1
|
El Mir J, Nasrallah A, Thézé N, Cario M, Fayyad-Kazan H, Thiébaud P, Rezvani HR. Xenopus as a model system for studying pigmentation and pigmentary disorders. Pigment Cell Melanoma Res 2025; 38:e13178. [PMID: 38849973 DOI: 10.1111/pcmr.13178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/17/2024] [Accepted: 05/24/2024] [Indexed: 06/09/2024]
Abstract
Human pigmentary disorders encompass a broad spectrum of phenotypic changes arising from disruptions in various stages of melanocyte formation, the melanogenesis process, or the transfer of pigment from melanocytes to keratinocytes. A large number of pigmentation genes associated with pigmentary disorders have been identified, many of them awaiting in vivo confirmation. A more comprehensive understanding of the molecular basis of pigmentary disorders requires a vertebrate animal model where changes in pigmentation are easily observable in vivo and can be combined to genomic modifications and gain/loss-of-function tools. Here we present the amphibian Xenopus with its unique features that fulfill these requirements. Changes in pigmentation are particularly easy to score in Xenopus embryos, allowing whole-organism based phenotypic screening. The development and behavior of Xenopus melanocytes closely mimic those observed in mammals. Interestingly, both Xenopus and mammalian skins exhibit comparable reactions to ultraviolet radiation. This review highlights how Xenopus constitutes an alternative and complementary model to the more commonly used mouse and zebrafish, contributing to the advancement of knowledge in melanocyte cell biology and related diseases.
Collapse
Affiliation(s)
- Joudi El Mir
- University of Bordeaux, Inserm, BRIC, UMR 1312, Bordeaux, France
| | - Ali Nasrallah
- University of Bordeaux, Inserm, BRIC, UMR 1312, Bordeaux, France
| | - Nadine Thézé
- University of Bordeaux, Inserm, BRIC, UMR 1312, Bordeaux, France
| | - Muriel Cario
- University of Bordeaux, Inserm, BRIC, UMR 1312, Bordeaux, France
- Aquiderm, University of Bordeaux, Bordeaux, France
| | - Hussein Fayyad-Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Lebanese University, Hadath, Lebanon
| | - Pierre Thiébaud
- University of Bordeaux, Inserm, BRIC, UMR 1312, Bordeaux, France
| | - Hamid-Reza Rezvani
- University of Bordeaux, Inserm, BRIC, UMR 1312, Bordeaux, France
- Aquiderm, University of Bordeaux, Bordeaux, France
| |
Collapse
|
2
|
Ji G, Zhang M, Ju X, Liu Y, Shan Y, Tu Y, Zou J, Shu J, Li H, Zhao W. Dynamic Transcriptome Profile Analysis of Mechanisms Related to Melanin Deposition in Chicken Muscle Development. Animals (Basel) 2024; 14:2702. [PMID: 39335292 PMCID: PMC11428610 DOI: 10.3390/ani14182702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
The pectoral muscle is an important component of skeletal muscle. The blackness of pectoral muscles can directly affect the economic value of black-boned chickens. Although the genes associated with melanogenesis in mammals and birds have been thoroughly investigated, only little is known about the key genes involved in muscle hyperpigmentation during embryonic development. Here, we analyzed melanin deposition patterns in the pectoral muscle of Yugan black-boned chickens and compared differentially expressed genes (DEGs) between the muscles of Wenchang (non-black-boned chickens) and Yugan black-boned chickens on embryonic days 9, 13, 17, and 21. Melanin pigments were found to gradually accumulate in the muscle fibers over time. Using RNA-seq, there were 40, 97, 169, and 94 genes were identified as DEGs, respectively, between Yugan black-boned chicken muscles and Wenchang chickens at embryonic day 9, 13, 17, and 21 stages (fold change ≥2.0, false discovery rate (FDR) < 0.05). Thirteen DEGs, such as MSTRG.720, EDNRB2, TYRP1, and DCT, were commonly identified among the time points observed. These DEGs were mainly involved in pigmentation, melanin biosynthetic and metabolic processes, and secondary metabolite biosynthetic processes. Pathway analysis of the DEGs revealed that they were mainly associated with melanogenesis and tyrosine metabolism. Moreover, weighted gene co-expression network analysis (WGCNA) was used to detect core modules and central genes related to melanogenesis in the muscles of black-boned chickens. A total of 24 modules were identified. Correlation analysis indicated that one of them (the orange module) was positively correlated with muscle pigmentation traits (r > 0.8 and p < 0.001). Correlations between gene expression and L* values of the breast muscle were investigated in Yugan and Taihe black-boned chickens after hatching. The results confirmed that EDNRB2, GPNMB, TRPM1, TYR, and DCT expression levels were significantly associated with L* values (p < 0.01) in black-boned chickens (p < 0.05). Our results suggest that EDNRB2, GPNMB, TRPM1, TYR, and DCT are the essential genes regulating melanin deposition in the breast muscle of black-boned chickens. MSTRG.720 is a potential candidate gene involved in melanin deposition in the breast muscles of Yugan black-boned chickens.
Collapse
Affiliation(s)
- Gaige Ji
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou 225125, China
| | - Ming Zhang
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou 225125, China
| | - Xiaojun Ju
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou 225125, China
| | - Yifan Liu
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou 225125, China
| | - Yanju Shan
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou 225125, China
| | - Yunjie Tu
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou 225125, China
| | - Jianmin Zou
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou 225125, China
| | - Jingting Shu
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou 225125, China
| | - Hua Li
- School of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Weidong Zhao
- Taihe Fengsheng Agricultural and Livestock Co., Ltd., Ji’an 343732, China
| |
Collapse
|
3
|
Wang F, Ma W, Fan D, Hu J, An X, Wang Z. The biochemistry of melanogenesis: an insight into the function and mechanism of melanogenesis-related proteins. Front Mol Biosci 2024; 11:1440187. [PMID: 39228912 PMCID: PMC11368874 DOI: 10.3389/fmolb.2024.1440187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/22/2024] [Indexed: 09/05/2024] Open
Abstract
Melanin is an amino acid derivative produced by melanocyte through a series of enzymatic reactions using tyrosinase as substrate. Human skin and hair color is also closely related to melanin, so understanding the mechanisms and proteins that produce melanin is very important. There are many proteins involved in the process of melanin expression, For example, proteins involved in melanin formation such as p53, HNF-1α (Hepatocyte nuclear factor 1α), SOX10 (Sry-related HMg-Box gene 10) and pax3 (paired box gene 3), MC1R(Melanocortin 1 Receptor), MITF (Microphthalmia-associated transcription factor), TYR (tyrosinase), TYRP1 (tyrosinase-related protein-1), TYRP2 (tyrosinase-related protein-2), and can be regulated by changing their content to control the production rate of melanin. Others, such as OA1 (ocular albinism type 1), Par-2 (protease-activated receptor 2) and Mlph (Melanophilin), have been found to control the transfer rate of melanosomes from melanocytes to keratinocytes, and regulate the amount of human epidermal melanin to control the depth of human skin color. In addition to the above proteins, there are other protein families also involved in the process of melanin expression, such as BLOC, Rab and Rho. This article reviews the origin of melanocytes, the related proteins affecting melanin and the basic causes of related gene mutations. In addition, we also summarized the active ingredients of 5 popular whitening cosmetics and their mechanisms of action.
Collapse
Affiliation(s)
- Feifei Wang
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, China
- Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming, China
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- Shanghai Jiyan Bio-Pharmaceutical Co., Ltd., Shanghai, China
| | - Wenjing Ma
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, China
- Shanghai Jiyan Bio-Pharmaceutical Co., Ltd., Shanghai, China
| | - Dongjie Fan
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, China
- Shanghai Jiyan Bio-Pharmaceutical Co., Ltd., Shanghai, China
| | - Jing Hu
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, China
- Shanghai Jiyan Bio-Pharmaceutical Co., Ltd., Shanghai, China
| | - Xiaohong An
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, China
- Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming, China
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- Shanghai Jiyan Bio-Pharmaceutical Co., Ltd., Shanghai, China
| | - Zuding Wang
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, China
- Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming, China
| |
Collapse
|
4
|
Min Y, Li Q, Yu H, Du S. Examination of wnt signaling mediated melanin transport and shell color formation in Pacific oyster ( Crassostrea gigas). MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:488-501. [PMID: 39219677 PMCID: PMC11358575 DOI: 10.1007/s42995-024-00221-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 09/04/2024]
Abstract
Mollusca exhibit remarkable diversity in shell coloration, attributed to the presence of melanin, a widely distributed pigment with various essential roles, such as mechanical strengthening, antioxidation and thermoregulation. However, the regulatory network governing melanogenesis and melanin transport in molluscs remains poorly understood. In this study, we conducted a systematic analysis of melanin distribution and transport in the Pacific oyster, utilizing light microscopy and high-resolution transmission electron microscopy. In addition, we characterized CgWnt1 and CgWnt2b-a in Crassostrea gigas, and analyzed Wnt signaling in melanocyte formation. Expression analysis revealed that these genes were predominantly expressed in the mantle of black-shelled individuals, particularly in the outer fold of the mantle. Furthermore, we employed RNA interference and inhibitors to specifically inhibit Wnt signaling in both in vivo and in vitro. The results revealed impaired melanogenesis and diminished tyrosinase activity upon Wnt signaling inhibition. These findings suggest the crucial role of Wnt ligands and downstream factors in melanogenesis. In summary, our study provides valuable insights into the regulatory mechanism of shell pigmentation in C. gigas. By demonstrating the promotion of melanogenesis through Wnt signaling modulation, we contribute to a better understanding of the complex processes underlying molluscan melanin production and shell coloration. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-024-00221-5.
Collapse
Affiliation(s)
- Yue Min
- Key Laboratory of Mariculture, Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, 266003 China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, 266003 China
| | - Shaojun Du
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, 21240 USA
| |
Collapse
|
5
|
Zhang X, Luo M, Jiang B, Zhu W, Min Q, Hu J, Liu T, Fu J, Shi X, Wang P, Wang L, Dong Z. microRNA regulation of skin pigmentation in golden-back mutant of crucian carp from a rice-fish integrated farming system. BMC Genomics 2023; 24:70. [PMID: 36765276 PMCID: PMC9912656 DOI: 10.1186/s12864-023-09168-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are endogenous small non-coding RNAs (21-25 nucleotides) that act as essential components of several biological processes. Golden-back crucian carp (GBCrC, Carassius auratus) is a naturally mutant species of carp that has two distinct body skin color types (golden and greenish-grey), making it an excellent model for research on the genetic basis of pigmentation. Here, we performed small RNA (sRNA) analysis on the two different skin colors via Illumina sequencing. RESULTS A total of 679 known miRNAs and 254 novel miRNAs were identified, of which 32 were detected as miRNAs with significant differential expression (DEMs). 23,577 genes were projected to be the targets of 32 DEMs, primarily those involved in melanogenesis, adrenergic signaling in cardiomyocytes, MAPK signaling pathway and wnt signaling pathway by functional enrichment. Furthermore, we built an interaction module of mRNAs, proteins and miRNAs based on 10 up-regulated and 13 down-regulated miRNAs in golden skin. In addition to transcriptional destabilization and translational suppression, we discovered that miRNAs and their target genes were expressed in the same trend at both the transcriptional and translational levels. Finally, we discovered that miR-196d could be indirectly implicated in regulating melanocyte synthesis and motility in the skin by targeting to myh7 (myosin-7) gene through the luciferase reporter assay, antagomir silencing in vivo and qRT-PCR techniques. CONCLUSIONS Our study gives a systematic examination of the miRNA profiles expressed in the skin of GBCrC, assisting in the comprehension of the intricate molecular regulation of body color polymorphism and providing insights for C. auratus breeding research.
