1
|
Posada-López L, Rodrigues BL, Velez ID, Uribe S. Improving the COI DNA barcoding library for Neotropical phlebotomine sand flies (Diptera: Psychodidae). Parasit Vectors 2023; 16:198. [PMID: 37308979 DOI: 10.1186/s13071-023-05807-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/10/2023] [Indexed: 06/14/2023] Open
Abstract
Sand fly species are traditionally identified using morphological traits, though this method is hampered by the presence of cryptic species. DNA barcoding is a widely used tool in the case of insects of medical importance, where it is necessary to know quickly which species are present in a transmission area. Here, we assess the usefulness of mitochondrial cytochrome c oxidase subunit I (COI) DNA barcoding as a practical tool for species identification, correct assignment of isomorphic females, and to evaluate the detection of cryptic diversity that occurs in the same species. A fragment of the COI gene was used to generate 156 new barcode sequences for sand flies from different countries of the Neotropical region, mainly Colombia, which had been identified morphologically as 43 species. The sequencing of the COI gene allowed the detection of cryptic diversity within species and correctly associated isomorphic females with males identified by morphology. The maximum intraspecific genetic distances ranged from 0 to 8.32% and 0 to 8.92% using uncorrected p distances and the Kimura 2-parameter (K2P) model, respectively. The minimum interspecific distance (nearest neighbor) for each species ranged from 1.5 to 14.14% and 1.51 to 15.7% using p and K2P distances, respectively. Three species had more than 3% maximum intraspecific distance: Psychodopygus panamensis, Micropygomyia cayennensis cayennensis, and Pintomyia evansi. They also were split into at least two molecular operational taxonomic units (MOTUs) each, using different species delimitation algorithms. Regarding interspecific genetic distances, the species of the genera Nyssomyia and Trichophoromyia generated values lower than 3% (except Nyssomyia ylephiletor and Ny. trapidoi). However, the maximum intraspecific distances did not exceed these values, indicating the presence of a barcode gap despite their proximity. Also, nine sand fly species were DNA barcoded for the first time: Evandromyia georgii, Lutzomyia sherlocki, Ny. ylephiletor, Ny. yuilli pajoti, Psathyromyia punctigeniculata, Sciopemyia preclara, Trichopygomyia triramula, Trichophoromyia howardi, and Th. velezbernali. The COI DNA barcode analysis enabled the correct delimitation of several Neotropical sand fly species from South and Central America and raised questions about the presence of cryptic species for some taxa, which should be further assessed.
Collapse
Affiliation(s)
- Laura Posada-López
- PECET (Programa de Estudio y Control de Enfermedades Tropicales), Universidad de Antioquia, Medellín, Colombia.
- Programa de Pós-graduação em Saúde Pública, Faculdade de Saúde Pública (FSP/USP), São Paulo, SP, Brasil.
| | - Bruno Leite Rodrigues
- Programa de Pós-graduação em Saúde Pública, Faculdade de Saúde Pública (FSP/USP), São Paulo, SP, Brasil
| | - Ivan Dario Velez
- PECET (Programa de Estudio y Control de Enfermedades Tropicales), Universidad de Antioquia, Medellín, Colombia
| | - Sandra Uribe
- Grupo de Investigación en Sistemática Molecular, Universidad Nacional de Colombia, Campus, Medellín, Colombia
| |
Collapse
|
2
|
Lis JA. Molecular Apomorphies in the Secondary and Tertiary Structures of Length-Variable Regions (LVRs) of 18S rRNA Shed Light on the Systematic Position of the Family Thaumastellidae (Hemiptera: Heteroptera: Pentatomoidea). Int J Mol Sci 2023; 24:ijms24097758. [PMID: 37175465 PMCID: PMC10178826 DOI: 10.3390/ijms24097758] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
The SSU nrDNA, a small subunit of the nuclear ribosomal DNA (coding 18S rRNA), is one of the most frequently sequenced genes in molecular studies in Hexapoda. In insects, including true bugs (Hemiptera: Heteroptera), only its primary structures (i.e., aligned sequences) are predominantly used in phylogenetic reconstructions. It is known that including RNA secondary structures in the alignment procedure is essential for improving accuracy and robustness in phylogenetic tree reconstruction. Moreover, local plasticity in rRNAs might impact their tertiary structures and corresponding functions. To determine the systematic position of Thaumastellidae within the superfamily Pentatomoidea, the secondary and-for the first time among all Hexapoda-tertiary structures of 18S rRNAs in twelve pentatomoid families were compared and analysed. Results indicate that the shapes of the secondary and tertiary structures of the length-variable regions (LVRs) in the 18S rRNA are phylogenetically highly informative. Based on these results, it is suggested that the Thaumastellidae is maintained as an independent family within the superfamily Pentatomoidea, rather than as a part of the family Cydnidae. Moreover, the analyses indicate a close relationship between Sehirinae and Parastrachiidae, expressed in morpho-molecular synapomorphies in the predicted secondary and tertiary structures of the length-variable region L (LVR L).
Collapse
Affiliation(s)
- Jerzy A Lis
- Institute of Biology, University of Opole, Oleska 22, 45-052 Opole, Poland
| |
Collapse
|
3
|
Li S, Zhu Y, Xu Z, Chen L, Wang W, Cheng Z. The phylogeny and divergence time of Ophiocordyceps sinensis and its host insects based on elongation factor 1 alpha. Arch Microbiol 2023; 205:98. [PMID: 36853446 DOI: 10.1007/s00203-023-03444-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/18/2022] [Accepted: 02/16/2023] [Indexed: 03/01/2023]
Abstract
Ophiocordyceps sinensis Berk. is a fungal parasite that parasitizes the larvae of Hepialidae and is endemic to the Qinghai-Tibet Plateau (QTP). The phylogeny and divergence time of O. sinensis and its host insects were analyzed for 137 individuals from 48 O. sinensis populations based on the elongation factor 1 alpha (EF-1α) gene. Lower nucleotide variation, with only 7 and 16 EF-1α haplotypes, was detected in O. sinensis and its host insects, respectively. The isolated and broad distribution patterns coexisted in both O. sinensis and its host insects on the QTP. The divergence time estimates show that O. sinensis and its host insects originated later than 14.33 million years (Myr) and earlier than 23.60 Myr in the Miocene period, and the major differentiation occurred later than 4 Myr. Their origin and differentiation match well with the second and third uplifts of the QTP, respectively. The host insects from the O. sinensis populations distributed around Qinghai Lake are inferred as an ancient and relict species that has survived various geological events of the QTP. It is suitable to estimate the divergence times of both O. sinensis and its host insects from the same individuals using one gene: EF-1α. Our findings of the origin, phylogeny, and evolution of the endemic species also support the epoch of geological events on the QTP.
Collapse
Affiliation(s)
- Shan Li
- School of Life Science and Technology, Tongji University, 1239, Siping Road, Shanghai, 200092, People's Republic of China
| | - Yunguo Zhu
- School of Life Science and Technology, Tongji University, 1239, Siping Road, Shanghai, 200092, People's Republic of China
| | - Zixian Xu
- School of Life Science and Technology, Tongji University, 1239, Siping Road, Shanghai, 200092, People's Republic of China
| | - Lingling Chen
- School of Life Science and Technology, Tongji University, 1239, Siping Road, Shanghai, 200092, People's Republic of China
| | - Wenqian Wang
- School of Life Science and Technology, Tongji University, 1239, Siping Road, Shanghai, 200092, People's Republic of China
| | - Zhou Cheng
- School of Life Science and Technology, Tongji University, 1239, Siping Road, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
4
|
Rodrigues BL, Galati EAB. Molecular taxonomy of phlebotomine sand flies (Diptera, Psychodidae) with emphasis on DNA barcoding: A review. Acta Trop 2023; 238:106778. [PMID: 36435214 DOI: 10.1016/j.actatropica.2022.106778] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
Abstract
The taxonomy and systematics of sand flies (Diptera, Psychodidae, Phlebotominae) are one of the pillars of research aimed to identifying vector populations and the agents transmitted by these insects. Traditionally, the use of morphological traits has been the main line of evidence for the definition of species, but the use of DNA sequences is useful as an integrative approach for their delimitation. Here, we discuss the current status of the molecular taxonomy of sand flies, including their most sequenced molecular markers and the main results. Only about 37% of all sand fly species have been processed for any molecular marker and are publicly available in the NCBI GenBank or BOLD Systems databases. The genera Phlebotomus, Nyssomyia, Psathyromyia and Psychodopygus are well-sampled, accounting for more than 56% of their sequenced species. However, less than 34% of the species of Sergentomyia, Lutzomyia, Trichopygomyia and Trichophoromyia have been sampled, representing a major gap in the knowledge of these groups. The most sequenced molecular markers are those within mtDNA, especially the DNA barcoding fragment of the cytochrome c oxidase subunit I (coi) gene, which has shown promising results in detecting cryptic diversity within species. Few sequences of conserved genes have been generated, which hampers higher-level phylogenetic inferences. We argue that sand fly species should be sequenced for at least the coi DNA barcoding marker, but multiple markers with different mutation rates should be assessed, whenever possible, to generate multilocus analysis.
Collapse
Affiliation(s)
- Bruno Leite Rodrigues
- Programa de Pós-Graduação em Saúde Pública, Faculdade de Saúde Pública da Universidade de São Paulo (FSP/USP). Av. Dr. Arnaldo, 715 - Cerqueira César, São Paulo SP, Brazil, 01246-904.
| | - Eunice Aparecida Bianchi Galati
- Programa de Pós-Graduação em Saúde Pública, Faculdade de Saúde Pública da Universidade de São Paulo (FSP/USP). Av. Dr. Arnaldo, 715 - Cerqueira César, São Paulo SP, Brazil, 01246-904
| |
Collapse
|
5
|
Kapantaidaki DE, Krokida A, Evangelou V, Milonas P, Papachristos DP. A Molecular Diagnostic Assay for the Discrimination of Aphid Species (Hemiptera: Aphididae) Infesting Citrus. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:2075-2082. [PMID: 36269118 DOI: 10.1093/jee/toac158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Indexed: 06/16/2023]
Abstract
Aphid species (Hemiptera: Aphididae) are among the most serious pests for citrus cultivation throughout the world causing substantial crop damages. Accurate identification of aphids to the species level can be difficult, though being crucial for their effective management. In this study, a molecular diagnostic assay for distinguishing eleven aphid species was developed. A fragment of the mitochondrial Cytochrome Oxidase I (mtCOI) gene was used and a Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-FLP) analysis with five restriction enzymes, based on DNA sequence polymorphisms, was applied to differentiate the eleven aphid species. This molecular technique allows aphid species at any life stage to be discriminated accurately and simply and can be a useful tool for monitoring the populations of economically important aphid species.
