1
|
Dobbins BA, Tovar RU, Oddo BJ, Teague CG, Sindhi NA, Devitt TJ, Hillis DM, García DM. PAX6 protein in neuromasts of the lateral line system of salamanders (Eurycea). PLoS One 2024; 19:e0293163. [PMID: 39213295 PMCID: PMC11364236 DOI: 10.1371/journal.pone.0293163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
PAX6 is well known as a transcription factor that drives eye development in animals as widely divergent as flies and mammals. In addition to its localization in eyes, PAX6 expression has been reported in the central nervous system, the pancreas, testes, Merkel cells, nasal epithelium, developing cells of the inner ear, and embryonic submandibular salivary gland. Here we show that PAX6 also appears to be present in the mechanosensory neuromasts of the lateral line system in paedomorphic salamanders of the genus Eurycea. Using immunohistochemistry and confocal microscopy to examine a limited number of larvae of two species, listed by the United States of America's federal government as threatened (E. nana) or endangered (E. rathbuni), we found that anti-PAX6 antibody labeled structures that were extranuclear, and labeling was most intense in the apical appendages of the hair cells of the neuromast. This extranuclear localization raises the possibility of an as yet undescribed function for PAX6 as a cytoskeleton-associated protein.
Collapse
Affiliation(s)
- Brittany A. Dobbins
- Department of Biology, Texas State University, San Marcos, TX, United States of America
| | - Ruben U. Tovar
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, United States of America
| | - Braden J. Oddo
- Department of Biology, Texas State University, San Marcos, TX, United States of America
| | - Christian G. Teague
- Department of Biology, Texas State University, San Marcos, TX, United States of America
| | - Nisa A. Sindhi
- Department of Biology, Texas State University, San Marcos, TX, United States of America
| | - Thomas J. Devitt
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, United States of America
| | - David M. Hillis
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, United States of America
| | - Dana M. García
- Department of Biology, Texas State University, San Marcos, TX, United States of America
| |
Collapse
|
2
|
Wu R, Liu L, Zhang L, Bogan AE, Niu G, Jin D, Wu X, Liu X. Taxonomic revision of two species in the genus Ptychorhynchus Simpson, 1900 (Bivalvia: Unionidae: Gonideinae), with description of a new species. INVERTEBR SYST 2024; 38:IS24014. [PMID: 38963889 DOI: 10.1071/is24014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/04/2024] [Indexed: 07/06/2024]
Abstract
Accurate identification and precise classification of freshwater mussel species that are among the most threatened freshwater taxa in the world, play a crucial role in informing conservation and management efforts for these organisms. However, due to the variability in shell morphology, relying solely on shell characteristics for species taxonomy poses significant challenges, thereby impeding effective conservation planning and management. The freshwater mussel genus Ptychorhynchus Simpson, 1900 is one such group in need of study. We integrate molecular phylogeny, shell morphology and soft-body anatomy to examine the classification of Ptychorhynchus denserugata (Haas, 1910) and Ptychorhynchus resupinatus (von Martens, 1902). The COI barcoding data support the clustering of P. denserugata and Nodularia douglasiae within a single clade, and P. denserugata shares the diagnostic feature of the genus Nodularia , i.e. knobs or bumps on the inner mantle surface in the excurrent aperture. Therefore, by integrating molecular data and anatomical characteristics, we confirm that the nominal species P. denserugata syn. nov. is a new synonym for N. douglasiae . The multi-locus (COI + ND1 + 16S rRNA + 18S rRNA + 28S rRNA ) phylogeny and mitochondrial phylogenomics support the transfer of P. resupinatus from Ptychorhynchus to the newly elevated genus Cosmopseudodon stat. rev., as Cosmopseudodon resupinatus stat. rev. that is still considered the designated type species. We also describe a new species based on integrative taxonomy, i.e. Cosmopseudodon wenshanensis sp. nov. The comprehensive understanding of the taxonomy and diversity of the revised Cosmopseudodon species, and shell heteromorphism of N. douglasiae (=P. denserugata syn. nov.), will serve as a crucial foundation for further scientific assessment and conservation strategies pertaining to these taxa. ZooBank: urn:lsid:zoobank.org:pub:E48968B1-DF0F-42AD-8F31-B8C95F23CE57.
Collapse
Affiliation(s)
- Ruiwen Wu
- School of Life Science, Shanxi Normal University, Taiyuan, 030031, PR China
| | - Lili Liu
- School of Life Science, Shanxi Normal University, Taiyuan, 030031, PR China
| | - Liping Zhang
- School of Life Science, Shanxi Normal University, Taiyuan, 030031, PR China
| | - Arthur E Bogan
- North Carolina Museum of Natural Sciences and Department of Applied Ecology, North Carolina State University, Raleigh, NC 27601, USA
| | - Gengyun Niu
- College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, PR China
| | - Dandong Jin
- Datian High School, Linhai, 317004, PR China
| | - Xiaoping Wu
- School of Life Sciences, Nanchang University, Nanchang, 330031, PR China
| | - Xiongjun Liu
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, School of Life Sciences, Jiaying University, Meizhou, 514000, PR China
| |
Collapse
|
3
|
Bruni G, Chiocchio A, Nascetti G, Cimmaruta R. Different patterns of introgression in a three species hybrid zone among European cave salamanders. Ecol Evol 2023; 13:e10437. [PMID: 37636870 PMCID: PMC10447881 DOI: 10.1002/ece3.10437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/29/2023] Open
Abstract
Hybrid zones occur where genetically distinct populations meet, mate and produce offspring with mixed ancestry. In Plethodontid salamanders, introgressive hybridization is a common phenomenon, where hybrids backcross with parental populations leading to the spread of new alleles into the parental genomes. Whereas many hybrid zones have been reported in American Plethodontid salamanders, only a single hybrid zone has been documented in European plethodontids so far, which is located at the Apuan Alps in the Italian Peninsula. Here, we describe a previously unreported hybrid zone in the Northern Apennines involving all the three Plethodontid salamander species inhabiting the Italian Peninsula. We found 21 new Speleomantes sites of occurrence, from a hitherto unexplored area located at the boundaries between three Speleomantes species ranges. Using mitochondrial (Cytb and ND2 genes) and nuclear markers (two diagnostic SNPs at the NCX1 gene), we revealed a three-way contact zone where all the three mainland species hybridize: S. strinatii, S. ambrosii and S. italicus. We observed a strong mitonuclear discordance, with mitochondrial markers showing a conspicuous geographic pattern, while diagnostic nuclear SNPs coexisted in both the same populations and individuals, providing evidence of hybridization in many possible combinations. The introgression is asymmetric, with S. italicus mitogenome usually associated with S. a. ambrosii and, to a lesser extent, to S. strinatii nuclear alleles. This finding confirms that Plethodontid are a group of choice to investigate hybridization mechanisms and suggests that behavioural, genetic and ecological components may concur in determining the direction and extent of introgression.
Collapse
Affiliation(s)
| | - Andrea Chiocchio
- Department of Ecological and Biological SciencesTuscia UniversityViterboItaly
| | - Giuseppe Nascetti
- Department of Ecological and Biological SciencesTuscia UniversityViterboItaly
| | - Roberta Cimmaruta
- Department of Ecological and Biological SciencesTuscia UniversityViterboItaly
| |
Collapse
|
4
|
Friedman ST, Muñoz MM. The Effect of Thermally Robust Ballistic Mechanisms on Climatic Niche in Salamanders. Integr Org Biol 2022; 4:obac020. [PMID: 35975191 PMCID: PMC9375770 DOI: 10.1093/iob/obac020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/04/2022] [Accepted: 05/18/2022] [Indexed: 11/12/2022] Open
Abstract
Many organismal functions are temperature-dependent due to the contractile properties of muscle. Spring-based mechanisms offer a thermally robust alternative to temperature-sensitive muscular movements and may correspondingly expand a species' climatic niche by partially decoupling the relationship between temperature and performance. Using the ballistic tongues of salamanders as a case study, we explore whether the thermal robustness of elastic feeding mechanisms increases climatic niche breadth, expands geographic range size, and alters the dynamics of niche evolution. Combining phylogenetic comparative methods with global climate data, we find that the feeding mechanism imparts no discernable signal on either climatic niche properties or the evolutionary dynamics of most climatic niche parameters. Although biomechanical innovation in feeding influences many features of whole-organism performance, it does not appear to drive macro-climatic niche evolution in salamanders. We recommend that future work incorporate micro-scale environmental data to better capture the conditions that salamanders experience, and we discuss a few outstanding questions in this regard. Overall, this study lays the groundwork for an investigation into the evolutionary relationships between climatic niche and biomechanical traits in ectotherms.