Collapse
Affiliation(s)
- Xianbo Zhang
- Guizhou Fisheries Research Institute, Guizhou Academy of Agriculture Sciences, Guiyang, Guizhou, China
| | - Mingkun Luo
- grid.43308.3c0000 0000 9413 3760Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Wuxi, Jiangsu, China
| | - Bingjie Jiang
- grid.27871.3b0000 0000 9750 7019Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China
| | - Wenbin Zhu
- grid.43308.3c0000 0000 9413 3760Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Wuxi, Jiangsu, China
| | - Qianwen Min
- Guizhou Fisheries Research Institute, Guizhou Academy of Agriculture Sciences, Guiyang, Guizhou, China
| | - Jinli Hu
- Guizhou Fisheries Research Institute, Guizhou Academy of Agriculture Sciences, Guiyang, Guizhou, China
| | - Ting Liu
- Guizhou Fisheries Research Institute, Guizhou Academy of Agriculture Sciences, Guiyang, Guizhou, China
| | - Jianjun Fu
- grid.43308.3c0000 0000 9413 3760Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Wuxi, Jiangsu, China
| | - Xiulan Shi
- grid.27871.3b0000 0000 9750 7019Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China
| | - Pan Wang
- grid.412514.70000 0000 9833 2433College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Lanmei Wang
- grid.43308.3c0000 0000 9413 3760Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Wuxi, Jiangsu, China
| | - Zaijie Dong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Wuxi, Jiangsu, China. .,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China.
| |
Collapse
|
6
|
Zhang L, Wan M, Tohti R, Jin D, Zhong TP. Requirement of Zebrafish Adcy3a and Adcy5 in Melanosome Dispersion and Melanocyte Stripe Formation. Int J Mol Sci 2022; 23:ijms232214182. [PMID: 36430661 PMCID: PMC9693263 DOI: 10.3390/ijms232214182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022] Open
Abstract
cAMP-PKA signaling plays a pivotal role in melanin synthesis and melanosome transport by responding to the binding of the α-melanocyte-stimulating hormone (α-MSH) to melanocortin-1 receptor (MC1R). Adenylate cyclases (ADCYs) are the enzymes responsible for the synthesis of cAMP from ATP, which comprises nine transmembrane isoforms (ADCYs 1-9) and one soluble adenylate cyclase (ADCY 10) in mammals. However, little is known about which and how ADCY isoforms regulate melanocyte generation, melanin biosynthesis, and melanosome transport in vivo. In this study, we have generated a series of single and double mutants of Adcy isoforms in zebrafish. Among them, adcy3a-/- and adcy5-/- double mutants cause defects in melanosome dispersion but do not impair melanoblast differentiation and melanocyte regeneration during the embryonic or larval stages. Activation of PKA, the main effector of cAMP signaling, significantly ameliorates the defects in melanosome dispersion in adcy3a-/- and adcy5-/- double mutants. Mechanistically, Adcy3a and Adcy5 regulate melanosome dispersion by activating kinesin-1 while inhibiting cytoplasmic dynein-1. In adult zebrafish, Adcy3a and Adcy5 participate in the regulation of the expression of microphthalmia transcription factor (Mitfa) and melanin synthesis enzymes Tyr, Dct, and Trp1b. The deletion of Adcy3a and Adcy5 inhibits melanin production and reduces pigmented melanocyte numbers, causing a defect in establishing adult melanocyte stripes. Hence, our studies demonstrate that Adcy3a and Adcy5 play essential but redundant functions in mediating α-MSH-MC1R/cAMP-PKA signaling for regulating melanin synthesis and melanosome dispersion.
Collapse
|
7
|
Maruta Y, Fukuda M. Large Rab GTPase Rab44 regulates microtubule-dependent retrograde melanosome transport in melanocytes. J Biol Chem 2022; 298:102508. [PMID: 36126775 PMCID: PMC9586991 DOI: 10.1016/j.jbc.2022.102508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 11/27/2022] Open
Abstract
Melanosomes are melanin-containing organelles in melanocytes, and they are responsible for skin and hair pigmentation in mammals. The intracellular distribution of melanosomes is mainly determined by the balance between their anterograde transport on actin filaments and retrograde transport on microtubules. Although we have shown previously that melanoregulin and Rab36 serve as cargo receptors on melanosomes for retrograde transport, their knockdown does not completely inhibit retrograde melanosome transport, suggesting the existence of an additional cargo receptor(s) in melanocytes. In this study, we investigated the possible involvement of an atypical large Rab, Rab44, which also contains EF-hand domains and a coiled-coil domain, in retrograde melanosome transport in mouse melanocytes (Rab27A-deficient melan-ash cells). Our results showed that Rab44 localizes on mature melanosomes through lipidation of its C-terminal Rab-like GTPase domain, and that its knockdown results in suppression of retrograde melanosome transport. In addition, our biochemical analysis indicated that Rab44 interacts with the dynein–dynactin motor complex via its coiled-coil domain–containing middle region. Since simultaneous depletion of Rab44, melanoregulin, and Rab36 resulted in almost complete inhibition of retrograde melanosome transport, we propose that Rab44 is the third cargo receptor. We also showed that the N-terminal region of Rab44, which contains EF-hand domains, is required for both retrograde melanosome transport and its Ca2+-modulated activities. Our findings indicated that Rab44 is a third melanosomal cargo receptor, and that, unlike other cargo receptors previously described, its transport function is regulated by Ca2+.
Collapse
Affiliation(s)
- Yuto Maruta
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan.
| |
Collapse
|
8
|
Ryniawec JM, Rogers GC. Centrosome instability: when good centrosomes go bad. Cell Mol Life Sci 2021; 78:6775-6795. [PMID: 34476544 PMCID: PMC8560572 DOI: 10.1007/s00018-021-03928-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/10/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023]
Abstract
The centrosome is a tiny cytoplasmic organelle that organizes and constructs massive molecular machines to coordinate diverse cellular processes. Due to its many roles during both interphase and mitosis, maintaining centrosome homeostasis is essential to normal health and development. Centrosome instability, divergence from normal centrosome number and structure, is a common pathognomonic cellular state tightly associated with cancers and other genetic diseases. As novel connections are investigated linking the centrosome to disease, it is critical to understand the breadth of centrosome functions to inspire discovery. In this review, we provide an introduction to normal centrosome function and highlight recent discoveries that link centrosome instability to specific disease states.
Collapse
Affiliation(s)
- John M Ryniawec
- University of Arizona Cancer Center, University of Arizona, 1515 N. Campbell Ave., Tucson, AZ, 85724, USA
| | - Gregory C Rogers
- University of Arizona Cancer Center, University of Arizona, 1515 N. Campbell Ave., Tucson, AZ, 85724, USA.
| |
Collapse
|
9
|
Protein kinase A regulation of pigment granule motility in retinal pigment epithelial cells from fish, Lepomis spp. Vis Neurosci 2021; 38:E013. [PMID: 34521486 DOI: 10.1017/s0952523821000122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Retinomotor movements include elongation and contraction of rod and cone photoreceptors, and mass migration of melanin-containing pigment granules (melanosomes) of the retinal pigment epithelium (RPE) within the eyes of fish, frogs, and other lower vertebrates. Eyes of these animals do not contain dilatable pupils; therefore the repositioning of the rods and cones and a moveable curtain of pigment granules serve to modulate light intensity within the eye. RPE from sunfish (Lepomis spp.) can be isolated from the eye and dissociated into single cells, allowing in vitro studies of the cytoskeletal and regulatory mechanisms of organelle movement. Pigment granule aggregation from distal tips of apical projections into the cell body can be triggered by the application of underivatized cAMP, and dispersion is effected by cAMP washout in the presence of dopamine. While the phenomenon of cAMP-dependent pigment granule aggregation in isolated RPE was described many years ago, whether cAMP acts through the canonical cAMP-PKA pathway to stimulate motility has never been demonstrated. Here, we show that pharmacological inhibition of PKA blocks pigment granule aggregation, and microinjection of protein kinase A catalytic subunit triggers pigment granule aggregation. Treatment with a cAMP agonist that activates the Rap GEF, Epac (Effector protein activated by cAMP), had no effect on pigment granule position. Taken together, these results confirm that cAMP activates RPE pigment granule motility by the canonical cAMP-PKA pathway. Isolated RPE cells labeled with antibodies against PKA RIIα and against PKA-phosphorylated serine/threonine amino acids show diffuse, punctate labeling throughout the RPE cell body and apical projections. Immunoblotting of RPE lysates using the anti-PKA substrate antibody demonstrated seven prominent bands; two bands in particular at 27 and 64 kD showed increased levels of phosphorylation in the presence of cAMP, indicating their phosphorylation could contribute to the pigment granule aggregation mechanism.
Collapse
|
10
|
Abstract
Exosomes are nanoscale extracellular vesicles that can transport cargos of proteins, lipids, DNA, various RNA species and microRNAs (miRNAs). Exosomes can enter cells and deliver their contents to recipient cell. Owing to their cargo exosomes can transfer different molecules to the target cells and change the phenotype of these cells. The fate of the contents of an exosome depends on its target destination. Various mechanisms for exosome uptake by target cells have been proposed, but the mechanisms responsible for exosomes internalization into cells are still debated. Exosomes exposed cells produce labeled protein kinases, which are expressed by other cells. This means that these kinases are internalized by exosomes, and transported into the cytoplasm of recipient cells. Many studies have confirmed that exosomes are not only secreted by living cells, but also internalized or accumulated by the other cells. The "next cell hypothesis" supports the notion that exosomes constitute communication vehicles between neighboring cells. By this mechanism, exosomes participate in the development of diabetes and its associated complications, critically contribute to the spreading of neuronal damage in Alzheimer's disease, and non-proteolysed form of Fas ligand (mFasL)-bearing exosomes trigger the apoptosis of T lymphocytes. Furthermore, exosomes derived from human B lymphocytes induce antigen-specific major histocompatibility complex (MHC) class II-restricted T cell responses. Interestingly, exosomes secreted by cancer cells have been demonstrated to express tumor antigens, as well as immune suppressive molecules. This process is defined as "exosome-immune suppression" concept. The interplay via the exchange of exosomes between cancer cells and between cancer cells and the tumor stroma promote the transfer of oncogenes and onco-miRNAs from one cell to other. Circulating exosomes that are released from hypertrophic adipocytes are effective in obesity-related complications. On the other hand, the "inflammasome-induced" exosomes can activate inflammatory responses in recipient cells. In this chapter protein kinases-related checkpoints are emphasized considering the regulation of exosome biogenesis, secretory traffic, and their impacts on cell death, tumor growth, immune system, and obesity.
