plant Pathology and Microbiology, University of California, Riverside, California 92521, USA
- Center for Plant Cell Biology, University of California, Riverside, California 92521, USA
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095 Nanjing, China
| |
Collapse
|
47
|
Melnikova NV, Dmitriev AA, Belenikin MS, Koroban NV, Speranskaya AS, Krinitsina AA, Krasnov GS, Lakunina VA, Snezhkina AV, Sadritdinova AF, Kishlyan NV, Rozhmina TA, Klimina KM, Amosova AV, Zelenin AV, Muravenko OV, Bolsheva NL, Kudryavtseva AV. Identification, Expression Analysis, and Target Prediction of Flax Genotroph MicroRNAs Under Normal and Nutrient Stress Conditions. FRONTIERS IN PLANT SCIENCE 2016; 7:399. [PMID: 27092149 PMCID: PMC4821855 DOI: 10.3389/fpls.2016.00399] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/14/2016] [Indexed: 05/19/2023]
Abstract
Cultivated flax (Linum usitatissimum L.) is an important plant valuable for industry. Some flax lines can undergo heritable phenotypic and genotypic changes (LIS-1 insertion being the most common) in response to nutrient stress and are called plastic lines. Offspring of plastic lines, which stably inherit the changes, are called genotrophs. MicroRNAs (miRNAs) are involved in a crucial regulatory mechanism of gene expression. They have previously been assumed to take part in nutrient stress response and can, therefore, participate in genotroph formation. In the present study, we performed high-throughput sequencing of small RNAs (sRNAs) extracted from flax plants grown under normal, phosphate deficient and nutrient excess conditions to identify miRNAs and evaluate their expression. Our analysis revealed expression of 96 conserved miRNAs from 21 families in flax. Moreover, 475 novel potential miRNAs were identified for the first time, and their targets were predicted. However, none of the identified miRNAs were transcribed from LIS-1. Expression of seven miRNAs (miR168, miR169, miR395, miR398, miR399, miR408, and lus-miR-N1) with up- or down-regulation under nutrient stress (on the basis of high-throughput sequencing data) was evaluated on extended sampling using qPCR. Reference gene search identified ETIF3H and ETIF3E genes as most suitable for this purpose. Down-regulation of novel potential lus-miR-N1 and up-regulation of conserved miR399 were revealed under the phosphate deficient conditions. In addition, the negative correlation of expression of lus-miR-N1 and its predicted target, ubiquitin-activating enzyme E1 gene, as well as, miR399 and its predicted target, ubiquitin-conjugating enzyme E2 gene, was observed. Thus, in our study, miRNAs expressed in flax plastic lines and genotrophs were identified and their expression and expression of their targets was evaluated using high-throughput sequencing and qPCR for the first time. These data provide new insights into nutrient stress response regulation in plastic flax cultivars.