Collapse
Affiliation(s)
- Despoina Ev Kapantaidaki
- Benaki Phytopathological Institute, Scientific Directorate of Entomology and Agricultural Zoology, 8 Stefanou Delta Street, Kifissia, Attica, Greece
| | - Afroditi Krokida
- Benaki Phytopathological Institute, Scientific Directorate of Entomology and Agricultural Zoology, 8 Stefanou Delta Street, Kifissia, Attica, Greece
| | - Vasiliki Evangelou
- Benaki Phytopathological Institute, Scientific Directorate of Entomology and Agricultural Zoology, 8 Stefanou Delta Street, Kifissia, Attica, Greece
| | - Panagiotis Milonas
- Benaki Phytopathological Institute, Scientific Directorate of Entomology and Agricultural Zoology, 8 Stefanou Delta Street, Kifissia, Attica, Greece
| | - Dimitrios P Papachristos
- Benaki Phytopathological Institute, Scientific Directorate of Entomology and Agricultural Zoology, 8 Stefanou Delta Street, Kifissia, Attica, Greece
| |
Collapse
|
6
|
Khan MU, Andleeb S, Khan MF, Mustafa RG. Molecular Characterization and Phylogenetic Analysis of Earthworm Species Collected from Different Soil Habitats of Poonch Division Azad Jammu and Kashmir Pakistan. J Oleo Sci 2022; 71:1349-1361. [PMID: 36047242 DOI: 10.5650/jos.ess21450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study aims to analyze molecular characterization and phylogenetic analysis of earthworm species collected from different soil habitats of Poonch division Azad Kashmir Pakistan by using CO1 gene partial sequencing methodology. Samples gathered randomly from 18 study sites (127 localities) by digging and hand sorting methods were preserved in pure ethanol at -20°C. The modified CTAB (Cetyltrimethyl ammonium bromide) method extracted high quality DNA from region of representative earthworm's caudal region. This extracted DNA was used to amplify the 700 bp partial region of the cytochrome oxidase I (COI) gene with LCO1490 and HCO2198 universal primers. All of the obtained amplified gene sequences were aligned, edited and analyzed using MEGA X software to characterize different species of earthworms. Thirty-eight (38) Barcoding sequences belonging to 11 different strains of earthworms were successfully generated. Their phylogenetic analysis revealed that 7 Barcoding sequences gave maximum similarity with the available online database, while the rest of the 4 sequences gave lower similarity than the maximum threshold level. The collected DNA barcode sequences were also clustered together by the maximum likelihood method and the resultant phylogenetic tree revealed they belong to different family lineages. Moreover the identified earthworm species have a close evolutionary link with the earthworm fauna of south and central Asia instead of Europe, which might be due to similar climate of both regions.
Collapse
Affiliation(s)
| | - Saiqa Andleeb
- Department of Zoology, University of Azad Jammu and Kashmir
| | | | | |
Collapse
|
7
|
Ghonche-Golan S, Nazemi-Rafie J, Rezapanah M. The relationship study among Apis spp. using mitochondrial markers, Procrustes coordinates and residuals of geometric morphometric method. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01123-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Salabao L, Plevoets T, Frédérich B, Lepoint G, Kochzius M, Schön I. Describing novel mitochondrial genomes of Antarctic amphipods. Mitochondrial DNA B Resour 2022; 7:810-818. [PMID: 35573593 PMCID: PMC9103263 DOI: 10.1080/23802359.2022.2073837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
To date, only one mitogenome from an Antarctic amphipod has been published. Here, novel complete mitochondrial genomes (mitogenomes) of two morphospecies are assembled, namely, Charcotia amundseni and Eusirus giganteus. For the latter species, we have assembled two mitogenomes from different genetic clades of this species. The lengths of Eusirus and Charcotia mitogenomes range from 15,534 to 15,619 base pairs and their mitogenomes are composed of 13 protein coding genes, 22 transfer RNAs, 2 ribosomal RNAs, and 1 putative control region CR. Some tRNAs display aberrant structures suggesting that minimalization is also ongoing in amphipod mitogenomes. The novel mitogenomes of the two Antarctic species have features distinguishing them from other amphipod mitogenomes such as a lower AT-richness in the whole mitogenomes and a negative GC- skew in both strands of protein coding genes. The genetically most variable mitochondrial regions of amphipods are nad6 and atp8, while cox1 shows low nucleotide diversity among closely and more distantly related species. In comparison to the pancrustacean mitochondrial ground pattern, E. giganteus shows a translocation of the nad1 gene, while cytb and nad6 genes are translocated in C. amundseni. Phylogenetic analysis based on mitogenomes illustrates that Eusirus and Charcotia cluster together with other species belonging to the same amphipod superfamilies. In the absence of reference nuclear genomes, mitogenomes can be useful to develop markers for studying population genetics or evolutionary relationships at higher taxonomic levels.
Collapse
Affiliation(s)
- Louraine Salabao
- Laboratory of Functional and Evolutionary Morphology, FOCUS, University of Liège, Liège, Belgium
- Centre for Environmental Sciences, Zoology: Toxicology and Biodiversity, Diepenbeek, Belgium
| | - Tim Plevoets
- Unit Animal Sciences - ILVO Marine Research, Flanders Research Institute for Agriculture, Fisheries and Food, Oostende, Belgium
| | - Bruno Frédérich
- Laboratory of Functional and Evolutionary Morphology, FOCUS, University of Liège, Liège, Belgium
| | - Gilles Lepoint
- Laboratory of Trophic and Isotopes Ecology, FOCUS, University of Liège, Liège, Belgium
| | - Marc Kochzius
- Marine Biology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Isa Schön
- Centre for Environmental Sciences, Zoology: Toxicology and Biodiversity, Diepenbeek, Belgium
- OD Nature, Freshwater Biology, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| |
Collapse
|
9
|
Morphometrics, Distribution, and DNA Barcoding: An Integrative Identification Approach to the Genus Odontotermes (Termitidae: Blattodea) of Khyber Pakhtunkhwa, Pakistan. FORESTS 2022. [DOI: 10.3390/f13050674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The neglected area of Khyber Pakhtunkhwa (Pakistan: Oriental region), consisting of Buner, Haripur, and Swabi districts, were surveyed for termites during the summer of 2016–2019 for identification and assessment of the distribution of colonies. Collections were made either directly from visible galleries or using traps with ethanol. Soldiers were used for morphometric identification and DNA extraction. Morphometric identification was carried out based on the available literature through measurements of 20 characters/indices and evaluating species differences statistically. Based on these characteristics, we generated a key and a distribution map of the genus Odontotermes for the study area. This is the first record of Odontotermes assmuthi and Odontotermes obesus in these three districts, the first record of Odontotermes parvidens for the Buner and Swabi districts, and the first record of Odontotermes horai for Haripur. We subsequently used barcoding of the mtDNA COII to verify species assignments of colonies and for phylogenetic analyses using Neighbor-Joining and Maximum Likelihood analyses.
Collapse
|
10
|
Miller CD, Forthman M, Miller CW, Kimball RT. Extracting ‘legacy loci’ from an invertebrate sequence capture data set. ZOOL SCR 2021. [DOI: 10.1111/zsc.12513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Caroline D. Miller
- Department of Entomology & Nematology University of Florida Gainesville FL USA
| | - Michael Forthman
- Department of Entomology & Nematology University of Florida Gainesville FL USA
- California State Collection of Arthropods Plant Pest Diagnostics Branch California Department of Food & Agriculture Sacramento CA USA
| | - Christine W. Miller
- Department of Entomology & Nematology University of Florida Gainesville FL USA
| | | |
Collapse
|
11
|
Furfaro G, Mariottini P. Looking at the Nudibranch Family Myrrhinidae (Gastropoda, Heterobranchia) from a Mitochondrial '2D Folding Structure' Point of View. Life (Basel) 2021; 11:583. [PMID: 34207329 PMCID: PMC8235141 DOI: 10.3390/life11060583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 01/16/2023] Open
Abstract
Integrative taxonomy is an evolving field of multidisciplinary studies often utilised to elucidate phylogenetic reconstructions that were poorly understood in the past. The systematics of many taxa have been resolved by combining data from different research approaches, i.e., molecular, ecological, behavioural, morphological and chemical. Regarding molecular analysis, there is currently a search for new genetic markers that could be diagnostic at different taxonomic levels and that can be added to the canonical ones. In marine Heterobranchia, the most widely used mitochondrial markers, COI and 16S, are usually analysed by comparing the primary sequence. The 16S rRNA molecule can be folded into a 2D secondary structure that has been poorly exploited in the past study of heterobranchs, despite 2D molecular analyses being sources of possible diagnostic characters. Comparison of the results from the phylogenetic analyses of a concatenated (the nuclear H3 and the mitochondrial COI and 16S markers) dataset (including 30 species belonging to eight accepted genera) and from the 2D folding structure analyses of the 16S rRNA from the type species of the genera investigated demonstrated the diagnostic power of this RNA molecule to reveal the systematics of four genera belonging to the family Myrrhinidae (Gastropoda, Heterobranchia). The "molecular morphological" approach to the 16S rRNA revealed to be a powerful tool to delimit at both species and genus taxonomic levels and to be a useful way of recovering information that is usually lost in phylogenetic analyses. While the validity of the genera Godiva, Hermissenda and Phyllodesmium are confirmed, a new genus is necessary and introduced for Dondice banyulensis, Nemesis gen. nov. and the monospecific genus Nanuca is here synonymised with Dondice, with Nanuca sebastiani transferred into Dondice as Dondice sebastiani comb. nov.
Collapse
Affiliation(s)
- Giulia Furfaro
- Department of Biological and Environmental Sciences and Technologies—DiSTeBA, University of Salento, I-73100 Lecce, Italy
| | - Paolo Mariottini
- Department of Science, University of Roma Tre, I-00146 Rome, Italy;
| |
Collapse
|
12
|
Virginio F, Domingues V, da Silva LCG, Andrade L, Braghetto KR, Suesdek L. WingBank: A Wing Image Database of Mosquitoes. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.660941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mosquito-borne diseases affect millions of people and cause thousands of deaths yearly. Vaccines have been hitherto insufficient to mitigate them, which makes mosquito control the most viable approach. But vector control depends on correct species identification and geographical assignment, and the taxonomic characters of mosquitoes are often inconspicuous to non-taxonomists, which are restricted to a life stage and/or even damaged. Thus, geometric morphometry, a low cost and precise technique that has proven to be efficient for identifying subtle morphological dissimilarities, may contribute to the resolution of these types of problems. We have been applying this technique for more than 10 years and have accumulated thousands of wing images with their metadata. Therefore, the aims of this work were to develop a prototype of a platform for the storage of biological data related to wing morphometry, by means of a relational database and a web system named “WingBank.” In order to build the WingBank prototype, a multidisciplinary team performed a gathering of requirements, modeled and designed the relational database, and implemented a web platform. WingBank was designed to enforce data completeness, to ease data query, to leverage meta-studies, and to support applications of automatic identification of mosquitoes. Currently, the database of the WingBank contains data referring to 77 species belonging to 15 genera of Culicidae. From the 13,287 wing records currently cataloged in the database, 2,138 were already made available for use by third parties. As far as we know, this is the largest database of Culicidae wings of the world.