Collapse
Affiliation(s)
- Sarah T Friedman
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511,USA
| | - Martha M Muñoz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511,USA
| |
Collapse
|
5
|
Ponssa ML, Fratani J, Barrionuevo JS. Phalanx morphology in salamanders: A reflection of microhabitat use, life cycle or evolutionary constraints? ZOOLOGY 2022; 154:126040. [DOI: 10.1016/j.zool.2022.126040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 07/11/2022] [Accepted: 08/01/2022] [Indexed: 10/16/2022]
|
6
|
Abstract
Salamanders are an important group of living amphibians and model organisms for understanding locomotion, development, regeneration, feeding, and toxicity in tetrapods. However, their origin and early radiation remain poorly understood, with early fossil stem-salamanders so far represented by larval or incompletely known taxa. This poor record also limits understanding of the origin of Lissamphibia (i.e., frogs, salamanders, and caecilians). We report fossils from the Middle Jurassic of Scotland representing almost the entire skeleton of the enigmatic stem-salamander Marmorerpeton. We use computed tomography to visualize high-resolution three-dimensional anatomy, describing morphologies that were poorly characterized in early salamanders, including the braincase, scapulocoracoid, and lower jaw. We use these data in the context of a phylogenetic analysis intended to resolve the relationships of early and stem-salamanders, including representation of important outgroups alongside data from high-resolution imaging of extant species. Marmorerpeton is united with Karaurus, Kokartus, and others from the Middle Jurassic-Lower Cretaceous of Asia, providing evidence for an early radiation of robustly built neotenous stem-salamanders. These taxa display morphological specializations similar to the extant cryptobranchid "giant" salamanders. Our analysis also demonstrates stem-group affinities for a larger sample of Jurassic species than previously recognized, highlighting an unappreciated diversity of stem-salamanders and cautioning against the use of single species (e.g., Karaurus) as exemplars for stem-salamander anatomy. These phylogenetic findings, combined with knowledge of the near-complete skeletal anatomy of Mamorerpeton, advance our understanding of evolutionary changes on the salamander stem-lineage and provide important data on early salamanders and the origins of Batrachia and Lissamphibia.
Collapse
|
7
|
Abstract
AbstractEvolvability is best addressed from a multi-level, macroevolutionary perspective through a comparative approach that tests for among-clade differences in phenotypic diversification in response to an opportunity, such as encountered after a mass extinction, entering a new adaptive zone, or entering a new geographic area. Analyzing the dynamics of clades under similar environmental conditions can (partially) factor out shared external drivers to recognize intrinsic differences in evolvability, aiming for a macroevolutionary analog of a common-garden experiment. Analyses will be most powerful when integrating neontological and paleontological data: determining differences among extant populations that can be hypothesized to generate large-scale, long-term contrasts in evolvability among clades; or observing large-scale differences among clade histories that can by hypothesized to reflect contrasts in genetics and development observed directly in extant populations. However, many comparative analyses can be informative on their own, as explored in this overview. Differences in clade-level evolvability can be visualized in diversity-disparity plots, which can quantify positive and negative departures of phenotypic productivity from stochastic expectations scaled to taxonomic diversification. Factors that evidently can promote evolvability include modularity—when selection aligns with modular structure or with morphological integration patterns; pronounced ontogenetic changes in morphology, as in allometry or multiphase life cycles; genome size; and a variety of evolutionary novelties, which can also be evaluated using macroevolutionary lags between the acquisition of a trait and phenotypic diversification, and dead-clade-walking patterns that may signal a loss of evolvability when extrinsic factors can be excluded. High speciation rates may indirectly foster phenotypic evolvability, and vice versa. Mechanisms are controversial, but clade evolvability may be higher in the Cambrian, and possibly early in the history of clades at other times; in the tropics; and, for marine organisms, in shallow-water disturbed habitats.
Collapse
|
8
|
Pierson TW, Blake-Sinclair J, Holt B. Molecular Identification of an Avian Predator of Mimetic Salamanders. SOUTHEAST NAT 2022. [DOI: 10.1656/058.021.0203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Todd W. Pierson
- Department of Ecology, Evolution, and Organismal Biology, Kennesaw State University, Kennesaw, GA 30314
| | - Jasmyne Blake-Sinclair
- Department of Ecology, Evolution, and Organismal Biology, Kennesaw State University, Kennesaw, GA 30314
| | - Benjamin Holt
- Department of Ecology and Evolutionary Biology, University of Tennessee Knoxville, Knoxville, TN 37996
| |
Collapse
|
9
|
Jia J, Li G, Gao KQ. Palatal morphology predicts the paleobiology of early salamanders. eLife 2022; 11:e76864. [PMID: 35575462 PMCID: PMC9170251 DOI: 10.7554/elife.76864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/15/2022] [Indexed: 11/13/2022] Open
Abstract
Ecological preferences and life history strategies have enormous impacts on the evolution and phenotypic diversity of salamanders, but the yet established reliable ecological indicators from bony skeletons hinder investigations into the paleobiology of early salamanders. Here, we statistically demonstrate by using time-calibrated cladograms and geometric morphometric analysis on 71 specimens in 36 species, that both the shape of the palate and many non-shape covariates particularly associated with vomerine teeth are ecologically informative in early stem- and basal crown-group salamanders. Disparity patterns within the morphospace of the palate in ecological preferences, life history strategies, and taxonomic affiliations were analyzed in detail, and evolutionary rates and ancestral states of the palate were reconstructed. Our results show that the palate is heavily impacted by convergence constrained by feeding mechanisms and also exhibits clear stepwise evolutionary patterns with alternative phenotypic configurations to cope with similar functional demand. Salamanders are diversified ecologically before the Middle Jurassic and achieved all their present ecological preferences in the Early Cretaceous. Our results reveal that the last common ancestor of all salamanders share with other modern amphibians a unified biphasic ecological preference, and metamorphosis is significant in the expansion of ecomorphospace of the palate in early salamanders.
Collapse
Affiliation(s)
- Jia Jia
- School of Earth and Space Sciences, Peking UniversityBeijingChina
- State Key Laboratory of Palaeobiology and Stratigraphy (Nanjing Institute of Geology and Palaeontology, CAS)NanjingChina
- Department of Comparative Biology and Experimental Medicine, University of CalgaryCalgaryCanada
| | - Guangzhao Li
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington UniversityWashington D.C.United States
| | - Ke-Qin Gao
- School of Earth and Space Sciences, Peking UniversityBeijingChina
| |
Collapse
|
10
|
Camp CD, Felix ZI, Wooten JA. Evidence of morphological homoplasy among large, semi-aquatic species of Desmognathus. AMPHIBIA-REPTILIA 2022. [DOI: 10.1163/15685381-bja10087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
The salamander family Plethodontidae is replete with instances of repeated homoplasy. We tested for morphological homoplasy in distantly related species of the plethodontid genus Desmognathus that share similar ecologies. Specifically, we compared species that are large and nearly aquatic. Using morphometric analyses, we compared the respective morphologies of four large, nearly aquatic forms, specifically the Black Mountain Salamander (Desmognathus welteri), the Dwarf Black-bellied Salamander (D. folkertsi), and two phylogenetically divergent lineages of the Black-bellied Salamander (D. quadramaculatus). Morphometric analysis uncovered distinct differences among them. However, all of the large-bodied lineages exhibited the same extent of tail-fin development in spite of D. welteri’s closer phylogenetic relationship to smaller, more-terrestrial species than to the other large, nearly aquatic forms we tested. We hypothesize that large body size is also a consequence of aquatic adaptation. These morphological consequences of a nearly aquatic ecology represent another case of homoplasy within this salamander family.
Collapse
Affiliation(s)
- Carlos D. Camp
- Department of Biology, Piedmont University, 1021 Central Avenue, Demorest, GA 30535, USA
| | - Zachary I. Felix
- Biology Program, Reinhardt University, 7300 Reinhardt Circle, Waleska, GA 30182, USA
| | - Jessica A. Wooten
- Department of Biology, Piedmont University, 1021 Central Avenue, Demorest, GA 30535, USA
| |
Collapse
|
11
|
Kawano SM, Blob RW. Terrestrial force production by the limbs of a semi-aquatic salamander provides insight into the evolution of terrestrial locomotor mechanics. J Exp Biol 2022; 225:274955. [DOI: 10.1242/jeb.242795] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 03/04/2022] [Indexed: 11/20/2022]
Abstract
Amphibious fishes and salamanders are valuable functional analogs for vertebrates that spanned the water-to-land transition. However, investigations of walking mechanics have focused on terrestrial salamanders and, thus, may better reflect the capabilities of stem tetrapods that were already terrestrial. The earliest tetrapods were likely aquatic, so salamanders that are not primarily terrestrial may yield more appropriate data for modelling the incipient stages of terrestrial locomotion. In the present study, locomotor biomechanics were quantified from semi-aquatic Pleurodeles waltl, a salamander that spends most of its adult life in water, and then compared to a primarily terrestrial salamander (Ambystoma tigrinum) and semi-aquatic fish (Periophthalmus barbarus) to evaluate whether terrestrial locomotion was more comparable between species with ecological versus phylogenetic similarities. Ground reaction forces (GRFs) from individual limbs or fins indicated that the pectoral appendages of each taxon had distinct patterns of force production, but GRFs from the hind limbs were comparable between the salamander species. The rate that force is produced can affect musculoskeletal function, so we also calculated ‘yank’ (first time derivative of force) to quantify the dynamics of GRF production. Yank was sometimes slower in P. waltl but there were some similarities between the three species. Finally, the semi-aquatic taxa (P. waltl and P. barbarus) had a more medial inclination of the GRF compared to terrestrial salamanders, potentially elevating bone stresses among more aquatic taxa and limiting their excursions onto land.