Collapse
Affiliation(s)
- Atilla Engin
- Department of General Surgery, Faculty of Medicine, Gazi University, Ankara, Turkey.
| |
Collapse
|
11
|
Kriangwanich W, Piboon P, Sakorn W, Buddhachat K, Kochagul V, Pringproa K, Mekchay S, Nganvongpanit K. Consistency of dark skeletal muscles in Thai native black-bone chickens ( Gallus gallus domesticus). PeerJ 2021; 9:e10728. [PMID: 33520473 PMCID: PMC7811297 DOI: 10.7717/peerj.10728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/17/2020] [Indexed: 11/20/2022] Open
Abstract
Black-bone chickens (Gallus gallus domesticus) have become economically valuable, particularly in Southeast Asia as a consequence of popular traditional Chinese medical practices. Chickens with whole body organ darkness are considered to have higher value and are, therefore, more often requested. This research study aimed to investigate the darkness in 34 skeletal muscles of 10 Thai black-bone chickens (five males and five females). The evaluation of muscle darkness was done on two levels: (i) a color chart was employed at the macroanatomical level and (ii) by using melanin pigment to evaluate the structure at the microanatomy level. The results revealed that the accumulation of melanin pigment in the muscle tissue was observed in the endomysium, perimysium and epimysium. With respect to the results of the color chart test, iliotibialis lateralis pars preacetabularis, gastrocnemius, fibularis longus and puboischiofemoralis pars medialis showed the highest degree of darkness, while serratus profundus, pectoralis, iliotibialis cranialis, flexor cruris lateralis, and flexor cruris medialis appeared to be the least dark. In addition, we found that the highest and lowest amounts of melanin pigment was noted in the flexor carpi ulnaris and pectoralis (p < 0.05), respectively; however, there was no significant difference (p > 0.05) observed between the sexes. These results reveal that the 34 specified muscles of black-bone chickens showed uneven distribution of darkness due to the differing accumulations of melanin pigments of each muscle.This information may provide background knowledge for a better understanding of melanin accumulation and lead to breeding improvements in Thai black-bone chickens.
Collapse
Affiliation(s)
- Wannapimol Kriangwanich
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Promporn Piboon
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Wirakorn Sakorn
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kittisak Buddhachat
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand.,Excellence Center in Veterinary Bioscience, Chiang Mai University, Chiang Mai, Thailand
| | - Varankpicha Kochagul
- Veterinary Diagnostic Laboratory, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kidsadagon Pringproa
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand.,Excellence Center in Veterinary Bioscience, Chiang Mai University, Chiang Mai, Thailand
| | - Supamit Mekchay
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Korakot Nganvongpanit
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand.,Excellence Center in Veterinary Bioscience, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
12
|
Cheng X, Chen K, Dong B, Filbrun SL, Wang G, Fang N. Resolving cargo-motor-track interactions with bifocal parallax single-particle tracking. Biophys J 2020; 120:1378-1386. [PMID: 33359832 DOI: 10.1016/j.bpj.2020.11.2278] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/20/2020] [Accepted: 11/05/2020] [Indexed: 01/18/2023] Open
Abstract
Resolving coordinated biomolecular interactions in living cellular environments is vital for understanding the mechanisms of molecular nanomachines. The conventional approach relies on localizing and tracking target biomolecules and/or subcellular organelles labeled with imaging probes. However, it is challenging to gain information on rotational dynamics, which can be more indicative of the work done by molecular motors and their dynamic binding status. Herein, a bifocal parallax single-particle tracking method using half-plane point spread functions has been developed to resolve the full-range azimuth angle (0-360°), polar angle, and three-dimensional (3D) displacement in real time under complex living cell conditions. Using this method, quantitative rotational and translational motion of the cargo in a 3D cell cytoskeleton was obtained. Not only were well-known active intracellular transport and free diffusion observed, but new interactions (tight attachment and tethered rotation) were also discovered for better interpretation of the dynamics of cargo-motor-track interactions at various types of microtubule intersections.
Collapse
Affiliation(s)
- Xiaodong Cheng
- Department of Chemistry, Georgia State University, Atlanta, Georgia
| | - Kuangcai Chen
- Department of Chemistry, Georgia State University, Atlanta, Georgia
| | - Bin Dong
- Department of Chemistry, Georgia State University, Atlanta, Georgia
| | - Seth L Filbrun
- Department of Chemistry, Georgia State University, Atlanta, Georgia
| | - Gufeng Wang
- Department of Chemistry, Georgia State University, Atlanta, Georgia
| | - Ning Fang
- Department of Chemistry, Georgia State University, Atlanta, Georgia.
| |
Collapse
|
13
|
Sun L, Zhou T, Wan QH, Fang SG. Transcriptome Comparison Reveals Key Components of Nuptial Plumage Coloration in Crested Ibis. Biomolecules 2020; 10:E905. [PMID: 32549189 PMCID: PMC7356354 DOI: 10.3390/biom10060905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/02/2020] [Accepted: 06/13/2020] [Indexed: 11/16/2022] Open
Abstract
Nuptial plumage coloration is critical in the mating choice of the crested ibis. This species has a characteristic nuptial plumage that develops from the application of a black sticky substance, secreted by a patch of skin in the throat and neck region. We aimed to identify the genes regulating its coloring, by comparing skin transcriptomes between ibises during the breeding and nonbreeding seasons. In breeding season skins, key eumelanin synthesis genes, TYR, DCT, and TYRP1 were upregulated. Tyrosine metabolism, which is closely related to melanin synthesis, was also upregulated, as were transporter proteins belonging to multiple SLC families, which might act during melanosome transportation to keratinocytes. These results indicate that eumelanin is likely an important component of the black substance. In addition, we observed upregulation in lipid metabolism in breeding season skins. We suggest that the lipids contribute to an oil base, which imbues the black substance with water insolubility and enhances its adhesion to feather surfaces. In nonbreeding season skins, we observed upregulation in cell adhesion molecules, which play critical roles in cell interactions. A number of molecules involved in innervation and angiogenesis were upregulated, indicating an ongoing expansion of nerves and blood vessels in sampled skins. Feather β keratin, a basic component of avian feather filament, was also upregulated. These results are consistent with feather regeneration in the black skin of nonbreeding season ibises. Our results provide the first molecular evidence indicating that eumelanin is the key component of ibis coloration.
Collapse
Affiliation(s)
| | | | | | - Sheng-Guo Fang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (L.S.); (T.Z.); (Q.-H.W.)
| |
Collapse
|
14
|
Posbergh CJ, Staiger EA, Huson HJ. A Stop-Gain Mutation within MLPH Is Responsible for the Lilac Dilution Observed in Jacob Sheep. Genes (Basel) 2020; 11:genes11060618. [PMID: 32512769 PMCID: PMC7349772 DOI: 10.3390/genes11060618] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 11/16/2022] Open
Abstract
A coat color dilution, called lilac, was observed within the Jacob sheep breed. This dilution results in sheep appearing gray, where black would normally occur. Pedigree analysis suggested an autosomal recessive inheritance. Whole-genome sequencing of a dilute case, a known carrier, and sixteen non-dilute sheep was used to identify the molecular variant responsible for the coat color change. Through investigation of the genes MLPH, MYO5A, and RAB27A, we discovered a nonsynonymous mutation within MLPH, which appeared to match the reported autosomal recessive nature of the lilac dilution. This mutation (NC_019458.2:g.3451931C>A) results in a premature stop codon being introduced early in the protein (NP_001139743.1:p.Glu14*), likely losing its function. Validation testing of additional lilac Jacob sheep and known carriers, unrelated to the original case, showed a complete concordance between the mutation and the dilution. This stop-gain mutation is likely the causative mutation for dilution within Jacob sheep.
Collapse
Affiliation(s)
- Christian J. Posbergh
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA;
- Correspondence: (C.J.P.); (H.J.H.)
| | - Elizabeth A. Staiger
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA;
- Department of Animal Sciences, Auburn University, Auburn, AL 36849, USA
| | - Heather J. Huson
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA;
- Correspondence: (C.J.P.); (H.J.H.)
| |
Collapse
|
15
|
Abstract
Cross-talk between the microtubule and actin networks has come under intense scrutiny following the realization that it is crucial for numerous essential processes, ranging from cytokinesis to cell migration. It is becoming increasingly clear that proteins long-considered highly specific for one or the other cytoskeletal system do, in fact, make use of both filament types. How this functional duality of "shared proteins" has evolved and how their coadaptation enables cross-talk at the molecular level remain largely unknown. We previously discovered that the mammalian adaptor protein melanophilin of the actin-associated myosin motor is one such "shared protein," which also interacts with microtubules in vitro. In a hypothesis-driven in vitro and in silico approach, we turn to early and lower vertebrates and ask two fundamental questions. First, is the capability of interacting with microtubules and actin filaments unique to mammalian melanophilin or did it evolve over time? Second, what is the functional consequence of being able to interact with both filament types at the cellular level? We describe the emergence of a protein domain that confers the capability of interacting with both filament types onto melanophilin. Strikingly, our computational modeling demonstrates that the regulatory power of this domain on the microscopic scale alone is sufficient to recapitulate previously observed behavior of pigment organelles in amphibian melanophores. Collectively, our dissection provides a molecular framework for explaining the underpinnings of functional cross-talk and its potential to orchestrate the cell-wide redistribution of organelles on the cytoskeleton.
Collapse
|
16
|
Ranjan P, Awasthi M, Snell WJ. Transient Internalization and Microtubule-Dependent Trafficking of a Ciliary Signaling Receptor from the Plasma Membrane to the Cilium. Curr Biol 2019; 29:2942-2947.e2. [PMID: 31422889 DOI: 10.1016/j.cub.2019.07.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/03/2019] [Accepted: 07/09/2019] [Indexed: 12/24/2022]
Abstract
Cilia are ancient organelles used by unicellular and multicellular organisms not only for motility but also to receive and respond to multiple environmental cues, including light, odorants, morphogens, growth factors, and contact with cilia of other cells. Much is known about the cellular mechanisms that deliver membrane proteins to cilia during ciliogenesis. Execution of a ciliary signaling pathway, however, can critically depend on rapid alterations in the receptor composition of the cilium itself, and our understanding of the mechanisms that underlie these rapid, regulated alterations remains limited [1-6]. In the bi-ciliated, unicellular alga Chlamydomonas reinhardtii, interactions between cilia of mating type plus and mating type minus gametes mediated by adhesion receptors SAG1 and SAD1 activate a ciliary signaling pathway [7]. In response, a large, inactive pool of SAG1 on the plasma membrane of plus gametes rapidly becomes enriched in the peri-ciliary membrane and enters the cilia to become active and maintain and enhance ciliary adhesion and signaling [8-14]. Ciliary entry per se of SAG1 is independent of anterograde intraflagellar transport (IFT) [13], but the rapid apical enrichment requires cytoplasmic microtubules and the retrograde IFT motor, dynein 1b [14]. Whether the receptors move laterally within the plasma membrane or transit internally during redistribution is unknown. Here, in coupled immunolocalization/biochemical studies on SAG1, we show that, within minutes after gamete activation is initiated, cell-surface SAG1 is internalized, associates with an apico-basally polarized array of cytoplasmic microtubules, and returns to the cell surface at a peri-ciliary staging area for entry into cilia.
