1
|
Archer CR, Castledine M, Hosken DJ. Sexual conflict over sex-an underappreciated consequence of childbirth? Evol Med Public Health 2024; 12:242-247. [PMID: 39534718 PMCID: PMC11555270 DOI: 10.1093/emph/eoae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
Many postpartum women experience sexual dysfunction, characterised by reduced sexual motivation and libido, and pain during intercourse. Menstruation is also suppressed in breastfeeding women (lactational amenorrhoea). Lactational amenorrhoea has been discussed in an evolutionary context due to its positive impacts on birth spacing. In contrast, postpartum sexual dysfunction has not been viewed through an evolutionary lens. Might postpartum sexual dysfunction also be under selection? We discuss possible evolutionary explanations for postpartum sexual dysfunction. In particular, we suggest that sexual conflict, a widespread phenomenon that occurs when the evolutionary interests of males and females diverge, may be a cause of disrupted postpartum sex. This sexual conflict-based explanation generates predictions relevant to the health and well-being of new mothers that warrant testing.
Collapse
Affiliation(s)
- C Ruth Archer
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Meaghan Castledine
- Science and Engineering Research Support Facility (SERSF), University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE, UK
| | - David J Hosken
- Science and Engineering Research Support Facility (SERSF), University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE, UK
| |
Collapse
|
2
|
Pennell TM, Mank JE, Alonzo SH, Hosken DJ. On the resolution of sexual conflict over shared traits. Proc Biol Sci 2024; 291:20240438. [PMID: 39082243 PMCID: PMC11289733 DOI: 10.1098/rspb.2024.0438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 08/02/2024] Open
Abstract
Anisogamy, different-sized male and female gametes, sits at the heart of sexual selection and conflict between the sexes. Sperm producers (males) and egg producers (females) of the same species generally share most, if not all, of the same genome, but selection frequently favours different trait values in each sex for traits common to both. The extent to which this conflict might be resolved, and the potential mechanisms by which this can occur, have been widely debated. Here, we summarize recent findings and emphasize that once the sexes evolve, sexual selection is ongoing, and therefore new conflict is always possible. In addition, sexual conflict is largely a multivariate problem, involving trait combinations underpinned by networks of interconnected genes. Although these complexities can hinder conflict resolution, they also provide multiple possible routes to decouple male and female phenotypes and permit sex-specific evolution. Finally, we highlight difficulty in the study of sexual conflict over shared traits and promising directions for future research.
Collapse
Affiliation(s)
- Tanya M. Pennell
- Centre for Ecology & Conservation, Faculty of Environment, Science and Economy (ESE), University of Exeter, Cornwall Campus, PenrynTR10 9EZ, UK
| | - Judith E. Mank
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
| | - Suzanne H. Alonzo
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA95060, USA
| | - David J. Hosken
- Centre for Ecology & Conservation, Faculty of Environment, Science and Economy (ESE), University of Exeter, Cornwall Campus, PenrynTR10 9EZ, UK
| |
Collapse
|
3
|
Morgan WH, Palmer SCF, Lambin X. Mating system induced lags in rates of range expansion for different simulated mating systems and dispersal strategies: a modelling study. Oecologia 2024; 204:119-132. [PMID: 38172416 PMCID: PMC10830608 DOI: 10.1007/s00442-023-05492-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/25/2023] [Indexed: 01/05/2024]
Abstract
Mismatches between current and potential species distributions are commonplace due to lags in the response of populations to changing environmental conditions. The prevailing mating system may contribute to such lags where it leads to mating failure at the range edge, but how active dispersers might mitigate these lags using social information to inform dispersal strategies warrants greater exploration. We used an individual-based model to explore how different mating systems for species that actively search for habitat can impose a filter on the ability to colonise empty, fragmented landscapes, and explored how using social information during dispersal can mitigate the lags caused by more constrained mating systems. The mate-finding requirements implemented in two-sex models consistently led to slower range expansion compared to those that were not mate limited (i.e., female only models), even when mating was polygynous. A mate-search settlement strategy reduced the proportion of unmated females at the range edge but had little impact on rate of spread. In contrast, a negative density-dependent settlement strategy resulted in much faster spread, which could be explained by a greater number of long-distance dispersal events. Our findings suggest that even low rates of mating failure at the range edge can lead to considerable lags in range expansion, though dispersal strategies that favour colonising more distant, sparsely occupied habitat patches may effectively mitigate these lags.
Collapse
Affiliation(s)
- W H Morgan
- School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen, AB24 2TZ, UK.
| | - S C F Palmer
- School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen, AB24 2TZ, UK
| | - X Lambin
- School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen, AB24 2TZ, UK
| |
Collapse
|
4
|
Forero SA, Ophir AG. Bonding against the odds: Male prairie vole response to the "widow effect" among females. Behav Processes 2023; 213:104968. [PMID: 37984679 DOI: 10.1016/j.beproc.2023.104968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023]
Abstract
Although pair bonding is the preferred mating tactic among socially monogamous prairie voles, naturalistic observations have demonstrated many males remain non-bonded. Moreover, although males readily re-bond after the loss of a partner, females do not (i.e., the "widow effect'). Few studies have attempted to address why so many males remain non-bonded or if a reluctance of re-bonding in females contributes to this outcome. We investigate how female bonding history impacts male pair bond formation. Specifically, we test two alternative hypotheses for how sexually naïve males will behave when paired with widow females. The fecundity hypothesis predicts males will avoid bonding with widow females and be more receptive to novel bond-naïve females. The preference to bond hypothesis predicts males will choose to bond and express a partner preference, irrespective of if a pair-mate is a widow or sexually naïve. Our results demonstrated that males expressed a partner preference for females regardless of their social history. These data support the preference to bond hypothesis and suggest natural variation in bonding may not be strongly due to males forgoing bonding opportunities.
Collapse
|
5
|
Archer CR, Hosken DJ. Introduction to topical collection “Sexual selection, sexual conflict and aging”. Behav Ecol Sociobiol 2023. [DOI: 10.1007/s00265-023-03295-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
6
|
Angelakakis A, Turetzek N, Tuni C. Female mating rates and their fitness consequences in the common house spider Parasteatoda tepidariorum. Ecol Evol 2022; 12:e9678. [PMID: 36590337 PMCID: PMC9797470 DOI: 10.1002/ece3.9678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 11/29/2022] [Accepted: 12/06/2022] [Indexed: 12/31/2022] Open
Abstract
Mating systems, with varying female mating rates occurring with the same partner (monandry) or with multiple mates (polyandry), can have far reaching consequences for population viability and the rate of gene flow. Here, we investigate the mating rates of the common house spider Parasteatoda tepidariorum (Theridiidae), an emerging model for genetic studies, with yet undescribed reproductive behavior. It is hypothesized that spiders belonging to this family have low re-mating rates. We paired females twice with the same male (monandry) or with different males (polyandry), and recorded behaviors, mating success and fitness resulting from single- and double-matings, either monandrous or polyandrous. Despite the study being explorative in nature, we predict successful matings to be more frequent during first encounters, to reduce female risk of remaining unmated. For re-mating to be adaptive, we expect higher fitness of double-mated females, and polyandrous females to experience highest mating success and fitness if reproductive gains are achieved by mating with multiple partners. We show that the majority of the females did not mate, and those that did mated only once, not necessarily on their first encounter. The likelihood of re-mating did not differ between monandrous and polyandrous encounters and female mating experience (mated once, twice monandrous, twice polyandrous) did not affect fitness, indicated by similar offspring production. Female twanging of the web leads to successful matings suggesting female behavioral receptivity. Cannibalism rates were low and mostly occurred pre-copulatory. We discuss how the species ecology, with potentially high mating costs for males and limited female receptivity, may shape a mating system with low mating rates.