Collapse
|
13
|
Mayoke A, Muya SM, Bateta R, Mireji PO, Okoth SO, Onyoyo SG, Auma JE, Ouma JO. Genetic diversity and phylogenetic relationships of tsetse flies of the palpalis group in Congo Brazzaville based on mitochondrial cox1 gene sequences. Parasit Vectors 2020; 13:253. [PMID: 32410644 PMCID: PMC7227191 DOI: 10.1186/s13071-020-04120-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 05/06/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Despite the morphological characterization established in the 1950s and 1960s, the identity of extant taxa that make up Glossina fuscipes (s.l.) in the Congo remains questionable. Previous claims of overlap between G. fuscipes (believed to be G. f. quanzensis) and G. palpalis palpalis around Brazzaville city further complicate the taxonomic status and population dynamics of the two taxa. This study aimed to determine the phylogenetic relationships between G. fuscipes (s.l.) and G. p. palpalis and to assess genetic variation among G. fuscipes (s.l.) populations in Congo Brazzaville. METHODS We collected 263 G. fuscipes (s.l.) from northern and central regions, and 65 G. p. palpalis from southern part of the country. The mitochondrial cytochrome c oxidase subunit 1 (cox1) gene was amplified using taxa-specific primer pairs. Sequence data were analyzed in DnaSP and Arlequin to assess the genetic diversity, differentiation and demographic history of G. fuscipes (s.l.) populations. RESULTS The general BLAST analysis yielded a similarity of 99% for G. fuscipes (s.l.) and G. p. palpalis. BLASTn analysis for G. fuscipes (s.l.) showed > 98% identity with GenBank sequences for G. fuscipes (s.l.), with BEMB population showing 100% similarity with G. f. fuscipes. Glossina fuscipes (s.l.) populations showed high haplotype diversity (H = 46, Hd = 0.884), moderate nucleotide diversity ( = 0.012) and moderate (FST = 0.072) to high (FST = 0.152) genetic differentiation. Most of the genetic variation (89.73%) was maintained within populations. The mismatch analysis and neutrality tests indicated recent tsetse population expansions. CONCLUSIONS Phylogenetic analysis revealed minor differences between G. fuscipes (s.l.) and G. p. palpalis. Genetic diversity of G. fuscipes (s.l.) was high in the populations sampled except one. Genetic differentiation ranged from moderate to high among subpopulations. There was a restricted gene flow between G. fuscipes (s.l.) populations in the north and central part of the country. Genetic signatures based on cox1 showed recent expansion and recovery of G. fuscipes (s.l.) populations from previous bottlenecks. To fully understand the species distribution limits, we recommend further studies involving a wider sampling scheme including the swampy Mossaka focus for G. fuscipes (s.l.) and the entire range of G. p. palpalis in South Congo.
Collapse
Affiliation(s)
- Abraham Mayoke
- Department of Molecular Biology and Biotechnology, Pan African University Institute for Basic Sciences, Technology & Innovation, PO Box 62000-00200, Nairobi, Kenya
- Kenya Agricultural and Livestock Research Organization, Biotechnology Research Institute, PO Box 362-00902, Kikuyu, Kenya
| | - Shadrack M. Muya
- Jomo Kenyatta University of Agriculture and Technology, Faculty of Biological Sciences, PO Box 62000-00200, Nairobi, Kenya
| | - Rosemary Bateta
- Kenya Agricultural and Livestock Research Organization, Biotechnology Research Institute, PO Box 362-00902, Kikuyu, Kenya
| | - Paul O. Mireji
- Kenya Agricultural and Livestock Research Organization, Biotechnology Research Institute, PO Box 362-00902, Kikuyu, Kenya
| | - Sylvance O. Okoth
- Kenya Agricultural and Livestock Research Organization, Biotechnology Research Institute, PO Box 362-00902, Kikuyu, Kenya
| | - Samuel G. Onyoyo
- Kenya Agricultural and Livestock Research Organization, Biotechnology Research Institute, PO Box 362-00902, Kikuyu, Kenya
| | - Joanna E. Auma
- Kenya Agricultural and Livestock Research Organization, Biotechnology Research Institute, PO Box 362-00902, Kikuyu, Kenya
| | - Johnson O. Ouma
- African Technical Research Centre, Vector Health International, P.O. Box 15500, Arusha, Tanzania
| |
Collapse
|
14
|
Song N, Geng Y, Li X. The Mitochondrial Genome of the Phytopathogenic Fungus Bipolaris sorokiniana and the Utility of Mitochondrial Genome to Infer Phylogeny of Dothideomycetes. Front Microbiol 2020; 11:863. [PMID: 32457727 PMCID: PMC7225605 DOI: 10.3389/fmicb.2020.00863] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/09/2020] [Indexed: 12/01/2022] Open
Abstract
A number of species in Bipolaris are important plant pathogens. Due to a limited number of synapomorphic characters, it is difficult to perform species identification and to estimate phylogeny of Bipolaris based solely on morphology. In this study, we sequenced the complete mitochondrial genome of Bipolaris sorokiniana, and presented the detailed annotation of the genome. The B. sorokiniana mitochondrial genome is 137,775 bp long, and contains two ribosomal RNA genes, 12 core protein-coding genes, 38 tRNA genes. In addition, two ribosomal protein genes (rps3 gene and rps5 gene) and the fungal mitochondrial RNase P gene (rnpB) are identified. The large genome size is mostly determined by the presence of numerous intronic and intergenic regions. A total of 28 introns are inserted in eight core protein-coding genes. Together with the published mitochondrial genome sequences, we conducted a preliminary phylogenetic inference of Dothideomycetes under various datasets and substitution models. The monophyly of Capnodiales, Botryosphaeriales and Pleosporales are consistently supported in all analyses. The Venturiaceae forms an independent lineage, with a distant phylogenetic relationship to Pleosporales. At the family level, the Mycosphaerellaceae, Botryosphaeriaceae. Phaeosphaeriaceae, and Pleosporaceae are recognized in the majority of trees.
Collapse
Affiliation(s)
- Nan Song
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Yuehua Geng
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | | |
Collapse
|
15
|
Lombogia CA, Posangi J, Pollo HN, Tulung M, Tallei TE. Assessment of Genetic Variation in Apis nigrocincta (Hymenoptera: Apidae) in Sulawesi Revealed by Partial Mitochondrial Cytochrome Oxidase I Gene Sequences. SCIENTIFICA 2020; 2020:1609473. [PMID: 32322427 PMCID: PMC7166289 DOI: 10.1155/2020/1609473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/18/2020] [Indexed: 06/11/2023]
Abstract
Asian cavity-nesting honey bee Apis nigrocincta, a native bee species from Sulawesi and the Philippines, plays a vital role in pollinating flowering plants in local ecosystem and agriculture. In this study, we assessed the intraspecific genetic variation of A. nigrocincta using the sequence of cytochrome c oxidase subunit I (COI). Molecular phylogenetic analysis showed that there were three main clades in A. nigrocincta specimens from Sulawesi based on their respective locations (North, Central, and South Sulawesi). Genetic distance analysis using the Kimura 2-parameter (K2P) model showed that the intraspecific genetic distance in Sulawesi specimens ranged from 0.000 to 0.055. There are 26 nucleotide polymorphic sites within Sulawesi A. nigrocincta. The variation was dominated by transition T ↔ C. The molecular identification result was supported by morphological identification. The results of the two methods agree that the specimen under study was A. nigrocincta. The result of genetic distance calculation indicated that although the tested specimens were derived from remote locations, the genetic variation was still within the range of intraspecific variation.
Collapse
Affiliation(s)
- Christian A. Lombogia
- Entomology Study Program, Postgraduate Program, Universitas Sam Ratulangi, Manado, North Sulawesi, Indonesia
- Nursing Study Program, Faculty of Nursing, Universitas Katolik De La Salle, Manado, North Sulawesi, Indonesia
| | - Jimmy Posangi
- Public Health Study Program, Faculty of Public Health, Universitas Sam Ratulangi, Manado, North Sulawesi, Indonesia
| | - Hard N. Pollo
- Forestry Science Study Program, Faculty of Agriculture, Universitas Sam Ratulangi, Manado, North Sulawesi, Indonesia
| | - Max Tulung
- Entomology Study Program, Postgraduate Program, Universitas Sam Ratulangi, Manado, North Sulawesi, Indonesia
| | - Trina E. Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sam Ratulangi, Manado, North Sulawesi, Indonesia
| |
Collapse
|
16
|
Hanchipura Mallesh MS, Asokan R, Gadad H, Duleep Kumar S, Kumar R, Prakash T. DNA barcoding and phylogenetic analysis of leafhoppers associated with Aster Yellow disease on China aster, Marigold and Chrysanthemum. Mitochondrial DNA A DNA Mapp Seq Anal 2020; 31:64-72. [PMID: 32148145 DOI: 10.1080/24701394.2020.1735378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The Cicadellidae (Auchenorrhyncha: Hemiptera) are important agricultural, horticultural and ornamental pests. But it is very difficult to define nymphs and female adults using morphological characteristics. This research was aimed at understanding the variety of leafhoppers species and defining the prospective cause of the aster-yellow disease in China Aster, Marigold and Chrysanthemum. Two surveys were conducted in and around Pune, Maharashtra and Bengaluru, Karnataka between November 2016 and February 2017. The mitochondrial cytochrome oxidase subunit I (mtCOI) region marker was used in the species diagnosis and genetic diversity research. Through the use of mtCOI molecular marker eight different leafhoppers species were identified as Sogatella furcifera, Homalodisca insolita, Amrasca biguttula, Balclutha incise and Balclutha abdominalis and Japanagallia trifurcate. Whereas at genus level identified as Toya, Empoasca, Perkinsiella, Hishimonus, Tambocerus, Phaconeura, Curena, Psammotettix and Graphocophala species. These results are strongly corroborated with morphological identification. On the basis of multiple sequence alignment of the mtCOI gene, a species phylogenetic tree with the highest likelihood was drawn. All the leafhopper species clustered together in accordance with the species data collected from the database of the different geographic regions from the NCBI GenBank and Barcode of Life (BOLD). Such results suggest that it is important to use both molecular and morphological methods to ensure accurate identification of organisms. To conclude, this research contributes valuable knowledge to molecular biology and recognizes leafhopper species that serve as major phytoplasma vectors.
