1
|
Frantz SI, Small CM, Cresko WA, Singh ND. Ovarian transcriptional response to Wolbachia infection in D. melanogaster in the context of between-genotype variation in gene expression. G3 (BETHESDA, MD.) 2023; 13:jkad047. [PMID: 36857313 PMCID: PMC10151400 DOI: 10.1093/g3journal/jkad047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 08/22/2022] [Accepted: 01/07/2023] [Indexed: 03/02/2023]
Abstract
Wolbachia is a maternally transmitted endosymbiotic bacteria that infects a wide variety of arthropod and nematode hosts. The effects of Wolbachia on host biology are far-reaching and include changes in host gene expression. However, previous work on the host transcriptional response has generally been investigated in the context of a single host genotype. Thus, the relative effect of Wolbachia infection versus vs. host genotype on gene expression is unknown. Here, we explicitly test the relative roles of Wolbachia infection and host genotype on host gene expression by comparing the ovarian transcriptomes of 4 strains of Drosophila melanogaster (D. melanogaster) infected and uninfected with Wolbachia. Our data suggest that infection explains a small amount of transcriptional variation, particularly in comparison to variation in gene expression among strains. However, infection specifically affects genes related to cell cycle, translation, and metabolism. We also find enrichment of cell division and recombination processes among genes with infection-associated differential expression. Broadly, the transcriptomic changes identified in this study provide novel understanding of the relative magnitude of the effect of Wolbachia infection on gene expression in the context of host genetic variation and also point to genes that are consistently differentially expressed in response to infection among multiple genotypes.
Collapse
Affiliation(s)
- Sophia I Frantz
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403USA
| | - Clayton M Small
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403USA
- Presidential Initiative in Data Science, University of Oregon, Eugene, OR, 97403USA
| | - William A Cresko
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403USA
- Presidential Initiative in Data Science, University of Oregon, Eugene, OR, 97403USA
| | - Nadia D Singh
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403USA
| |
Collapse
|
2
|
Diegmiller R, Nunley H, Shvartsman SY, Imran Alsous J. Quantitative models for building and growing fated small cell networks. Interface Focus 2022; 12:20210082. [PMID: 35865502 PMCID: PMC9184967 DOI: 10.1098/rsfs.2021.0082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/31/2022] [Indexed: 02/07/2023] Open
Abstract
Small cell clusters exhibit numerous phenomena typically associated with complex systems, such as division of labour and programmed cell death. A conserved class of such clusters occurs during oogenesis in the form of germline cysts that give rise to oocytes. Germline cysts form through cell divisions with incomplete cytokinesis, leaving cells intimately connected through intercellular bridges that facilitate cyst generation, cell fate determination and collective growth dynamics. Using the well-characterized Drosophila melanogaster female germline cyst as a foundation, we present mathematical models rooted in the dynamics of cell cycle proteins and their interactions to explain the generation of germline cell lineage trees (CLTs) and highlight the diversity of observed CLT sizes and topologies across species. We analyse competing models of symmetry breaking in CLTs to rationalize the observed dynamics and robustness of oocyte fate specification, and highlight remaining gaps in knowledge. We also explore how CLT topology affects cell cycle dynamics and synchronization and highlight mechanisms of intercellular coupling that underlie the observed collective growth patterns during oogenesis. Throughout, we point to similarities across organisms that warrant further investigation and comment on the extent to which experimental and theoretical findings made in model systems extend to other species.
Collapse
Affiliation(s)
- Rocky Diegmiller
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Hayden Nunley
- Flatiron Institute, Simons Foundation, New York, NY, USA
| | - Stanislav Y. Shvartsman
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA,Department of Molecular Biology, Princeton University, Princeton, NJ, USA,Flatiron Institute, Simons Foundation, New York, NY, USA
| | | |
Collapse
|
3
|
Wang L, Wu B, Ma Y, Ren Z, Li W. The blooming of an old story on the bouquet. Biol Reprod 2022; 107:289-300. [PMID: 35470849 DOI: 10.1093/biolre/ioac075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/09/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
As an evolutionarily conserved process, the bouquet stage during meiosis was discovered over a century ago, and active research on this important stage continues. Since the discovery of the first bouquet-related protein Taz1p in 1998, several bouquet formation-related proteins have been identified in various eukaryotes. These proteins are involved in the interaction between telomeres and the inner nuclear membrane (INM), and once these interactions are disrupted, meiotic progression is arrested, leading to infertility. Recent studies have provided significant insights into the relationships and interactions among bouquet formation-related proteins. In this review, we summarize the components involved in telomere-INM interactions and focus on their roles in bouquet formation and telomere homeostasis maintenance. In addition, we examined bouquet-related proteins in different species from an evolutionary viewpoint, highlighting the potential interactions among them.