Collapse
Affiliation(s)
- Sandy M. Kawano
- Department of Biological Sciences, The George Washington University, Washington, D.C. 20052, USA
| | - Richard W. Blob
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
12
|
Neves JMM, Nolen ZJ, Fabré NN, Mott T, Pereira RJ. Genomic methods reveal independent demographic histories despite strong morphological conservatism in fish species. Heredity (Edinb) 2021; 127:323-333. [PMID: 34226671 PMCID: PMC8405619 DOI: 10.1038/s41437-021-00455-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 06/18/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
Human overexploitation of natural resources has placed conservation and management as one of the most pressing challenges in modern societies, especially in regards to highly vulnerable marine ecosystems. In this context, cryptic species are particularly challenging to conserve because they are hard to distinguish based on morphology alone, and thus it is often unclear how many species coexist in sympatry, what are their phylogenetic relationships and their demographic history. We answer these questions using morphologically similar species of the genus Mugil that are sympatric in the largest coastal Marine Protected Area in the Tropical Southwestern Atlantic marine province. Using a sub-representation of the genome, we show that individuals are assigned to five highly differentiated genetic clusters that are coincident with five mitochondrial lineages, but discordant with morphological information, supporting the existence of five species with conserved morphology in this region. A lack of admixed individuals is consistent with strong genetic isolation between sympatric species, but the most likely species tree suggests that in one case speciation has occurred in the presence of interspecific gene flow. Patterns of genetic diversity within species suggest that effective population sizes differ up to two-fold, probably reflecting differences in the magnitude of population expansions since species formation. Together, our results show that strong morphologic conservatism in marine environments can lead to species that are difficult to distinguish morphologically but that are characterized by an independent evolutionary history, and thus that deserve species-specific management strategies.
Collapse
Affiliation(s)
- Jessika M M Neves
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Alagoas, Brazil.
| | - Zachary J Nolen
- Division of Evolutionary Biology, Faculty of Biology II, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 2, Planegg-Martinsried, Germany
- Department of Biology, Lund University, Lund, Sweden
| | - Nidia N Fabré
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Alagoas, Brazil
| | - Tamí Mott
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Alagoas, Brazil
| | - Ricardo J Pereira
- Division of Evolutionary Biology, Faculty of Biology II, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 2, Planegg-Martinsried, Germany.
| |
Collapse
|
13
|
Jia J, Anderson JS, Gao KQ. Middle Jurassic stem hynobiids from China shed light on the evolution of basal salamanders. iScience 2021; 24:102744. [PMID: 34278256 PMCID: PMC8264161 DOI: 10.1016/j.isci.2021.102744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/28/2021] [Accepted: 06/15/2021] [Indexed: 12/02/2022] Open
Abstract
The Hynobiidae are an early-diverging clade of crown-group salamanders (urodeles) with an important bearing on the evolution of urodeles. Paleobiology and early-branching patterns of the Hynobiidae remain unclear owing to a poorly documented fossil record. We reported a newly referred specimen to the stem hynobiid, originally named as "Liaoxitriton daohugouensis," but here as Neimengtriton daohugouensis comb. nov., and predates the previously estimated origination time of Hynobiidae for at least 8 Myr. We interpret N. daohugouensis as semiaquatic at the adult stage, a previously unknown paleoecological preference among Mesozoic salamanders. Phenotypic variations of N. daohugouensis enlighten an unrecognized association between caudosacral vertebrae and fertilization modes in the early evolution of urodeles. Our cladistic analyses based on morphological characters not only recognize several stem hynobiids and establish Panhynobia nomen cladinovum for the total-group hynobiids but also shed light on the sequential evolution of morphological features in this primitive urodele clade.
Collapse
Affiliation(s)
- Jia Jia
- School of Earth and Space Sciences, Peking University, 5 Yiheyuan Road, Beijing 100871, China
- State Key Laboratory of Palaeobiology and Stratigraphy (Nanjing Institute of Geology and Palaeontology, CAS), 39 East Beijing Road, Nanjing, Jiangsu Province 210008, China
- Department of Comparative Biology and Experimental Medicine, University of Calgary, 3330 Hospital Drive, Calgary, AB T2N 4N1, Canada
| | - Jason S. Anderson
- Department of Comparative Biology and Experimental Medicine, University of Calgary, 3330 Hospital Drive, Calgary, AB T2N 4N1, Canada
| | - Ke-Qin Gao
- School of Earth and Space Sciences, Peking University, 5 Yiheyuan Road, Beijing 100871, China
| |
Collapse
|
14
|
David Wake: Why are there so many kinds of organisms (but especially salamanders)? Proc Natl Acad Sci U S A 2021; 118:2110321118. [PMID: 34187884 DOI: 10.1073/pnas.2110321118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
15
|
Nottingham S, Pelletier TA. The impact of climate change on western Plethodon salamanders' distribution. Ecol Evol 2021; 11:9370-9384. [PMID: 34306628 PMCID: PMC8293714 DOI: 10.1002/ece3.7735] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/07/2021] [Accepted: 05/14/2021] [Indexed: 02/06/2023] Open
Abstract
AIM Given that salamanders have experienced large shifts in their distributions over time, we determined how each species of Plethodon in the Pacific Northwest would respond to climate change. We incorporated several greenhouse scenarios both on a species-by-species basis, and also using phylogenetic groups, with the aim to determine the best course of action in managing land area to conserve diversity in this group. LOCATION Pacific Northwest of the United States (northern CA, OR, WA, ID, and MT). MAJOR TAXA STUDIED Western Plethodon salamanders. METHODS Species distribution models were estimated using MaxEnt for the current time period and for several future climate scenarios using bioclimatic data layers. We used several methods to quantify the change in habitat suitability over time from the models. We explored aspects of the climate layers to determine whether we can expect a concerted response to climate change due to similarity in ecological niche or independent responses that could be harder to manage. RESULTS The distribution of western Plethodon salamander species is strongly influenced by precipitation and less so by temperature. Species responses to climate change resulted in both increases and decreases in predicted suitable habitat, though most species ranges do not contract, especially when taken as a phylogenetic group. MAIN CONCLUSIONS While some established habitats may become more or less climatically suitable, the overall distribution of species in this group is unlikely to be significantly affected. Clades of Plethodon species are unlikely to be in danger of extirpation despite the possibility that individual species may be threatened as a result of limited distributions. Grouping species into lineages with similar geographic ranges can be a viable method of determining conservation needs. More biotic and dispersal information is needed to determine the true impact that changes in climate will have on the distribution of Plethodon species.
Collapse
|
16
|
Pereira RJ, Lima TG, Pierce-Ward NT, Chao L, Burton RS. Recovery from hybrid breakdown reveals a complex genetic architecture of mitonuclear incompatibilities. Mol Ecol 2021; 30:6403-6416. [PMID: 34003535 DOI: 10.1111/mec.15985] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/29/2021] [Accepted: 05/11/2021] [Indexed: 01/03/2023]
Abstract
Reproductive isolation is often achieved when genes that are neutral or beneficial in their genomic background become functionally incompatible in a foreign genomic background, causing inviability, sterility or other forms of low fitness in hybrids. Recent studies suggest that mitonuclear interactions are among the initial incompatibilities to evolve at early stages of population divergence across taxa. Yet, the genomic architecture of mitonuclear incompatibilities has rarely been elucidated. We employ an experimental evolution approach starting with low-fitness F2 interpopulation hybrids of the copepod Tigriopus californicus, in which frequencies of compatible and incompatible nuclear alleles change in response to an alternative mitochondrial background. After about nine generations, we observe a generalized increase in population size and in survivorship, suggesting efficiency of selection against maladaptive phenotypes. Whole genome sequencing of evolved populations showed some consistent allele frequency changes across three replicates of each reciprocal cross, but markedly different patterns between mitochondrial backgrounds. In only a few regions (~6.5% of the genome), the same parental allele was overrepresented irrespective of the mitochondrial background. About 33% of the genome showed allele frequency changes consistent with divergent selection, with the location of these genomic regions strongly differing between mitochondrial backgrounds. In 87% and 89% of these genomic regions, the dominant nuclear allele matched the associated mitochondrial background, consistent with mitonuclear co-adaptation. These results suggest that mitonuclear incompatibilities have a complex polygenic architecture that differs between populations, potentially generating genome-wide barriers to gene flow between closely related taxa.
Collapse
Affiliation(s)
- Ricardo J Pereira
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Thiago G Lima
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - N Tessa Pierce-Ward
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Lin Chao
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Ronald S Burton
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
17
|
Dwaraka VB, Voss SR. Towards comparative analyses of salamander limb regeneration. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2021; 336:129-144. [PMID: 31584252 PMCID: PMC8908358 DOI: 10.1002/jez.b.22902] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/13/2019] [Accepted: 08/31/2019] [Indexed: 08/29/2023]
Abstract
Among tetrapods, only salamanders can regenerate their limbs and tails throughout life. This amazing regenerative ability has attracted the attention of scientists for hundreds of years. Now that large, salamander genomes are beginning to be sequenced for the first time, omics tools and approaches can be used to integrate new perspectives into the study of tissue regeneration. Here we argue the need to move beyond the primary salamander models to investigate regeneration in other species. Salamanders at first glance come across as a phylogenetically conservative group that has not diverged greatly from their ancestors. While salamanders do present ancestral characteristics of basal tetrapods, including the ability to regenerate limbs, data from fossils and data from studies that have tested for species differences suggest there may be considerable variation in how salamanders develop and regenerate their limbs. We review the case for expanded studies of salamander tissue regeneration and identify questions and approaches that are most likely to reveal commonalities and differences in regeneration among species. We also address challenges that confront such an initiative, some of which are regulatory and not scientific. The time is right to gain evolutionary perspective about mechanisms of tissue regeneration from comparative studies of salamander species.