Collapse
Affiliation(s)
| | - Ramasamy Asokan
- Bio-Pesticide Laboratory, Division of Biotechnology, ICAR Indian Institute of Horticultural Research (IIHR), Bangalore, India
| | - Hanamant Gadad
- Bio-Pesticide Laboratory, Division of Biotechnology, ICAR Indian Institute of Horticultural Research (IIHR), Bangalore, India
| | - Samuel Duleep Kumar
- Division of Plant Pathology, ICAR Indian Institute of Horticultural Research (IIHR), Bangalore, India
| | - Rajiv Kumar
- Division of Floriculture and Medicinal Plants, ICAR Indian Institute of Horticultural Research (IIHR), Bangalore, India
| | - Tejaswini Prakash
- Division of Floriculture and Medicinal Plants, ICAR Indian Institute of Horticultural Research (IIHR), Bangalore, India
| |
Collapse
|
17
|
Two Distinct Genotypes of Spissistilus festinus (Say, 1830) (Hemiptera, Membracidae) in the United States Revealed by Phylogenetic and Morphological Analyses. INSECTS 2020; 11:insects11020080. [PMID: 31979389 PMCID: PMC7073536 DOI: 10.3390/insects11020080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 11/16/2022]
Abstract
Spissistilus festinus (Say, 1830) (Hemiptera: Membracidae) is a frequent pest of leguminous crops in the Southern United States, and a vector of grapevine red blotch virus. There is currently no information on the genetic diversity of S. festinus. In this study, populations of S. festinus were collected in 2015-2017 from various crops and geographic locations in the United States, and fragments of the mitochondrial cytochrome C oxidase 1 (mt-COI) gene and the nuclear internal transcribed spacer 2 (ITS2) region were characterized by polymerase chain reaction and sequencing. Maximum-likelihood and Bayesian analyses of the mt-COI and ITS2 sequences yielded similar phylogenetic tree topologies, revealing two distinct genetic S. festinus lineages with all of the specimens from California comprising one phylogenetic clade, alongside a single GenBank entry from Arizona, and all specimens from the Southeastern United States comprising a statistically-supported distinct clade, regardless of host and year of collection. The mt-COI gene fragment showed up to 10.8% genetic distance between the two phylogenetic clades. These results suggest the existence of two genotypes within S. festinus in the United States. The only distinct morphological trait between the two genotypes was a less elevated pronotum in the representative specimens from California, compared to the representative specimens from the Southeastern United States. Since this phenotypic feature is inconspicuous, a diagnostic polymerase chain reaction targeting a variable region of the mt-COI fragment was developed to reliably distinguish between the specimens of the two genotypes of S. festinus and to facilitate their specific identification.
Collapse
|
18
|
Complete mitochondrial genome of Atractomorpha sagittaris (Orthoptera: Pyrgomorphidae) and its phylogenetic analysis for Acrididea. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-019-00402-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Espinoza GJ, Alvarado Bremer JR. Genetic species identification of ecologically important planthoppers (Prokelisia spp.) of coastal Spartina saltmarshes using High Resolution Melting Analysis (HRMA). Sci Rep 2019; 9:20073. [PMID: 31882766 PMCID: PMC6934748 DOI: 10.1038/s41598-019-56518-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 12/11/2019] [Indexed: 11/29/2022] Open
Abstract
Phloem-feeding planthoppers of the genus Prokelisia rank among the most abundant and ecologically important browsers of coastal saltmarsh grasses of eastern North America and the Caribbean. Along the Spartina marshes of the northern Gulf of Mexico, the sympatric species P. marginata and P. dolus are the most abundant, but are difficult to distinguish from each other based solely on morphology. This study seeks to design a molecular assay based on High Resolution Melting Analysis (HRMA) as a fast, cost-effective alternative to differentiate these species. A 450 base pairs (bp) segment of cytochrome c oxidase subunit I (COI) was amplified and sequenced for representative samples of both species, and a short amplicon (SA) HRMA was designed based on the presence of fixed nucleotide differences between species found along a 60 bp segment of COI. The unambiguous identification of individual specimens of P. marginata or P. dolus was possible due to easily discernable differences in the melting temperatures of the two species along this mini barcode. This assay may prove useful for future genetic studies involving these species by preventing the overestimation of genetic diversity via inclusion of conspecifics, and in ecological studies by improving data on the effects of individual species of Prokelisia.
Collapse
Affiliation(s)
- G Janelle Espinoza
- Texas A&M University at Galveston, Department of Marine Biology, 1001 Texas Clipper Road, Galveston, TX, 77554-2888, USA.
| | - Jaime R Alvarado Bremer
- Texas A&M University at Galveston, Department of Marine Biology, 1001 Texas Clipper Road, Galveston, TX, 77554-2888, USA.,Texas A&M University, Department of Wildlife and Fisheries Sciences, 210 Nagle Hall, Texas A&M University, College Station, TX, 77843-2258, USA
| |
Collapse
|
20
|
Naseem MT, Ashfaq M, Khan AM, Rasool A, Asif M, Hebert PDN. BIN overlap confirms transcontinental distribution of pest aphids (Hemiptera: Aphididae). PLoS One 2019; 14:e0220426. [PMID: 31821347 PMCID: PMC6903727 DOI: 10.1371/journal.pone.0220426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/24/2019] [Indexed: 11/25/2022] Open
Abstract
DNA barcoding is highly effective for identifying specimens once a reference sequence library is available for the species assemblage targeted for analysis. Despite the great need for an improved capacity to identify the insect pests of crops, the use of DNA barcoding is constrained by the lack of a well-parameterized reference library. The current study begins to address this limitation by developing a DNA barcode reference library for the pest aphids of Pakistan. It also examines the affinities of these species with conspecific populations from other geographic regions based on both conventional taxonomy and Barcode Index Numbers (BINs). A total of 809 aphids were collected from a range of plant species at sites across Pakistan. Morphological study and DNA barcoding allowed 774 specimens to be identified to one of 42 species while the others were placed to a genus or subfamily. Sequences obtained from these specimens were assigned to 52 BINs whose monophyly were supported by neighbor-joining (NJ) clustering and Bayesian inference. The 42 species were assigned to 41 BINs with 38 showing BIN concordance. These species were represented on BOLD by 7,870 records from 69 countries. Combining these records with those from Pakistan produced 60 BINs with 12 species showing a BIN split and three a BIN merger. Geo-distance correlations showed that intraspecific divergence values for 49% of the species were not affected by the distance between populations. Forty four of the 52 BINs from Pakistan had counterparts in 73 countries across six continents, documenting the broad distributions of pest aphids.
Collapse
Affiliation(s)
- Muhammad Tayyib Naseem
- National institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - Muhammad Ashfaq
- Centre for Biodiversity Genomics & Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
- * E-mail:
| | - Arif Muhammad Khan
- National institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| | - Akhtar Rasool
- National institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
- Department of Zoology, University of Swat, Swat, Pakistan
| | - Muhammad Asif
- National institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Paul D. N. Hebert
- Centre for Biodiversity Genomics & Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
21
|
Use of DNA Markers for Grape Phylloxera Population and Evolutionary Genetics: From RAPDs to SSRs and Beyond. INSECTS 2019; 10:insects10100317. [PMID: 31557951 PMCID: PMC6835732 DOI: 10.3390/insects10100317] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/24/2019] [Accepted: 09/24/2019] [Indexed: 11/20/2022]
Abstract
Grape phylloxera (Daktulosphaira vitifoliae Fitch) is a major pest of cultivated grapevines (Vitis spp.), occurring in virtually all viticultural regions around the world. Different grape phylloxera strains can be found at varying levels on leaves and roots on both own-rooted plants and in plants grafted onto partially resistant rootstocks. Considering its relevance for the adequate management of the pest in infested vineyards, the analysis of its genetic diversity has received considerable attention from the scientific community in the last decades. Here, we review 25 years of DNA-based molecular markers applied to the analysis of the genetic structure and the reproductive mode of grape phylloxera in its native range and in different introduced regions. The use given to RAPD, AFLP, mtDNA sequencing and microsatellite (SSR) genetic markers for the analysis of grape phylloxera diversity is discussed, and an overview of the main findings obtained after their application to different populations collected in diverse regions all around the world is shown. Lastly, we explore how recent advancements in molecular biology and in modern high throughput genotyping technologies may be applied to better understand grape phylloxera natural diversity at a molecular level.
Collapse
|
22
|
Viviani A, Bernardi R, Cavallini A, Rossi E. Genotypic Characterization of Torymus sinensis (Hymenoptera: Torymidae) After Its Introduction in Tuscany (Italy) for the Biological Control of Dryocosmus kuriphilus (Hymenoptera: Cynipidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2019; 19:5550985. [PMID: 31422419 PMCID: PMC6698180 DOI: 10.1093/jisesa/iez080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Indexed: 06/10/2023]
Abstract
Torymus sinensis Kamijo (Hymenoptera: Torymidae) is an alien parasitoid that is used in many areas of the world for biological control the Asian chestnut gall wasp, Dryocosmus kuriphilus Yasumatsu (Hymenoptera: Cynipidae). In Italy, this parasitoid was imported from Japan in 2003 and subsequently multiplied and released throughout the country. In this study, a phylogenetic investigation was carried out on insects from three different sites in northern Tuscany (Italy). Moreover, the possible hybridization between T. sinensis and some native Torymus species was evaluated. The conserved region 18S rRNA gene and the hypervariable ITS2 (Internal Transcribed Spacer 2) region of the ribosomal cistrone were selected as molecular markers. Sequencing the amplified products, after cloning, ruled out any hybridization between T. sinensis and the native Torymus species, and also confirmed the presence of two haplotypes for the Tuscan population of T. sinensis both for the region of the 18S rRNA gene as well as for the ITS2 region. These results confirm that the environmental impact of the alien parasitoid T. sinensis in the study site is acceptable, although an extensive and repeated monitoring would be desirable.