Collapse
Affiliation(s)
- Peeyush Ranjan
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Mayanka Awasthi
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - William J Snell
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
17
|
Allard J, Doumic M, Mogilner A, Oelz D. Bidirectional sliding of two parallel microtubules generated by multiple identical motors. J Math Biol 2019; 79:571-594. [PMID: 31016335 PMCID: PMC11100485 DOI: 10.1007/s00285-019-01369-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/07/2019] [Indexed: 10/27/2022]
Abstract
It is often assumed in biophysical studies that when multiple identical molecular motors interact with two parallel microtubules, the microtubules will be crosslinked and locked together. The aim of this study is to examine this assumption mathematically. We model the forces and movements generated by motors with a time-continuous Markov process and find that, counter-intuitively, a tug-of-war results from opposing actions of identical motors bound to different microtubules. The model shows that many motors bound to the same microtubule generate a great force applied to a smaller number of motors bound to another microtubule, which increases detachment rate for the motors in minority, stabilizing the directional sliding. However, stochastic effects cause occasional changes of the sliding direction, which has a profound effect on the character of the long-term microtubule motility, making it effectively diffusion-like. Here, we estimate the time between the rare events of switching direction and use them to estimate the effective diffusion coefficient for the microtubule pair. Our main result is that parallel microtubules interacting with multiple identical motors are not locked together, but rather slide bidirectionally. We find explicit formulae for the time between directional switching for various motor numbers.
Collapse
Affiliation(s)
- Jun Allard
- Department of Mathematics, University of California Irvine, Irvine, CA, USA
| | - Marie Doumic
- Inria, UPMC Univ Paris 06, Lab. J.L. Lions UMR CNRS 7598, Sorbonne Universités, Paris, France
| | - Alex Mogilner
- Courant Institute of Mathematical Sciences, New York University, New York, NY, 10012, USA
| | - Dietmar Oelz
- School of Mathematics and Physics, The University of Queensland, St. Lucia, QLD, 4072, Australia.
| |
Collapse
|
18
|
Herranz G, Aguilera P, Dávila S, Sánchez A, Stancu B, Gómez J, Fernández-Moreno D, de Martín R, Quintanilla M, Fernández T, Rodríguez-Silvestre P, Márquez-Expósito L, Bello-Gamboa A, Fraile-Ramos A, Calvo V, Izquierdo M. Protein Kinase C δ Regulates the Depletion of Actin at the Immunological Synapse Required for Polarized Exosome Secretion by T Cells. Front Immunol 2019; 10:851. [PMID: 31105694 PMCID: PMC6499072 DOI: 10.3389/fimmu.2019.00851] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 04/02/2019] [Indexed: 12/02/2022] Open
Abstract
Multivesicular bodies (MVB) are endocytic compartments that enclose intraluminal vesicles (ILVs) formed by inward budding from the limiting membrane of endosomes. In T lymphocytes, ILVs are secreted as Fas ligand-bearing, pro-apoptotic exosomes following T cell receptor (TCR)-induced fusion of MVB with the plasma membrane at the immune synapse (IS). In this study we show that protein kinase C δ (PKCδ), a novel PKC isotype activated by diacylglycerol (DAG), regulates TCR-controlled MVB polarization toward the IS and exosome secretion. Concomitantly, we demonstrate that PKCδ-interfered T lymphocytes are defective in activation-induced cell death. Using a DAG sensor based on the C1 DAG-binding domain of PKCδ and a GFP-PKCδ chimera, we reveal that T lymphocyte activation enhances DAG levels at the MVB endomembranes which mediates the association of PKCδ to MVB. Spatiotemporal reorganization of F-actin at the IS is inhibited in PKCδ-interfered T lymphocytes. Therefore, we propose PKCδ as a DAG effector that regulates the actin reorganization necessary for MVB traffic and exosome secretion.
Collapse
Affiliation(s)
- Gonzalo Herranz
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Pablo Aguilera
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Sergio Dávila
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Alicia Sánchez
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Bianca Stancu
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Jesús Gómez
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - David Fernández-Moreno
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Raúl de Martín
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Mario Quintanilla
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Teresa Fernández
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Pablo Rodríguez-Silvestre
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Laura Márquez-Expósito
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Ana Bello-Gamboa
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Alberto Fraile-Ramos
- Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Víctor Calvo
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Manuel Izquierdo
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| |
Collapse
|
19
|
Hasegawa S, Sagawa T, Ikeda K, Okada Y, Hayashi K. Investigation of multiple-dynein transport of melanosomes by non-invasive force measurement using fluctuation unit χ. Sci Rep 2019; 9:5099. [PMID: 30911050 PMCID: PMC6433852 DOI: 10.1038/s41598-019-41458-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 03/05/2019] [Indexed: 12/19/2022] Open
Abstract
Pigment organelles known as melanosomes disperse or aggregate in a melanophore in response to hormones. These movements are mediated by the microtubule motors kinesin-2 and cytoplasmic dynein. However, the force generation mechanism of dynein, unlike that of kinesin, is not well understood. In this study, to address this issue, we investigated the dynein-mediated aggregation of melanosomes in zebrafish melanophores. We applied the fluctuation theorem of non-equilibrium statistical mechanics to estimate forces acting on melanosomes during transport by dynein, given that the energy of a system is related to its fluctuation. Our results demonstrate that multiple force-producing units cooperatively transport a single melanosome. Since the force is generated by dynein, this suggests that multiple dyneins carry a single melanosome. Cooperative transport has been reported for other organelles; thus, multiple-motor transport may be a universal mechanism for moving organelles within the cell.
Collapse
Affiliation(s)
- Shin Hasegawa
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Takashi Sagawa
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Japan
| | - Kazuho Ikeda
- Laboratory for Cell Dynamics Observation, Center for Biosystems Dynamics Research, RIKEN, Osaka, Japan
| | - Yasushi Okada
- Laboratory for Cell Dynamics Observation, Center for Biosystems Dynamics Research, RIKEN, Osaka, Japan.,Department of Physics and Universal Biology Institute, Graduate School of Science, The University of Tokyo, Tokyo, Japan.,Department of Physics, Universal Biology Institute, and the International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan
| | - Kumiko Hayashi
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, Japan.
| |
Collapse
|
20
|
Stepp WL, Merck G, Mueller-Planitz F, Ökten Z. Kinesin-2 motors adapt their stepping behavior for processive transport on axonemes and microtubules. EMBO Rep 2017; 18:1947-1956. [PMID: 28887322 DOI: 10.15252/embr.201744097] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 08/11/2017] [Accepted: 08/14/2017] [Indexed: 11/09/2022] Open
Abstract
Two structurally distinct filamentous tracks, namely singlet microtubules in the cytoplasm and axonemes in the cilium, serve as railroads for long-range transport processes in vivo In all organisms studied so far, the kinesin-2 family is essential for long-range transport on axonemes. Intriguingly, in higher eukaryotes, kinesin-2 has been adapted to work on microtubules in the cytoplasm as well. Here, we show that heterodimeric kinesin-2 motors distinguish between axonemes and microtubules. Unlike canonical kinesin-1, kinesin-2 takes directional, off-axis steps on microtubules, but it resumes a straight path when walking on the axonemes. The inherent ability of kinesin-2 to side-track on the microtubule lattice restricts the motor to one side of the doublet microtubule in axonemes. The mechanistic features revealed here provide a molecular explanation for the previously observed partitioning of oppositely moving intraflagellar transport trains to the A- and B-tubules of the same doublet microtubule. Our results offer first mechanistic insights into why nature may have co-evolved the heterodimeric kinesin-2 with the ciliary machinery to work on the specialized axonemal surface for two-way traffic.
Collapse
Affiliation(s)
- Willi L Stepp
- Physik Department E22, Technische Universität München, Garching, Germany
| | - Georg Merck
- Physik Department E22, Technische Universität München, Garching, Germany
| | - Felix Mueller-Planitz
- Molecular Biology, Biomedical Center, Faculty of Medicine, LMU Munich, Martinsried, Germany
| | - Zeynep Ökten
- Physik Department E22, Technische Universität München, Garching, Germany .,Munich Center for Integrated Protein Science, Munich, Germany
| |
Collapse
|
21
|
Heissler SM, Chinthalapudi K, Sellers JR. Kinetic signatures of myosin-5B, the motor involved in microvillus inclusion disease. J Biol Chem 2017; 292:18372-18385. [PMID: 28882893 DOI: 10.1074/jbc.m117.801456] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/29/2017] [Indexed: 11/06/2022] Open
Abstract
Myosin-5B is a ubiquitous molecular motor that transports cargo vesicles of the endomembrane system in intracellular recycling pathways. Myosin-5B malfunction causes the congenital enteropathy microvillus inclusion disease, underlining its importance in cellular homeostasis. Here we describe the interaction of myosin-5B with F-actin, nucleotides, and the pyrazolopyrimidine compound myoVin-1. We show that single-headed myosin-5B is an intermediate duty ratio motor with a kinetic ATPase cycle that is rate-limited by the release of phosphate. The presence of a second head generates strain and gating in the myosin-5B dimer that alters the kinetic signature by reducing the actin-activated ADP release rate to become rate-limiting. This kinetic transition into a high-duty ratio motor is a prerequisite for the proposed transport function of myosin-5B in cellular recycling pathways. Moreover, we show that the small molecule compound myoVin-1 inhibits the enzymatic and functional activity of myosin-5B in vitro Partial inhibition of the actin-activated steady-state ATPase activity and sliding velocity suggests that caution should be used when probing the effect of myoVin-1 on myosin-5-dependent transport processes in cells.
Collapse
Affiliation(s)
- Sarah M Heissler
- From the Laboratory of Molecular Physiology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892-8015 and
| | - Krishna Chinthalapudi
- the Cell Adhesion Laboratory, Department of Integrative Structural and Computational Biology, Scripps Research Institute, Jupiter, Florida 33458
| | - James R Sellers
- From the Laboratory of Molecular Physiology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892-8015 and
| |
Collapse
|
22
|
Bica I, Hillen T, Painter KJ. Aggregation of biological particles under radial directional guidance. J Theor Biol 2017; 427:77-89. [PMID: 28596112 DOI: 10.1016/j.jtbi.2017.05.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 04/21/2017] [Accepted: 05/31/2017] [Indexed: 11/18/2022]
Abstract
Many biological environments display an almost radially-symmetric structure, allowing proteins, cells or animals to move in an oriented fashion. Motivated by specific examples of cell movement in tissues, pigment protein movement in pigment cells and animal movement near watering holes, we consider a class of radially-symmetric anisotropic diffusion problems, which we call the star problem. The corresponding diffusion tensor D(x) is radially symmetric with isotropic diffusion at the origin. We show that the anisotropic geometry of the environment can lead to strong aggregations and blow-up at the origin. We classify the nature of aggregation and blow-up solutions and provide corresponding numerical simulations. A surprising element of this strong aggregation mechanism is that it is entirely based on geometry and does not derive from chemotaxis, adhesion or other well known aggregating mechanisms. We use these aggregate solutions to discuss the process of pigmentation changes in animals, cancer invasion in an oriented fibrous habitat (such as collagen fibres), and sheep distributions around watering holes.