Collapse
Affiliation(s)
- Apostolos Angelakakis
- Behavioral Ecology, Faculty of BiologyLudwig‐Maximilians‐University MunichPlanegg‐MartinsriedGermany
- Evolutionary Ecology, Faculty of BiologyLudwig‐Maximilians‐University MunichPlanegg‐MartinsriedGermany
| | - Natascha Turetzek
- Evolutionary Ecology, Faculty of BiologyLudwig‐Maximilians‐University MunichPlanegg‐MartinsriedGermany
| | - Cristina Tuni
- Behavioral Ecology, Faculty of BiologyLudwig‐Maximilians‐University MunichPlanegg‐MartinsriedGermany
| |
Collapse
|
7
|
Hopkins BR, Perry JC. The evolution of sex peptide: sexual conflict, cooperation, and coevolution. Biol Rev Camb Philos Soc 2022; 97:1426-1448. [PMID: 35249265 PMCID: PMC9256762 DOI: 10.1111/brv.12849] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/17/2022]
Abstract
A central paradigm in evolutionary biology is that the fundamental divergence in the fitness interests of the sexes (‘sexual conflict’) can lead to both the evolution of sex‐specific traits that reduce fitness for individuals of the opposite sex, and sexually antagonistic coevolution between the sexes. However, clear examples of traits that evolved in this way – where a single trait in one sex demonstrably depresses the fitness of members of the opposite sex, resulting in antagonistic coevolution – are rare. The Drosophila seminal protein ‘sex peptide’ (SP) is perhaps the most widely cited example of a trait that appears to harm females while benefitting males. Transferred in the ejaculate by males during mating, SP triggers profound and wide‐ranging changes in female behaviour and physiology. Early studies reported that the transfer of SP enhances male fitness while depressing female fitness, providing the foundations for the widespread view that SP has evolved to manipulate females for male benefit. Here, we argue that this view is (i) a simplification of a wider body of contradictory empirical research, (ii) narrow with respect to theory describing the origin and maintenance of sexually selected traits, and (iii) hard to reconcile with what we know of the evolutionary history of SP's effects on females. We begin by charting the history of thought regarding SP, both at proximate (its production, function, and mechanism of action) and ultimate (its fitness consequences and evolutionary history) levels, reviewing how studies of SP were central to the development of the field of sexual conflict. We describe a prevailing paradigm for SP's evolution: that SP originated and continues to evolve to manipulate females for male benefit. In contrast to this view, we argue on three grounds that the weight of evidence does not support the view that receipt of SP decreases female fitness: (i) results from studies of SP's impact on female fitness are mixed and more often neutral or positive, with fitness costs emerging only under nutritional extremes; (ii) whether costs from SP are appreciable in wild‐living populations remains untested; and (iii) recently described confounds in genetic manipulations of SP raise the possibility that measures of the costs and benefits of SP have been distorted. Beyond SP's fitness effects, comparative and genetic data are also difficult to square with the idea that females suffer fitness costs from SP. Instead, these data – from functional and evolutionary genetics and the neural circuitry of female responses to SP – suggest an evolutionary history involving the evolution of a dedicated SP‐sensing apparatus in the female reproductive tract that is likely to have evolved because it benefits females, rather than harms them. We end by exploring theory and evidence that SP benefits females by functioning as a signal of male quality or of sperm receipt and storage (or both). The expanded view of the evolution of SP that we outline recognises the context‐dependent and fluctuating roles played by both cooperative and antagonistic selection in the origin and maintenance of reproductive traits.
Collapse
Affiliation(s)
- Ben R. Hopkins
- Department of Evolution and Ecology University of California – Davis One Shields Avenue Davis CA 95616 U.S.A
| | - Jennifer C. Perry
- School of Biological Sciences University of East Anglia Norwich NR4 7TJ U.K
| |
Collapse
|
8
|
Xochipiltecatl D, Baixeras J, Cordero CR. Atypical functioning of female genitalia explains monandry in a butterfly. PeerJ 2021; 9:e12499. [PMID: 34900425 PMCID: PMC8614189 DOI: 10.7717/peerj.12499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/26/2021] [Indexed: 11/20/2022] Open
Abstract
Monandrous species are rare in nature, especially in animals where males transfer nutrients to females in the ejaculate. The proximate mechanisms responsible for monandry are poorly studied. In butterflies and moths, the male transfers a nutritious spermatophore into the corpus bursae (CB) of the female. The CB is a multifunctional organ that digests the spermatophore and has partial control of the post-mating sexual receptivity of the female. The spermatophore distends the CB and the post-mating sexual receptivity of the female is inversely proportional to the degree of distension. The CB of many butterfly species has a muscular sheath whose contractions mechanically contribute to digest the spermatophore. As the contents of the CB are absorbed, the degree of distension decreases and the female recovers receptivity. We studied the monandrous butterfly Leptophobia aripa (Boisduval, 1836) (Pieridae) and found that females do not digest the spermatophores. We investigated the structure of the CB and found that a muscular sheath is absent, indicating that in this butterfly females lack the necessary "apparatus" for the mechanical digestion of the spermatophore. We propose that female monandry in this species is result of its incapability to mechanically digest the spermatophore, which results in a constant degree of CB distension after mating and, thus, in the maintenance of the sexually unreceptive state of females. Hypotheses on the evolution of this mechanism are discussed.
Collapse
Affiliation(s)
- David Xochipiltecatl
- Posgrado en Ciencias Biológicas, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, México
| | - Joaquín Baixeras
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Paterna, Valencia, Spain
| | - Carlos R Cordero
- Departamento de Ecología Evolutiva, Universidad Nacional Autónoma de México, Mexico City, México
| |
Collapse
|
9
|
Juvenile Experience with Male Cues Triggers Cryptic Choice Mechanisms in Adult Female Redback Spiders. INSECTS 2021; 12:insects12090825. [PMID: 34564265 PMCID: PMC8468702 DOI: 10.3390/insects12090825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 11/23/2022]
Abstract
Simple Summary Females of many species vary in their receptivity to male mating attempts. When many males are present in the habitat, the theory predicts that females should be choosy and discriminate among potential mates. When few males are available, females should mate readily with the first male who courts, and thus avoid the risk of remaining unmated. We predicted that cues perceived as juveniles that indicate male availability would affect the mating behaviour of adult females. In our first experiment, juvenile females were exposed to airborne chemicals produced by males at high or low densities. In our second experiment, we mimicked a natural situation where males or other juveniles live on the webs of females shortly before they become sexually mature, and compared this to females developing in isolation. As was consistent with our predictions, we found that the adult females changed their behaviour after exposure to cues of high male availability during development. When the females perceived many males nearby (high density airborne cues or living with males) they more often interrupted copulation, or cannibalized the males before the mating was complete as adults. In comparison, when the cues indicated low male availability, the adult females were more likely to allow the males to complete mating, and cannibalism was less common. Abstract Female choice may be linked to population density if the expected encounter rates with potential mates affects choosiness (the energy and risk engaged to express mate preferences). Choosiness should covary with male availability, which could be assessed using the social cues available during development. We tested whether the exposure of juvenile females to cues of male density affected the mechanisms of choosiness of adult Latrodectus hasselti spiders in two experiments simulating natural contexts. The juvenile females were exposed to (1) volatile chemicals from two densities of adult males (airborne cues), and (2) tactile, vibrational and chemical cues from adult males or other females (cohabitation cues). As adults, the females mated readily, regardless of the treatment, but there was strong evidence for post-copulatory mechanisms of choosiness in females exposed to cues of high male availability. These included abbreviated matings (in both experiments), cannibalism of the males before the mating was complete (cohabitation), and, remarkably, a reduction in the successful placement of internal sperm plugs (cohabitation). These shifts decrease the likelihood that the first mate would monopolize paternity if the female chose to mate again. We conclude that female choosiness may impose a strong selection on males despite the high mating rates, and these effects can hinge on the cues of male availability detected by juveniles.