Collapse
Affiliation(s)
- Lina Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Department of Respiratory, China National Clinical Research Center of Respiratory Diseases, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China.,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Bingbing Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yanjie Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengxing Ren
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of the Chinese Academy of Sciences, Beijing 100049, China.,Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623 Guangzhou, China
| |
Collapse
|
4
|
Pettie N, Llopart A, Comeron JM. Meiotic, genomic and evolutionary properties of crossover distribution in Drosophila yakuba. PLoS Genet 2022; 18:e1010087. [PMID: 35320272 PMCID: PMC8979470 DOI: 10.1371/journal.pgen.1010087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 04/04/2022] [Accepted: 02/09/2022] [Indexed: 12/14/2022] Open
Abstract
The number and location of crossovers across genomes are highly regulated during meiosis, yet the key components controlling them are fast evolving, hindering our understanding of the mechanistic causes and evolutionary consequences of changes in crossover rates. Drosophila melanogaster has been a model species to study meiosis for more than a century, with an available high-resolution crossover map that is, nonetheless, missing for closely related species, thus preventing evolutionary context. Here, we applied a novel and highly efficient approach to generate whole-genome high-resolution crossover maps in D. yakuba to tackle multiple questions that benefit from being addressed collectively within an appropriate phylogenetic framework, in our case the D. melanogaster species subgroup. The genotyping of more than 1,600 individual meiotic events allowed us to identify several key distinct properties relative to D. melanogaster. We show that D. yakuba, in addition to higher crossover rates than D. melanogaster, has a stronger centromere effect and crossover assurance than any Drosophila species analyzed to date. We also report the presence of an active crossover-associated meiotic drive mechanism for the X chromosome that results in the preferential inclusion in oocytes of chromatids with crossovers. Our evolutionary and genomic analyses suggest that the genome-wide landscape of crossover rates in D. yakuba has been fairly stable and captures a significant signal of the ancestral crossover landscape for the whole D. melanogaster subgroup, even informative for the D. melanogaster lineage. Contemporary crossover rates in D. melanogaster, on the other hand, do not recapitulate ancestral crossovers landscapes. As a result, the temporal stability of crossover landscapes observed in D. yakuba makes this species an ideal system for applying population genetic models of selection and linkage, given that these models assume temporal constancy in linkage effects. Our studies emphasize the importance of generating multiple high-resolution crossover rate maps within a coherent phylogenetic context to broaden our understanding of crossover control during meiosis and to improve studies on the evolutionary consequences of variable crossover rates across genomes and time.
Collapse
Affiliation(s)
- Nikale Pettie
- Interdisciplinary Program in Genetics, University of Iowa, Iowa City, Iowa, United States of America
| | - Ana Llopart
- Interdisciplinary Program in Genetics, University of Iowa, Iowa City, Iowa, United States of America
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Josep M. Comeron
- Interdisciplinary Program in Genetics, University of Iowa, Iowa City, Iowa, United States of America
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
5
|
Gandara ACP, Drummond-Barbosa D. Warm and cold temperatures have distinct germline stem cell lineage effects during Drosophila oogenesis. Development 2022; 149:274368. [PMID: 35156684 PMCID: PMC8959152 DOI: 10.1242/dev.200149] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/31/2022] [Indexed: 11/20/2022]
Abstract
Despite their medical and economic relevance, it remains largely unknown how suboptimal temperatures affect adult insect reproduction. Here, we report an in-depth analysis of how chronic adult exposure to suboptimal temperatures affects oogenesis using the model insect Drosophila melanogaster. In adult females maintained at 18°C (cold) or 29°C (warm), relative to females at the 25°C control temperature, egg production was reduced through distinct cellular mechanisms. Chronic 18°C exposure improved germline stem cell maintenance, survival of early germline cysts and oocyte quality, but reduced follicle growth with no obvious effect on vitellogenesis. By contrast, in females at 29°C, germline stem cell numbers and follicle growth were similar to those at 25°C, while early germline cyst death and degeneration of vitellogenic follicles were markedly increased and oocyte quality plummeted over time. Finally, we also show that these effects are largely independent of diet, male factors or canonical temperature sensors. These findings are relevant not only to cold-blooded organisms, which have limited thermoregulation, but also potentially to warm-blooded organisms, which are susceptible to hypothermia, heatstroke and fever.
Collapse
Affiliation(s)
- Ana Caroline P Gandara
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Daniela Drummond-Barbosa
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
6
|
Winbush A, Singh ND. Genomics of Recombination Rate Variation in Temperature-Evolved Drosophila melanogaster Populations. Genome Biol Evol 2020; 13:6008691. [PMID: 33247719 PMCID: PMC7851596 DOI: 10.1093/gbe/evaa252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Meiotic recombination is a critical process that ensures proper segregation of chromosome homologs through DNA double-strand break repair mechanisms. Rates of recombination are highly variable among various taxa, within species, and within genomes with far-reaching evolutionary and genomic consequences. The genetic basis of recombination rate variation is therefore crucial in the study of evolutionary biology but remains poorly understood. In this study, we took advantage of a set of experimental temperature-evolved populations of Drosophila melanogaster with heritable differences in recombination rates depending on the temperature regime in which they evolved. We performed whole-genome sequencing and identified several chromosomal regions that appear to be divergent depending on temperature regime. In addition, we identify a set of single-nucleotide polymorphisms and associated genes with significant differences in allele frequency when the different temperature populations are compared. Further refinement of these gene candidates emphasizing those expressed in the ovary and associated with DNA binding reveals numerous potential candidate genes such as Hr38, EcR, and mamo responsible for observed differences in recombination rates in these experimental evolution lines thus providing insight into the genetic basis of recombination rate variation.
Collapse
Affiliation(s)
- Ari Winbush
- Department of Biology, Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, USA
| | - Nadia D Singh
- Department of Biology, Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, USA
- Corresponding author: E-mail:
| |
Collapse
|
7
|
Meiotic CENP-C is a shepherd: bridging the space between the centromere and the kinetochore in time and space. Essays Biochem 2020; 64:251-261. [PMID: 32794572 DOI: 10.1042/ebc20190080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 01/10/2023]
Abstract
While many of the proteins involved in the mitotic centromere and kinetochore are conserved in meiosis, they often gain a novel function due to the unique needs of homolog segregation during meiosis I (MI). CENP-C is a critical component of the centromere for kinetochore assembly in mitosis. Recent work, however, has highlighted the unique features of meiotic CENP-C. Centromere establishment and stability require CENP-C loading at the centromere for CENP-A function. Pre-meiotic loading of proteins necessary for homolog recombination as well as cohesion also rely on CENP-C, as do the main scaffolding components of the kinetochore. Much of this work relies on new technologies that enable in vivo analysis of meiosis like never before. Here, we strive to highlight the unique role of this highly conserved centromere protein that loads on to centromeres prior to M-phase onset, but continues to perform critical functions through chromosome segregation. CENP-C is not merely a structural link between the centromere and the kinetochore, but also a functional one joining the processes of early prophase homolog synapsis to late metaphase kinetochore assembly and signaling.