Collapse
Affiliation(s)
- Ion Bica
- MacEwan University, Edmonton, Canada.
| | - Thomas Hillen
- Centre for Mathematical Biology, Department of Mathematical and Statistical Sciences, University of Alberta, Canada.
| | - Kevin J Painter
- Department of Mathematics and Maxwell Institute for Mathematical Sciences, Heriot-Watt University, Edinburgh, UK; Department of Mathematical Sciences, Politecnico di Torino, Torino, Italy.
| |
Collapse
|
23
|
Myosin Va's adaptor protein melanophilin enforces track selection on the microtubule and actin networks in vitro. Proc Natl Acad Sci U S A 2017; 114:E4714-E4723. [PMID: 28559319 DOI: 10.1073/pnas.1619473114] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pigment organelles, or melanosomes, are transported by kinesin, dynein, and myosin motors. As such, melanosome transport is an excellent model system to study the functional relationship between the microtubule- and actin-based transport systems. In mammalian melanocytes, it is well known that the Rab27a/melanophilin/myosin Va complex mediates actin-based transport in vivo. However, pathways that regulate the overall directionality of melanosomes on the actin/microtubule networks have not yet been delineated. Here, we investigated the role of PKA-dependent phosphorylation on the activity of the actin-based Rab27a/melanophilin/myosin Va transport complex in vitro. We found that melanophilin, specifically its C-terminal actin-binding domain (ABD), is a target of PKA. Notably, in vitro phosphorylation of the ABD closely recapitulated the previously described in vivo phosphorylation pattern. Unexpectedly, we found that phosphorylation of the ABD affected neither the interaction of the complex with actin nor its movement along actin tracks. Surprisingly, the phosphorylation state of melanophilin was instead important for reversible association with microtubules in vitro. Dephosphorylated melanophilin preferred binding to microtubules even in the presence of actin, whereas phosphorylated melanophilin associated with actin. Indeed, when actin and microtubules were present simultaneously, melanophilin's phosphorylation state enforced track selection of the Rab27a/melanophilin/myosin Va transport complex. Collectively, our results unmasked the regulatory dominance of the melanophilin adaptor protein over its associated motor and offer an unexpected mechanism by which filaments of the cytoskeletal network compete for the moving organelles to accomplish directional transport on the cytoskeleton in vivo.
Collapse
|
24
|
McCloskey RJ. Sleep and cargo reorganization: A hypothesis. Med Hypotheses 2017; 100:37-42. [PMID: 28236845 DOI: 10.1016/j.mehy.2017.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/03/2017] [Accepted: 01/12/2017] [Indexed: 11/19/2022]
Abstract
Several molecules that act in the nervous system to regulate sleep and wake were first identified based on their transport effects in pigmented cells. I compiled a list of such molecules like melatonin, melanin-concentrating hormone, and pigment dispersing factor, etc. Molecules that induce pigment aggregation promote sleep whereas molecules that induce pigment dispersal promote wake. I call these Sleep and PIgment Regulating Factors SPIRFs. SPIRFs regulate organelle trafficking in both pigmentary models and neurons. I propose that cargo transport fulfills necessary sleep functions such as remodeling synapses and restoring homeostasis in the distribution of cell components. I put forth the hypothesis that sleep-promoting SPIRFs induce states of increased cargo movement towards the cell body, and propose that this function is a critical neuron maintenance task for which animals must sleep.
Collapse
|
25
|
Hsu HT, Mace EM, Carisey AF, Viswanath DI, Christakou AE, Wiklund M, Önfelt B, Orange JS. NK cells converge lytic granules to promote cytotoxicity and prevent bystander killing. J Cell Biol 2016; 215:875-889. [PMID: 27903610 PMCID: PMC5166499 DOI: 10.1083/jcb.201604136] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 09/04/2016] [Accepted: 10/28/2016] [Indexed: 12/16/2022] Open
Abstract
Natural killer (NK) cell activation triggers sequential cellular events leading to destruction of diseased cells. We previously identified lytic granule convergence, a dynein- and integrin signal-dependent movement of lysosome-related organelles to the microtubule-organizing center, as an early step in the cell biological process underlying NK cell cytotoxicity. Why lytic granules converge during NK cell cytotoxicity, however, remains unclear. We experimentally controlled the availability of human ligands to regulate NK cell signaling and promote granule convergence with either directed or nondirected degranulation. By the use of acoustic trap microscopy, we generated specific effector-target cell arrangements to define the impact of the two modes of degranulation. NK cells with converged granules had greater targeted and less nonspecific "bystander" killing. Additionally, NK cells in which dynein was inhibited or integrin blocked under physiological conditions demonstrated increased nondirected degranulation and bystander killing. Thus, NK cells converge lytic granules and thereby improve the efficiency of targeted killing and prevent collateral damage to neighboring healthy cells.
Collapse
Affiliation(s)
- Hsiang-Ting Hsu
- Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030
- Department of Pediatrics, Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030
| | - Emily M Mace
- Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030
- Department of Pediatrics, Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030
| | - Alexandre F Carisey
- Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030
- Department of Pediatrics, Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030
| | - Dixita I Viswanath
- Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030
- Rice University, Houston, TX 77005
| | - Athanasia E Christakou
- Department of Applied Physics, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| | - Martin Wiklund
- Department of Applied Physics, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| | - Björn Önfelt
- Department of Applied Physics, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Jordan S Orange
- Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030
- Department of Pediatrics, Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030
- Rice University, Houston, TX 77005
| |
Collapse
|
26
|
Raghupathy RK, Zhang X, Alhasani RH, Zhou X, Mullin M, Reilly J, Li W, Liu M, Shu X. Abnormal photoreceptor outer segment development and early retinal degeneration in kif3a mutant zebrafish. Cell Biochem Funct 2016; 34:429-40. [PMID: 27470972 DOI: 10.1002/cbf.3205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 01/09/2023]
Abstract
Photoreceptors are highly specialized sensory neurons that possess a modified primary cilium called the outer segment. Photoreceptor outer segment formation and maintenance require highly active protein transport via a process known as intraflagellar transport. Anterograde transport in outer segments is powered by the heterotrimeric kinesin II and coordinated by intraflagellar transport proteins. Here, we describe a new zebrafish model carrying a nonsense mutation in the kinesin II family member 3A (kif3a) gene. Kif3a mutant zebrafish exhibited curved body axes and kidney cysts. Outer segments were not formed in most parts of the mutant retina, and rhodopsin was mislocalized, suggesting KIF3A has a role in rhodopsin trafficking. Both rod and cone photoreceptors degenerated rapidly between 4 and 9 days post fertilization, and electroretinography response was not detected in 7 days post fertilization mutant larvae. Loss of KIF3A in zebrafish also resulted in an intracellular transport defect affecting anterograde but not retrograde transport of organelles. Our results indicate KIF3A plays a conserved role in photoreceptor outer segment formation and intracellular transport.
Collapse
Affiliation(s)
| | - Xun Zhang
- Department of Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Reem H Alhasani
- Department of Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Xinzhi Zhou
- Department of Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | | | - James Reilly
- Department of Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Wenchang Li
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | - Mugen Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinhua Shu
- Department of Life Sciences, Glasgow Caledonian University, Glasgow, UK
| |
Collapse
|
27
|
Lee SH, Lee MS, Choi TI, Hong H, Seo JY, Kim CH, Kim J. MCRS1 associates with cytoplasmic dynein and mediates pericentrosomal material recruitment. Sci Rep 2016; 6:27284. [PMID: 27263857 PMCID: PMC4893664 DOI: 10.1038/srep27284] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/13/2016] [Indexed: 12/20/2022] Open
Abstract
MCRS1 is involved in multiple cellular activities, including mitotic spindle assembly, mTOR signaling and tumorigenesis. Although MCRS1 has been reported to bind to the dynein regulator NDE1, a functional interaction between MCRS1 and cytoplasmic dynein remains unaddressed. Here, we demonstrate that MCRS1 is required for dynein-dependent cargo transport to the centrosome and also plays a role in primary cilium formation. MCRS1 localized to centriolar satellites. Knockdown of MCRS1 resulted in a dispersion of centriolar satellites whose establishment depends on cytoplasmic dynein. By contrast, NDE1 was not necessary for the proper distribution of centriolar satellites, indicating a functional distinction between MCRS1 and NDE1. Unlike NDE1, MCRS1 played a positive role for the initiation of ciliogenesis, possibly through its interaction with TTBK2. Zebrafish with homozygous mcrs1 mutants exhibited a reduction in the size of the brain and the eye due to excessive apoptosis. In addition, mcrs1 mutants failed to develop distinct layers in the retina, and showed a defect in melatonin-induced aggregation of melanosomes in melanophores. These phenotypes are reminiscent of zebrafish dynein mutants. Reduced ciliogenesis was also apparent in the olfactory placode of mcrs1 mutants. Collectively, our findings identify MCRS1 as a dynein-interacting protein critical for centriolar satellite formation and ciliogenesis.
Collapse
Affiliation(s)
- Si-Hyung Lee
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea
| | - Mi-Sun Lee
- Department of Biology, Chungnam National University, Daejeon 34134, Korea
| | - Tae-Ik Choi
- Department of Biology, Chungnam National University, Daejeon 34134, Korea
| | - Hyowon Hong
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea
| | - Jun-Young Seo
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon 34134, Korea
| | - Joon Kim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea
| |
Collapse
|
28
|
Cargo transport at microtubule crossings: evidence for prolonged tug-of-war between kinesin motors. Biophys J 2016; 108:1480-1483. [PMID: 25809260 DOI: 10.1016/j.bpj.2015.02.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 02/06/2015] [Accepted: 02/20/2015] [Indexed: 11/23/2022] Open
Abstract
Intracellular transport of cargos along microtubules is often complicated by the topology of the underlying filament network. The fundamental building blocks for this complex arrangement are filament intersections. The navigation of cargos across microtubule intersections remains poorly understood. Here, we demonstrate that kinesin-driven cargos are engaged in a tug-of-war at microtubule intersections. Tug-of-war events result in long pauses that can last from a few seconds to several minutes. We demonstrate that the extent of the tug-of-war and the duration of pauses change with the number of motors on the cargo and can be regulated by ionic strength. We also show that dwell times at intersections depend on the angle between crossing microtubules. Our data suggest that local microtubule geometry can regulate microtubule-based transport.