Collapse
Affiliation(s)
- Nataliya V. Melnikova
- Laboratory of Post-Genomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| | - Alexey A. Dmitriev
- Laboratory of Structural and Functional Genomics, Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| | - Maxim S. Belenikin
- Laboratory of Post-Genomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
- Department of Higher Plants, Lomonosov Moscow State UniversityMoscow, Russia
| | - Nadezhda V. Koroban
- Laboratory of Post-Genomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| | - Anna S. Speranskaya
- Laboratory of Post-Genomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
- Department of Higher Plants, Lomonosov Moscow State UniversityMoscow, Russia
| | | | - George S. Krasnov
- Laboratory of Post-Genomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| | - Valentina A. Lakunina
- Laboratory of Post-Genomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| | - Anastasiya V. Snezhkina
- Laboratory of Post-Genomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| | - Asiya F. Sadritdinova
- Laboratory of Post-Genomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| | - Natalya V. Kishlyan
- Laboratory of Genetics, All-Russian Research Institute for FlaxTorzhok, Russia
| | - Tatiana A. Rozhmina
- Laboratory of Genetics, All-Russian Research Institute for FlaxTorzhok, Russia
| | - Kseniya M. Klimina
- Laboratory of Genetics of Microorganisms, Vavilov Institute of General Genetics, Russian Academy of SciencesMoscow, Russia
| | - Alexandra V. Amosova
- Laboratory of Molecular Karyology, Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| | - Alexander V. Zelenin
- Laboratory of Molecular Karyology, Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| | - Olga V. Muravenko
- Laboratory of Molecular Karyology, Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| | - Nadezhda L. Bolsheva
- Laboratory of Molecular Karyology, Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| | - Anna V. Kudryavtseva
- Laboratory of Post-Genomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| |
Collapse
|
48
|
Xipell E, Aragón T, Martínez-Velez N, Vera B, Idoate MA, Martínez-Irujo JJ, Garzón AG, Gonzalez-Huarriz M, Acanda AM, Jones C, Lang FF, Fueyo J, Gomez-Manzano C, Alonso MM. Endoplasmic reticulum stress-inducing drugs sensitize glioma cells to temozolomide through downregulation of MGMT, MPG, and Rad51. Neuro Oncol 2016; 18:1109-19. [PMID: 26951384 DOI: 10.1093/neuonc/now022] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 01/29/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Endoplasmic reticulum (ER) stress results from protein misfolding imbalance and has been postulated as a therapeutic strategy. ER stress activates the unfolded protein response which leads to a complex cellular response, including the upregulation of aberrant protein degradation in the ER, with the goal of resolving that stress. O(6)-methylguanine DNA methyltransferase (MGMT), N-methylpurine DNA glycosylase (MPG), and Rad51 are DNA damage repair proteins that mediate resistance to temozolomide in glioblastoma. In this work we sought to evaluate whether ER stress-inducing drugs were able to downmodulate DNA damage repair proteins and become candidates to combine with temozolomide. METHODS MTT assays were performed to evaluate the cytotoxicity of the treatments. The expression of proteins was evaluated using western blot and immunofluorescence. In vivo studies were performed using 2 orthotopic glioblastoma models in nude mice to evaluate the efficacy of the treatments. All statistical tests were 2-sided. RESULTS Treatment of glioblastoma cells with ER stress-inducing drugs leads to downregulation of MGMT, MPG, and Rad51. Inhibition of ER stress through pharmacological treatment resulted in rescue of MGMT, MPG, and Rad51 protein levels. Moreover, treatment of glioblastoma cells with salinomycin, an ER stress-inducing drug, and temozolomide resulted in enhanced DNA damage and a synergistic antitumor effect in vitro. Of importance, treatment with salinomycin/temozolomide resulted in a significant antiglioma effect in 2 aggressive orthotopic intracranial brain tumor models. CONCLUSIONS These findings provide a strong rationale for combining temozolomide with ER stress-inducing drugs as an alternative therapeutic strategy for glioblastoma.
Collapse
Affiliation(s)
- Enric Xipell
- Department of Medical Oncology, University Hospital of Navarra, Pamplona, Navarra, Spain (E.X., N.M.-V, B.V., M.G.-H, A.M.A, M.M.A); Department of Hepatology, Foundation for Applied Medical Research, Pamplona, Navarra, Spain (T.A.); Department of Pathology, University Hospital of Navarra, Pamplona, Navarra, Spain (M.A.I); Department of Biochemistry, University of Navarra, Pamplona, Navarra, Spain (J.J.M.-I, A.G.G); Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK (C.J.); Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas (F.F.L, C.G.-M., J.F.)
| | - Tomás Aragón
- Department of Medical Oncology, University Hospital of Navarra, Pamplona, Navarra, Spain (E.X., N.M.-V, B.V., M.G.-H, A.M.A, M.M.A); Department of Hepatology, Foundation for Applied Medical Research, Pamplona, Navarra, Spain (T.A.); Department of Pathology, University Hospital of Navarra, Pamplona, Navarra, Spain (M.A.I); Department of Biochemistry, University of Navarra, Pamplona, Navarra, Spain (J.J.M.-I, A.G.G); Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK (C.J.); Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas (F.F.L, C.G.-M., J.F.)