Collapse
|
8
|
Hinnant TD, Merkle JA, Ables ET. Coordinating Proliferation, Polarity, and Cell Fate in the Drosophila Female Germline. Front Cell Dev Biol 2020; 8:19. [PMID: 32117961 PMCID: PMC7010594 DOI: 10.3389/fcell.2020.00019] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/10/2020] [Indexed: 01/05/2023] Open
Abstract
Gametes are highly specialized cell types produced by a complex differentiation process. Production of viable oocytes requires a series of precise and coordinated molecular events. Early in their development, germ cells are an interconnected group of mitotically dividing cells. Key regulatory events lead to the specification of mature oocytes and initiate a switch to the meiotic cell cycle program. Though the chromosomal events of meiosis have been extensively studied, it is unclear how other aspects of oocyte specification are temporally coordinated. The fruit fly, Drosophila melanogaster, has long been at the forefront as a model system for genetics and cell biology research. The adult Drosophila ovary continuously produces germ cells throughout the organism’s lifetime, and many of the cellular processes that occur to establish oocyte fate are conserved with mammalian gamete development. Here, we review recent discoveries from Drosophila that advance our understanding of how early germ cells balance mitotic exit with meiotic initiation. We discuss cell cycle control and establishment of cell polarity as major themes in oocyte specification. We also highlight a germline-specific organelle, the fusome, as integral to the coordination of cell division, cell polarity, and cell fate in ovarian germ cells. Finally, we discuss how the molecular controls of the cell cycle might be integrated with cell polarity and cell fate to maintain oocyte production.
Collapse
Affiliation(s)
- Taylor D Hinnant
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Julie A Merkle
- Department of Biology, University of Evansville, Evansville, IN, United States
| | - Elizabeth T Ables
- Department of Biology, East Carolina University, Greenville, NC, United States
| |
Collapse
|
9
|
Hughes SE, Hemenway E, Guo F, Yi K, Yu Z, Hawley RS. The E3 ubiquitin ligase Sina regulates the assembly and disassembly of the synaptonemal complex in Drosophila females. PLoS Genet 2019; 15:e1008161. [PMID: 31107865 PMCID: PMC6544331 DOI: 10.1371/journal.pgen.1008161] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/31/2019] [Accepted: 04/26/2019] [Indexed: 01/04/2023] Open
Abstract
During early meiotic prophase, homologous chromosomes are connected along their entire lengths by a proteinaceous tripartite structure known as the synaptonemal complex (SC). Although the components that comprise the SC are predominantly studied in this canonical ribbon-like structure, they can also polymerize into repeated structures known as polycomplexes. We find that in Drosophila oocytes, the ability of SC components to assemble into canonical tripartite SC requires the E3 ubiquitin ligase Seven in absentia (Sina). In sina mutant oocytes, SC components assemble into large rod-like polycomplexes instead of proper SC. Thus, the wild-type Sina protein inhibits the polymerization of SC components, including those of the lateral element, into polycomplexes. These polycomplexes persist into meiotic stages when canonical SC has been disassembled, indicating that Sina also plays a role in controlling SC disassembly. Polycomplexes induced by loss-of-function sina mutations associate with centromeres, sites of double-strand breaks, and cohesins. Perhaps as a consequence of these associations, centromere clustering is defective and crossing over is reduced. These results suggest that while features of the polycomplexes can be recognized as SC by other components of the meiotic nucleus, polycomplexes nonetheless fail to execute core functions of canonical SC.
Collapse
Affiliation(s)
- Stacie E. Hughes
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Elizabeth Hemenway
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Fengli Guo
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Kexi Yi
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Zulin Yu
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - R. Scott Hawley
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| |
Collapse
|
10
|
Female Meiosis: Synapsis, Recombination, and Segregation in Drosophila melanogaster. Genetics 2018; 208:875-908. [PMID: 29487146 PMCID: PMC5844340 DOI: 10.1534/genetics.117.300081] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/18/2017] [Indexed: 12/11/2022] Open
Abstract
A century of genetic studies of the meiotic process in Drosophila melanogaster females has been greatly augmented by both modern molecular biology and major advances in cytology. These approaches, and the findings they have allowed, are the subject of this review. Specifically, these efforts have revealed that meiotic pairing in Drosophila females is not an extension of somatic pairing, but rather occurs by a poorly understood process during premeiotic mitoses. This process of meiotic pairing requires the function of several components of the synaptonemal complex (SC). When fully assembled, the SC also plays a critical role in maintaining homolog synapsis and in facilitating the maturation of double-strand breaks (DSBs) into mature crossover (CO) events. Considerable progress has been made in elucidating not only the structure, function, and assembly of the SC, but also the proteins that facilitate the formation and repair of DSBs into both COs and noncrossovers (NCOs). The events that control the decision to mature a DSB as either a CO or an NCO, as well as determining which of the two CO pathways (class I or class II) might be employed, are also being characterized by genetic and genomic approaches. These advances allow a reconsideration of meiotic phenomena such as interference and the centromere effect, which were previously described only by genetic studies. In delineating the mechanisms by which the oocyte controls the number and position of COs, it becomes possible to understand the role of CO position in ensuring the proper orientation of homologs on the first meiotic spindle. Studies of bivalent orientation have occurred in the context of numerous investigations into the assembly, structure, and function of the first meiotic spindle. Additionally, studies have examined the mechanisms ensuring the segregation of chromosomes that have failed to undergo crossing over.