Collapse
Affiliation(s)
- Ambra Viviani
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, Pisa, Italy
| | - Rodolfo Bernardi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, Pisa, Italy
| | - Andrea Cavallini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, Pisa, Italy
| | - Elisabetta Rossi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, Pisa, Italy
| |
Collapse
|
23
|
Suesdek L. Microevolution of medically important mosquitoes - A review. Acta Trop 2019; 191:162-171. [PMID: 30529448 DOI: 10.1016/j.actatropica.2018.12.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/08/2018] [Accepted: 12/06/2018] [Indexed: 12/25/2022]
Abstract
This review intends to discuss central issues regarding the microevolution of mosquito (Culicidae) vectors of several pathogens and how this process impacts vector biology, disease transmission, and vector control attempts. On the microevolutionary context, it comparatively discusses the current knowledge on the population genetics of representatives of the genera Aedes, Anopheles and Culex, and comments on insecticide resistance of culicids. It also discusses other biological aspects of culicids that are not usually addressed in microevolutionary studies, such as vectorial competence, endosymbiosis, and wing morphology. One conclusion is that mosquitoes are highly genetically variable, adaptable, fast evolving, and have versatile vectorial competence. Unveiling microevolutionary patterns is fundamental for the design and maintenance of all control programs. Sampling methods for assessing microevolution must be standardized and must follow meaningful guidelines, such as those of "landscape genetics". A good understanding of microevolution requires more than a collection of case studies on population genetics and resistance. Future research could deal not only with the microevolution sensu stricto, but also with evolutionarily meaningful issues, such as inheritable characters, epigenetics, physiological cost-free plasticity, vector immunity, symbiosis, pathogen-mosquito co-evolution and environmental variables. A genotyping panel for seeking adaptive phenotypes as part of the standardization of population genetics methods is proposed. The investigative paradigm should not only be retrospective but also prospective, despite the unpredictability of evolution. If we integrate all suggestions to tackle mosquito evolution, a global revolution to counter vector-borne diseases can be provoked.
Collapse
|
24
|
Li R, Wang Y, Shu X, Meng L, Li B. Complete mitochondrial genomes of three Oxya grasshoppers (Orthoptera) and their implications for phylogenetic reconstruction. Genomics 2019; 112:289-296. [PMID: 30790624 DOI: 10.1016/j.ygeno.2019.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/02/2019] [Accepted: 02/09/2019] [Indexed: 11/15/2022]
Abstract
Oxya is a genus of grasshoppers (Orthoptera: Acridoidea) attacking rice and other gramineous plants in Africa and Asia. In the present study, we characterized complete mitochondrial genomes (mitogenomes) of three species, Oxya japonica japonica (15,427 bp), Oxya hainanensis (15,443 bp) and Oxya agavisa robusta (15,552 bp) collected from China. The three mitogenomes contained a typical gene set of metazoan mitogenomes and shared the same gene order with other Acridid grasshoppers, including the rearrangement of tRNAAsp and tRNALys. Analyses of pairwise genetic distances showed that ATP8 was the least conserved gene, while COI the most conserved. To determine the position of Oxya grasshoppers in the phylogeny of Acrididae, we reconstructed phylogenetic trees among 64 species from across 11 subfamilies using nucleotide sequences of mitogenomes. While the tree confirms traditional classifications of Acrididae at major higher-levels, it suggests a few modifications for classifications at lower-levels.
Collapse
Affiliation(s)
- Ran Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Yuqi Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xiaohan Shu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Ling Meng
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Baoping Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
| |
Collapse
|
25
|
Köppel R, Schum R, Habermacher M, Sester C, Piller LE, Meissner S, Pietsch K. Multiplex real-time PCR for the detection of insect DNA and determination of contents of Tenebrio molitor, Locusta migratoria and Achaeta domestica in food. Eur Food Res Technol 2019. [DOI: 10.1007/s00217-018-03225-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
26
|
Kaewkrajang N, Grootaert P, Boonrotpong S. Genetic Variation of the Long-Legged Flies Phacaspis mitis Complex (Diptera: Dolichopodidae) in Peninsular Thailand Inferred From Three Mitochondrial Genes. JOURNAL OF INSECT SCIENCE (ONLINE) 2018; 18:5181162. [PMID: 30423176 PMCID: PMC6232956 DOI: 10.1093/jisesa/iey024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Indexed: 06/09/2023]
Abstract
Phacaspis (Meuffels and Grootaert 1988) is a true marine dolichopodid fly genus. They are common on the mud flats in the front of mangroves where they deal with extreme conditions. The genus is represented in southern Thailand by Phacaspis mitis (Grootaert and Meuffels 2001) (Diptera: Dolichopodidae). Previous studies have focused on both taxonomy and classification of this genus, but there are a few studies focusing on this species in terms of molecular genetics. The objective of the present study was to investigate genetic variation and phylogenetic relationships of P. mitis using ribosomal DNA subunit 12S, ribosomal DNA subunit 16S, and cytochrome oxidase subunit I of mitochondrial genes. The specimens were collected in six coastal provinces from the Andaman Sea and the Gulf of Thailand. The phylogenetic relationship of combined mitochondrial genes revealed that P. mitis in peninsular Thailand is a monophyletic group that can be divided into two distinct clades. According to the haplotype network, 16 haplotype patterns were observed in P. mitis, but P. mitis was separated into two major haplotype networks. In addition, a positive correlation between genetic distance (FST) and geographical distance (km) was found among the populations of peninsular Thailand. The level of genetic differentiation between populations is influenced by geographic isolation. Moreover, P. mitis arose in late Eocene (35.5 Mya) and it diversified during the Plio-Pleistocene (3.14 Mya). Although, P. mitis is divided into two populations in this study, it is a well-supported monophyletic group.
Collapse
Affiliation(s)
- Natcha Kaewkrajang
- Department of Biology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Patrick Grootaert
- Entomology, Royal Belgian Institute of Natural Sciences, Vautierstraat, Brussels, Belgium
| | - Singtoe Boonrotpong
- Department of Biology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
27
|
Chursina MA, Negrobov OP. Phylogenetic Signal in the Wing Shape in the Subfamily Dolichopodinae (Diptera, Dolichopodidae). ACTA ACUST UNITED AC 2018. [DOI: 10.1134/s0013873818050019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Gao S, Chen JJ, Jiang GF. Complete mitochondrial genome of bamboo grasshopper, Ceracris fasciata, and the phylogenetic analyses and divergence time estimation of Caelifera (Orthoptera). BULLETIN OF ENTOMOLOGICAL RESEARCH 2018; 108:321-336. [PMID: 28877774 DOI: 10.1017/s0007485317000761] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The bamboo grasshopper Ceracris fasciata is regarded as a major pest species because of the damage it causes to bamboo, and its classification within the families and subfamilies of the suborder Caelifera remains unclear. Thus, we attempted to resolve these questions using molecular biology methods and analyses. Our results are as follows: (1) the complete mitochondrial genome of C. fasciata is 15,569 bp in length. The mitochondrial genome contains a standard set of 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes and an A + T-rich region in the same order as those of the other analysed Caeliferan species. The putative start codon for the COX1 gene in C. fasciata is ACC, although it is not defined in other genes. The presence of tandem repeats of different sizes in the A + T-rich region may lead to size differences in other mitochondrial genomes. The mitochondrial genome of C. fasciata harbours the typical 37 genes and an A + T-rich region, and it shows similar characteristics to those of other grasshopper species. Characterization of the mitochondrial genome has enriched our knowledge of the mitochondrial genomes of Orthoptera around the world. Therefore, the phylogenetic relationships in Orthoptera can be re-examined. (2) In phylogenetic analyses, the monophyly of Orthoptera and its two suborders (Caelifera and Ensifera) has been consistently recovered based on most of the datasets selected, regardless of the optimal criteria. Our results do not support the monophyly of the subfamily Oedipodinae of Caelifera. We found that Phlaeoba albonema of the Acridinae is sorted into a clade with Ceracris in all our phylogenetic trees, and field experiments show that Phlaeoba always lives with Ceracris in the same ecotopes. Therefore, we suggest that Phlaeoba should be classified as a member of the Oedipodinae. We found that C. fasciata always clustered with Ceracris kiangsu, and both were sisters to Ceracris versicolor. Therefore, the genetic relationship between C. fasciata and C. kiangsu is closer than that between C. fasciata and C. versicolor. (3) The oldest estimated time of divergence of Ensifera in this context was determined to be 146.16 million years ago (Mya), or around the late Jurassic or early Cretaceous. We estimated that katydids (Grylloidea) likely diverged from other groups in the early Cretaceous. According to our divergence time analyses, we concluded that the ancestral Acrididae probably originated in the early Paleogene, and it is likely that the major diversification events happened at the middle Paleogene, well into the next geologic time. We estimated that crickets (Tettigoniidae) likely diverged from other groups in the early Cretaceous. Acrididae and Romaleinae group, Pyrgacrididae and Ommexechidae group, the youngest two clades we observed, were estimated to have diverged 58.79 Mya, between the middle and early Paleogene. C. versicolor is a sister to the group containing C. kiangsu and C. fasciata. First, C. versicolor diverged from the sister group (C. kiangsu + C. fasciata) around 44.81 Mya, and then the C. kiangsu and C. fasciata group separated at 43.04 Mya.
Collapse
Affiliation(s)
- S Gao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology,College of Life Sciences, Nanjing Normal University,Nanjing 210023,PR China
| | - J J Chen
- Jiangsu Key Laboratory for Biodiversity and Biotechnology,College of Life Sciences, Nanjing Normal University,Nanjing 210023,PR China
| | - G F Jiang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology,College of Life Sciences, Nanjing Normal University,Nanjing 210023,PR China
| |
Collapse
|
29
|
Molecular and Morphological Phylogenetic Analyses of New World Cycad Beetles: What They Reveal about Cycad Evolution in the New World. DIVERSITY-BASEL 2018. [DOI: 10.3390/d10020038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Brower AVZ, Garzón-Orduña IJ. Missing data, clade support and "reticulation": the molecular systematics of Heliconius and related genera (Lepidoptera: Nymphalidae) re-examined. Cladistics 2018; 34:151-166. [PMID: 34645081 DOI: 10.1111/cla.12198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2017] [Indexed: 11/30/2022] Open
Abstract
Kozak et al. (2015, Syst. Biol., 64: 505) portrayed the inference of evolutionary history among Heliconius and allied butterfly genera as a particularly difficult problem for systematics due to prevalent gene conflict caused by interspecific reticulation. To control for this, Kozak et al. conducted a series of multispecies coalescent phylogenetic analyses that they claimed revealed pervasive conflict among markers, but ultimately chose as their preferred hypothesis a phylogenetic tree generated by the traditional supermatrix approach. Intrigued by this seemingly contradictory set of conclusions, we conducted further analyses focusing on two prevalent aspects of the data set: missing data and the uneven contribution of phylogenetic signal among markers. Here, we demonstrate that Kozak et al. overstated their findings of reticulation and that evidence of gene-tree conflict is largely lacking. The distribution of intrinsic homoplasy and incongruence homoplasy in their data set does not follow the pattern expected if phylogenetic history had been obscured by pervasive horizontal gene flow; in fact, noise within individual gene partitions is ten times higher than the incongruence among gene partitions. We show that the patterns explained by Kozak et al. as a result of reticulation can be accounted for by missing data and homoplasy. We also find that although the preferred topology is resilient to missing data, measures of support are sensitive to, and strongly eroded by too many empty cells in the data matrix. Perhaps more importantly, we show that when some taxa are missing almost all characters, adding more genes to the data set provides little or no increase in support for the tree.