Collapse
|
10
|
Qu T, Calabrese P, Singhavi P, Tower J. Incorporating antagonistic pleiotropy into models for molecular replicators. Biosystems 2020; 201:104333. [PMID: 33359635 DOI: 10.1016/j.biosystems.2020.104333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 11/15/2022]
Abstract
In modern cells, chromosomal genes composed of DNA encode multi-subunit protein/RNA complexes that catalyze the replication of the chromosome and cell. One prevailing theory for the origin of life posits an early stage involving self-replicating macromolecules called replicators, which can be considered genes capable of self-replication. One prevailing theory for the genetics of aging in humans and other organisms is antagonistic pleiotropy, which posits that a gene can be beneficial in one context, and detrimental in another context. We previously reported that the conceptual simplicity of molecular replicators facilitates the generation of two simple models involving antagonistic pleiotropy. Here a third model is proposed, and each of the three models is presented with improved definition of the time variable. Computer simulations were used to calculate the proliferation of a hypothetical two-subunit replicator (AB), when one of the two subunits (B) exhibits antagonistic pleiotropy, leading to an advantage for B to be unstable. In model 1, instability of B yields free A subunits, which in turn stimulate the activity of other AB replicators. In model 2, B is lost and sometimes replaced by a more active mutant form, B'. In model 3, B becomes damaged and loses activity, and its instability allows it to be replaced by a new B. For each model, conditions were identified where instability of B was detrimental, and where instability of B was beneficial. The results are consistent with the hypothesis that antagonistic pleiotropy can promote molecular instability and system complexity, and provide further support for a model linking aging and evolution.
Collapse
Affiliation(s)
- Tianjiao Qu
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Peter Calabrese
- Quantitative and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Pratik Singhavi
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - John Tower
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
11
|
Moschilla JA, Tomkins JL, Simmons LW. Identification of seminal proteins related to the inhibition of mate searching in female crickets. Behav Ecol 2020. [DOI: 10.1093/beheco/araa090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
In response to the reduction in fitness associated with sperm competition, males are expected to evolve tactics that hinder female remating. For example, females often display a postmating reduction in their sexual receptivity that has been shown to be mediated by proteins contained in a male’s seminal fluid (sfps). However, although there has been comprehensive research on sfps in genetically well-characterized species, few nonmodel species have been studied in such detail. We initially confirm that female Australian field crickets, Teleogryllus oceanicus, do display a significant reduction in their mate-searching behavior 24 h after mating. This effect was still apparent 3 days after mating but was entirely absent after 1 week. We then attempted to identify the sfps that might play a role in inducing this behavioral response. We identified two proteins, ToSfp022 and ToSfp011, that were associated with the alteration in female postmating behavior. The knockdown of both proteins resulted in mated females that displayed a significant increase in their mate-searching behaviors compared with females mated to males having the full compliment of seminal fluid proteins in their ejaculate. Our results indicate that the female refractory period in T. oceanicus likely reflects a sperm competition avoidance tactic by males, achieved through the action of male seminal fluid proteins.
Collapse
Affiliation(s)
- Joe A Moschilla
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley, Australia
| | - Joseph L Tomkins
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley, Australia
| | - Leigh W Simmons
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley, Australia
| |
Collapse
|
12
|
Minekawa K, Amino K, Matsuo T. A courtship behavior that makes monandrous females polyandrous. Evolution 2020; 74:2483-2493. [DOI: 10.1111/evo.14098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 09/04/2020] [Accepted: 09/13/2020] [Indexed: 01/16/2023]
Affiliation(s)
- Kazuyoshi Minekawa
- Laboratory of Applied Entomology Department of Agricultural and Environmental Biology The University of Tokyo Tokyo 113–8657 Japan
| | - Kai Amino
- Laboratory of Applied Entomology Department of Agricultural and Environmental Biology The University of Tokyo Tokyo 113–8657 Japan
| | - Takashi Matsuo
- Laboratory of Applied Entomology Department of Agricultural and Environmental Biology The University of Tokyo Tokyo 113–8657 Japan
| |
Collapse
|
13
|
Abstract
Abstract
Females mate multiply despite numerous costs. It is well established that polyandry can result in sexual conflict, favoring male adaptations that prevent sperm competition often to the disadvantage of the female. Such adaptations are extreme in spiders with one-shot genitalia of which parts break off and act as mating plugs, rendering them dysfunctional. In the spider Argiope bruennichi, mating plugs effectively prevent further males from inseminating and males that inseminate and plug both genital openings of a female secure exclusive paternity. However, females frequently prevent monopolization by attacking and cannibalizing males during their first copulation, leaving their second spermatheca free for another male. Here, we test whether the high frequency of sexual cannibalism evolved as a female adaptation to resist monopolization and secure indirect benefits of polyandry. To standardize conditions, we double-mated females either with the same or two different males and prevented male consumption. Using a split-brood design, we raised offspring to maturity under poor and rich food conditions and measured their survival, duration of juvenile phase, and adult body mass. Under low food, daughters of polyandrous mothers matured later but slightly heavier than daughters of monandrous females. Since the adaptive value of this combination is unclear, these findings lend no conclusive support to our hypothesis. We discuss the stereotypic nature of the female attack in the context of antagonistic co-evolution considering previous studies that found modest direct benefits of cannibalism as well as a potential for non-additive benefits.
Significance statement
Sexual conflict is extreme in spiders where sexual cannibalism impairs male mating rates. Males of the spider Argiope bruennichi possess one-shot genitalia which they break off to plug female genital openings. They gain exclusive paternity with a female if two copulations are achieved and both genital openings plugged. Females, however, stereotypically attack every male at the onset of copulation, limiting most males to single copulation but retaining the option to secure potential benefits of polyandry. Previous studies revealed weak direct and non-additive indirect benefits of multiple mating. In this study, we tested for the presence of additive genetic benefits but again found only inconclusive evidence for adaptive differences in offspring quality between monandrous and polyandrous females. All results combined, we here speculate that the stereotypic female attack might be a ghost of a past antagonistic co-evolution.