| | - Naiara Martínez-Velez
- Department of Medical Oncology, University Hospital of Navarra, Pamplona, Navarra, Spain (E.X., N.M.-V, B.V., M.G.-H, A.M.A, M.M.A); Department of Hepatology, Foundation for Applied Medical Research, Pamplona, Navarra, Spain (T.A.); Department of Pathology, University Hospital of Navarra, Pamplona, Navarra, Spain (M.A.I); Department of Biochemistry, University of Navarra, Pamplona, Navarra, Spain (J.J.M.-I, A.G.G); Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK (C.J.); Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas (F.F.L, C.G.-M., J.F.)
| | - Beatriz Vera
- Department of Medical Oncology, University Hospital of Navarra, Pamplona, Navarra, Spain (E.X., N.M.-V, B.V., M.G.-H, A.M.A, M.M.A); Department of Hepatology, Foundation for Applied Medical Research, Pamplona, Navarra, Spain (T.A.); Department of Pathology, University Hospital of Navarra, Pamplona, Navarra, Spain (M.A.I); Department of Biochemistry, University of Navarra, Pamplona, Navarra, Spain (J.J.M.-I, A.G.G); Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK (C.J.); Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas (F.F.L, C.G.-M., J.F.)
| | - Miguel Angel Idoate
- Department of Medical Oncology, University Hospital of Navarra, Pamplona, Navarra, Spain (E.X., N.M.-V, B.V., M.G.-H, A.M.A, M.M.A); Department of Hepatology, Foundation for Applied Medical Research, Pamplona, Navarra, Spain (T.A.); Department of Pathology, University Hospital of Navarra, Pamplona, Navarra, Spain (M.A.I); Department of Biochemistry, University of Navarra, Pamplona, Navarra, Spain (J.J.M.-I, A.G.G); Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK (C.J.); Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas (F.F.L, C.G.-M., J.F.)
| | - Juan José Martínez-Irujo
- Department of Medical Oncology, University Hospital of Navarra, Pamplona, Navarra, Spain (E.X., N.M.-V, B.V., M.G.-H, A.M.A, M.M.A); Department of Hepatology, Foundation for Applied Medical Research, Pamplona, Navarra, Spain (T.A.); Department of Pathology, University Hospital of Navarra, Pamplona, Navarra, Spain (M.A.I); Department of Biochemistry, University of Navarra, Pamplona, Navarra, Spain (J.J.M.-I, A.G.G); Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK (C.J.); Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas (F.F.L, C.G.-M., J.F.)
| | - Antonia García Garzón
- Department of Medical Oncology, University Hospital of Navarra, Pamplona, Navarra, Spain (E.X., N.M.-V, B.V., M.G.-H, A.M.A, M.M.A); Department of Hepatology, Foundation for Applied Medical Research, Pamplona, Navarra, Spain (T.A.); Department of Pathology, University Hospital of Navarra, Pamplona, Navarra, Spain (M.A.I); Department of Biochemistry, University of Navarra, Pamplona, Navarra, Spain (J.J.M.-I, A.G.G); Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK (C.J.); Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas (F.F.L, C.G.-M., J.F.)
| | - Marisol Gonzalez-Huarriz
- Department of Medical Oncology, University Hospital of Navarra, Pamplona, Navarra, Spain (E.X., N.M.-V, B.V., M.G.-H, A.M.A, M.M.A); Department of Hepatology, Foundation for Applied Medical Research, Pamplona, Navarra, Spain (T.A.); Department of Pathology, University Hospital of Navarra, Pamplona, Navarra, Spain (M.A.I); Department of Biochemistry, University of Navarra, Pamplona, Navarra, Spain (J.J.M.-I, A.G.G); Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK (C.J.); Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas (F.F.L, C.G.-M., J.F.)