Collapse
|
11
|
Stevison LS, Sefick S, Rushton C, Graze RM. Recombination rate plasticity: revealing mechanisms by design. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160459. [PMID: 29109222 PMCID: PMC5698621 DOI: 10.1098/rstb.2016.0459] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2017] [Indexed: 12/13/2022] Open
Abstract
For over a century, scientists have known that meiotic recombination rates can vary considerably among individuals, and that environmental conditions can modify recombination rates relative to the background. A variety of external and intrinsic factors such as temperature, age, sex and starvation can elicit 'plastic' responses in recombination rate. The influence of recombination rate plasticity on genetic diversity of the next generation has interesting and important implications for how populations evolve. Further, many questions remain regarding the mechanisms and molecular processes that contribute to recombination rate plasticity. Here, we review 100 years of experimental work on recombination rate plasticity conducted in Drosophila melanogaster We categorize this work into four major classes of experimental designs, which we describe via classic studies in D. melanogaster Based on these studies, we highlight molecular mechanisms that are supported by experimental results and relate these findings to studies in other systems. We synthesize lessons learned from this model system into experimental guidelines for using recent advances in genotyping technologies, to study recombination rate plasticity in non-model organisms. Specifically, we recommend (1) using fine-scale genome-wide markers, (2) collecting time-course data, (3) including crossover distribution measurements, and (4) using mixed effects models to analyse results. To illustrate this approach, we present an application adhering to these guidelines from empirical work we conducted in Drosophila pseudoobscuraThis article is part of the themed issue 'Evolutionary causes and consequences of recombination rate variation in sexual organisms'.
Collapse
Affiliation(s)
- Laurie S Stevison
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Stephen Sefick
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Chase Rushton
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Rita M Graze
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
12
|
Distinct and Overlapping Requirements for Cyclins A, B, and B3 in Drosophila Female Meiosis. G3-GENES GENOMES GENETICS 2016; 6:3711-3724. [PMID: 27652889 PMCID: PMC5100870 DOI: 10.1534/g3.116.033050] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Meiosis, like mitosis, depends on the activity of the cyclin dependent kinase Cdk1 and its cyclin partners. Here, we examine the specific requirements for the three mitotic cyclins, A, B, and B3 in meiosis of Drosophila melanogaster. We find that all three cyclins contribute redundantly to nuclear envelope breakdown, though cyclin A appears to make the most important individual contribution. Cyclin A is also required for biorientation of homologs in meiosis I. Cyclin B3, as previously reported, is required for anaphase progression in meiosis I and in meiosis II. We find that it also plays a redundant role, with cyclin A, in preventing DNA replication during meiosis. Cyclin B is required for maintenance of the metaphase I arrest in mature oocytes, for spindle organization, and for timely progression through the second meiotic division. It is also essential for polar body formation at the completion of meiosis. With the exception of its redundant role in meiotic maturation, cyclin B appears to function independently of cyclins A and B3 through most of meiosis. We conclude that the three mitotic cyclin-Cdk complexes have distinct and overlapping functions in Drosophila female meiosis.
Collapse
|
13
|
Yakushev EY, Mikhaleva EA, Abramov YA, Sokolova OA, Zyrianova IM, Gvozdev VA, Klenov MS. The role of Piwi nuclear localization in the differentiation and proliferation of germline stem cells. Mol Biol 2016. [DOI: 10.1134/s0026893316040154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
John A, Vinayan K, Varghese J. Achiasmy: Male Fruit Flies Are Not Ready to Mix. Front Cell Dev Biol 2016; 4:75. [PMID: 27486580 PMCID: PMC4949207 DOI: 10.3389/fcell.2016.00075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/29/2016] [Indexed: 11/13/2022] Open
Abstract
Maintenance of the chromosomal copy number over generations and recombination between homologous chromosomes are hallmarks of meiotic cell division. This genetic exchange that take place during gamete formation leads to genetic diversity, the main driving force behind natural selection. Formation of chiasmata, the physical link between homologous chromosomes during meiosis, is a requisite for recombination. In addition, chiasmata also aid in proper segregation of homologous chromosomes and has a major impact on reproductive fitness. Given these facts it is intriguing that many insect species have forgone the need for genetic exchange between homologous chromosomes during meiosis. Geneticists for several decades knew that meiotic crossover and recombination is absent in Drosophila males and some female lepidopterans, a condition termed achiasmy. However, a good understanding of the mechanisms that cause achiasmy and the evolutionary benefits of achiasmy is currently lacking. In this article we will discuss possible genetic and molecular basis of achiasmy in male Drosophila.