Collapse
|
14
|
Sato N, Tsuda SI, Nur E Alam M, Sasanami T, Iwata Y, Kusama S, Inamura O, Yoshida MA, Hirohashi N. Rare polyandry and common monogamy in the firefly squid, Watasenia scintillans. Sci Rep 2020; 10:10962. [PMID: 32620906 PMCID: PMC7334199 DOI: 10.1038/s41598-020-68006-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/12/2020] [Indexed: 11/09/2022] Open
Abstract
In cephalopods, all species are considered to be polyandrous because of their common life history and reproductive traits reflecting a polyandrous mating system. Contrary to this belief, here we show several lines of evidence for monogamy in the firefly squid, Watasenia scintillans. In this species, females are capable of long-term storage of spermatangia, and of egg spawning even after the complete disappearance of males following the breeding season. The stored spermatangia are distributed equally between bilateral pouches under the female’s neck collar. Such a nonrandom pattern of sperm storage prompted us to hypothesize that females might engage in lifetime monandry. Hence, we genotyped female-stored spermatangia and offspring, and found that in 95% of females (18/19), all the spermatangia had been delivered from a single male and all the embryos in a clutch had been sired by spermatozoa from stored spermatangia. In males, throughout the reproductive season, relative testis mass was much smaller in W. scintillans than in all other cephalopods examined previously. The mean number of male-stored spermatophores was ~ 30, equivalent to only 2.5 matings. Our genetic, demographic and morphometrical data agree with a mathematical model predicting that monogyny is favored when potential mates are scarce. Together, these results suggest mutual monogamy in W. scintillans.
Collapse
Affiliation(s)
- Noriyosi Sato
- Oki Marine Biological Station, Shimane University, 194 Kamo, Okinoshima, Oki, Shimane, 685-0024, Japan.,Department of Fisheries, School of Marine Science and Technology, Tokai University, Shizuoka, 424-8610, Japan
| | - Sei-Ichiro Tsuda
- Oki Marine Biological Station, Shimane University, 194 Kamo, Okinoshima, Oki, Shimane, 685-0024, Japan
| | - Md Nur E Alam
- Oki Marine Biological Station, Shimane University, 194 Kamo, Okinoshima, Oki, Shimane, 685-0024, Japan
| | - Tomohiro Sasanami
- Department of Applied Life Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Shizuoka, Shizuoka, 422-8529, Japan
| | - Yoko Iwata
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8564, Japan
| | - Satoshi Kusama
- Uozu Aquarium, 1390 Sanga, Uozu, Toyama, 937-0857, Japan
| | - Osamu Inamura
- Uozu Aquarium, 1390 Sanga, Uozu, Toyama, 937-0857, Japan
| | - Masa-Aki Yoshida
- Oki Marine Biological Station, Shimane University, 194 Kamo, Okinoshima, Oki, Shimane, 685-0024, Japan
| | - Noritaka Hirohashi
- Oki Marine Biological Station, Shimane University, 194 Kamo, Okinoshima, Oki, Shimane, 685-0024, Japan.
| |
Collapse
|
15
|
Rodrigues LR, Figueiredo ART, Van Leeuwen T, Olivieri I, Magalhães S. Costs and benefits of multiple mating in a species with first‐male sperm precedence. J Anim Ecol 2020; 89:1045-1054. [DOI: 10.1111/1365-2656.13171] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 10/30/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Leonor R. Rodrigues
- cE3c: Centre for Ecology, Evolution, and Environmental Changes Faculty of Sciences University of Lisbon Lisboa Portugal
- ISEM: Institut des Sciences de l'Evolution de Montpellier UMR5554 Université de Montpellier/CNRS/IRD Montpellier France
| | - Alexandre R. T. Figueiredo
- cE3c: Centre for Ecology, Evolution, and Environmental Changes Faculty of Sciences University of Lisbon Lisboa Portugal
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology Department of Plants and Crops Faculty of Bioscience Engineering Ghent University Ghent Belgium
| | - Isabelle Olivieri
- ISEM: Institut des Sciences de l'Evolution de Montpellier UMR5554 Université de Montpellier/CNRS/IRD Montpellier France
| | - Sara Magalhães
- cE3c: Centre for Ecology, Evolution, and Environmental Changes Faculty of Sciences University of Lisbon Lisboa Portugal
| |
Collapse
|
16
|
Fernandez-Duque E, Huck M, Van Belle S, Di Fiore A. The evolution of pair-living, sexual monogamy, and cooperative infant care: Insights from research on wild owl monkeys, titis, sakis, and tamarins. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 171 Suppl 70:118-173. [PMID: 32191356 DOI: 10.1002/ajpa.24017] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/28/2022]
Abstract
"Monogamy" and pair bonding have long been of interest to anthropologists and primatologists. Their study contributes to our knowledge of human evolutionary biology and social evolution without the cultural trappings associated with studying human societies directly. Here, we first provide an overview of theoretical considerations, followed by an evaluation of recent comparative studies of the evolution of "social monogamy"; we are left with serious doubts about the conclusions of these studies that stem from the often poor quality of the data used and an overreliance on secondary sources without vetting the data therein. We then describe our field research program on four "monogamous" platyrrhines (owl monkeys, titis, sakis, and tamarins), evaluate how well our data support various hypotheses proposed to explain "monogamy," and compare our data to those reported on the same genera in comparative studies. Overall, we found a distressing lack of agreement between the data used in comparative studies and data from the literature for the taxa that we work with. In the final section, we propose areas of research that deserve more attention. We stress the need for more high-quality natural history data, and we urge researchers to be cautious about the uncritical use of variables of uncertain internal validity. Overall, it is imperative that biological anthropologists establish and follow clear criteria for comparing and combining results from published studies and that researchers, reviewers, and editors alike comply with these standards to improve the transparency, reproducibility, and interpretability of causal inferences made in comparative studies.
Collapse
Affiliation(s)
- Eduardo Fernandez-Duque
- Department of Anthropology, Yale University, New Haven, Connecticut.,Owl Monkey Project, Fundación ECO, Formosa, Argentina.,Facultad de Recursos Naturales, Universidad Nacional de Formosa, Formosa, Argentina.,College of Biological and Environmental Sciences, Universidad San Francisco de Quito, Quito, Ecuador
| | - Maren Huck
- School of Environmental Sciences, University of Derby, Derby, UK
| | - Sarie Van Belle
- Department of Anthropology, University of Texas, Austin, Texas.,Primate Molecular Ecology and Evolution Laboratory, University of Texas, Austin, Texas
| | - Anthony Di Fiore
- College of Biological and Environmental Sciences, Universidad San Francisco de Quito, Quito, Ecuador.,Department of Anthropology, University of Texas, Austin, Texas.,Primate Molecular Ecology and Evolution Laboratory, University of Texas, Austin, Texas
| |
Collapse
|
17
|
Huck M, Di Fiore A, Fernandez-Duque E. Of Apples and Oranges? The Evolution of “Monogamy” in Non-human Primates. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2019.00472] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
18
|
Kappeler PM, Pozzi L. Evolutionary transitions toward pair living in nonhuman primates as stepping stones toward more complex societies. SCIENCE ADVANCES 2019; 5:eaay1276. [PMID: 32064318 PMCID: PMC6989303 DOI: 10.1126/sciadv.aay1276] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/30/2019] [Indexed: 06/03/2023]
Abstract
Nonhuman primate societies vary tremendously in size and composition, but how and why evolutionary transitions among different states occurred remains highly controversial. In particular, how many times pair living evolved and the social states of the ancestors of pair- and group-living species remains contentious. We examined evolutionary transitions in primate social evolution by using new, independent categorizations of sociality and different phylogenetic hypotheses with a vastly expanded dataset. Using Bayesian phylogenetic comparative methods, we consistently found the strongest support for a model that invokes frequent transitions between solitary ancestors and pair-living descendants, with the latter giving rise to group-living species. This result was robust to systematic variation in social classification, sample size, and phylogeny. Our analyses therefore indicate that pair living was a stepping stone in the evolution of structurally more complex primate societies, a result that bolsters the role of kin selection in social evolution.