Collapse
Affiliation(s)
- Andrew V Z Brower
- Evolution and Ecology Group, Department of Biology, Middle Tennessee State University, Murfreesboro, TN, USA
| | - Ivonne J Garzón-Orduña
- Evolution and Ecology Group, Department of Biology, Middle Tennessee State University, Murfreesboro, TN, USA
| |
Collapse
|
31
|
Bai Q, Wang L, Wang Z, Lo N, Che Y. Exploring the diversity of Asian Cryptocercus (Blattodea : Cryptocercidae): species delimitation based on chromosome numbers, morphology and molecular analysis. INVERTEBR SYST 2018. [DOI: 10.1071/is17003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Woodroaches from the genus Cryptocercus Scudder, 1862 are known to display low levels of morphological divergence, yet significant genetic divergence and variability in chromosome number. Compared with Cryptocercus taxa from North America, the diversity of the genus in Asia has received relatively little attention. We performed morphological and karyotypic examinations of multiple taxa from several previously unsampled mountainous areas of central and south-western China, and identified nine candidate species primarily on the basis of chromosome number. We then investigated diversity across all Asian Cryptocercus, through phylogenetic analyses of 135 COI sequences and 74 28S rRNA sequences from individuals of 28 localities, including species delimitation analysis in General Mixed Yule Coalescent (GMYC) and Automatic Barcode Gap Discovery (ABGD). Phylogenetic results indicated that individuals from the same locality constituted well supported clades. The congruence of GMYC and ABGD results were in almost perfect accord, with 28 candidate species described on the basis of karyotypes (including the nine identified in this study). We provide evidence that each valley population in the Hengduan Mountains contains a separate evolving lineage. We conclude that the principal cause of the rich Cryptocercus diversity in China has been the uplift of the Qinghai-Tibet Plateau.
Collapse
|
32
|
Akmal M, Freed S, Dietrich CH, Mehmood M, Razaq M. Patterns of genetic differentiation among populations of Amrasca biguttula biguttula (Shiraki) (Cicadellidae: Hemiptera). Mitochondrial DNA A DNA Mapp Seq Anal 2017; 29:897-904. [PMID: 28980839 DOI: 10.1080/24701394.2017.1383405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cotton leafhopper, Amrasca biguttula biguttula (Shiraki), a serious sucking insect pest of cotton and vegetables is present throughout South and Southeast Asia. Genetic differentiation within A. biguttula biguttula populations collected from 16 cotton growing areas of Punjab, Pakistan, was examined by sequencing the barcode region of the mitochondrial cytochrome oxidase subunit 1 (COI) gene. The dendrogram obtained by neighbour joining analysis of COI sequences confirmed the presence of single species of cotton leafhopper. The overall average pairwise divergence was 0.01. Very little variation was found among populations from cotton growing areas of Punjab, Pakistan and these were most similar to populations from North India. South Indian populations were grouped together and were generally more divergent. Extensive migration of this pest species among cotton-growing areas in the Indian subcontinent may hinder genetic diversification of cotton leafhopper. Four Pakistani samples of cotton leafhopper tested positive for Wolbachia infection but were not clearly differentiated from non-Wolbachia infected samples, suggesting that Wolbachia did not cause reproductive incompatibilities.
Collapse
Affiliation(s)
- Muhammad Akmal
- a Department of Entomology, Faculty of Agricultural Sciences and Technology , Bahauddin Zakariya University Multan , Punjab , Pakistan.,b Illinois Natural History Survey, Prairie Research Institute, University of Illinois , Champaign , IL , USA
| | - Shoaib Freed
- a Department of Entomology, Faculty of Agricultural Sciences and Technology , Bahauddin Zakariya University Multan , Punjab , Pakistan
| | - Christopher H Dietrich
- b Illinois Natural History Survey, Prairie Research Institute, University of Illinois , Champaign , IL , USA
| | - Mudassir Mehmood
- a Department of Entomology, Faculty of Agricultural Sciences and Technology , Bahauddin Zakariya University Multan , Punjab , Pakistan
| | - Muhammad Razaq
- a Department of Entomology, Faculty of Agricultural Sciences and Technology , Bahauddin Zakariya University Multan , Punjab , Pakistan
| |
Collapse
|
33
|
Ye Z, Vollhardt IMG, Girtler S, Wallinger C, Tomanovic Z, Traugott M. An effective molecular approach for assessing cereal aphid-parasitoid-endosymbiont networks. Sci Rep 2017; 7:3138. [PMID: 28600542 PMCID: PMC5466676 DOI: 10.1038/s41598-017-02226-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 04/10/2017] [Indexed: 01/08/2023] Open
Abstract
Molecular approaches are increasingly being used to analyse host-parasitoid food webs as they overcome several hurdles inherent to conventional approaches. However, such studies have focused primarily on the detection and identification of aphids and their aphidiid primary parasitoids, largely ignoring primary parasitoid-hyperparasitoid interactions or limiting these to a few common species within a small geographical area. Furthermore, the detection of bacterial secondary endosymbionts has not been considered in such assays despite the fact that endosymbionts may alter aphid-parasitoid interactions, as they can confer protection against parasitoids. Here we present a novel two-step multiplex PCR (MP-PCR) protocol to assess cereal aphid-primary parasitoid-hyperparasitoid-endosymbiont interactions. The first step of the assay allows detection of parasitoid DNA at a general level (24 primary and 16 hyperparasitoid species) as well as the species-specific detection of endosymbionts (3 species) and cereal aphids (3 species). The second step of the MP-PCR assay targets seven primary and six hyperparasitoid species that commonly occur in Central Europe. Additional parasitoid species not covered by the second-step of the assay can be identified via sequencing 16S rRNA amplicons generated in the first step of the assay. The approach presented here provides an efficient, highly sensitive, and cost-effective (~consumable costs of 1.3 € per sample) tool for assessing cereal aphid-parasitoid-endosymbiont interactions.
Collapse
Affiliation(s)
- Zhengpei Ye
- Mountain Agriculture Research Unit, Institute of Ecology, University of Innsbruck, Innsbruck, Austria.
| | - Ines M G Vollhardt
- Agroecology, Department of Crop Sciences, Georg-August-University Göttingen, Göttingen, Germany
| | - Susanne Girtler
- Mountain Agriculture Research Unit, Institute of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Corinna Wallinger
- Mountain Agriculture Research Unit, Institute of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Zeljko Tomanovic
- Institute of Zoology, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Michael Traugott
- Mountain Agriculture Research Unit, Institute of Ecology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
34
|
Théry T, Brockerhoff EG, Carnegie AJ, Chen R, Elms SR, Hullé M, Glatz R, Ortego J, Qiao GX, Turpeau É, Favret C. EF-1α DNA Sequences Indicate Multiple Origins of Introduced Populations of Essigella californica (Hemiptera: Aphididae). JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:1269-1274. [PMID: 28369561 DOI: 10.1093/jee/tox026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Indexed: 06/07/2023]
Abstract
Aphids in the pine-feeding Nearctic genus Essigella (Sternorrhyncha, Aphididae, Lachninae) have been introduced in Europe, North Africa, Oceania, and South America. Mitochondrial, nuclear, and endosymbiont DNA sequences of 12 introduced populations from three continents confirm they all belong to Essigella californica (Essig, 1909). Intron sequence variation of the nuclear gene EF-1α has revealed the existence of four distinct groups. Group I gathers one population from China, where the species is newly reported, and several from Europe (France and Italy); Group II is represented by one population from Argentina; Group III includes two populations from Southern Australia with one from New Zealand; and Group IV corresponds to five populations from Eastern and South-Eastern Australia. These results indicate that introduced populations of E. californica have at least four source populations. They also show that intron variation of EF-1α can be a method to discriminate populations of asexually reproducing aphids.
Collapse
Affiliation(s)
- Thomas Théry
- Department of Biological Sciences, Biodiversity Centre, University of Montreal, 4101 rue Sherbrooke Est, Montreal, QC, H1X 2B2 Canada ( ; )
- Corresponding author, e-mail:
| | | | - Angus J Carnegie
- NSW Forest Science, NSW Department of Primary Industries, Parramatta, NSW 2150, Australia
| | - Rui Chen
- Chinese Academy of Sciences, Institute of Zoology, Beijing 100101, P. R. of China (; )
| | | | - Maurice Hullé
- Université Rennes 1, Institut de Génétique, Environnement et Protection des Plantes (IGEPP), Le Rheu 35653, France (; )
| | - Richard Glatz
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA 5064, Australia ( )
- Terrestrial Invertebrates, South Australian Museum, Adelaide, SA 5000, Australia
| | - Jaime Ortego
- Instituto Nacional de Tecnología Agropecuaria (INTA), EEA Mendoza, Luján de Cuyo 5507, Mendoza, Argentina
| | - Ge-Xia Qiao
- Chinese Academy of Sciences, Institute of Zoology, Beijing 100101, P. R. of China (; )
| | - Évelyne Turpeau
- Université Rennes 1, Institut de Génétique, Environnement et Protection des Plantes (IGEPP), Le Rheu 35653, France (; )
| | - Colin Favret
- Department of Biological Sciences, Biodiversity Centre, University of Montreal, 4101 rue Sherbrooke Est, Montreal, QC, H1X 2B2 Canada (; )
| |
Collapse
|
35
|
Vicente Dos Santos V, Tixier MS. Which molecular markers for assessing which taxonomic level? The case study of the mite family Phytoseiidae (Acari: Mesostigmata). Cladistics 2017; 33:251-267. [PMID: 34715727 DOI: 10.1111/cla.12166] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2016] [Indexed: 11/29/2022] Open
Abstract
The use of molecular markers for resolving systematics issues has improved our knowledge of life history. However, for the taxa studied herein-the predatory mite family Phytoseiidae-molecular phylogeny is impeded by a lack of suitable markers for deeper taxonomic levels. This study aims (i) to establish DNA amplification protocols for molecular markers known to resolve supraspecific nodes in other taxa, (ii) to determine their individual performance in assessing the clustering of species, genera, tribes and subfamilies, and (iii) to characterize the additional information provided when markers are concatenated. A new phylogenetic index is proposed based on ecological concepts, considering trees as a community of nodes. New and efficient protocols for DNA amplification of six molecular markers are provided. The concatenated tree globally provides more robust and reliable information, especially for deeper nodes. However, for assessing species identification and within-genera phylogenies, the combined use of six markers does not seem necessary, underlining the need to resize experiments depending on their taxonomic objectives. Finally, this study lays the methodological foundations with which to test the present Phytoseiidae classification as the first phylogeny obtained shows incongruence with the present morphological classification.