Collapse
Affiliation(s)
- Varun B. Dwaraka
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, and Ambystoma Genetic Stock Center, University of Kentucky, Lexington, Kentucky
- Department of Biology, University of Kentucky, Lexington, Kentucky
| | - S. Randal Voss
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, and Ambystoma Genetic Stock Center, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
18
|
Genetic data reveal fine-scale ecological segregation between larval plethodontid salamanders in replicate contact zones. Evol Ecol 2021. [DOI: 10.1007/s10682-020-10099-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
A Triassic stem-salamander from Kyrgyzstan and the origin of salamanders. Proc Natl Acad Sci U S A 2020; 117:11584-11588. [PMID: 32393623 DOI: 10.1073/pnas.2001424117] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The origin of extant amphibians remains largely obscure, with only a few early Mesozoic stem taxa known, as opposed to a much better fossil record from the mid-Jurassic on. In recent time, anurans have been traced back to Early Triassic forms and caecilians have been traced back to the Late Jurassic Eocaecilia, both of which exemplify the stepwise acquisition of apomorphies. Yet the most ancient stem-salamanders, known from mid-Jurassic rocks, shed little light on the origin of the clade. The gap between salamanders and other lissamphibians, as well as Paleozoic tetrapods, remains considerable. Here we report a new specimen of Triassurus sixtelae, a hitherto enigmatic tetrapod from the Middle/Late Triassic of Kyrgyzstan, which we identify as the geologically oldest stem-group salamander. This sheds light not only on the early evolution of the salamander body plan, but also on the origin of the group as a whole. The new, second specimen is derived from the same beds as the holotype, the Madygen Formation of southwestern Kyrgyzstan. It reveals a range of salamander characters in this taxon, pushing back the rock record of urodeles by at least 60 to 74 Ma (Carnian-Bathonian). In addition, this stem-salamander shares plesiomorphic characters with temnospondyls, especially branchiosaurids and amphibamiforms.
Collapse
|
20
|
Jaramillo AF, De La Riva I, Guayasamin JM, Chaparro JC, Gagliardi-Urrutia G, Gutiérrez RC, Brcko I, Vilà C, Castroviejo-Fisher S. Vastly underestimated species richness of Amazonian salamanders (Plethodontidae: Bolitoglossa) and implications about plethodontid diversification. Mol Phylogenet Evol 2020; 149:106841. [PMID: 32305511 DOI: 10.1016/j.ympev.2020.106841] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 11/29/2022]
Abstract
We present data showing that the number of salamander species in Amazonia is vastly underestimated. We used DNA sequences of up to five genes (3 mitochondrial and 2 nuclear) of 366 specimens, 189 corresponding to 89 non-Amazonian nominal species and 177 Amazonian specimens, including types or topotypes, of eight of the nine recognized species in the region. By including representatives of all known species of Amazonian Bolitoglossa, except for one, and 73% of the currently 132 recognized species of the genus, our dataset represents the broadest sample of Bolitoglossa species, specimens, and geographic localities studied to date. We performed phylogenetic analyses using parsimony with tree-alignment and maximum likelihood (ML) with similarity alignment, with indels as binary characters. Our optimal topologies were used to delimit lineages that we assigned to nominal species and candidate new species following criteria that maximize the consilience of the current species taxonomy, monophyly, gaps in branch lengths, genetic distances, and geographic distribution. We contrasted the results of our species-delimitation protocol with those of Automated Barcode Gap Discovery (ABGD) and multi-rate Poisson Tree Processes (mPTP). Finally, we inferred the historical biogeography of South American salamanders by dating the trees and using dispersal-vicariance analysis (DIVA). Our results revealed a clade including almost all Amazonian salamanders, with a topology incompatible with just the currently recognized nine species. Following our species-delimitation criteria, we identified 44 putative species in Amazonia. Both ABGD and mPTP inferred more species than currently recognized, but their numbers (23-49) and limits vary. Our biogeographic analysis suggested a stepping-stone colonization of the Amazonian lowlands from Central America through the Chocó and the Andes, with several late dispersals from Amazonia back into the Andes. These biogeographic events are temporally concordant with an early land bridge between Central and South America (~10-15 MYA) and major landscape changes in Amazonia during the late Miocene and Pliocene, such as the drainage of the Pebas system, the establishment of the Amazon River, and the major orogeny of the northern Andes.
Collapse
Affiliation(s)
- Andrés F Jaramillo
- Pos-Graduação em Ecologia e Evolução da Biodiversidade, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Brazil; Laboratorio de Sistemática de Vertebrados, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Brazil.
| | | | - Juan M Guayasamin
- Laboratorio de Biología Evolutiva, Instituto BIOSFERA-USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Universidad San Francisco de Quito (USFQ), Ecuador; University of North Carolina at Chapel Hill, Department of Biology, USA
| | - Juan C Chaparro
- Museo de Biodiversidad del Perú (MUBI), Peru; Museo de Historia Natural de la Universidad Nacional de San Antonio Abad del Cusco, Peru
| | - Giussepe Gagliardi-Urrutia
- Pos-Graduação em Ecologia e Evolução da Biodiversidade, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Brazil; Laboratorio de Sistemática de Vertebrados, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Brazil; Peruvian Center for Biodiversity and Conservation (PCB&C), Peru; Dirección de Investigación en Diversidad Biológica Terrestre Amazónica, Instituto de Investigaciones de la Amazonía Peruana (IIAP), Peru
| | - Roberto C Gutiérrez
- Museo de Historia Natural de la Universidad Nacional de San Agustín de Arequipa (MUSA), Peru
| | - Isabela Brcko
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Brazil
| | - Carles Vilà
- Estación Biológica de Doñana (EBD-CSIC), Spain
| | - Santiago Castroviejo-Fisher
- Pos-Graduação em Ecologia e Evolução da Biodiversidade, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Brazil; Laboratorio de Sistemática de Vertebrados, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Brazil; Department of Herpetology, American Museum of Natural History, USA
| |
Collapse
|
21
|
Patton AH, Margres MJ, Epstein B, Eastman J, Harmon LJ, Storfer A. Hybridizing salamanders experience accelerated diversification. Sci Rep 2020; 10:6566. [PMID: 32300150 PMCID: PMC7162952 DOI: 10.1038/s41598-020-63378-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 03/23/2020] [Indexed: 11/09/2022] Open
Abstract
Whether hybridization generates or erodes species diversity has long been debated, but to date most studies have been conducted at small taxonomic scales. Salamanders (order Caudata) represent a taxonomic order in which hybridization plays a prevalent ecological and evolutionary role. We employed a recently developed model of trait-dependent diversification to test the hypothesis that hybridization impacts the diversification dynamics of species that are currently hybridizing. We find strong evidence supporting this hypothesis, showing that hybridizing salamander lineages have significantly greater net-diversification rates than non-hybridizing lineages. This pattern is driven by concurrently increased speciation rates and decreased extinction rates in hybridizing lineages. Our results support the hypothesis that hybridization can act as a generative force in macroevolutionary diversification.
Collapse
Affiliation(s)
- Austin H Patton
- Washington State University, School of Biological Sciences, Pullman, WA, 99164, USA.
| | - Mark J Margres
- Washington State University, School of Biological Sciences, Pullman, WA, 99164, USA.,Harvard University, Department of Organismic and Evolutionary Biology, Cambridge, MA, 02138, USA
| | - Brendan Epstein
- Washington State University, School of Biological Sciences, Pullman, WA, 99164, USA.,University of Minnesota, College of Biological Sciences, Saint Paul, MN, 55108, USA
| | | | - Luke J Harmon
- University of Idaho, Department of Biological Sciences and IBEST, Moscow, ID, 83844, USA
| | - Andrew Storfer
- Washington State University, School of Biological Sciences, Pullman, WA, 99164, USA
| |
Collapse
|
22
|
Womack MC, Metz MJ, Hoke KL. Larger Genomes Linked to Slower Development and Loss of Late-Developing Traits. Am Nat 2019; 194:854-864. [PMID: 31738099 DOI: 10.1086/705897] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Genome size varies widely among organisms and is known to affect vertebrate development, morphology, and physiology. In amphibians, genome size is hypothesized to contribute to loss of late-forming structures, although this hypothesis has mainly been discussed in salamanders. Here we estimated genome size for 22 anuran species and combined this novel data set with existing genome size data for an additional 234 anuran species to determine whether larger genome size is associated with loss of a late-forming anuran sensory structure, the tympanic middle ear. We established that genome size is negatively correlated with development rate across 90 anuran species and found that genome size evolution is correlated with evolutionary loss of the middle ear bone (columella) among 241 species (224 eared and 17 earless). We further tested whether the development of the tympanic middle ear could be constrained by large cell sizes and small body sizes during key stages of tympanic middle ear development (metamorphosis). Together, our evidence suggests that larger genomes, slower development rate, and smaller body sizes at metamorphosis may contribute to the loss of the anuran tympanic middle ear. We conclude that increases in anuran genome size, although less drastic than those in salamanders, may affect development of late-forming traits.