Collapse
Affiliation(s)
- Peter M. Kappeler
- Behavioral Ecology and Sociobiology Unit, German Primate Center–Leibniz Institute for Primate Research, Göttingen, Germany
- Department of Sociobiology/Anthropology, University of Göttingen, Göttingen, Germany
| | - Luca Pozzi
- Department of Anthropology, The University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
19
|
Griffith SC. Cooperation and Coordination in Socially Monogamous Birds: Moving Away From a Focus on Sexual Conflict. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00455] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
20
|
|
21
|
González M, Costa FG, Peretti AV. Different levels of polyandry in two populations of the funnel-web wolf spider Aglaoctenus lagotis from South America. J ETHOL 2019. [DOI: 10.1007/s10164-019-00606-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
García‐Roa R, Chirinos V, Carazo P. The ecology of sexual conflict: Temperature variation in the social environment can drastically modulate male harm to females. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13275] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Roberto García‐Roa
- Behaviour and Evolution Group, Ethology Lab, Cavanilles Institute of Biodiversity and Evolutionary Biology University of Valencia Valencia Spain
| | - Valeria Chirinos
- Behaviour and Evolution Group, Ethology Lab, Cavanilles Institute of Biodiversity and Evolutionary Biology University of Valencia Valencia Spain
| | - Pau Carazo
- Behaviour and Evolution Group, Ethology Lab, Cavanilles Institute of Biodiversity and Evolutionary Biology University of Valencia Valencia Spain
| |
Collapse
|
23
|
|
24
|
Wu Q, Wen L, Chen J, Li D, Jiao X. Experimental evidence for the genetic benefits of female mate choice in the monandrous wolf spider Pardosa astrigera. Anim Behav 2018. [DOI: 10.1016/j.anbehav.2018.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
25
|
Kvarnemo C. Why do some animals mate with one partner rather than many? A review of causes and consequences of monogamy. Biol Rev Camb Philos Soc 2018; 93:1795-1812. [PMID: 29687607 DOI: 10.1111/brv.12421] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 03/27/2018] [Accepted: 04/03/2018] [Indexed: 10/17/2022]
Abstract
Why do some animals mate with one partner rather than many? Here, I investigate factors related to (i) spatial constraints (habitat limitation, mate availability), (ii) time constraints (breeding synchrony, length of breeding season), (iii) need for parental care, and (iv) genetic compatibility, to see what support can be found in different taxa regarding the importance of these factors in explaining the occurrence of monogamy, whether shown by one sex (monogyny or monandry) or by both sexes (mutual monogamy). Focusing on reproductive rather than social monogamy whenever possible, I review the empirical literature for birds, mammals and fishes, with occasional examples from other taxa. Each of these factors can explain mating patterns in some taxa, but not in all. In general, there is mixed support for how well the factors listed above predict monogamy. The factor that shows greatest support across taxa is habitat limitation. By contrast, while a need for parental care might explain monogamy in freshwater fishes and birds, there is clear evidence that this is not the case in marine fishes and mammals. Hence, reproductive monogamy does not appear to have a single overriding explanation, but is more taxon specific. Genetic compatibility is a promising avenue for future work likely to improve our understanding of monogamy and other mating patterns. I also discuss eight important consequences of reproductive monogamy: (i) parentage, (ii) parental care, (iii) eusociality and altruism, (iv) infanticide, (v) effective population size, (vi) mate choice before mating, (vii) sexual selection, and (viii) sexual conflict. Of these, eusociality and infanticide have been subject to debate, briefly summarised herein. A common expectation is that monogamy leads to little sexual conflict and no or little sexual selection. However, as reviewed here, sexual selection can be substantial under mutual monogamy, and both sexes can be subject to such selection. Under long-term mutual monogamy, mate quality is obviously more important than mate numbers, which in turn affects the need for pre-mating mate choice. Overall, I conclude that, despite much research on genetic mating patterns, reproductive monogamy is still surprisingly poorly understood and further experimental and comparative work is needed. This review identifies several areas in need of more data and also proposes new hypotheses to test.
Collapse
Affiliation(s)
- Charlotta Kvarnemo
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30 Gothenburg, Sweden
| |
Collapse
|
26
|
Chen Z, Preisser EL, Xiao R, Chen J, Li D, Jiao X. Inbreeding produces trade-offs between maternal fecundity and offspring survival in a monandrous spider. Anim Behav 2017. [DOI: 10.1016/j.anbehav.2017.08.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Carvalho APS, Orr AG, Kawahara AY. A review of the occurrence and diversity of the sphragis in butterflies (Lepidoptera, Papilionoidea). Zookeys 2017:41-70. [PMID: 29133999 PMCID: PMC5672779 DOI: 10.3897/zookeys.694.13097] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/07/2017] [Indexed: 11/12/2022] Open
Abstract
Males of many butterfly species secrete long-lasting mating plugs to prevent their mates from copulating with other males, thus ensuring their sperm will fertilize all future eggs laid. Certain species have further developed a greatly enlarged, often spectacular, externalized plug, termed a sphragis. This distinctive structure results from complex adaptations in both male and female genitalia and is qualitatively distinct from the amorphous, internal mating plugs of other species. Intermediate conditions between internal plug and external sphragis are rare. The term sphragis has often been misunderstood in recent years, hence we provide a formal definition based on accepted usage throughout most of the last century. Despite it being a highly apparent trait, neither the incidence nor diversity of the sphragis has been systematically documented. We record a sphragis or related structure in 273 butterfly species, representing 72 species of Papilionidae in 13 genera, and 201 species of Nymphalidae in 9 genera. These figures represent respectively, 13% of Papilionidae, 3% of Nymphalidae, and 1% of known butterfly species. A well-formed sphragis evolved independently in at least five butterfly subfamilies, with a rudimentary structure also occurring in an additional subfamily. The sphragis is probably the plesiomorphic condition in groups such as Parnassius (Papilionidae: Parnassiinae) and many Acraeini (Nymphalidae: Heliconiinae). Some butterflies, such as those belonging to the Parnassius simo group, have apparently lost the structure secondarily. The material cost of producing the sphragis is considerable. It is typically offset by production of a smaller spermatophore, thus reducing the amount of male-derived nutrients donated to the female during mating for use in oogenesis and/or somatic maintenance. The sphragis potentially represents one of the clearest examples of mate conflict known. Investigating its biology should yield testable hypotheses to further our understanding of the selective processes at play in an 'arms race' between the sexes. This paper provides an overview, which will inform future study.