| | - Arlet M Acanda
- Department of Medical Oncology, University Hospital of Navarra, Pamplona, Navarra, Spain (E.X., N.M.-V, B.V., M.G.-H, A.M.A, M.M.A); Department of Hepatology, Foundation for Applied Medical Research, Pamplona, Navarra, Spain (T.A.); Department of Pathology, University Hospital of Navarra, Pamplona, Navarra, Spain (M.A.I); Department of Biochemistry, University of Navarra, Pamplona, Navarra, Spain (J.J.M.-I, A.G.G); Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK (C.J.); Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas (F.F.L, C.G.-M., J.F.)
| | - Chris Jones
- Department of Medical Oncology, University Hospital of Navarra, Pamplona, Navarra, Spain (E.X., N.M.-V, B.V., M.G.-H, A.M.A, M.M.A); Department of Hepatology, Foundation for Applied Medical Research, Pamplona, Navarra, Spain (T.A.); Department of Pathology, University Hospital of Navarra, Pamplona, Navarra, Spain (M.A.I); Department of Biochemistry, University of Navarra, Pamplona, Navarra, Spain (J.J.M.-I, A.G.G); Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK (C.J.); Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas (F.F.L, C.G.-M., J.F.)
| | - Frederick F Lang
- Department of Medical Oncology, University Hospital of Navarra, Pamplona, Navarra, Spain (E.X., N.M.-V, B.V., M.G.-H, A.M.A, M.M.A); Department of Hepatology, Foundation for Applied Medical Research, Pamplona, Navarra, Spain (T.A.); Department of Pathology, University Hospital of Navarra, Pamplona, Navarra, Spain (M.A.I); Department of Biochemistry, University of Navarra, Pamplona, Navarra, Spain (J.J.M.-I, A.G.G); Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK (C.J.); Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas (F.F.L, C.G.-M., J.F.)
| | - Juan Fueyo
- Department of Medical Oncology, University Hospital of Navarra, Pamplona, Navarra, Spain (E.X., N.M.-V, B.V., M.G.-H, A.M.A, M.M.A); Department of Hepatology, Foundation for Applied Medical Research, Pamplona, Navarra, Spain (T.A.); Department of Pathology, University Hospital of Navarra, Pamplona, Navarra, Spain (M.A.I); Department of Biochemistry, University of Navarra, Pamplona, Navarra, Spain (J.J.M.-I, A.G.G); Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK (C.J.); Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas (F.F.L, C.G.-M., J.F.)
| | - Candelaria Gomez-Manzano
- Department of Medical Oncology, University Hospital of Navarra, Pamplona, Navarra, Spain (E.X., N.M.-V, B.V., M.G.-H, A.M.A, M.M.A); Department of Hepatology, Foundation for Applied Medical Research, Pamplona, Navarra, Spain (T.A.); Department of Pathology, University Hospital of Navarra, Pamplona, Navarra, Spain (M.A.I); Department of Biochemistry, University of Navarra, Pamplona, Navarra, Spain (J.J.M.-I, A.G.G); Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK (C.J.); Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas (F.F.L, C.G.-M., J.F.)
| | - Marta M Alonso
- Department of Medical Oncology, University Hospital of Navarra, Pamplona, Navarra, Spain (E.X., N.M.-V, B.V., M.G.-H, A.M.A, M.M.A); Department of Hepatology, Foundation for Applied Medical Research, Pamplona, Navarra, Spain (T.A.); Department of Pathology, University Hospital of Navarra, Pamplona, Navarra, Spain (M.A.I); Department of Biochemistry, University of Navarra, Pamplona, Navarra, Spain (J.J.M.-I, A.G.G); Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK (C.J.); Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas (F.F.L, C.G.-M., J.F.)