Collapse
Affiliation(s)
- Alphy John
- Drosophila Research in Energy and Metabolism Lab, School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, India
| | - Kavya Vinayan
- Drosophila Research in Energy and Metabolism Lab, School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, India
| | - Jishy Varghese
- Drosophila Research in Energy and Metabolism Lab, School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, India
| |
Collapse
|
15
|
Tran M, Tsarouhas V, Kegel A. Early development of Drosophila embryos requires Smc5/6 function during oogenesis. Biol Open 2016; 5:928-41. [PMID: 27288507 PMCID: PMC4958276 DOI: 10.1242/bio.019000] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Mutations in structural maintenance of chromosomes (Smc) proteins are frequently associated with chromosomal abnormalities commonly observed in developmental disorders. However, the role of Smc proteins in development still remains elusive. To investigate Smc5/6 function during early embryogenesis we examined smc5 and smc6 mutants of the fruit fly Drosophila melanogaster using a combination of reverse genetics and microscopy approaches. Smc5/6 exhibited a maternally contributed function in maintaining chromosome stability during early embryo development, which manifested as female subfertility in its absence. Loss of Smc5/6 caused an arrest and a considerable delay in embryo development accompanied by fragmented nuclei and increased anaphase-bridge formation, respectively. Surprisingly, early embryonic arrest was attributable to the absence of Smc5/6 during oogenesis, which resulted in insufficient repair of pre-meiotic and meiotic DNA double-strand breaks. Thus, our findings contribute to the understanding of Smc proteins in higher eukaryotic development by highlighting a maternal function in chromosome maintenance and a link between oogenesis and early embryogenesis. Summary: Early emerging problems during oogenesis, such as DNA double-strand breaks, can affect chromosome duplication and segregation in embryogenesis in Drosophila. Moreover, environmental cues including temperature are important for proper oogenesis.
Collapse
Affiliation(s)
- Martin Tran
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm S-17177, Sweden
| | - Vasilios Tsarouhas
- Department of Molecular Bioscience, The Wenner-Gren Institute, Stockholm University, Stockholm S-10691, Sweden
| | - Andreas Kegel
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm S-17177, Sweden
| |
Collapse
|
16
|
Hunter CM, Huang W, Mackay TFC, Singh ND. The Genetic Architecture of Natural Variation in Recombination Rate in Drosophila melanogaster. PLoS Genet 2016; 12:e1005951. [PMID: 27035832 PMCID: PMC4817973 DOI: 10.1371/journal.pgen.1005951] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 03/01/2016] [Indexed: 01/01/2023] Open
Abstract
Meiotic recombination ensures proper chromosome segregation in many sexually reproducing organisms. Despite this crucial function, rates of recombination are highly variable within and between taxa, and the genetic basis of this variation remains poorly understood. Here, we exploit natural variation in the inbred, sequenced lines of the Drosophila melanogaster Genetic Reference Panel (DGRP) to map genetic variants affecting recombination rate. We used a two-step crossing scheme and visible markers to measure rates of recombination in a 33 cM interval on the X chromosome and in a 20.4 cM interval on chromosome 3R for 205 DGRP lines. Though we cannot exclude that some biases exist due to viability effects associated with the visible markers used in this study, we find ~2-fold variation in recombination rate among lines. Interestingly, we further find that recombination rates are uncorrelated between the two chromosomal intervals. We performed a genome-wide association study to identify genetic variants associated with recombination rate in each of the two intervals surveyed. We refined our list of candidate variants and genes associated with recombination rate variation and selected twenty genes for functional assessment. We present strong evidence that five genes are likely to contribute to natural variation in recombination rate in D. melanogaster; these genes lie outside the canonical meiotic recombination pathway. We also find a weak effect of Wolbachia infection on recombination rate and we confirm the interchromosomal effect. Our results highlight the magnitude of population variation in recombination rate present in D. melanogaster and implicate new genetic factors mediating natural variation in this quantitative trait. During meiosis, homologous chromosomes exchange genetic material through recombination. In most sexually reproducing species, recombination is necessary for chromosomes to properly segregate. Recombination defects can generate gametes with an incorrect number of chromosomes, which is devastating for organismal fitness. Despite the central role of recombination for chromosome segregation, recombination is highly variable process both within and between species. Though it is clear that this variation is due at least in part to genetics, the specific genes contributing to variation in recombination within and between species remain largely unknown. This is particularly true in the model organism, Drosophila melanogaster. Here, we use the D. melanogaster Genetic Reference Panel to determine the scale of population-level variation in recombination rate and to identify genes significantly associated with this variation. We estimated rates of recombination on two different chromosomes in 205 strains of D. melanogaster. We also used genome-wide association mapping to identify genetic factors associated with recombination rate variation. We find that recombination rate on the two chromosomes are independent traits. We further find that population-level variation in recombination is mediated by many loci of small effect, and that the genes contributing to variation in recombination rate are outside of the well-characterized meiotic recombination pathway.
Collapse
Affiliation(s)
- Chad M. Hunter
- Program in Genetics, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| | - Wen Huang
- Program in Genetics, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, United States of America
- Initiative in Biological Complexity, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Trudy F. C. Mackay
- Program in Genetics, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Nadia D. Singh
- Program in Genetics, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, United States of America
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, United States of America
| |
Collapse
|
17
|
Ferreira DW, Allard P. Models of germ cell development and their application for toxicity studies. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:637-49. [PMID: 25821157 PMCID: PMC4586303 DOI: 10.1002/em.21946] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 02/15/2015] [Accepted: 02/21/2015] [Indexed: 05/19/2023]
Abstract
Germ cells are unique in their ability to transfer genetic information and traits from generation to generation. As such, the proper development of germ cells and the integrity of their genome are paramount to the health of organisms and the survival of species. Germ cells are also exquisitely sensitive to environmental influences although the testing of germ cell toxicity, especially in females, has proven particularly challenging. In this review, we first describe the remarkable odyssey of germ cells in mammals, with an emphasis on the female germline, from their initial specification early during embryogenesis to the generation of mature gametes in adults. We also describe the current methods used in germ cell toxicity testing and their limitations in examining the complex features of mammalian germ cell development. To bypass these challenges, we propose the use of alternative model systems such as Saccharomyces cerevisiae, Drosophila melanogaster, Caenorhabditis elegans, and in vitro germ cell methods that have distinct advantages over traditional toxicity models. We discuss the benefits and limitations of each approach, their application to germ cell toxicity studies, and the need for computational approaches to maximize the usefulness of these models. Together, the inclusion of these alternative germ cell toxicity models will be invaluable for the examination of stages not easily accessible in mammals as well as the large scale, high-throughput investigation of germ cell toxicity.