Collapse
Affiliation(s)
- Ana Paula S Carvalho
- Entomology and Nematology Department, University of Florida, 1881 Natural Area Dr, Gainesville, FL 32608, United States.,McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, 3215 Hull Road, Gainesville, FL, 32611 United States
| | - Albert G Orr
- Environmental Futures Research Institute, Griffith University, Nathan, QLD 4111, Australia
| | - Akito Y Kawahara
- Entomology and Nematology Department, University of Florida, 1881 Natural Area Dr, Gainesville, FL 32608, United States.,McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, 3215 Hull Road, Gainesville, FL, 32611 United States
| |
Collapse
|
28
|
McCullough EL, Buzatto BA, Simmons LW. Benefits of polyandry: Molecular evidence from field-caught dung beetles. Mol Ecol 2017; 26:3546-3555. [PMID: 28370584 DOI: 10.1111/mec.14127] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 03/07/2017] [Accepted: 03/21/2017] [Indexed: 11/29/2022]
Abstract
When females mate with multiple males, they set the stage for postcopulatory sexual selection via sperm competition and/or cryptic female choice. Surprisingly little is known about the rates of multiple mating by females in the wild, despite the importance of this information in understanding the potential for postcopulatory sexual selection to drive the evolution of reproductive behaviour, morphology and physiology. Dung beetles in the genus Onthophagus have become a laboratory model for studying pre- and postcopulatory sexual selection, yet we still lack information about the reproductive behaviour of female dung beetles in natural populations. Here, we develop microsatellite markers for Onthophagus taurus and use them to genotype the offspring of wild-caught females and to estimate natural rates of multiple mating and patterns of sperm utilization. We found that O. taurus females are highly polyandrous: 88% of females produced clutches sired by at least two males, and 5% produced clutches with as many as five sires. Several females (23%) produced clutches with significant paternity skew, indicating the potential for strong postcopulatory sexual selection in natural populations. There were also strong positive correlations between the number of offspring produced and both number of fathers and paternity skew, which suggests that females benefit from mating polyandrously by inciting postcopulatory mechanisms that bias paternity towards males that can sire more viable offspring. This study evaluates the fitness consequences of polyandry for an insect in the wild and provides strong evidence that female dung beetles benefit from multiple mating under natural conditions.
Collapse
Affiliation(s)
- Erin L McCullough
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley, Western Australia, Australia
| | - Bruno A Buzatto
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley, Western Australia, Australia
| | - Leigh W Simmons
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
29
|
Okada K, Suzaki Y, Sasaki R, Katsuki M. Fitness costs of polyandry to female cigarette beetle Lasioderma serricorne. Behav Ecol Sociobiol 2017. [DOI: 10.1007/s00265-017-2316-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
30
|
Effect of male mating history and age on remating by female European corn borer. PLoS One 2017; 12:e0175512. [PMID: 28384242 PMCID: PMC5383304 DOI: 10.1371/journal.pone.0175512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/27/2017] [Indexed: 12/01/2022] Open
Abstract
If mating with an inferior male has high fitness costs, females may try to avoid mating with these males. Alternatively, females may accept an inferior male to ensure they have obtained at least one mate, and/or to avoid the costs of resisting these males. We hypothesized that females compensate for mating with an inferior male by remating. We tested this hypothesis by measuring remating propensity in females that had mated with an old, multiply-mated male, a 9-day-old virgin male, or a young, virgin male. Females were more likely to remate when they had mated with multiply-mated males than when they had mated with a 9-day-old or young virgin male. We discuss the observed mating behavior by females in terms of sexual selection for multiple mating.
Collapse
|
31
|
Krueger S, Jilge M, Mound L, Moritz GB. Reproductive Behavior of Echinothrips americanus (Thysanoptera: Thripidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2017; 17:3775834. [PMID: 28931160 PMCID: PMC5469385 DOI: 10.1093/jisesa/iex043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Indexed: 06/07/2023]
Abstract
Most Thysanoptera possess a haplo-diploid reproductive mode and reproduce via arrhenotoky. Females can mature eggs successively throughout almost their entire life, but in most terebrantian thrips spermiogenesis is complete by adult male eclosion, and testes contain only mature spermatids. In parasitoid wasps this phenomenon of preadult spermiogenesis is described as prospermatogeny. It is unclear if prospermatogeny and this predetermined sperm quantity have implications for mating strategy and fitness. In this study, we give a detailed description of mating behavior of the thripine species Echinothrips americanus, which largely corresponds with the only available data of another species of this family, Frankliniella occidentalis (Thysanoptera: Thripidae). With investigations using light microscopy, we describe for the first time the chronological sequence of internal processes during copulation. The release of male accessory gland material followed subsequently by spermatozoa indicates production of a female-determined type 1 spermatophore. Despite prospermatogeny, males are able to inseminate 10 females with an equal amount of spermatozoa. It is only the quantity of glandular material that decreases with the number of previous copulations. Based on these new findings, the reproductive strategy of this species is discussed.
Collapse
Affiliation(s)
- Stephanie Krueger
- Institute of Biology, Faculty Natural Sciences I, Martin Luther University Halle-Wittenberg, Heinrich-Damerow Str. 4A, 06120 Halle, Saale, Germany (; ; )
| | - Marcus Jilge
- Institute of Biology, Faculty Natural Sciences I, Martin Luther University Halle-Wittenberg, Heinrich-Damerow Str. 4A, 06120 Halle, Saale, Germany (; ; )
| | - Laurence Mound
- CSIRO, Australian National Insect Collection, Canberra, ACT, Australia ()
| | - Gerald B. Moritz
- Institute of Biology, Faculty Natural Sciences I, Martin Luther University Halle-Wittenberg, Heinrich-Damerow Str. 4A, 06120 Halle, Saale, Germany (; ; )
| |
Collapse
|
32
|
Evidence for sex-specific reproductive senescence in monogamous cooperatively breeding red wolves. Behav Ecol Sociobiol 2016. [DOI: 10.1007/s00265-016-2241-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
33
|
Rajpurohit S, Hanus R, Vrkoslav V, Behrman EL, Bergland AO, Petrov D, Cvačka J, Schmidt PS. Adaptive dynamics of cuticular hydrocarbons in Drosophila. J Evol Biol 2016; 30:66-80. [PMID: 27718537 DOI: 10.1111/jeb.12988] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/04/2016] [Accepted: 10/06/2016] [Indexed: 01/19/2023]
Abstract
Cuticular hydrocarbons (CHCs) are hydrophobic compounds deposited on the arthropod cuticle that are of functional significance with respect to stress tolerance, social interactions and mating dynamics. We characterized CHC profiles in natural populations of Drosophila melanogaster at five levels: across a latitudinal transect in the eastern United States, as a function of developmental temperature during culture, across seasonal time in replicate years, and as a function of rapid evolution in experimental mesocosms in the field. Furthermore, we also characterized spatial and temporal changes in allele frequencies for SNPs in genes that are associated with the production and chemical profile of CHCs. Our data demonstrate a striking degree of parallelism for clinal and seasonal variation in CHCs in this taxon; CHC profiles also demonstrate significant plasticity in response to rearing temperature, and the observed patterns of plasticity parallel the spatiotemporal patterns observed in nature. We find that these congruent shifts in CHC profiles across time and space are also mirrored by predictable shifts in allele frequencies at SNPs associated with CHC chain length. Finally, we observed rapid and predictable evolution of CHC profiles in experimental mesocosms in the field. Together, these data strongly suggest that CHC profiles respond rapidly and adaptively to environmental parameters that covary with latitude and season, and that this response reflects the process of local adaptation in natural populations of D. melanogaster.