Collapse
|
29
|
Heissler SM, Sellers JR. Kinetic Adaptations of Myosins for Their Diverse Cellular Functions. Traffic 2016; 17:839-59. [PMID: 26929436 DOI: 10.1111/tra.12388] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 02/25/2016] [Accepted: 02/25/2016] [Indexed: 12/18/2022]
Abstract
Members of the myosin superfamily are involved in all aspects of eukaryotic life. Their function ranges from the transport of organelles and cargos to the generation of membrane tension, and the contraction of muscle. The diversity of physiological functions is remarkable, given that all enzymatically active myosins follow a conserved mechanoenzymatic cycle in which the hydrolysis of ATP to ADP and inorganic phosphate is coupled to either actin-based transport or tethering of actin to defined cellular compartments. Kinetic capacities and limitations of a myosin are determined by the extent to which actin can accelerate the hydrolysis of ATP and the release of the hydrolysis products and are indispensably linked to its physiological tasks. This review focuses on kinetic competencies that - together with structural adaptations - result in myosins with unique mechanoenzymatic properties targeted to their diverse cellular functions.
Collapse
Affiliation(s)
- Sarah M Heissler
- Laboratory of Molecular Physiology, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Drive, B50/3523, Bethesda, MD 20892-8015, USA
| | - James R Sellers
- Laboratory of Molecular Physiology, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Drive, B50/3523, Bethesda, MD 20892-8015, USA
| |
Collapse
|
30
|
Rezaul K, Gupta D, Semenova I, Ikeda K, Kraikivski P, Yu J, Cowan A, Zaliapin I, Rodionov V. Engineered Tug-of-War Between Kinesin and Dynein Controls Direction of Microtubule Based Transport In Vivo. Traffic 2016; 17:475-86. [PMID: 26843027 DOI: 10.1111/tra.12385] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 02/01/2016] [Accepted: 02/01/2016] [Indexed: 01/19/2023]
Abstract
Bidirectional transport of membrane organelles along microtubules (MTs) is driven by plus-end directed kinesins and minus-end directed dynein bound to the same cargo. Activities of opposing MT motors produce bidirectional movement of membrane organelles and cytoplasmic particles along MT transport tracks. Directionality of MT-based transport might be controlled by a protein complex that determines which motor type is active at any given moment of time, or determined by the outcome of a tug-of-war between MT motors dragging cargo organelles in opposite directions. However, evidence in support of each mechanisms of regulation is based mostly on the results of theoretical analyses or indirect experimental data. Here, we test whether the direction of movement of membrane organelles in vivo can be controlled by the tug-of-war between opposing MT motors alone, by attaching a large number of kinesin-1 motors to organelles transported by dynein to minus-ends of MTs. We find that recruitment of kinesin significantly reduces the length and velocity of minus-end-directed dynein-dependent MT runs, leading to a reversal of the overall direction of dynein-driven organelles in vivo. Therefore, in the absence of external regulators tug-of-war between opposing MT motors alone is sufficient to determine the directionality of MT transport in vivo.
Collapse
Affiliation(s)
- Karim Rezaul
- R.D.Berlin Center for Cell Analysis and Modeling, and Department of Cell Biology, UConn Health, 400 Farmington Avenue, Farmington, CT 06030-6406, USA
| | - Dipika Gupta
- R.D.Berlin Center for Cell Analysis and Modeling, and Department of Cell Biology, UConn Health, 400 Farmington Avenue, Farmington, CT 06030-6406, USA
| | - Irina Semenova
- R.D.Berlin Center for Cell Analysis and Modeling, and Department of Cell Biology, UConn Health, 400 Farmington Avenue, Farmington, CT 06030-6406, USA
| | - Kazuho Ikeda
- R.D.Berlin Center for Cell Analysis and Modeling, and Department of Cell Biology, UConn Health, 400 Farmington Avenue, Farmington, CT 06030-6406, USA.,Current address: Quantitative Biology Center, RIKEN, Osaka 565-0874, Japan
| | - Pavel Kraikivski
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0406, USA
| | - Ji Yu
- R.D.Berlin Center for Cell Analysis and Modeling, and Department of Cell Biology, UConn Health, 400 Farmington Avenue, Farmington, CT 06030-6406, USA
| | - Ann Cowan
- R.D.Berlin Center for Cell Analysis and Modeling, and Department of Cell Biology, UConn Health, 400 Farmington Avenue, Farmington, CT 06030-6406, USA
| | - Ilya Zaliapin
- Department of Mathematics and Statistics, University of Nevada-Reno, Reno, NV 89557, USA
| | - Vladimir Rodionov
- R.D.Berlin Center for Cell Analysis and Modeling, and Department of Cell Biology, UConn Health, 400 Farmington Avenue, Farmington, CT 06030-6406, USA
| |
Collapse
|
31
|
Fontana BD, Meinerz DL, Rosa LVC, Mezzomo NJ, Silveira A, Giuliani GS, Quadros VA, Filho GL, Blaser RE, Rosemberg DB. Modulatory action of taurine on ethanol-induced aggressive behavior in zebrafish. Pharmacol Biochem Behav 2016; 141:18-27. [DOI: 10.1016/j.pbb.2015.11.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/11/2015] [Accepted: 11/26/2015] [Indexed: 12/21/2022]
|
32
|
Jolly AL, Luan CH, Dusel BE, Dunne SF, Winding M, Dixit VJ, Robins C, Saluk JL, Logan DJ, Carpenter AE, Sharma M, Dean D, Cohen AR, Gelfand VI. A Genome-wide RNAi Screen for Microtubule Bundle Formation and Lysosome Motility Regulation in Drosophila S2 Cells. Cell Rep 2016; 14:611-620. [PMID: 26774481 DOI: 10.1016/j.celrep.2015.12.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/21/2015] [Accepted: 12/07/2015] [Indexed: 01/17/2023] Open
Abstract
Long-distance intracellular transport of organelles, mRNA, and proteins ("cargo") occurs along the microtubule cytoskeleton by the action of kinesin and dynein motor proteins, but the vast network of factors involved in regulating intracellular cargo transport are still unknown. We capitalize on the Drosophila melanogaster S2 model cell system to monitor lysosome transport along microtubule bundles, which require enzymatically active kinesin-1 motor protein for their formation. We use an automated tracking program and a naive Bayesian classifier for the multivariate motility data to analyze 15,683 gene phenotypes and find 98 proteins involved in regulating lysosome motility along microtubules and 48 involved in the formation of microtubule filled processes in S2 cells. We identify innate immunity genes, ion channels, and signaling proteins having a role in lysosome motility regulation and find an unexpected relationship between the dynein motor, Rab7a, and lysosome motility regulation.
Collapse
Affiliation(s)
- Amber L Jolly
- Department of Cell and Molecular Biology, Northwestern University, Chicago, IL 60611, USA; Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - Chi-Hao Luan
- High Throughput Analysis Laboratory, Northwestern University, Evanston, IL 60208, USA
| | - Brendon E Dusel
- High Throughput Analysis Laboratory, Northwestern University, Evanston, IL 60208, USA
| | - Sara F Dunne
- High Throughput Analysis Laboratory, Northwestern University, Evanston, IL 60208, USA
| | - Michael Winding
- Department of Cell and Molecular Biology, Northwestern University, Chicago, IL 60611, USA
| | - Vishrut J Dixit
- Department of Cell and Molecular Biology, Northwestern University, Chicago, IL 60611, USA
| | - Chloe Robins
- High Throughput Analysis Laboratory, Northwestern University, Evanston, IL 60208, USA
| | - Jennifer L Saluk
- High Throughput Analysis Laboratory, Northwestern University, Evanston, IL 60208, USA
| | - David J Logan
- Imaging Platform, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Anne E Carpenter
- Imaging Platform, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Manu Sharma
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - Deborah Dean
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - Andrew R Cohen
- Department of Electrical and Computer Engineering, Drexel University, Philadelphia, PA 19104, USA.
| | - Vladimir I Gelfand
- Department of Cell and Molecular Biology, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
33
|
Choi SY, Baek JI, Zuo X, Kim SH, Dunaief JL, Lipschutz JH. Cdc42 and sec10 Are Required for Normal Retinal Development in Zebrafish. Invest Ophthalmol Vis Sci 2015; 56:3361-70. [PMID: 26024121 DOI: 10.1167/iovs.14-15692] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To characterize the function and mechanisms of cdc42 and sec10 in eye development in zebrafish. METHODS Knockdown of zebrafish cdc42 and sec10 was carried out using antisense morpholino injection. The phenotype of morphants was characterized by histology, immunohistology, and transmission electron microscopy (TEM). To investigate a synergistic genetic interaction between cdc42 and sec10, we titrated suboptimal doses of cdc42 and sec10 morpholinos, and coinjected both morpholinos. To study trafficking, a melanosome transport assay was performed using epinephrine. RESULTS Cdc42 and sec10 knockdown in zebrafish resulted in both abnormal eye development and increased retinal cell death. Cdc42 morphants had a relatively normal retinal structure, aside from the absence of most connecting cilia and outer segments, whereas in sec10 morphants, much of the outer nuclear layer, which is composed of the photoreceptor nuclei, was missing and RPE cell thickness was markedly irregular. Knockdown of cdc42 and sec10 also resulted in an intracellular transport defect affecting retrograde melanosome transport. Furthermore, there was a synergistic genetic interaction between zebrafish cdc42 and sec10, suggesting that cdc42 and sec10 act in the same pathway in retinal development. CONCLUSIONS We propose a model whereby sec10 and cdc42 play a central role in development of the outer segment of the retinal photoreceptor cell by trafficking proteins necessary for ciliogenesis.
Collapse
Affiliation(s)
- Soo Young Choi
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Jeong-In Baek
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Xiaofeng Zuo
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Seok-Hyung Kim
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Joshua L Dunaief
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Joshua H Lipschutz
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States 3Department of Medicine, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, United States
| |
Collapse
|
34
|
De Rossi MC, De Rossi ME, Sued M, Rodríguez D, Bruno L, Levi V. Asymmetries in kinesin-2 and cytoplasmic dynein contributions to melanosome transport. FEBS Lett 2015; 589:2763-8. [DOI: 10.1016/j.febslet.2015.07.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/17/2015] [Accepted: 07/20/2015] [Indexed: 10/23/2022]
|
35
|
Semenova I, Ikeda K, Resaul K, Kraikivski P, Aguiar M, Gygi S, Zaliapin I, Cowan A, Rodionov V. Regulation of microtubule-based transport by MAP4. Mol Biol Cell 2014; 25:3119-32. [PMID: 25143402 PMCID: PMC4196864 DOI: 10.1091/mbc.e14-01-0022] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Microtubule (MT)-based transport of organelles driven by the opposing MT motors kinesins and dynein is tightly regulated in cells, but the underlying molecular mechanisms remain largely unknown. Here we tested the regulation of MT transport by the ubiquitous protein MAP4 using Xenopus melanophores as an experimental system. In these cells, pigment granules (melanosomes) move along MTs to the cell center (aggregation) or to the periphery (dispersion) by means of cytoplasmic dynein and kinesin-2, respectively. We found that aggregation signals induced phosphorylation of threonine residues in the MT-binding domain of the Xenopus MAP4 (XMAP4), thus decreasing binding of this protein to MTs. Overexpression of XMAP4 inhibited pigment aggregation by shortening dynein-dependent MT runs of melanosomes, whereas removal of XMAP4 from MTs reduced the length of kinesin-2-dependent runs and suppressed pigment dispersion. We hypothesize that binding of XMAP4 to MTs negatively regulates dynein-dependent movement of melanosomes and positively regulates kinesin-2-based movement. Phosphorylation during pigment aggregation reduces binding of XMAP4 to MTs, thus increasing dynein-dependent and decreasing kinesin-2-dependent motility of melanosomes, which stimulates their accumulation in the cell center, whereas dephosphorylation of XMAP4 during dispersion has an opposite effect.