Collapse
Affiliation(s)
- Victor Vicente Dos Santos
- Montpellier SupAgro, Unité Mixte de Recherche Centre de Biologie pour la Gestion des Populations (INRA/IRD/CIRAD/Montpellier SupAgro), Campus International de Baillarguet, CS 30016, Montferrier-sur-Lez Cedex, 34988, France
| | - Marie-Stephane Tixier
- Montpellier SupAgro, Unité Mixte de Recherche Centre de Biologie pour la Gestion des Populations (INRA/IRD/CIRAD/Montpellier SupAgro), Campus International de Baillarguet, CS 30016, Montferrier-sur-Lez Cedex, 34988, France
| |
Collapse
|
36
|
Ye Z, Vollhardt IMG, Tomanovic Z, Traugott M. Evaluation of three molecular markers for identification of European primary parasitoids of cereal aphids and their hyperparasitoids. PLoS One 2017; 12:e0177376. [PMID: 28562603 PMCID: PMC5451020 DOI: 10.1371/journal.pone.0177376] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 04/26/2017] [Indexed: 12/02/2022] Open
Abstract
Aphids are major pests of cereal crops and a suite of hymenopteran primary parasitoids play an important role in regulating their populations. However, hyperparasitoids may disrupt the biocontrol services provided by primary parasitoids. As such, understanding cereal aphid-primary parasitoid-hyperparasitoid interactions is vital for a reliable parasitoid-based control of cereal aphids. For this, the ability to identify the different primary and hyperparasitoid species is necessary. Unfortunately, this is often difficult due to a lack of morphologically diagnostic features. DNA sequence-based species identification of parasitoids can overcome these hurdles. However, comprehensive DNA sequence information is lacking for many of these groups, particularly for hyperparasitoids. Here we evaluate three genes [cytochrome c oxidase subunit I (COI), 16S ribosomal RNA (16S) and 18S ribosomal RNA (18S)] for their suitability to identify 24 species of primary parasitoids and 16 species of hyperparasitoids associated with European cereal aphids. To identify aphelinid primary parasitoid species and hyperparasitoids, we found 16S to be more suitable compared to COI sequences. In contrast, the Aphidiinae are best identified using COI due to better species-level resolution and a more comprehensive DNA sequence database compared to 16S. The 18S gene was better suited for group-specific identification of parasitoids, but did not provide resolution at the species level. Our results provide a DNA sequence database for cereal aphid primary parasitoids and their associated hyperparasitoids in Central Europe, which will allow further improvement of our understanding of cereal aphid-primary parasitoid-hyperparasitoid interactions in relation to aphid biological control.
Collapse
Affiliation(s)
- Zhengpei Ye
- Mountain Agriculture Research Unit, Institute of Ecology, University of Innsbruck, Innsbruck, Austria
- * E-mail: ,
| | - Ines M. G. Vollhardt
- Agroecology, Department of Crop Sciences, Georg-August-University Göttingen, Göttingen, Germany
| | - Zeljko Tomanovic
- Institute of Zoology, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Michael Traugott
- Mountain Agriculture Research Unit, Institute of Ecology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
37
|
Manani DM, Ateka EM, Nyanjom SRG, Boykin LM. Phylogenetic Relationships among Whiteflies in the Bemisia tabaci (Gennadius) Species Complex from Major Cassava Growing Areas in Kenya. INSECTS 2017; 8:E25. [PMID: 28264479 PMCID: PMC5371953 DOI: 10.3390/insects8010025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 02/07/2017] [Accepted: 02/15/2017] [Indexed: 11/16/2022]
Abstract
Whiteflies, Bemisia tabaci (Gennadius) are major insect pests that affect many crops such as cassava, tomato, beans, cotton, cucurbits, potato, sweet potato, and ornamental crops. Bemisia tabaci transmits viral diseases, namely cassava mosaic and cassava brown streak diseases, which are the main constraints to cassava production, causing huge losses to many small-scale farmers. The aim of this work was to determine the phylogenetic relationships among Bemisia tabaci species in major cassava growing areas of Kenya. Surveys were carried out between 2013 and 2015 in major cassava growing areas (Western, Nyanza, Eastern, and Coast regions), for cassava mosaic disease (CMD) and cassava brown streak disease (CBSD). Mitochondrial cytochrome oxidase I (mtCOI-DNA) was used to determine the genetic diversity of B. tabaci. Phylogenetic trees were constructed using Bayesian methods to understand the genetic diversity across the study regions. Phylogenetic analysis revealed two B. tabaci species present in Kenya, sub-Saharan Africa 1 and 2 comprising five distinct clades (A-E) with percent sequence similarity ranging from 97.7 % to 99.5%. Clades B, C, D, and E are predominantly distributed in the Western and Nyanza regions of Kenya whereas clade B is dominantly found along the coast, the eastern region, and parts of Nyanza. Our B. tabaci clade A groups with sub-Saharan Africa 2-(SSA2) recorded a percent sequence similarity of 99.5%. In this study, we also report the identification of SSA2 after a 15 year absence in Kenya. The SSA2 species associated with CMD has been found in the Western region of Kenya bordering Uganda. More information is needed to determine if these species are differentially involved in the epidemiology of the cassava viruses.
Collapse
Affiliation(s)
- Duke M Manani
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-00200, Kenya.
| | - Elijah M Ateka
- Department of Horticulture, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-00200, Kenya.
| | - Steven R G Nyanjom
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-00200, Kenya.
| | - Laura M Boykin
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA 6009, Australia.
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia.
| |
Collapse
|
38
|
Chakdar H, Singha A, Satya P. New Generation Markers for Fingerprinting and Structural Analysis of Fungal Community. Fungal Biol 2017. [DOI: 10.1007/978-3-319-34106-4_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
39
|
Complete mitochondrial genomes are not necessarily more informative than individual mitochondrial genes to recover a well-established annelid phylogeny. GENE REPORTS 2016. [DOI: 10.1016/j.genrep.2016.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
40
|
Tkoč M, Tóthová A, Ståhls G, Chandler PJ, Vaňhara J. Molecular phylogeny of flat-footed flies (Diptera: Platypezidae): main clades supported by new morphological evidence. ZOOL SCR 2016. [DOI: 10.1111/zsc.12222] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Michal Tkoč
- Department of Entomology; National Museum; Cirkusová 1740, CZ-193 00 Praha 9 Czech Republic
- Department of Zoology; Faculty of Science; Charles University; Viničná 7, CZ-128 00 Praha 2 Czech Republic
| | - Andrea Tóthová
- Department of Botany and Zoology; Faculty of Science; Masaryk University in Brno; Kamenice 753/5, CZ-625 00 Brno Czech Republic
| | - Gunilla Ståhls
- Zoology Unit, Finnish Museum of Natural History; University of Helsinki; PO Box 17, 00014 Helsinki Finland
| | | | - Jaromír Vaňhara
- Department of Botany and Zoology; Faculty of Science; Masaryk University in Brno; Kamenice 753/5, CZ-625 00 Brno Czech Republic
| |
Collapse
|
41
|
Genomic Mining of Phylogenetically Informative Nuclear Markers in Bark and Ambrosia Beetles. PLoS One 2016; 11:e0163529. [PMID: 27668729 PMCID: PMC5036811 DOI: 10.1371/journal.pone.0163529] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 09/10/2016] [Indexed: 11/19/2022] Open
Abstract
Deep level insect relationships are generally difficult to resolve, especially within taxa of the most diverse and species rich holometabolous orders. In beetles, the major diversity occurs in the Phytophaga, including charismatic groups such as leaf beetles, longhorn beetles and weevils. Bark and ambrosia beetles are wood boring weevils that contribute 12 percent of the diversity encountered in Curculionidae, one of the largest families of beetles with more than 50000 described species. Phylogenetic resolution in groups of Cretaceous age has proven particularly difficult and requires large quantity of data. In this study, we investigated 100 nuclear genes in order to select a number of markers with low evolutionary rates and high phylogenetic signal. A PCR screening using degenerate primers was applied to 26 different weevil species. We obtained sequences from 57 of the 100 targeted genes. Sequences from each nuclear marker were aligned and examined for detecting multiple copies, pseudogenes and introns. Phylogenetic informativeness (PI) and the capacity for reconstruction of previously established phylogenetic relationships were used as proxies for selecting a subset of the 57 amplified genes. Finally, we selected 16 markers suitable for large-scale phylogenetics of Scolytinae and related weevil taxa.
Collapse
|
42
|
Kjer KM, Simon C, Yavorskaya M, Beutel RG. Progress, pitfalls and parallel universes: a history of insect phylogenetics. J R Soc Interface 2016; 13:20160363. [PMID: 27558853 PMCID: PMC5014063 DOI: 10.1098/rsif.2016.0363] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/19/2016] [Indexed: 11/12/2022] Open
Abstract
The phylogeny of insects has been both extensively studied and vigorously debated for over a century. A relatively accurate deep phylogeny had been produced by 1904. It was not substantially improved in topology until recently when phylogenomics settled many long-standing controversies. Intervening advances came instead through methodological improvement. Early molecular phylogenetic studies (1985-2005), dominated by a few genes, provided datasets that were too small to resolve controversial phylogenetic problems. Adding to the lack of consensus, this period was characterized by a polarization of philosophies, with individuals belonging to either parsimony or maximum-likelihood camps; each largely ignoring the insights of the other. The result was an unfortunate detour in which the few perceived phylogenetic revolutions published by both sides of the philosophical divide were probably erroneous. The size of datasets has been growing exponentially since the mid-1980s accompanied by a wave of confidence that all relationships will soon be known. However, large datasets create new challenges, and a large number of genes does not guarantee reliable results. If history is a guide, then the quality of conclusions will be determined by an improved understanding of both molecular and morphological evolution, and not simply the number of genes analysed.
Collapse
Affiliation(s)
- Karl M Kjer
- Department of Entomology and Nematology, University of California-Davis, 1282 Academic Surge, Davis, CA 95616, USA
| | - Chris Simon
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Storrs, CT 06269-3043, USA
| | - Margarita Yavorskaya
- Institut für Spezielle Zoologie und Evolutionsbiologie, FSU Jena, 07743 Jena, Germany
| | - Rolf G Beutel
- Institut für Spezielle Zoologie und Evolutionsbiologie, FSU Jena, 07743 Jena, Germany
| |
Collapse
|
43
|
Muna N, O'Ryan C. Isolation and characterization of the first microsatellite markers for the southern harvester termite, Microhodotermes viator. BULLETIN OF ENTOMOLOGICAL RESEARCH 2016; 106:488-493. [PMID: 27161036 DOI: 10.1017/s0007485316000110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The southern harvester termite, Microhodotermes viator, is ecologically important due to its nutrient cycling activities and trophic interactions. Additionally, M. viator appears to have very long-lived colonies, which amplifies their effect on the environment. In order to estimate the longevity of a colony it is necessary to understand colony genetic structure. However, intra- and intercolonial genetic structure and levels of relatedness have not yet been examined in this species, likely due to a lack of microsatellite markers that effectively hybridize in this species. Here we describe the identification and characterization of seven microsatellite loci for M. viator, using an enriched approach and a preliminary test of their suitability for studies of fine-scale population genetic structure. Seven polymorphic loci were identified, none of which deviated from Hardy-Weinberg equilibrium. The loci had an average of 5.8 alleles per locus (range: 2-14) and an overall mean heterozygosity of 0.51 ± 0.3. Across all loci, population level pairwise F ST values showed significant genetic differentiation. The loci described and preliminary genetic data presented here provide an invaluable tool for future studies of population structure and longevity in M. viator colonies.