Collapse
Affiliation(s)
- Daniel W Ferreira
- Institute for Society and Genetics, Department of Environmental Health Sciences, University of California, Los Angeles, California
| | - Patrick Allard
- Institute for Society and Genetics, Department of Environmental Health Sciences, University of California, Los Angeles, California
| |
Collapse
|
18
|
Smukowski Heil CS, Ellison C, Dubin M, Noor MAF. Recombining without Hotspots: A Comprehensive Evolutionary Portrait of Recombination in Two Closely Related Species of Drosophila. Genome Biol Evol 2015; 7:2829-42. [PMID: 26430062 PMCID: PMC4684701 DOI: 10.1093/gbe/evv182] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2015] [Indexed: 12/12/2022] Open
Abstract
Meiotic recombination rate varies across the genome within and between individuals, populations, and species in virtually all taxa studied. In almost every species, this variation takes the form of discrete recombination hotspots, determined in some mammals by a protein called PRDM9. Hotspots and their determinants have a profound effect on the genomic landscape, and share certain features that extend across the tree of life. Drosophila, in contrast, are anomalous in their absence of hotspots, PRDM9, and other species-specific differences in the determination of recombination. To better understand the evolution of meiosis and general patterns of recombination across diverse taxa, we present a truly comprehensive portrait of recombination across time, combining recently published cross-based contemporary recombination estimates from each of two sister species with newly obtained linkage-disequilibrium-based historic estimates of recombination from both of these species. Using Drosophila pseudoobscura and Drosophila miranda as a model system, we compare recombination rate between species at multiple scales, and we suggest that Drosophila replicate the pattern seen in human-chimpanzee in which recombination rate is conserved at broad scales. We also find evidence of a species-wide recombination modifier(s), resulting in both a present and historic genome-wide elevation of recombination rates in D. miranda, and identify broad scale effects on recombination from the presence of an inversion. Finally, we reveal an unprecedented view of the distribution of recombination in D. pseudoobscura, illustrating patterns of linked selection and where recombination is taking place. Overall, by combining these estimation approaches, we highlight key similarities and differences in recombination between Drosophila and other organisms.
Collapse
Affiliation(s)
- Caiti S Smukowski Heil
- Biology Department, Duke University Genome Sciences Department, University of Washington
| | - Chris Ellison
- Department of Integrative Biology, University of California, Berkeley
| | | | | |
Collapse
|
19
|
Drosophila oocytes as a model for understanding meiosis: an educational primer to accompany "corolla is a novel protein that contributes to the architecture of the synaptonemal complex of Drosophila". Genetics 2015; 199:17-23. [PMID: 25573011 PMCID: PMC4286682 DOI: 10.1534/genetics.114.167940] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
SUMMARY Achieving a thorough understanding of the events and ramifications of meiosis is a common learning objective for undergraduate introductory biology, genetics, and cell biology courses. Meiosis is also one of the most challenging cellular processes for students to conceptualize. Connecting textbook descriptions of meiosis to current research in the field of genetics in a problem-based learning format may aid students’ understanding of this important biological concept. This primer seeks to assist students and instructors by providing an introductory framework upon which to integrate discussions of current meiosis research into traditional genetics or cell biology curriculum. Related article in GENETICS: Collins, K. et al., 2014 Corolla Is a Novel Protein That Contributes to the Architecture of the Synaptonemal Complex of Drosophila. Genetics 198:219–228.
Collapse
|
20
|
Kurdzo EL, Dawson DS. Centromere pairing--tethering partner chromosomes in meiosis I. FEBS J 2015; 282:2458-70. [PMID: 25817724 PMCID: PMC4490064 DOI: 10.1111/febs.13280] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 02/10/2015] [Accepted: 03/24/2015] [Indexed: 11/28/2022]
Abstract
In meiosis, homologous chromosomes face the obstacle of finding, holding onto and segregating away from their partner chromosome. There is increasing evidence, in a diverse range of organisms, that centromere–centromere interactions that occur in late prophase are an important mechanism in ensuring segregation fidelity. Centromere pairing appears to initiate when homologous chromosomes synapse in meiotic prophase. Structural proteins of the synaptonemal complex have been shown to help mediate centromere pairing, but how the structure that maintains centromere pairing differs from the structure of the synaptonemal complex along the chromosomal arms remains unknown. When the synaptonemal complex proteins disassemble from the chromosome arms in late prophase, some of these synaptonemal complex components persist at the centromeres. In yeast and Drosophila these centromere-pairing behaviors promote the proper segregation of chromosome partners that have failed to become linked by chiasmata. Recent studies of mouse spermatocytes have described centromere pairing behaviors that are similar in several respects to what has been described in the fly and yeast systems. In humans, chromosomes that fail to experience crossovers in meiosis are error-prone and are a major source of aneuploidy. The finding that centromere pairing is a conserved phenomenon raises the possibility that it may play a role in promoting the segregation fidelity of non-exchange chromosome pairs in humans.