Collapse
Affiliation(s)
- Irina Semenova
- R.D. Berlin Center for Cell Analysis and Modeling and Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030
| | - Kazuho Ikeda
- R.D. Berlin Center for Cell Analysis and Modeling and Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030 Quantitative Biology Center, RIKEN, Osaka 565-0874, Japan
| | - Karim Resaul
- R.D. Berlin Center for Cell Analysis and Modeling and Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030
| | - Pavel Kraikivski
- R.D. Berlin Center for Cell Analysis and Modeling and Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030 Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Mike Aguiar
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Steven Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Ilya Zaliapin
- Department of Mathematics and Statistics, University of Nevada-Reno, Reno, NV 89557
| | - Ann Cowan
- R.D. Berlin Center for Cell Analysis and Modeling and Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030
| | - Vladimir Rodionov
- R.D. Berlin Center for Cell Analysis and Modeling and Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030
| |
Collapse
|
36
|
Regulation of nitric-oxide production in hemocytes of the ascidian Phallusia nigra. Nitric Oxide 2014; 38:26-36. [DOI: 10.1016/j.niox.2014.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 02/17/2014] [Accepted: 02/21/2014] [Indexed: 11/19/2022]
|
37
|
Blehm BH, Selvin PR. Single-molecule fluorescence and in vivo optical traps: how multiple dyneins and kinesins interact. Chem Rev 2014; 114:3335-52. [PMID: 24666199 PMCID: PMC4049635 DOI: 10.1021/cr4005555] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Benjamin H. Blehm
- Physics Department and Center for Physics of the Living Cell, University of Illinois at Urbana- Champaign, 1110 West Green Street, Urbana, IL 61802
| | - Paul R. Selvin
- Physics Department and Center for Physics of the Living Cell, University of Illinois at Urbana- Champaign, 1110 West Green Street, Urbana, IL 61802
| |
Collapse
|
38
|
Sunscreen for fish: co-option of UV light protection for camouflage. PLoS One 2014; 9:e87372. [PMID: 24489905 PMCID: PMC3906139 DOI: 10.1371/journal.pone.0087372] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 12/24/2013] [Indexed: 12/19/2022] Open
Abstract
Many animals change their body pigmentation according to illumination of their environment. In aquatic vertebrates, this reaction is mediated through aggregation or dispersion of melanin-filled vesicles (melanosomes) in dermal pigment cells (melanophores). The adaptive value of this behavior is usually seen in camouflage by allowing the animal to visually blend into the background. When exposed to visible light from below, however, dark-adapted zebrafish embryos at the age of 2 days post fertilization (dpf) surprisingly display dispersal instead of aggregation of melanosomes, i.e. their body coloration becomes dark on a bright background. Melanosomes of older embryos and early larvae (3–5 dpf) on the other hand aggregate as expected under these conditions. Here we provide an explanation to this puzzling finding: Melanosome dispersion in larvae 3 dpf and older is efficiently triggered by ultraviolet (UV) light, irrespective of the visual background, suggesting that the extent of pigmentation is a trade-off between threats from predation and UV irradiation. The UV light-induced dispersion of melanosomes thereby is dependent on input from retinal short wavelength-sensitive (SWS) cone photoreceptors. In young embryos still lacking a functional retina, protection from UV light predominates, and light triggers a dispersal of melanosomes via photoreceptors intrinsic to the melanophores, regardless of the actual UV content. In older embryos and early larvae with functional retinal photoreceptors in contrast, this light-induced dispersion is counteracted by a delayed aggregation in the absence of UV light. These data suggest that the primary function of melanosome dispersal has evolved as a protective adaption to prevent UV damage, which was only later co-opted for camouflage.
Collapse
|
39
|
When size does matter: organelle size influences the properties of transport mediated by molecular motors. Biochim Biophys Acta Gen Subj 2013; 1830:5095-103. [DOI: 10.1016/j.bbagen.2013.06.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 05/07/2013] [Accepted: 06/29/2013] [Indexed: 12/18/2022]
|
40
|
Poelstra JW, Ellegren H, Wolf JBW. An extensive candidate gene approach to speciation: diversity, divergence and linkage disequilibrium in candidate pigmentation genes across the European crow hybrid zone. Heredity (Edinb) 2013; 111:467-73. [PMID: 23881172 DOI: 10.1038/hdy.2013.68] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 05/24/2013] [Accepted: 06/12/2013] [Indexed: 11/09/2022] Open
Abstract
Colouration patterns have an important role in adaptation and speciation. The European crow system, in which all-black carrion crows and grey-coated hooded crows meet in a narrow hybrid zone, is a prominent example. The marked phenotypic difference is maintained by assortative mating in the absence of neutral genetic divergence, suggesting the presence of few pigmentation genes of major effect. We made use of the rich phenotypic and genetic resources in mammals and identified a comprehensive panel of 95 candidate pigmentation genes for birds. Based on functional annotation, we chose a subset of the most promising 37 candidates, for which we developed a marker system that demonstrably works across the avian phylogeny. In total, we sequenced 107 amplicons (∼3 loci per gene, totalling 60 kb) in population samples of crows (n=23 for each taxon). Tajima's D, Fu's FS, DHEW and HKA (Hudson-Kreitman-Aguade) statistics revealed several amplicons that deviated from neutrality; however, none of these showed significantly elevated differentiation between the two taxa. Hence, colour divergence in this system may be mediated by uncharacterized pigmentation genes or regulatory regions outside genes. Alternatively, the observed high population recombination rate (4Ner∼0.03), with overall linkage disequilibrium dropping rapidly within the order of few 100 bp, may compromise the power to detect causal loci with nearby markers. Our results add to the debate as to the utility of candidate gene approaches in relation to genomic features and the genetic architecture of the phenotypic trait in question.
Collapse
Affiliation(s)
- J W Poelstra
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala, Sweden
| | | | | |
Collapse
|
41
|
Cirera S, Markakis MN, Christensen K, Anistoroaei R. New insights into the melanophilin (MLPH) gene controlling coat color phenotypes in American mink. Gene 2013; 527:48-54. [PMID: 23747352 DOI: 10.1016/j.gene.2013.05.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 05/21/2013] [Accepted: 05/23/2013] [Indexed: 10/26/2022]
Abstract
The mutation causing the Silverblue color type (pp) is one of the most used recessive mutations within American mink (Neovison vison) fur farming, since it is involved in some of the popular color types such as Violet and Saphire which originate from a combination of recessive mutations. In the present study, the genomic and mRNA sequences of the melanophilin (MLPH) gene were studied in Violet, Silverblue and wild-type (wt) mink animals. Although breeding schemes and previous literature indicates that the Violet (aammpp) phenotype is a triple recessive color type involving the same locus as the Silverblue (pp) color type, our findings indicate different genotypes at the MLPH locus. Upon comparison at genomic level, we identified two deletions of the entire intron 7 and of the 5' end of intron 8 in the sequence of the Silverblue MLPH gene. When investigating the mRNA, the Silverblue animals completely lack exon 8, which encodes 65 residues, of which 47 define the Myosin Va (MYO5A) binding domain. This may cause the incorrect anchoring of the MLPH protein to MYO5A in Silverblue animals, resulting in an improper pigmentation as seen in diluted phenotypes. Additionally, in the MLPH mRNA of wt, Violet and Silverblue phenotypes, part of intron 8 is retained resulting in a truncated MLPH protein, which is 359 residues long in wt and Violet and 284 residues long in Silverblue. Subsequently, our findings point out that the missing actin-binding domain, in neither of the 3 analyzed phenotypes affects the transport of melanosomes or the consequent final pigmentation. Moreover, the loss of the major part of the MYO5A domain in the Silverblue MLPH protein seems to be the responsible for the dilute phenotype. Based on our genomic DNA data, genetic tests for selecting Silverblue and Violet carrier animals can be performed in American mink.
Collapse
Affiliation(s)
- Susanna Cirera
- University of Copenhagen, Faculty of Health and Medical Science, Department of Veterinary Clinical and Animal Sciences, Division of Genetics, Bioinformatics and Breeding, 1870 Frederiksberg C, Denmark
| | | | | | | |
Collapse
|
42
|
Scholey JM. Kinesin-2: a family of heterotrimeric and homodimeric motors with diverse intracellular transport functions. Annu Rev Cell Dev Biol 2013; 29:443-69. [PMID: 23750925 DOI: 10.1146/annurev-cellbio-101512-122335] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Kinesin-2 was first purified as a heterotrimeric, anterograde, microtubule-based motor consisting of two distinct kinesin-related subunits and a novel associated protein (KAP) that is currently best known for its role in intraflagellar transport and ciliogenesis. Subsequent work, however, has revealed diversity in the oligomeric state of different kinesin-2 motors owing to the combinatorial heterodimerization of its subunits and the coexistence of both heterotrimeric and homodimeric kinesin-2 motors in some cells. Although the functional significance of the homo- versus heteromeric organization of kinesin-2 motor subunits and the role of KAP remain uncertain, functional studies suggest that cooperation between different types of kinesin-2 motors or between kinesin-2 and a member of a different motor family can generate diverse patterns of anterograde intracellular transport. Moreover, despite being restricted to ciliated eukaryotes, kinesin-2 motors are now known to drive diverse transport events outside cilia. Here, I review the organization, assembly, phylogeny, biological functions, and motility mechanism of this diverse family of intracellular transport motors.
Collapse
Affiliation(s)
- Jonathan M Scholey
- Department of Molecular and Cell Biology, University of California, Davis, California 95616;
| |
Collapse
|
43
|
Abstract
The compartmentalization of cellular functions in complex membranous organelles is a key feature of eukaryotic cells. To cope with the enormous complexity of trafficking pathways that connect these compartments, new approaches need to be considered and introduced into the field of cell biology. We exploit the advantages of the "micropatterning technique," which is to bring cells to adopt a highly reproducible shape, and probabilistic density mapping, which quantifies spatial organization of trafficking compartments, to study regulatory mechanisms of intracellular trafficking. Here, we provide a protocol to analyze and quantify alterations in trafficking compartments upon cellular manipulation. We demonstrate how this approach can be employed to study the regulation of Rab6-labeled transport carriers by the cytoskeleton.