Collapse
Affiliation(s)
- S Rajpurohit
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - R Hanus
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 6, Czech Republic
| | - V Vrkoslav
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 6, Czech Republic
| | - E L Behrman
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - A O Bergland
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - D Petrov
- Department of Biology, Stanford University, Stanford, CA, USA
| | - J Cvačka
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 6, Czech Republic
| | - P S Schmidt
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
34
|
Kuntner M, Cheng RC, Kralj-Fišer S, Liao CP, Schneider JM, Elgar MA. The evolution of genital complexity and mating rates in sexually size dimorphic spiders. BMC Evol Biol 2016; 16:242. [PMID: 27829358 PMCID: PMC5103378 DOI: 10.1186/s12862-016-0821-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 10/28/2016] [Indexed: 11/10/2022] Open
Abstract
Background Genital diversity may arise through sexual conflict over polyandry, where male genital features function to manipulate female mating frequency against her interest. Correlated genital evolution across animal groups is consistent with this view, but a link between genital complexity and mating rates remains to be established. In sexually size dimorphic spiders, golden orbweaving spiders (Nephilidae) males mutilate their genitals to form genital plugs, but these plugs do not always prevent female polyandry. In a comparative framework, we test whether male and female genital complexity coevolve, and how these morphologies, as well as sexual cannibalism, relate to the evolution of mating systems. Results Using a combination of comparative tests, we show that male genital complexity negatively correlates with female mating rates, and that levels of sexual cannibalism negatively correlate with male mating rates. We also confirm a positive correlation between male and female genital complexity. The macroevolutionary trajectory is consistent with a repeated evolution from polyandry to monandry coinciding with the evolution towards more complex male genitals. Conclusions These results are consistent with the predictions from sexual conflict theory, although sexual conflict may not be the only mechanism responsible for the evolution of genital complexity and mating systems. Nevertheless, our comparative evidence suggests that in golden orbweavers, male genital complexity limits female mating rates, and sexual cannibalism by females coincides with monogyny. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0821-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Matjaž Kuntner
- Institute of Biology, Research Centre of the Slovenian Academy of Sciences and Arts, Ljubljana, Slovenia. .,National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.
| | - Ren-Chung Cheng
- Institute of Biology, Research Centre of the Slovenian Academy of Sciences and Arts, Ljubljana, Slovenia
| | - Simona Kralj-Fišer
- Institute of Biology, Research Centre of the Slovenian Academy of Sciences and Arts, Ljubljana, Slovenia
| | - Chen-Pan Liao
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | - Jutta M Schneider
- Zoological Institute, Biozentrum Grindel, University of Hamburg, Hamburg, Germany
| | - Mark A Elgar
- School of BioSciences, University of Melbourne, Victoria, 3010, Australia
| |
Collapse
|
35
|
Mokkonen M, Koskela E, Mappes T, Mills SC. Evolutionary Conflict Between Maternal and Paternal Interests: Integration with Evolutionary Endocrinology. Integr Comp Biol 2016; 56:146-58. [DOI: 10.1093/icb/icw053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
36
|
|
37
|
Verspoor RL, Hurst GD, Price TA. The ability to gain matings, not sperm competition, reduces the success of males carrying a selfish genetic element in a fly. Anim Behav 2016. [DOI: 10.1016/j.anbehav.2016.03.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
38
|
Droge-Young EM, Belote JM, Eeswara A, Pitnick S. Extreme ecology and mating system: discriminating among direct benefits models in red flour beetles. Behav Ecol 2015. [DOI: 10.1093/beheco/arv191] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
39
|
|
40
|
van Baaren J, Dufour CMS, Pierre JS, Martel V, Louâpre P. Evolution of life-history traits and mating strategy in males: a case study on two populations of aDrosophilaparasitoid. Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Joan van Baaren
- University of Rennes 1; UMR CNRS 6553 EcoBio; Avenue du Général Leclerc Campus de Beaulieu 35042 Rennes Cedex France
| | - Claire M.-S. Dufour
- University of Rennes 1; UMR CNRS 6553 EcoBio; Avenue du Général Leclerc Campus de Beaulieu 35042 Rennes Cedex France
| | - Jean-Sébastien Pierre
- University of Rennes 1; UMR CNRS 6553 EcoBio; Avenue du Général Leclerc Campus de Beaulieu 35042 Rennes Cedex France
| | - Véronique Martel
- University of Rennes 1; UMR CNRS 6553 EcoBio; Avenue du Général Leclerc Campus de Beaulieu 35042 Rennes Cedex France
| | - Philippe Louâpre
- University of Rennes 1; UMR CNRS 6553 EcoBio; Avenue du Général Leclerc Campus de Beaulieu 35042 Rennes Cedex France
- Université de Bourgogne Franche-Comté; UMR CNRS 6282 Biogeosciences; 6 Bd Gabriel 21000 Dijon France
| |
Collapse
|
41
|
Rostant WG, Kay C, Wedell N, Hosken DJ. Sexual conflict maintains variation at an insecticide resistance locus. BMC Biol 2015; 13:34. [PMID: 26032845 PMCID: PMC4484701 DOI: 10.1186/s12915-015-0143-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 05/15/2015] [Indexed: 11/15/2022] Open
Abstract
Background The maintenance of genetic variation through sexually antagonistic selection is controversial, partly because specific sexually-antagonistic alleles have not been identified. The Drosophila DDT resistance allele (DDT-R) is an exception. This allele increases female fitness, but simultaneously decreases male fitness, and it has been suggested that this sexual antagonism could explain why polymorphism was maintained at the locus prior to DDT use. We tested this possibility using a genetic model and then used evolving fly populations to test model predictions. Results Theory predicted that sexual antagonism is able to maintain genetic variation at this locus, hence explaining why DDT-R did not fix prior to DDT use despite increasing female fitness, and experimentally evolving fly populations verified theoretical predictions. Conclusions This demonstrates that sexually antagonistic selection can maintain genetic variation and explains the DDT-R frequencies observed in nature. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0143-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wayne G Rostant
- Centre for Ecology & Conservation, University of Exeter, Cornwall Campus, Tremough, Penryn, TR10 9FE, Cornwall, UK. .,Present address: School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, Norfolk, UK.
| | - Caroline Kay
- Department of Biology & Bichemistry, University of Bath, Bath, BA2 7AY, UK.
| | - Nina Wedell
- Centre for Ecology & Conservation, University of Exeter, Cornwall Campus, Tremough, Penryn, TR10 9FE, Cornwall, UK.
| | - David J Hosken
- Centre for Ecology & Conservation, University of Exeter, Cornwall Campus, Tremough, Penryn, TR10 9FE, Cornwall, UK.
| |
Collapse
|
42
|
Leu ST, Burzacott D, Whiting MJ, Bull CM. Mate Familiarity Affects Pairing Behaviour in a Long-Term Monogamous Lizard: Evidence from Detailed Bio-Logging and a 31-Year Field Study. Ethology 2015. [DOI: 10.1111/eth.12390] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Stephan T. Leu
- School of Biological Sciences; Flinders University; Adelaide SA Australia
| | - Dale Burzacott
- School of Biological Sciences; Flinders University; Adelaide SA Australia
| | - Martin J. Whiting
- Department of Biological Sciences; Macquarie University; Sydney NSW Australia
| | - C. Michael Bull
- School of Biological Sciences; Flinders University; Adelaide SA Australia
| |
Collapse
|
43
|
Verspoor RL, Heys C, Price TAR. Dyeing insects for behavioral assays: the mating behavior of anesthetized Drosophila. J Vis Exp 2015:52645. [PMID: 25938821 PMCID: PMC4541581 DOI: 10.3791/52645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Mating experiments using Drosophila have contributed greatly to the understanding of sexual selection and behavior. Experiments often require simple, easy and cheap methods to distinguish between individuals in a trial. A standard technique for this is CO2 anaesthesia and then labelling or wing clipping each fly. However, this is invasive and has been shown to affect behavior. Other techniques have used coloration to identify flies. This article presents a simple and non-invasive method for labelling Drosophila that allows them to be individually identified within experiments, using food coloring. This method is used in trials where two males compete to mate with a female. Dyeing allowed quick and easy identification. There was, however, some difference in the strength of the coloration across the three species tested. Data is presented showing the dye has a lower impact on mating behavior than CO2 in Drosophila melanogaster. The impact of CO2 anaesthesia is shown to depend on the species of Drosophila, with D. pseudoobscura and D. subobscura showing no impact, whereas D. melanogaster males had reduced mating success. The dye method presented is applicable to a wide range of experimental designs.