Collapse
|
23
|
Wollenberg Valero KC, Marshall JC, Bastiaans E, Caccone A, Camargo A, Morando M, Niemiller ML, Pabijan M, Russello MA, Sinervo B, Werneck FP, Sites JW, Wiens JJ, Steinfartz S. Patterns, Mechanisms and Genetics of Speciation in Reptiles and Amphibians. Genes (Basel) 2019; 10:genes10090646. [PMID: 31455040 PMCID: PMC6769790 DOI: 10.3390/genes10090646] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/21/2019] [Accepted: 08/05/2019] [Indexed: 12/22/2022] Open
Abstract
In this contribution, the aspects of reptile and amphibian speciation that emerged from research performed over the past decade are reviewed. First, this study assesses how patterns and processes of speciation depend on knowing the taxonomy of the group in question, and discuss how integrative taxonomy has contributed to speciation research in these groups. This study then reviews the research on different aspects of speciation in reptiles and amphibians, including biogeography and climatic niches, ecological speciation, the relationship between speciation rates and phenotypic traits, and genetics and genomics. Further, several case studies of speciation in reptiles and amphibians that exemplify many of these themes are discussed. These include studies of integrative taxonomy and biogeography in South American lizards, ecological speciation in European salamanders, speciation and phenotypic evolution in frogs and lizards. The final case study combines genomics and biogeography in tortoises. The field of amphibian and reptile speciation research has steadily moved forward from the assessment of geographic and ecological aspects, to incorporating other dimensions of speciation, such as genetic mechanisms and evolutionary forces. A higher degree of integration among all these dimensions emerges as a goal for future research.
Collapse
Affiliation(s)
| | - Jonathon C Marshall
- Department of Zoology, Weber State University, 1415 Edvalson Street, Dept. 2505, Ogden, UT 84401, USA
| | - Elizabeth Bastiaans
- Department of Biology, State University of New York, College at Oneonta, Oneonta, NY 13820, USA
| | - Adalgisa Caccone
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Arley Camargo
- Centro Universitario de Rivera, Universidad de la República, Ituzaingó 667, Rivera 40000, Uruguay
| | - Mariana Morando
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales (IPEEC, CENPAT-CONICET) Bv. Brown 2915, Puerto Madryn U9120ACD, Argentina
| | - Matthew L Niemiller
- Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, AL 35899, USA
| | - Maciej Pabijan
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, ul. Gronostajowa 9, 30-387 Kraków, Poland
| | - Michael A Russello
- Department of Biology, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, BC V1V 1V7, Canada
| | - Barry Sinervo
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Coastal Biology Building, 130 McAllister Way, Santa Cruz, CA 95060, USA
| | - Fernanda P Werneck
- Programa de Coleções Científicas Biológicas, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus 69060-000, Brazil
| | - Jack W Sites
- Department of Biological and Marine Sciences, University of Hull, Cottingham Road, Hull HU6 7RX, UK
| | - John J Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Sebastian Steinfartz
- Molecular Evolution and Systematics of Animals, Institute of Biology, University of Leipzig, Talstrasse 33, 04103 Leipzig, Germany
| |
Collapse
|
24
|
Camp CD, Soelter TM, Wooten JA. Sexual selection and male-biased size dimorphism in a lineage of lungless salamander (Ampibia: Plethodontidae). Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Evolutionary biologists have long focused on the patterns and causes of sexual size dimorphism (SSD). While female-biased SSD is common among ectotherms, a few lineages predominately exhibit male-biased SSD. One example is the clade of desmognathans, a monophyletic group of two genera within the Plethodontinae of the lungless salamander family Plethodontidae. Members of these two genera have a unique pattern of SSD: males mature earlier and at smaller sizes than females but reach greater maximum sizes. We used comparative phylogenetic methods to test whether SSD in these salamanders is the result of sexual selection on males. Spatial evolutionary and ecological vicariance analysis indicated a significant divergence in SSD associated with the phylogenetic origin of the desmognathans. Phylogenetic least-squares regression across the two most speciose genera of the subfamily determined a significant relationship between SSD and adult sex ratio. While male desmognathans are not sexually dimorphic in head size, they have a unique head morphology that causes their heads to grow more rapidly as their body size increases as compared with the heads of other salamanders. This pattern of allometric growth combines with a powerful bite force and enlarged premaxillary teeth to create formidable weaponry that probably is more responsive to sexual selection.
Collapse
Affiliation(s)
- Carlos D Camp
- Department of Biology, Piedmont College, Demorest, GA, USA
| | | | | |
Collapse
|
25
|
Vučić T, Sibinović M, Vukov TD, Tomašević Kolarov N, Cvijanović M, Ivanović A. Testing the evolutionary constraints of metamorphosis: The ontogeny of head shape in Triturus newts. Evolution 2019; 73:1253-1264. [PMID: 30990882 DOI: 10.1111/evo.13743] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 04/01/2019] [Accepted: 04/07/2019] [Indexed: 01/22/2023]
Abstract
In vertebrates with complex, biphasic, life cycles, larvae have a distinct morphology and ecological preferences compared to metamorphosed juveniles and adults. In amphibians, abrupt and rapid metamorphic changes transform aquatic larvae to terrestrial juveniles. The main aim of this study is to test whether, relative to larval stages, metamorphosis (1) resets the pattern of variation between ontogenetic stages and species, (2) constrains intraspecific morphological variability, and (3) similar to the "hour-glass" model reduces morphological disparity. We explore postembryonic ontogenetic trajectories of head shape (from hatching to completed metamorphosis) of two well-defined, morphologically distinct Triturus newts species and their F1 hybrids. Variation in head shape is quantified and compared on two levels: dynamic (across ontogenetic stages) and static (at a particular stage). Our results show that the ontogenetic trajectories diverge early during development and continue to diverge throughout larval stages and metamorphosis. The high within-group variance and the largest disparity level (between-group variance) characterize the metamorphosed stage. Hence, our results indicate that metamorphosis does not canalize head shape variation generated during larval development and that metamorphosed phenotype is not more constrained relative to larval ones. Therefore, metamorphosis cannot be regarded as a developmental constraint, at least not for salamander head shape.
Collapse
Affiliation(s)
- Tijana Vučić
- Faculty of Biology, Institute of Zoology, University of Belgrade, Belgrade, 11000, Serbia.,Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, 11060, Serbia
| | - Maša Sibinović
- Faculty of Biology, Institute of Zoology, University of Belgrade, Belgrade, 11000, Serbia
| | - Tanja D Vukov
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, 11060, Serbia
| | - Nataša Tomašević Kolarov
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, 11060, Serbia
| | - Milena Cvijanović
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, 11060, Serbia
| | - Ana Ivanović
- Faculty of Biology, Institute of Zoology, University of Belgrade, Belgrade, 11000, Serbia
| |
Collapse
|
26
|
Sclavi B, Herrick J. Genome size variation and species diversity in salamanders. J Evol Biol 2019; 32:278-286. [DOI: 10.1111/jeb.13412] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/14/2018] [Accepted: 12/20/2018] [Indexed: 12/13/2022]
Affiliation(s)
| | - John Herrick
- Department of Physics; Simon Fraser University; Burnaby British Columbia Canada
| |
Collapse
|
27
|
Marjanović D, Laurin M. Phylogeny of Paleozoic limbed vertebrates reassessed through revision and expansion of the largest published relevant data matrix. PeerJ 2019; 6:e5565. [PMID: 30631641 PMCID: PMC6322490 DOI: 10.7717/peerj.5565] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 08/12/2018] [Indexed: 01/23/2023] Open
Abstract
The largest published phylogenetic analysis of early limbed vertebrates (Ruta M, Coates MI. 2007. Journal of Systematic Palaeontology 5:69-122) recovered, for example, Seymouriamorpha, Diadectomorpha and (in some trees) Caudata as paraphyletic and found the "temnospondyl hypothesis" on the origin of Lissamphibia (TH) to be more parsimonious than the "lepospondyl hypothesis" (LH)-though only, as we show, by one step. We report 4,200 misscored cells, over half of them due to typographic and similar accidental errors. Further, some characters were duplicated; some had only one described state; for one, most taxa were scored after presumed relatives. Even potentially continuous characters were unordered, the effects of ontogeny were not sufficiently taken into account, and data published after 2001 were mostly excluded. After these issues are improved-we document and justify all changes to the matrix-but no characters are added, we find (Analysis R1) much longer trees with, for example, monophyletic Caudata, Diadectomorpha and (in some trees) Seymouriamorpha; Ichthyostega either crownward or rootward of Acanthostega; and Anthracosauria either crownward or rootward of Temnospondyli. The LH is nine steps shorter than the TH (R2; constrained) and 12 steps shorter than the "polyphyly hypothesis" (PH-R3; constrained). Brachydectes (Lysorophia) is not found next to Lissamphibia; instead, a large clade that includes the adelogyrinids, urocordylid "nectrideans" and aïstopods occupies that position. As expected from the taxon/character ratio, most bootstrap values are low. Adding 56 terminal taxa to the original 102 increases the resolution (and decreases most bootstrap values). The added taxa range in completeness from complete articulated skeletons to an incomplete lower jaw. Even though the lissamphibian-like temnospondyls Gerobatrachus, Micropholis and Tungussogyrinus and the extremely peramorphic salamander Chelotriton are added, the difference between LH (R4; unconstrained) and TH (R5) rises to 10 steps, that between LH and PH (R6) to 15; the TH also requires several more regains of lost bones than the LH. Casineria, in which we tentatively identify a postbranchial lamina, emerges rather far from amniote origins in a gephyrostegid-chroniosuchian grade. Bayesian inference (Analysis EB, settings as in R4) mostly agrees with R4. High posterior probabilities are found for Lissamphibia (1.00) and the LH (0.92); however, many branches remain weakly supported, and most are short, as expected from the small character sample. We discuss phylogeny, approaches to coding, methods of phylogenetics (Bayesian inference vs. equally weighted vs. reweighted parsimony), some character complexes (e.g. preaxial/postaxial polarity in limb development), and prospects for further improvement of this matrix. Even in its revised state, the matrix cannot provide a robust assessment of the phylogeny of early limbed vertebrates. Sufficient improvement will be laborious-but not difficult.