Collapse
|
44
|
Frost R, Norström E, Bodin L, Langhammer C, Sturve J, Wallin M, Svedhem S. Acoustic detection of melanosome transport in Xenopus laevis melanophores. Anal Biochem 2012; 435:10-8. [PMID: 23262280 DOI: 10.1016/j.ab.2012.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 12/04/2012] [Accepted: 12/05/2012] [Indexed: 11/19/2022]
Abstract
Organelle transport studies are often performed using melanophores from lower vertebrates due to the ease of inducing movements of pigment granules (melanosomes) and visualizing them by optical microscopy. Here, we present a novel methodology to monitor melanosome translocation (which is a light-sensitive process) in the dark using the quartz crystal microbalance with dissipation monitoring (QCM-D) technique. This acoustic sensing method was used to study dispersion and aggregation of melanosomes in Xenopus laevis melanophores. Reversible sensor responses, correlated to optical reflectance measurements, were obtained by alternating addition and removal of melatonin (leading to melanosome aggregation) and melanocyte-stimulating hormone (MSH) (leading to melanosome dispersion). By confocal microscopy, it was shown that a vertical redistribution of melanosomes occurred during the dispersion/aggregation processes. Furthermore, the transport process was studied in the presence of cytoskeleton-perturbing agents disrupting either actin filaments (latrunculin) or microtubules (nocodazole). Taken together, these experiments suggest that the acoustic responses mainly originate from melanosome transport along actin filaments (located close to the cell membrane), as expected based on the penetration depth of the QCM-D technique. The results clearly indicate the potential of QCM-D for studies of intracellular transport processes in melanophores.
Collapse
Affiliation(s)
- Rickard Frost
- Department of Applied Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | | | | | | | | | | | | |
Collapse
|
45
|
Thibaudeau G, Altig R. Coloration of Anuran Tadpoles (Amphibia): Development, Dynamics, Function, and Hypotheses. ACTA ACUST UNITED AC 2012. [DOI: 10.5402/2012/725203] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Colorations of anuran tadpoles surely function in many of the same ways that have been ascribed to color and pattern in other animals, but the paucity of data forces one to look to other groups to generate hypotheses. Such an action often occurs because of the difficulty of defining specific fitness parameters to larval forms. The commonly muted colorations of tadpoles are typically considered to function only in some form of crypsis, but we discuss other functions in the particular context of behavioral ecology and changes induced by various kinds of coinhabitants. We review the development, terminology, diversity, and functions of coloration in tadpoles and then pose various questions for future research. We strongly support a broad-based perspective that calls for an integration of several fields of research.
Collapse
Affiliation(s)
- Giselle Thibaudeau
- Insitute for Imaging and Analytical Technologies, Mississippi State University, Mississippi State, MS 39762, USA
| | - Ronald Altig
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| |
Collapse
|
46
|
Peled E, Pick U, Zarka A, Shimoni E, Leu S, Boussiba S. LIGHT-INDUCED OIL GLOBULE MIGRATION IN HAEMATOCOCCUS PLUVIALIS (CHLOROPHYCEAE). JOURNAL OF PHYCOLOGY 2012; 48:1209-19. [PMID: 27011280 DOI: 10.1111/j.1529-8817.2012.01210.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 06/27/2012] [Indexed: 05/16/2023]
Abstract
Astaxanthin-rich oil globules in Haematococcus pluvialis display rapid light-induced peripheral migration that is unique to this organism and serves to protect the photosynthetic system from excessive light. We observed rapid light-induced peripheral migration that is associated with chlorophyll fluorescence quenching, whereas the recovery was slow. A simple assay to follow globule migration, based on chlorophyll fluorescence level has been developed. Globule migration was induced by high intensity blue light, but not by high intensity red light. The electron transport inhibitor dichlorophenyl-dimethylurea did not inhibit globule migration, whereas the quinone analog (dibromo-methyl-isopropylbenzoquinone), induced globule migration even at low light. Actin microfilament-directed toxins, such as cytochalasin B and latrunculin A, inhibited the light-induced globule migration, whereas toxins against microtubules were ineffective. Electron microscopic (EM) imaging confirmed the cytoplasmic localization and peripheral migration of globules upon exposure to very high light (VHL). Scanning EM of freeze-fractured cells also revealed globules within cytoplasmic bridges traversing the chloroplast, presumably representing the pathway of migration. Close alignments of globules with endoplasmic reticulum (ER) membranes were also observed following VHL illumination. We propose that light-induced globule migration is regulated by the redox state of the photosynthetic electron transport system. Possible mechanisms of actin-based globule migration are discussed.
Collapse
Affiliation(s)
- Ehud Peled
- Microalgal Biotechnology Laboratory, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Sede-Boqer, 84990, Israel
| | - Uri Pick
- Biological Chemistry, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Aliza Zarka
- Microalgal Biotechnology Laboratory, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Sede-Boqer, 84990, Israel
| | - Eyal Shimoni
- Biological Chemistry, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Stefan Leu
- Microalgal Biotechnology Laboratory, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Sede-Boqer, 84990, Israel
| | - Sammy Boussiba
- Microalgal Biotechnology Laboratory, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Sede-Boqer, 84990, Israel
| |
Collapse
|
47
|
Griscelli syndrome types 1 and 3: analysis of four new cases and long-term evaluation of previously diagnosed patients. Eur J Pediatr 2012; 171:1527-31. [PMID: 22711375 DOI: 10.1007/s00431-012-1765-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Accepted: 05/29/2012] [Indexed: 10/28/2022]
Abstract
Griscelli syndrome (GS) is a rare autosomal recessive disorder characterized by partial albinism. Three different types are caused by defects in three different genes. Patients with GS type 1 have primary central nervous system dysfunction, type 2 patients commonly develop hemophagocytic lymphohistiocytosis, and type 3 patients have only partial albinism. While hematopoietic stem cell transplantation is life saving in type 2, no specific therapy is required for types 1 and 3. Patients with GS types 1 and 3 are very rare. To date, only 2 patients with type 3 and about 20 GS type 1 patients, including the patients described as Elejalde syndrome, have been reported. The neurological deficits in Elejalde syndrome were reported as severe neurodevelopmental delay, seizures, hypotonia, and ophthalmological problems including nystagmus, diplopia, and retinal problems. However, none of these patients' clinical progresses were reported. We described here our two new type 1 and two type 3 patients along with the progresses of our previously diagnosed patients with GS types 1 and 3. Our previous patient with GS type I is alive at age 21 without any other problems except severe mental and motor retardation, patients with type 3 are healthy at ages 21 and 24 years having only pigmentary dilution; silvery gray hair, eye brows, and eyelashes. Since prognosis, treatment options, and genetic counseling markedly differ among different types, molecular characterization has utmost importance in GS.
Collapse
|
48
|
Evidence of a role of inositol polyphosphate 5-phosphatase INPP5E in cilia formation in zebrafish. Vision Res 2012; 75:98-107. [PMID: 23022135 DOI: 10.1016/j.visres.2012.09.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/28/2012] [Accepted: 09/17/2012] [Indexed: 11/23/2022]
Abstract
Inositol phosphatases are important regulators of cell signaling and membrane trafficking. Mutations in inositol polyphosphate 5-phosphatase, INPP5E, have been identified in Joubert syndrome, a rare congenital disorder characterized by midbrain malformation, retinitis pigmentosa, renal cysts, and polydactyly. Previous studies have implicated primary cilia abnormalities in Joubert syndrome, yet the role of INPP5E in cilia formation is not well understood. In this study, we examined the function of INPP5E in cilia development in zebrafish. Using specific antisense morpholino oligonucleotides to knockdown Inpp5e expression, we observed phenotypes of microphthalmia, pronephros cysts, pericardial effusion, and left-right body axis asymmetry. The Inpp5e morphant zebrafish exhibited shortened and decreased cilia formation in the Kupffer's vesicle and pronephric ducts as compared to controls. Epinephrine-stimulated melanosome trafficking was delayed in the Inpp5e zebrafish morphants. Expression of human INPP5E expression rescued the phenotypic defects in the Inpp5e morphants. Taken together, we showed that INPP5E is critical for the cilia development in zebrafish.
Collapse
|
49
|
Bouzat S, Levi V, Bruno L. Transport properties of melanosomes along microtubules interpreted by a tug-of-war model with loose mechanical coupling. PLoS One 2012; 7:e43599. [PMID: 22952716 PMCID: PMC3431353 DOI: 10.1371/journal.pone.0043599] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 07/24/2012] [Indexed: 01/07/2023] Open
Abstract
In this work, we explored theoretically the transport of organelles driven along microtubules by molecular motors of opposed polarities using a stochastic model that considers a Langevin dynamics for the cargo, independent cargo-motor linkers and stepping motion for the motors. It has been recently proposed that the stiffness of the motor plays an important role when multiple motors collectively transport a cargo. Therefore, we considered in our model the recently reported values for the stiffness of the cargo-motor linker determined in living cells (∼0.01 pN/nm, [1]) which is significantly lower than the motor stiffness obtained in in vitro assays and used in previous studies. Our model could reproduce the multimodal velocity distributions and typical trajectory characteristics including the properties of the reversions in the overall direction of motion observed during melanosome transport along microtubules in Xenopus laevis melanophores. Moreover, we explored the contribution of the different motility states of the cargo-motor system to the different modes of the velocity distributions and could identify the microscopic mechanisms of transport leading to trajectories compatible with those observed in living cells. Finally, by changing the attachment and detachment rates, the model could reproduce the different velocity distributions observed during melanosome transport along microtubules in Xenopus laevis melanophores stimulated for aggregation and dispersion. Our analysis suggests that active tug-of-war processes with loose mechanical coupling can account for several aspects of cargo transport along microtubules in living cells.
Collapse
Affiliation(s)
- Sebastián Bouzat
- Centro Atómico Bariloche - Comisión Nacional de Energía Atómica, Bariloche, Río Negro, Argentina
| | - Valeria Levi
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Buenos Aires, Argentina
| | - Luciana Bruno
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
50
|
Boguslavsky S, Chiu T, Foley KP, Osorio-Fuentealba C, Antonescu CN, Bayer KU, Bilan PJ, Klip A. Myo1c binding to submembrane actin mediates insulin-induced tethering of GLUT4 vesicles. Mol Biol Cell 2012; 23:4065-78. [PMID: 22918957 PMCID: PMC3469521 DOI: 10.1091/mbc.e12-04-0263] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
GLUT4-containing vesicles cycle between the plasma membrane and intracellular compartments. Insulin promotes GLUT4 exocytosis by regulating GLUT4 vesicle arrival at the cell periphery and its subsequent tethering, docking, and fusion with the plasma membrane. The molecular machinery involved in GLUT4 vesicle tethering is unknown. We show here that Myo1c, an actin-based motor protein that associates with membranes and actin filaments, is required for insulin-induced vesicle tethering in muscle cells. Myo1c was found to associate with both mobile and tethered GLUT4 vesicles and to be required for vesicle capture in the total internal reflection fluorescence (TIRF) zone beneath the plasma membrane. Myo1c knockdown or overexpression of an actin binding-deficient Myo1c mutant abolished insulin-induced vesicle immobilization, increased GLUT4 vesicle velocity in the TIRF zone, and prevented their externalization. Conversely, Myo1c overexpression immobilized GLUT4 vesicles in the TIRF zone and promoted insulin-induced GLUT4 exposure to the extracellular milieu. Myo1c also contributed to insulin-dependent actin filament remodeling. Thus we propose that interaction of vesicular Myo1c with cortical actin filaments is required for insulin-mediated tethering of GLUT4 vesicles and for efficient GLUT4 surface delivery in muscle cells.
Collapse
Affiliation(s)
- Shlomit Boguslavsky
- Cell Biology Program, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | | | | | | | | | | | | | | |
Collapse
|