Collapse
Affiliation(s)
- Emily L Kurdzo
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, and Department of Cell Biology, University of Oklahoma, Health Science Center, OK, USA
| | - Dean S Dawson
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, and Department of Cell Biology, University of Oklahoma, Health Science Center, OK, USA
| |
Collapse
|
21
|
Krishnan B, Thomas SE, Yan R, Yamada H, Zhulin IB, McKee BD. Sisters unbound is required for meiotic centromeric cohesion in Drosophila melanogaster. Genetics 2014; 198:947-65. [PMID: 25194162 PMCID: PMC4224182 DOI: 10.1534/genetics.114.166009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 08/26/2014] [Indexed: 12/30/2022] Open
Abstract
Regular meiotic chromosome segregation requires sister centromeres to mono-orient (orient to the same pole) during the first meiotic division (meiosis I) when homologous chromosomes segregate, and to bi-orient (orient to opposite poles) during the second meiotic division (meiosis II) when sister chromatids segregate. Both orientation patterns require cohesion between sister centromeres, which is established during meiotic DNA replication and persists until anaphase of meiosis II. Meiotic cohesion is mediated by a conserved four-protein complex called cohesin that includes two structural maintenance of chromosomes (SMC) subunits (SMC1 and SMC3) and two non-SMC subunits. In Drosophila melanogaster, however, the meiotic cohesion apparatus has not been fully characterized and the non-SMC subunits have not been identified. We have identified a novel Drosophila gene called sisters unbound (sunn), which is required for stable sister chromatid cohesion throughout meiosis. sunn mutations disrupt centromere cohesion during prophase I and cause high frequencies of non-disjunction (NDJ) at both meiotic divisions in both sexes. SUNN co-localizes at centromeres with the cohesion proteins SMC1 and SOLO in both sexes and is necessary for the recruitment of both proteins to centromeres. Although SUNN lacks sequence homology to cohesins, bioinformatic analysis indicates that SUNN may be a structural homolog of the non-SMC cohesin subunit stromalin (SA), suggesting that SUNN may serve as a meiosis-specific cohesin subunit. In conclusion, our data show that SUNN is an essential meiosis-specific Drosophila cohesion protein.
Collapse
Affiliation(s)
- Badri Krishnan
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996
| | - Sharon E Thomas
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996
| | - Rihui Yan
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996
| | - Hirotsugu Yamada
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996
| | - Igor B Zhulin
- Genome Science and Technology Program, University of Tennessee, Knoxville, Tennessee 37996 Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996 Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Bruce D McKee
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996 Genome Science and Technology Program, University of Tennessee, Knoxville, Tennessee 37996
| |
Collapse
|
22
|
A mutation in the FHA domain of Coprinus cinereus Nbs1 Leads to Spo11-independent meiotic recombination and chromosome segregation. G3-GENES GENOMES GENETICS 2013; 3:1927-43. [PMID: 24062528 PMCID: PMC3815056 DOI: 10.1534/g3.113.007906] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nbs1, a core component of the Mre11-Rad50-Nbs1 complex, plays an essential role in the cellular response to DNA double-strand breaks (DSBs) and poorly understood roles in meiosis. We used the basidiomycete Coprinus cinereus to examine the meiotic roles of Nbs1. We identified the C. cinereus nbs1 gene and demonstrated that it corresponds to a complementation group previously known as rad3. One allele, nbs1-2, harbors a point mutation in the Nbs1 FHA domain and has a mild spore viability defect, increased frequency of meiosis I nondisjunction, and an altered crossover distribution. The nbs1-2 strain enters meiosis with increased levels of phosphorylated H2AX, which we hypothesize represent unrepaired DSBs formed during premeiotic replication. In nbs1-2, there is no apparent induction of Spo11-dependent DSBs during prophase. We propose that replication-dependent DSBs, resulting from defective replication fork protection and processing by the Mre11-Rad50-Nbs1 complex, are competent to form meiotic crossovers in C. cinereus, and that these crossovers lead to high levels of faithful chromosome segregation. In addition, although crossover distribution is altered in nbs1-2, the majority of crossovers were found in subtelomeric regions, as in wild-type. Therefore, the location of crossovers in C. cinereus is maintained when DSBs are induced via a Spo11-independent mechanism.
Collapse
|
23
|
A mosaic genetic screen for genes involved in the early steps of Drosophila oogenesis. G3-GENES GENOMES GENETICS 2013; 3:409-25. [PMID: 23450845 PMCID: PMC3583450 DOI: 10.1534/g3.112.004747] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 12/27/2012] [Indexed: 12/15/2022]
Abstract
The first hours of Drosophila embryogenesis rely exclusively on maternal information stored within the egg during oogenesis. The formation of the egg chamber is thus a crucial step for the development of the future adult. It has emerged that many key developmental decisions are made during the very first stages of oogenesis. We performed a clonal genetic screen on the left arm of chromosome 2 for mutations affecting early oogenesis. During the first round of screening, we scored for defects in egg chambers morphology as an easy read-out of early abnormalities. In a second round of screening, we analyzed the localization of centrosomes and Orb protein within the oocyte, the position of the oocyte within the egg chamber, and the progression through meiosis. We have generated a collection of 71 EMS-induced mutants that affect oocyte determination, polarization, or localization. We also recovered mutants affecting the number of germline cyst divisions or the differentiation of follicle cells. Here, we describe the analysis of nine complementation groups and eight single alleles. We mapped several mutations and identified alleles of Bicaudal-D, lethal(2) giant larvae, kuzbanian, GDP-mannose 4,6-dehydratase, tho2, and eiF4A. We further report the molecular identification of two alleles of the Drosophila homolog of Che-1/AATF and demonstrate its antiapoptotic activity in vivo. This collection of mutants will be useful to investigate further the early steps of Drosophila oogenesis at a genetic level.