Collapse
Affiliation(s)
| | - Chloe Heys
- Institute of Integrative Biology, University of Liverpool
| | | |
Collapse
|
44
|
|
45
|
Siordia C. Disability Estimates between Same- and Different-Sex Couples: Microdata from the American Community Survey (2009-2011). SEXUALITY AND DISABILITY 2015; 33:107-121. [PMID: 25745275 PMCID: PMC4346217 DOI: 10.1007/s11195-014-9364-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Disability and sexual orientation have been used by some to unjustly discriminate against differently-abled and differently-oriented minority groups. Because little is known about the disability rates of individuals in same-sex unions, this technical report presents disability rates by separating couples into: same-sex-female; same-sex-male; different-sex-married; and different-sex-unmarried couples. Data from the American Community Survey (ACS) Public Use Microdata Sample (PUMS) 2009-2011 3-year file is utilized to produce estimates (and their standard errors) for the following six disability items: independent living; ambulatory; self-care; cognitive; hearing; and vision. Estimates of disability by selected geographies-i.e., Public Use Microdata Areas (PUMAs)-are also presented as is a figure showing a PUMA polygon. Qualitative comparisons seem to indicate that: same-sex-female couples have higher rates of disability compared to the other three groups; that in general, disability estimates for individuals in same-sex couples have a greater degree of uncertainty; and that disability-item-allocations are most prevalent in same-sex couples. Because societal marginalization may increase through cumulative processes, public health professionals should continue to seek out ways to identify underserved populations.
Collapse
Affiliation(s)
- Carlos Siordia
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, 130 North Bellefield Ave, Pittsburgh, PA 15213, USA
| |
Collapse
|
46
|
Seidelmann K. Double insurance of paternity by a novel type of mating plug in a monandrous solitary mason beeOsmia bicornis(Hymenoptera: Megachilidae). Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12472] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Karsten Seidelmann
- Department Animal Physiology; Institute of Biology/Zoology; Martin-Luther-University Halle; D-06099 Halle (Saale) Germany
| |
Collapse
|
47
|
Mank JE, Hosken DJ, Wedell N. Conflict on the sex chromosomes: cause, effect, and complexity. Cold Spring Harb Perspect Biol 2014; 6:a017715. [PMID: 25280765 DOI: 10.1101/cshperspect.a017715] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Intralocus sexual conflict and intragenomic conflict both affect sex chromosome evolution and can in extreme cases even cause the complete turnover of sex chromosomes. Additionally, established sex chromosomes often become the focus of heightened conflict. This creates a tangled relationship between sex chromosomes and conflict with respect to cause and effect. To further complicate matters, sexual and intragenomic conflict may exacerbate one another and thereby further fuel sex chromosome change. Different magnitudes and foci of conflict offer potential explanations for lineage-specific variation in sex chromosome evolution and answer long-standing questions as to why some sex chromosomes are remarkably stable, whereas others show rapid rates of evolutionary change.
Collapse
Affiliation(s)
- Judith E Mank
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom
| | - David J Hosken
- Centre for Ecology & Conservation, University of Exeter, Cornwall, Tremough, Penryn TR10 9EZ, United Kingdom
| | - Nina Wedell
- Centre for Ecology & Conservation, University of Exeter, Cornwall, Tremough, Penryn TR10 9EZ, United Kingdom
| |
Collapse
|
48
|
Duffy E, Joag R, Radwan J, Wedell N, Hosken DJ. Inbreeding alters intersexual fitness correlations in Drosophila simulans. Ecol Evol 2014; 4:3330-8. [PMID: 25535550 PMCID: PMC4228608 DOI: 10.1002/ece3.1153] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/20/2014] [Accepted: 06/02/2014] [Indexed: 12/18/2022] Open
Abstract
Intralocus sexual conflict results from sexually antagonistic selection on traits shared by the sexes. This can displace males and females from their respective fitness optima, and negative intersexual correlations (r mf) for fitness are the unequivocal indicator of this evolutionary conflict. It has recently been suggested that intersexual fitness correlations can vary depending on the segregating genetic variation present in a population, and one way to alter genetic variation and test this idea is via inbreeding. Here, we test whether intersexual correlations for fitness vary with inbreeding in Drosophila simulans isolines reared under homogenous conditions. We measured male and female fitness at different times following the establishment of isofemale lines and found that the sign of the association between the two measures varied with time after initial inbreeding. Our results are consistent with suggestions that the type of genetic variation segregating within a population can determine the extent of intralocus sexual conflict and also support the idea that sexually antagonistic alleles segregate for longer in populations than alleles with sexually concordant effects.
Collapse
Affiliation(s)
- Eoin Duffy
- Institute of Environmental Science, Jagiellonian University Gronostawa 7, Krakow, Poland
| | - Richa Joag
- Institute of Environmental Science, Jagiellonian University Gronostawa 7, Krakow, Poland
| | - Jacek Radwan
- Institute of Environmental Science, Jagiellonian University Gronostawa 7, Krakow, Poland
| | - Nina Wedell
- Centre for Ecology & Conservation, University of Exeter Tremough, Penryn, TR10 9FE, U.K
| | - David J Hosken
- Centre for Ecology & Conservation, University of Exeter Tremough, Penryn, TR10 9FE, U.K
| |
Collapse
|
49
|
Kokko H, Jennions MD. The relationship between sexual selection and sexual conflict. Cold Spring Harb Perspect Biol 2014; 6:a017517. [PMID: 25038050 DOI: 10.1101/cshperspect.a017517] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Evolutionary conflicts of interest arise whenever genetically different individuals interact and their routes to fitness maximization differ. Sexual selection favors traits that increase an individual's competitiveness to acquire mates and fertilizations. Sexual conflict occurs if an individual of sex A's relative fitness would increase if it had a "tool" that could alter what an individual of sex B does (including the parental genes transferred), at a cost to B's fitness. This definition clarifies several issues: Conflict is very common and, although it extends outside traits under sexual selection, sexual selection is a ready source of sexual conflict. Sexual conflict and sexual selection should not be presented as alternative explanations for trait evolution. Conflict is closely linked to the concept of a lag load, which is context-dependent and sex-specific. This makes it possible to ask if one sex can "win." We expect higher population fitness if females win.
Collapse
Affiliation(s)
- Hanna Kokko
- Center of Excellence in Biological Interactions, Ecology, Evolution & Genetics, Research School of Biology, The Australian National University, Canberra ACT 0200, Australia
| | - Michael D Jennions
- Center of Excellence in Biological Interactions, Ecology, Evolution & Genetics, Research School of Biology, The Australian National University, Canberra ACT 0200, Australia
| |
Collapse
|
50
|
Taylor ML, Price TA, Wedell N. Polyandry in nature: a global analysis. Trends Ecol Evol 2014; 29:376-83. [DOI: 10.1016/j.tree.2014.04.005] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 04/08/2014] [Accepted: 04/10/2014] [Indexed: 01/27/2023]
|