| |
Collapse
|
49
|
Chen J, Wu X, Chen S, Chen S, Xiang N, Chen Y, Guo D. Ubiquitin ligase Fbw7 restricts the replication of hepatitis C virus by targeting NS5B for ubiquitination and degradation. Biochem Biophys Res Commun 2016; 470:697-703. [PMID: 26774344 DOI: 10.1016/j.bbrc.2016.01.076] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 01/12/2016] [Indexed: 11/16/2022]
Abstract
The nonstructural protein 5B (NS5B) of hepatitis C virus (HCV) is an RNA-dependent RNA polymerase (RdRp) and responsible for replicating the whole HCV genome with help of viral and cellular proteins. However, how cellular factors influence NS5B and, in turn, regulating HCV replication are still poorly defined. The well known tumor suppressor Fbw7, a component of E3 ubiquitin ligase SCF(Fbw7), targets oncoproteins or cellular regulatory proteins for ubiquitin-mediated degradation through a highly conserved binding site called a Cdc4 phosphodegron (CPD). But little is known about whether Fbw7 plays a role in regulation of viral proteins. In this study, we revealed that the conserved CPD is shared by NS5B of almost all genotype of HCV and our data demonstrated that NS5B is a bona fide substrate of Fbw7. Forced expression of Fbw7 promoted the ubiquination of NS5B and negatively regulated its turnover in the proteasome-dependent manner. We further revealed the interaction between NS5B and Fbw7, which resulted in the relocation of Fbw7 from nucleus to cytoplasm. During HCV replication, ectopic expression of Fbw7 could strongly down-regulate NS5B level and consequently inhibited the virus replication. When endogenous Fbw7 was knocked down, both NS5B protein abundance and HCV replication were remarkably up-regulated. The results provide more insights into the interplay of HCV and cellular factors and shed light on molecular mechanisms of HCV replication and pathogenesis.
Collapse
Affiliation(s)
- Jun Chen
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, PR China
| | - Xiaoyun Wu
- Bio-Thera Solutions, Ltd. Co., Enterprise Accelerator A6-5fl, 11 Kaiyuan Rd, Science City, Guangzhou 510530, PR China
| | - Shiyou Chen
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, PR China
| | - Shuliang Chen
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, PR China
| | - Nian Xiang
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, PR China
| | - Yu Chen
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, PR China
| | - Deyin Guo
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, PR China; School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430072, PR China.
| |
Collapse
|
50
|
Beckley JR, Chen JS, Yang Y, Peng J, Gould KL. A Degenerate Cohort of Yeast Membrane Trafficking DUBs Mediates Cell Polarity and Survival. Mol Cell Proteomics 2015; 14:3132-41. [PMID: 26412298 DOI: 10.1074/mcp.m115.050039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Indexed: 12/26/2022] Open
Abstract
Deubiquitinating enzymes (DUBs), cysteine or metallo- proteases that cleave ubiquitin chains or protein conjugates, are present in nearly every cellular compartment, with overlapping protein domain structure, localization, and functions. We discovered a cohort of DUBs that are involved in membrane trafficking (ubp4, ubp5, ubp9, ubp15, and sst2) and found that loss of all five of these DUBs but not loss of any combination of four, significantly impacted cell viability in the fission yeast Schizosaccharomyces pombe (1). Here, we delineate the collective and individual functions and activities of these five conserved DUBs using comparative proteomics, biochemistry, and microscopy. We find these five DUBs are degenerate rather than redundant at the levels of cell morphology, substrate selectivity, ubiquitin chain specificity, and cell viability under stress. These studies reveal the complexity of interplay among these enzymes, providing a foundation for understanding DUB biology and providing another example of how cells utilize degeneracy to improve survival.
Collapse
Affiliation(s)
- Janel R Beckley
- From the Cell & Developmental Biology, Vanderbilt University School of Medicine, 1161 21st Avenue South, Nashville, TN 37232
| | - Jun-Song Chen
- From the Cell & Developmental Biology, Vanderbilt University School of Medicine, 1161 21st Avenue South, Nashville, TN 37232
| | - Yanling Yang
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Proteomics Facility, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Proteomics Facility, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Kathleen L Gould
- From the Cell & Developmental Biology, Vanderbilt University School of Medicine, 1161 21st Avenue South, Nashville, TN 37232
| |
Collapse
|