Collapse
Affiliation(s)
- David Marjanović
- Science Programme “Evolution and Geoprocesses”, Museum für Naturkunde—Leibniz Institute for Evolutionary and Biodiversity Research, Berlin, Germany
| | - Michel Laurin
- Centre de Recherches sur la Paléobiologie et les Paléoenvironnements (CR2P), Centre national de la Recherche scientifique (CNRS)/Muséum national d’Histoire naturelle (MNHN)/Sorbonne Université, Paris, France
| |
Collapse
|
28
|
Love AC, Yoshida Y. Reflections on Model Organisms in Evolutionary Developmental Biology. Results Probl Cell Differ 2019; 68:3-20. [PMID: 31598850 DOI: 10.1007/978-3-030-23459-1_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This chapter reflects on and makes explicit the distinctiveness of reasoning practices associated with model organisms in the context of evolutionary developmental research. Model organisms in evo-devo instantiate a unique synthesis of model systems strategies from developmental biology and comparative strategies from evolutionary biology that negotiate a tension between developmental conservation and evolutionary change to address scientific questions about the evolution of development and the developmental basis of evolutionary change. We review different categories of model systems that have been advanced to understand practices found in the life sciences in order to comprehend how evo-devo model organisms instantiate this synthesis in the context of three examples: the starlet sea anemone and the evolution of bilateral symmetry, leeches and the origins of segmentation in bilaterians, and the corn snake to understand major evolutionary change in axial and appendicular morphology.
Collapse
Affiliation(s)
- Alan C Love
- Department of Philosophy and Minnesota Center for Philosophy of Science, University of Minnesota - Twin Cities, Minneapolis, MN, USA.
| | - Yoshinari Yoshida
- Department of Philosophy and Minnesota Center for Philosophy of Science, University of Minnesota - Twin Cities, Minneapolis, MN, USA
| |
Collapse
|
29
|
Arenas Gómez CM, Woodcock RM, Smith JJ, Voss RS, Delgado JP. Using transcriptomics to enable a plethodontid salamander (Bolitoglossa ramosi) for limb regeneration research. BMC Genomics 2018; 19:704. [PMID: 30253734 PMCID: PMC6157048 DOI: 10.1186/s12864-018-5076-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/13/2018] [Indexed: 12/05/2022] Open
Abstract
Background Tissue regeneration is widely distributed across the tree of life. Among vertebrates, salamanders possess an exceptional ability to regenerate amputated limbs and other complex structures. Thus far, molecular insights about limb regeneration have come from a relatively limited number of species from two closely related salamander families. To gain a broader perspective on the molecular basis of limb regeneration and enhance the molecular toolkit of an emerging plethodontid salamander (Bolitoglossa ramosi), we used RNA-Seq to generate a de novo reference transcriptome and identify differentially expressed genes during limb regeneration. Results Using paired-end Illumina sequencing technology and Trinity assembly, a total of 433,809 transcripts were recovered and we obtained functional annotation for 142,926 non-redundant transcripts of the B. ramosi de novo reference transcriptome. Among the annotated transcripts, 602 genes were identified as differentially expressed during limb regeneration. This list was further processed to identify a core set of genes that exhibit conserved expression changes between B. ramosi and the Mexican axolotl (Ambystoma mexicanum), and presumably their common ancestor from approximately 180 million years ago. Conclusions We identified genes from B. ramosi that are differentially expressed during limb regeneration, including multiple conserved protein-coding genes and possible putative species-specific genes. Comparative analyses reveal a subset of genes that show similar patterns of expression with ambystomatid species, which highlights the importance of developing comparative gene expression data for studies of limb regeneration among salamanders. Electronic supplementary material The online version of this article (10.1186/s12864-018-5076-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Claudia M Arenas Gómez
- Grupo de Genética, Regeneración y Cáncer, Universidad de Antioquia, Sede de Investigación Universitaria, Torre 2, laboratorio 432. Calle 62 No. 52 - 59, Medellín, Colombia
| | - Ryan M Woodcock
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA.,Keene State College, Keene, NH, USA
| | - Jeramiah J Smith
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA
| | - Randal S Voss
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Jean Paul Delgado
- Grupo de Genética, Regeneración y Cáncer, Universidad de Antioquia, Sede de Investigación Universitaria, Torre 2, laboratorio 432. Calle 62 No. 52 - 59, Medellín, Colombia.
| |
Collapse
|
30
|
Ivanović A, Arntzen JW. Evolution of skull shape in the family Salamandridae (Amphibia: Caudata). J Anat 2017; 232:359-370. [PMID: 29239487 DOI: 10.1111/joa.12759] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2017] [Indexed: 11/30/2022] Open
Abstract
We carried out a comparative morphometric analysis of 56 species of salamandrid salamanders, representing 19 out of 21 extant genera, with the aim of uncovering the major patterns of skull shape diversification, and revealing possible trends and directions of evolutionary change. To do this we used micro-computed tomography scanning and three-dimensional geometric morphometrics, along with a well-resolved molecular phylogeny. We found that allometry explains a relatively small amount of shape variation across taxa. Congeneric species of salamandrid salamanders are more similar to each other and cluster together producing distinct groups in morphospace. We detected a strong phylogenetic signal and little homoplasy. The most pronounced changes in the skull shape are related to the changes of the frontosquamosal arch, a unique feature of the cranial skeleton for the family Salamandridae, which is formed by processes arising from the frontal and squamosal bones that arch over the orbits. By mapping character states over the phylogeny, we found that a reduction of the frontosquamosal arch occurs independently in three lineages of the subfamily Pleurodelinae. This reduction can probably be attributed to changes in the development and ossification rates of the frontosquamosal arch. In general, our results are similar to those obtained for caecilian amphibians, with an early expansion into the available morphospace and a complex history characterizing evolution of skull shape in both groups. To evaluate the specificity of the inferred evolutionary trajectories and Caudata-wide trends in the diversity of skull morphology, information from additional groups of tailed amphibians is needed.
Collapse
Affiliation(s)
- Ana Ivanović
- Faculty of Biology, University of Belgrade, Belgrade, Serbia.,Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Jan W Arntzen
- Naturalis Biodiversity Center, Leiden, The Netherlands
| |
Collapse
|
31
|
Arenas Gómez CM, Gómez Molina A, Zapata JD, Delgado JP. Limb regeneration in a direct-developing terrestrial salamander, Bolitoglossa ramosi (Caudata: Plethodontidae): Limb regeneration in plethodontid salamanders. ACTA ACUST UNITED AC 2017; 4:227-235. [PMID: 29299325 PMCID: PMC5743783 DOI: 10.1002/reg2.93] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 09/29/2017] [Accepted: 10/04/2017] [Indexed: 02/04/2023]
Abstract
Appendage regeneration is one of the most compelling phenomena in regenerative biology and is extensively studied in axolotls and newts. However, the regenerative capacity in other families of salamanders remains poorly described. Here we characterize the limb regeneration process in Bolitoglossa ramosi, a direct‐developing terrestrial salamander of the plethodontid family. We (1) describe the major morphological features at different stages of limb regeneration, (2) show that appendage regeneration in a terrestrial salamander varies from other amphibians and (3) show that limb regeneration in this species is considerably slower than in axolotls and newts (95 days post‐amputation for complete regeneration) despite having a significantly smaller genome size than axolotls or newts.