Collapse
Affiliation(s)
- N Muna
- Department of Molecular & Cell Biology, University of Cape Town,Western Cape,South Africa
| | - C O'Ryan
- Department of Molecular & Cell Biology, University of Cape Town,Western Cape,South Africa
| |
Collapse
|
44
|
Blanckenhorn WU, Rohner PT, Bernasconi MV, Haugstetter J, Buser A. Is qualitative and quantitative metabarcoding of dung fauna biodiversity feasible? ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:1970-1977. [PMID: 26450644 DOI: 10.1002/etc.3275] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/27/2015] [Accepted: 10/06/2015] [Indexed: 06/05/2023]
Abstract
In biodiversity assessments, especially of small-bodied organisms for which taxonomic expertise is lacking, identification by genetic barcoding may be a cost-effective and efficient alternative to traditional identification of species by morphology, ecology, and behavior. The authors tested the feasibility and accuracy of such an approach using dung insects of practical relevance in ecotoxicological assessments of veterinary pharmaceutical residues in the environment. They produced 8 known mixtures that varied in absolute and relative composition of small-bodied and large-bodied species to see whether mitochondrial cytochrome c oxidase subunit 1 barcoding picks up all species qualitatively and quantitatively. As demonstrated before in other contexts, such metabarcoding of large numbers of dung insect specimens is principally possible using next-generation sequencing. The authors recovered most species in a sample (low type I error), at minimum permitting analysis of species richness. They obtained even quantitative responses reflecting the body size of the species, although the number of specimens was not well detected. The latter is problematic when calculating diversity indices. Nevertheless, the method yielded too many closely related false positives (type II error), thus generally overestimating species diversity and richness. These errors can be reduced by refining methods and data filtering, although this requires bioinformatics expertise often unavailable where such research is carried out. Identification by barcoding foremost hinges on a good reference database, which does not yet exist for dung organisms but would be worth developing for practical applications. Environ Toxicol Chem 2016;35:1970-1977. © 2015 SETAC.
Collapse
Affiliation(s)
- Wolf U Blanckenhorn
- Department of Evolutionary Biology and Environmental Studies, Zürich, Switzerland
| | - Patrick T Rohner
- Department of Evolutionary Biology and Environmental Studies, Zürich, Switzerland
| | - Marco V Bernasconi
- Department of Evolutionary Biology and Environmental Studies, Zürich, Switzerland
- Natur-Museum Luzern, Luzern, Switzerland
| | | | | |
Collapse
|
45
|
Fan X, Chiba H, Huang Z, Fei W, Wang M, Sáfián S. Clarification of the Phylogenetic Framework of the Tribe Baorini (Lepidoptera: Hesperiidae: Hesperiinae) Inferred from Multiple Gene Sequences. PLoS One 2016; 11:e0156861. [PMID: 27463803 PMCID: PMC4963138 DOI: 10.1371/journal.pone.0156861] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 05/21/2016] [Indexed: 11/18/2022] Open
Abstract
Members of the skipper tribe Baorini generally resemble each other and are characterized by dark brown wings with hyaline white spots. These shared characteristics have caused difficulties with revealing the relationships among genera and species in the group, and some conflicting taxonomic views remain unresolved. The present study aims to infer a more comprehensive phylogeny of the tribe using molecular data, to test the monophyly of the tribe as well as the genera it includes in order to clarify their taxonomic status, and finally to revise the current classification of the group. In order to reconstruct a phylogenetic tree, the mitochondrial COI-COII and 16S genes as well as the nuclear EF-1α and 28S genes were analyzed using parsimony, maximum likelihood, and Bayesian inference. The analysis included 67 specimens of 41 species, and we confirmed the monophyly of Baorini, and revealed that 14 genera are well supported. The genus Borbo is separated into three clades: Borbo, Pseudoborbo, and Larsenia gen. nov. We confirmed that Polytremis is polyphyletic and separated into three genera: Polytremis, Zinaida, and Zenonoida gen. nov., and also confirmed that the genus Prusiana is a member of the tribe. Relationships among some genera were strongly supported. For example, Zenonia and Zenonoida were found to be sister taxa, closely related to Zinaida and Iton, while Pelopidas and Baoris were also found to cluster together.
Collapse
Affiliation(s)
- Xiaoling Fan
- Department of Entomology, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Hideyuki Chiba
- B. P. Bishop Museum, Honolulu, Hawaii, United States of America
| | - Zhenfu Huang
- Department of Entomology, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Wen Fei
- Department of Entomology, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Min Wang
- Department of Entomology, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Szabolcs Sáfián
- Institute of Silviculture and Forest Protection, University of West Hungary, Sopron, Hungary
| |
Collapse
|
46
|
Watts M, Winkler IS, Daugeron C, de Carvalho CJ, Turner SP, Wiegmann BM. Where do the Neotropical Empidini lineages (Diptera: Empididae: Empidinae) fit in a worldwide context? Mol Phylogenet Evol 2016; 95:67-78. [DOI: 10.1016/j.ympev.2015.10.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 10/11/2015] [Accepted: 10/19/2015] [Indexed: 10/22/2022]
|
47
|
Prieto C, Grishin NV, Hausmann A, Lorenc-brudecka J. ThePenaincisalia amatistaspecies-group (Lepidoptera: Lycaenidae, Eumaeini) in Colombia, insights frommtDNA barcodes and the description of a new species. SYST BIODIVERS 2016. [DOI: 10.1080/14772000.2015.1112314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
48
|
Perera OP, Walsh TK, Luttrell RG. Complete Mitochondrial Genome of Helicoverpa zea (Lepidoptera: Noctuidae) and Expression Profiles of Mitochondrial-Encoded Genes in Early and Late Embryos. JOURNAL OF INSECT SCIENCE (ONLINE) 2016; 16:iew023. [PMID: 27126963 PMCID: PMC4864584 DOI: 10.1093/jisesa/iew023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 03/06/2016] [Indexed: 05/06/2023]
Abstract
The mitochondrial genome (mitogenome) of the bollworm, Helicoverpa zea (Boddie), was assembled using paired-end nucleotide sequence reads generated with a next-generation sequencing platform. Assembly resulted in a mitogenome of 15,348 bp with greater than 17,000-fold average coverage. Organization of the H. zea mitogenome (gene order and orientation) was identical to other known lepidopteran mitogenome sequences. Compared with Helicoverpa armigera (Hübner) mitogenome, there were a few differences in the lengths of gaps between genes, but the lengths of nucleotide overlaps were essentially conserved between the two species. Nucleotide composition of the H. zea mitochondrial genome was very similar to those of the related species H. armigera and Helicoverpa punctigera Wallengren. Mapping of RNA-Seq reads obtained from 2-h eggs and 48-h embryos to protein coding genes (PCG) revealed that all H. zea PCGs were processed as single mature gene transcripts except for the bicistronic atp8 + atp6 transcript. A tRNA-like sequence predicted to form a hammer-head-like secondary structure that may play a role in transcription start and mitogenome replication was identified within the control region of the H. zea mitogenome. Similar structures were also found within the control regions of several other lepidopteran species. Expression analysis revealed significant differences in levels of expression of PCGs within each developmental stage, but the pattern of variation was similar in both developmental stages analyzed in this study. Mapping of RNA-Seq reads to PCG transcripts also identified transcription termination and polyadenylation sites that differed from the sites described in other lepidopteran species.
Collapse
Affiliation(s)
- Omaththage P Perera
- Southern Insect Management Research Unit, USDA-ARS, Stoneville, MS 38776 (; ; ),
| | - Thomas K Walsh
- Land and Water Flagship, Commonwealth Scientific and Industrial Research Organization, Clunies Ross Street, GPO Box 1700, Canberra, ACT 2601, Australia
| | - Randall G Luttrell
- Southern Insect Management Research Unit, USDA-ARS, Stoneville, MS 38776 (; ; )
| |
Collapse
|
49
|
Win NZ, Choi EY, Jang DJ, Park J, Park JK. Molecular comparison of the genus Junonia (Lepidoptera: Nymphalidae) in Myanmar. JOURNAL OF ASIA-PACIFIC BIODIVERSITY 2015. [DOI: 10.1016/j.japb.2015.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
50
|
Suganthi M, Chandrashekara KN, Arvinth S, Raj Kumar R. Molecular characterization of tea mosquito bug from tea growing regions of India. Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:3504-6. [PMID: 26186305 DOI: 10.3109/19401736.2015.1066369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The tea mosquito bug, Helopeltis (Hemiptera: Miridae), is an insidious pest that poses a significant economical threat to tea plantations. As a basic first step to control this pest is authentic identification, but the inability to determine morphological characters of Helopeltis species makes this process very difficult. DNA barcoding is a reliable alternative to traditional morphological identification of this pest. Since tea is cultivated in different parts of the country, an attempt was made to molecular characterization of Helopeltis. This is the first report on molecular identification and diversity characterization of Helopeltis collected from tea growing regions of southern and north India, using cytochrome c oxidase subunit I (COI) gene of mitochondrial (mt) DNA. Beginning with the molecular identification of this pest is essential to start an effective pest management strategy, and will provide basic information for diffusion pattern, population dynamics and chemical application.
Collapse
Affiliation(s)
- M Suganthi
- a Plant Physiology and Biotechnology Division, UPASI Tea Research Institute , Valparai, Coimbatore , Tamil Nadu , India and
| | - K N Chandrashekara
- a Plant Physiology and Biotechnology Division, UPASI Tea Research Institute , Valparai, Coimbatore , Tamil Nadu , India and
| | - S Arvinth
- a Plant Physiology and Biotechnology Division, UPASI Tea Research Institute , Valparai, Coimbatore , Tamil Nadu , India and.,b Department of Plant Biotechnology , P.S.G Arts and Science College , Coimbatore , Tamil Nadu , India
| | - R Raj Kumar
- a Plant Physiology and Biotechnology Division, UPASI Tea Research Institute , Valparai, Coimbatore , Tamil Nadu , India and
| |
Collapse
|