Collapse
Affiliation(s)
- Claudia Marcela Arenas Gómez
- Sede de Investigación Universitaria Torre 2, Laboratorio 432, Calle 62 No. 52-59 Medellín Colombia.,Grupo de Genética, Regeneración y Cáncer Universidad de Antioquia Medellin Colombia
| | - Andrea Gómez Molina
- Sede de Investigación Universitaria Torre 2, Laboratorio 432, Calle 62 No. 52-59 Medellín Colombia.,Grupo de Genética, Regeneración y Cáncer Universidad de Antioquia Medellin Colombia
| | - Juliana D Zapata
- Grupo de Investigación en Patobiología Quiró nUniversidad de Antioquia Ciudadela Robledo, Carrera 75 # 65-87, bloque 47, oficina 134 Medellín Colombia
| | - Jean Paul Delgado
- Sede de Investigación Universitaria Torre 2, Laboratorio 432, Calle 62 No. 52-59 Medellín Colombia.,Grupo de Genética, Regeneración y Cáncer Universidad de Antioquia Medellin Colombia
| |
Collapse
|
32
|
Dawley EM. Comparative Morphology of Plethodontid Olfactory and Vomeronasal Organs: How Snouts Are Packed. HERPETOLOGICAL MONOGRAPHS 2017. [DOI: 10.1655/herpmonographs-d-15-00008.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Ellen M. Dawley
- Department of Biology, Ursinus College, Collegeville, PA 19426, USA
| |
Collapse
|
33
|
Affiliation(s)
- Kenneth H. Kozak
- Bell Museum of Natural History and Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
34
|
Affiliation(s)
- David B. Wake
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA 94720-3160, USA
| |
Collapse
|
35
|
Araujo R, Buckley D, Nagel KO, García-Jiménez R, Machordom A. Species boundaries, geographic distribution and evolutionary history of the Western Palaearctic freshwater mussels Unio (Bivalvia: Unionidae). Zool J Linn Soc 2017. [DOI: 10.1093/zoolinnean/zlx039] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Rafael Araujo
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| | - David Buckley
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| | | | - Ricardo García-Jiménez
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| | - Annie Machordom
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| |
Collapse
|
36
|
|
37
|
Newman CE, Gregory TR, Austin CC. The dynamic evolutionary history of genome size in North American woodland salamanders. Genome 2017; 60:285-292. [DOI: 10.1139/gen-2016-0166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The genus Plethodon is the most species-rich salamander genus in North America, and nearly half of its species face an uncertain future. It is also one of the most diverse families in terms of genome sizes, which range from 1C = 18.2 to 69.3 pg, or 5–20 times larger than the human genome. Large genome size in salamanders results in part from accumulation of transposable elements and is associated with various developmental and physiological traits. However, genome sizes have been reported for only 25% of the species of Plethodon (14 of 55). We collected genome size data for Plethodon serratus to supplement an ongoing phylogeographic study, reconstructed the evolutionary history of genome size in Plethodontidae, and inferred probable genome sizes for the 41 species missing empirical data. Results revealed multiple genome size changes in Plethodon: genomes of western Plethodon increased, whereas genomes of eastern Plethodon decreased, followed by additional decreases or subsequent increases. The estimated genome size of P. serratus was 21 pg. New understanding of variation in genome size evolution, along with genome size inferences for previously unstudied taxa, provide a foundation for future studies on the biology of plethodontid salamanders.
Collapse
Affiliation(s)
- Catherine E. Newman
- Museum of Natural Science, Louisiana State University, 119 Foster Hall, Baton Rouge, LA 70803, USA
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - T. Ryan Gregory
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Christopher C. Austin
- Museum of Natural Science, Louisiana State University, 119 Foster Hall, Baton Rouge, LA 70803, USA
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
38
|
Beachy CK, Ryan TJ, Bonett RM. How Metamorphosis Is Different in Plethodontids: Larval Life History Perspectives on Life-Cycle Evolution. HERPETOLOGICA 2017; 73:252-258. [PMID: 29269959 PMCID: PMC5736161 DOI: 10.1655/herpetologica-d-16-00083.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Plethodontid salamanders exhibit biphasic, larval form paedomorphic, and direct developing life cycles. This diversity of developmental strategies exceeds that of any other family of terrestrial vertebrate. Here we compare patterns of larval development among the three divergent lineages of biphasic plethodontids and other salamanders. We discuss how patterns of life-cycle evolution and larval ecology might have produced a wide array of larval life histories. Compared with many other salamanders, most larval plethodontids have relatively slow growth rates and sometimes exceptionally long larval periods (up to 60 mo). Recent phylogenetic analyses of life-cycle evolution indicate that ancestral plethodontids were likely direct developers. If true, then biphasic and paedomorphic lineages might have been independently derived through different developmental mechanisms. Furthermore, biphasic plethodontids largely colonized stream habitats, which tend to have lower productivity than seasonally ephemeral ponds. Consistent with this, plethodontid larvae grow very slowly, and metamorphic timing does not appear to be strongly affected by growth history. On the basis of this, we speculate that feeding schedules and stress hormones might play a comparatively reduced role in governing the timing of metamorphosis of stream-dwelling salamanders, particularly plethodontids.
Collapse
Affiliation(s)
- Christopher K. Beachy
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, LA 70402, USA
| | - Travis J. Ryan
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208, USA
| | - Ronald M. Bonett
- Department of Biological Science, University of Tulsa, Tulsa, OK 74104, USA
| |
Collapse
|
39
|
Gregory AL, Sears BR, Wooten JA, Camp CD, Falk A, O'Quin K, Pauley TK. Evolution of dentition in salamanders: relative roles of phylogeny and diet. Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12831] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anna L. Gregory
- Department of Biology; Centre College; 600 West Walnut Street Danville KY 40422 USA
| | - Brittany R. Sears
- Department of Biology; Centre College; 600 West Walnut Street Danville KY 40422 USA
| | - Jessica A. Wooten
- Department of Biology; Centre College; 600 West Walnut Street Danville KY 40422 USA
| | - Carlos D. Camp
- Department of Biology; Piedmont College; 1021 Central Avenue Demorest GA 30535 USA
| | - Amanda Falk
- Department of Biology; Centre College; 600 West Walnut Street Danville KY 40422 USA
| | - Kelly O'Quin
- Department of Biology; Centre College; 600 West Walnut Street Danville KY 40422 USA
| | - Thomas K. Pauley
- Department of Biological Sciences; Marshall University; 1 John Marshall Way Huntington WV 25755 USA
| |
Collapse
|
40
|
Kuchta SR, Brown AD, Converse PE, Highton R. Multilocus Phylogeography and Species Delimitation in the Cumberland Plateau Salamander, Plethodon kentucki: Incongruence among Data Sets and Methods. PLoS One 2016; 11:e0150022. [PMID: 26974148 PMCID: PMC4790894 DOI: 10.1371/journal.pone.0150022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 02/08/2016] [Indexed: 11/29/2022] Open
Abstract
Species are a fundamental unit of biodiversity, yet can be challenging to delimit objectively. This is particularly true of species complexes characterized by high levels of population genetic structure, hybridization between genetic groups, isolation by distance, and limited phenotypic variation. Previous work on the Cumberland Plateau Salamander, Plethodon kentucki, suggested that it might constitute a species complex despite occupying a relatively small geographic range. To examine this hypothesis, we sampled 135 individuals from 43 populations, and used four mitochondrial loci and five nuclear loci (5693 base pairs) to quantify phylogeographic structure and probe for cryptic species diversity. Rates of evolution for each locus were inferred using the multidistribute package, and time calibrated gene trees and species trees were inferred using BEAST 2 and *BEAST 2, respectively. Because the parameter space relevant for species delimitation is large and complex, and all methods make simplifying assumptions that may lead them to fail, we conducted an array of analyses. Our assumption was that strongly supported species would be congruent across methods. Putative species were first delimited using a Bayesian implementation of the GMYC model (bGMYC), Geneland, and Brownie. We then validated these species using the genealogical sorting index and BPP. We found substantial phylogeographic diversity using mtDNA, including four divergent clades and an inferred common ancestor at 14.9 myr (95% HPD: 10.8-19.7 myr). By contrast, this diversity was not corroborated by nuclear sequence data, which exhibited low levels of variation and weak phylogeographic structure. Species trees estimated a far younger root than did the mtDNA data, closer to 1.0 myr old. Mutually exclusive putative species were identified by the different approaches. Possible causes of data set discordance, and the problem of species delimitation in complexes with high levels of population structure and introgressive hybridization, are discussed.
Collapse
Affiliation(s)
- Shawn R. Kuchta
- Department of Biological Sciences, Ohio Center for Ecology and Evolutionary Studies, Ohio University, Athens, Ohio, United States of America
| | - Ashley D. Brown
- Department of Biological Sciences, Ohio Center for Ecology and Evolutionary Studies, Ohio University, Athens, Ohio, United States of America
| | - Paul E. Converse
- Department of Biological Sciences, Ohio Center for Ecology and Evolutionary Studies, Ohio University, Athens, Ohio, United States of America
| | - Richard Highton
- Department of Biology, University of Maryland, College Park, Maryland, United States of America
| |
Collapse
|
41
|
|
42
|
|
43
|
Herron MD. Origins of multicellular complexity: Volvox and the volvocine algae. Mol Ecol 2016; 25:1213-23. [PMID: 26822195 DOI: 10.1111/mec.13551] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/21/2015] [Accepted: 12/26/2015] [Indexed: 11/28/2022]
Abstract
The collection of evolutionary transformations known as the 'major transitions' or 'transitions in individuality' resulted in changes in the units of evolution and in the hierarchical structure of cellular life. Volvox and related algae have become an important model system for the major transition from unicellular to multicellular life, which touches on several fundamental questions in evolutionary biology. The Third International Volvox Conference was held at the University of Cambridge in August 2015 to discuss recent advances in the biology and evolution of this group of algae. Here, I highlight the benefits of integrating phylogenetic comparative methods and experimental evolution with detailed studies of developmental genetics in a model system with substantial genetic and genomic resources. I summarize recent research on Volvox and its relatives and comment on its implications for the genomic changes underlying major evolutionary transitions, evolution and development of complex traits, evolution of sex and sexes, evolution of cellular differentiation and the biophysics of motility. Finally, I outline challenges and suggest future directions for research into the biology and evolution of the volvocine algae.
Collapse
Affiliation(s)
- Matthew D Herron
- Division of Biological Sciences, University of Montana, 32 Campus Dr., Missoula, MT, 59812, USA
| |
Collapse
|
44
|
Deitloff J, Floyd C, Graham SP. Examining Head-shape Differences and Ecology in Morphologically Similar Salamanders at Their Zone of Contact. COPEIA 2016. [DOI: 10.1643/ce-15-319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Shen XX, Liang D, Chen MY, Mao RL, Wake DB, Zhang P. Enlarged Multilocus Data set Provides Surprisingly Younger Time of Origin for the Plethodontidae, the Largest Family of Salamanders. Syst Biol 2015; 65:66-81. [PMID: 26385618 DOI: 10.1093/sysbio/syv061] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 08/15/2015] [Indexed: 11/14/2022] Open
Abstract
Deep phylogenetic relationships of the largest salamander family Plethodontidae have been difficult to resolve, probably reflecting a rapid diversification early in their evolutionary history. Here, data from 50 independent nuclear markers (total 48,582 bp) are used to reconstruct the phylogeny and divergence times for plethodontid salamanders, using both concatenation and coalescence-based species tree analyses. Our results robustly resolve the position of the enigmatic eastern North American four-toed salamander (Hemidactylium) as the sister taxon of Batrachoseps + Tribe Bolitoglossini, thus settling a long-standing question. Furthermore, we statistically reject sister taxon status of Karsenia and Hydromantes, the only plethodontids to occur outside the Americas, leading us to new biogeographic hypotheses. Contrary to previous long-standing arguments that plethodontid salamanders are an old lineage originating in the Cretaceous (more than 90 Ma), our analyses lead to the hypothesis that these salamanders are much younger, arising close to the K-T boundary (~66 Ma). These time estimates are highly stable using alternative calibration schemes and dating methods. Our data simulation highlights the potential risk of making strong arguments about phylogenetic timing based on inferences from a handful of nuclear genes, a common practice. Based on the newly obtained timetree and ancestral area reconstruction results, we argue that (i) the classic "Out of Appalachia" hypothesis of plethodontid origins is problematic; (ii) the common ancestor of extant plethodontids may have originated in northwestern North America in the early Paleocene; (iii) origins of Eurasian plethodontids likely result from two separate dispersal events from western North America via Beringia in the late Eocene (~42 Ma) and the early Miocene (~23 Ma), respectively.
Collapse
Affiliation(s)
- Xing-Xing Shen
- State Key Laboratory of Biocontrol, College of Ecology and Evolution, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China and
| | - Dan Liang
- State Key Laboratory of Biocontrol, College of Ecology and Evolution, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China and
| | - Meng-Yun Chen
- State Key Laboratory of Biocontrol, College of Ecology and Evolution, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China and
| | - Rong-Li Mao
- State Key Laboratory of Biocontrol, College of Ecology and Evolution, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China and
| | - David B Wake
- Museum of Vertebrate Zoology and Department of Integrative Biology, 3101 Valley Life Sciences Bldg, University of California, Berkeley, CA 94720, USA
| | - Peng Zhang
- State Key Laboratory of Biocontrol, College of Ecology and Evolution, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China and
| |
Collapse
|
46
|
Pleistocene climatic fluctuations explain the disjunct distribution and complex phylogeographic structure of the Southern Red-backed Salamander, Plethodon serratus. Evol Ecol 2015. [DOI: 10.1007/s10682-015-9794-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
47
|
Rovito SM, Parra-Olea G, Recuero E, Wake DB. Diversification and biogeographical history of Neotropical plethodontid salamanders. Zool J Linn Soc 2015. [DOI: 10.1111/zoj.12271] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sean M. Rovito
- Museum of Vertebrate Zoology; University of California; 3101 Valley Life Sciences Building Berkeley CA 94720-3160 USA
- Instituto de Biología; Universidad Nacional Autónoma de México; AP 70-153 Circuito Exterior Ciudad Universitaria México DF CP 04510 México
| | - Gabriela Parra-Olea
- Instituto de Biología; Universidad Nacional Autónoma de México; AP 70-153 Circuito Exterior Ciudad Universitaria México DF CP 04510 México
| | - Ernesto Recuero
- Departamento de Ecología de la Biodiversidad; Instituto de Ecología; Universidad Nacional Autónoma de México; AP 70-275 Ciudad Universitaria México DF 04510 Mexico
| | - David B. Wake
- Museum of Vertebrate Zoology; University of California; 3101 Valley Life Sciences Building Berkeley CA 94720-3160 USA
- Department of Integrative Biology; University of California; 3040 Valley Life Sciences Building Berkeley CA 94720-3140 USA
| |
Collapse
|
48
|
Lloyd EA. Adaptationism and the Logic of Research Questions: How to Think Clearly About Evolutionary Causes. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s13752-015-0214-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
49
|
Darda DM, Wake DB. Osteological Variation among Extreme Morphological Forms in the Mexican Salamander Genus Chiropterotriton (Amphibia: Plethodontidae): Morphological Evolution And Homoplasy. PLoS One 2015; 10:e0127248. [PMID: 26060996 PMCID: PMC4464517 DOI: 10.1371/journal.pone.0127248] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 04/13/2015] [Indexed: 11/23/2022] Open
Abstract
Osteological variation is recorded among and within four of the most distinctive species of the Mexican salamander genus Chiropterotriton. Analysis of the data is consistent with the monophyletic status of the genus and documents previously unrecorded intraspecific and interspecific variation. Most of the recorded variation involves qualitative and quantitative proportional differences, but four fixed differences constitute autapomorphic states that affirm and diagnose some species (C. dimidiatus, C. magnipes). Osteological variation in 15 characters is analyzed with respect to predictions generated from four hypotheses: 1) phylogeny, 2) adaptation to specific habitats (the four species include cave-dwelling, terrestrial, and arboreal forms), 3) size-free shape, and 4) size. High levels of intraspecific variation suggest that the characters studied are not subject to rigid functional constraints in salamanders, regardless of size. The pattern predicted by the hypothesis based on size differences seen among these four Chiropterotriton species matches most closely the observed pattern of relative skull robustness. Since size change and heterochrony are often associated in plethodontid evolution, it is likely that changes in developmental timing play a role in the morphological transitions among these morphologically diverse taxa. Webbed feet, miniaturization, body shape, and an unusual tarsal arrangement are morphologies exhibited in species of Chiropterotrition that are shown to be homoplastic with other clades of tropical plethodontids. Although extensive homoplasy in salamanders might be seen as a roadblock to unraveling phylogenetic hypotheses, the homologous developmental systems that appear to underlie such homoplasy may reveal common and consistent evolutionary processes at work.
Collapse
Affiliation(s)
- David M. Darda
- Department of Biological Sciences, Central Washington University, Ellensburg, Washington, United States of America
| | - David B. Wake
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, California, United States of America
| |
Collapse
|
50
|
DNA Barcoding Survey of Anurans across the Eastern Cordillera of Colombia and the Impact of the Andes on Cryptic Diversity. PLoS One 2015; 10:e0127312. [PMID: 26000447 PMCID: PMC4441516 DOI: 10.1371/journal.pone.0127312] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/13/2015] [Indexed: 11/23/2022] Open
Abstract
Colombia hosts the second highest amphibian species diversity on Earth, yet its fauna remains poorly studied, especially using molecular genetic techniques. We present the results of the first wide-scale DNA barcoding survey of anurans of Colombia, focusing on a transect across the Eastern Cordillera. We surveyed 10 sites between the Magdalena Valley to the west and the eastern foothills of the Eastern Cordillera, sequencing portions of the mitochondrial 16S ribosomal RNA and cytochrome oxidase subunit 1 (CO1) genes for 235 individuals from 52 nominal species. We applied two barcode algorithms, Automatic Barcode Gap Discovery and Refined Single Linkage Analysis, to estimate the number of clusters or “unconfirmed candidate species” supported by DNA barcode data. Our survey included ~7% of the anuran species known from Colombia. While barcoding algorithms differed slightly in the number of clusters identified, between three and ten nominal species may be obscuring candidate species (in some cases, more than one cryptic species per nominal species). Our data suggest that the high elevations of the Eastern Cordillera and the low elevations of the Chicamocha canyon acted as geographic barriers in at least seven nominal species, promoting strong genetic divergences between populations associated with the Eastern Cordillera.
Collapse
|