Collapse
|
24
|
McGaugh SE, Heil CSS, Manzano-Winkler B, Loewe L, Goldstein S, Himmel TL, Noor MAF. Recombination modulates how selection affects linked sites in Drosophila. PLoS Biol 2012; 10:e1001422. [PMID: 23152720 PMCID: PMC3496668 DOI: 10.1371/journal.pbio.1001422] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 10/05/2012] [Indexed: 11/18/2022] Open
Abstract
Recombination rate in Drosophila species shapes the impact of selection in the genome and is positively correlated with nucleotide diversity. One of the most influential observations in molecular evolution has been a strong association between local recombination rate and nucleotide polymorphisms across the genome. This is interpreted as evidence for ubiquitous natural selection. The alternative explanation, that recombination is mutagenic, has been rejected by the absence of a similar association between local recombination rate and nucleotide divergence between species. However, many recent studies show that recombination rates are often very different even in closely related species, questioning whether an association between recombination rate and divergence between species has been tested satisfactorily. To circumvent this problem, we directly surveyed recombination across approximately 43% of the D. pseudoobscura physical genome in two separate recombination maps and 31% of the D. miranda physical genome, and we identified both global and local differences in recombination rate between these two closely related species. Using only regions with conserved recombination rates between and within species and accounting for multiple covariates, our data support the conclusion that recombination is positively related to diversity because recombination modulates Hill–Robertson effects in the genome and not because recombination is predominately mutagenic. Finally, we find evidence for dips in diversity around nonsynonymous substitutions. We infer that at least some of this reduction in diversity resulted from selective sweeps and examine these dips in the context of recombination rate. Individuals within a species differ in the DNA sequences of their genes. This sequence variation affects how well individuals survive or reproduce and is transmitted to their offspring. Genes near each other on individual chromosomes tend to be passed to offspring together—neighboring genes are unlikely to be separated by exchanges of genetic material derived from different parents during meiotic recombination. When genes are inherited together, however, the evolutionary forces acting on one gene can interfere with variation at its neighbors. Thus, variation at multiple genes can be lost if natural selection acts on one gene in close proximity. Recombination can prevent or reduce this loss of variation, but previous tests of this phenomenon failed to account for recombination rate differences between species. In this study, we show that some parts of the genome differ in recombination rate between two species of fruit fly, Drosophila pseudoobscura and D. miranda. Avoiding an assumption made in previous studies, we then examine sequence variation within and between fly species in those parts of the genome that have conserved recombination rates. Based on the results, we conclude that recombination indeed preserves variation within species that would otherwise have been eliminated by natural selection.
Collapse
Affiliation(s)
- Suzanne E McGaugh
- Biology Department, Duke University, Durham, North Carolina, United States of America.
| | | | | | | | | | | | | |
Collapse
|
25
|
Comeron JM, Ratnappan R, Bailin S. The many landscapes of recombination in Drosophila melanogaster. PLoS Genet 2012; 8:e1002905. [PMID: 23071443 PMCID: PMC3469467 DOI: 10.1371/journal.pgen.1002905] [Citation(s) in RCA: 336] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Accepted: 07/02/2012] [Indexed: 01/06/2023] Open
Abstract
Recombination is a fundamental biological process with profound evolutionary implications. Theory predicts that recombination increases the effectiveness of selection in natural populations. Yet, direct tests of this prediction have been restricted to qualitative trends due to the lack of detailed characterization of recombination rate variation across genomes and within species. The use of imprecise recombination rates can also skew population genetic analyses designed to assess the presence and mode of selection across genomes. Here we report the first integrated high-resolution description of genomic and population variation in recombination, which also distinguishes between the two outcomes of meiotic recombination: crossing over (CO) and gene conversion (GC). We characterized the products of 5,860 female meioses in Drosophila melanogaster by genotyping a total of 139 million informative SNPs and mapped 106,964 recombination events at a resolution down to 2 kilobases. This approach allowed us to generate whole-genome CO and GC maps as well as a detailed description of variation in recombination among individuals of this species. We describe many levels of variation in recombination rates. At a large-scale (100 kb), CO rates exhibit extreme and highly punctuated variation along chromosomes, with hot and coldspots. We also show extensive intra-specific variation in CO landscapes that is associated with hotspots at low frequency in our sample. GC rates are more uniformly distributed across the genome than CO rates and detectable in regions with reduced or absent CO. At a local scale, recombination events are associated with numerous sequence motifs and tend to occur within transcript regions, thus suggesting that chromatin accessibility favors double-strand breaks. All these non-independent layers of variation in recombination across genomes and among individuals need to be taken into account in order to obtain relevant estimates of recombination rates, and should be included in a new generation of population genetic models of the interaction between selection and linkage.
Collapse
Affiliation(s)
- Josep M Comeron
- Department of Biology, University of Iowa, Iowa City, Iowa, USA.
| | | | | |
Collapse
|
26
|
Heil CSS, Noor MAF. Zinc finger binding motifs do not explain recombination rate variation within or between species of Drosophila. PLoS One 2012; 7:e45055. [PMID: 23028758 PMCID: PMC3445564 DOI: 10.1371/journal.pone.0045055] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 08/15/2012] [Indexed: 01/15/2023] Open
Abstract
In humans and mice, the Cys(2)His(2) zinc finger protein PRDM9 binds to a DNA sequence motif enriched in hotspots of recombination, possibly modifying nucleosomes, and recruiting recombination machinery to initiate Double Strand Breaks (DSBs). However, since its discovery, some researchers have suggested that the recombinational effect of PRDM9 is lineage or species specific. To test for a conserved role of PRDM9-like proteins across taxa, we use the Drosophila pseudoobscura species group in an attempt to identify recombination associated zinc finger proteins and motifs. We leveraged the conserved amino acid motifs in Cys(2)His(2) zinc fingers to predict nucleotide binding motifs for all Cys(2)His(2) zinc finger proteins in Drosophila pseudoobscura and identified associations with empirical measures of recombination rate. Additionally, we utilized recombination maps from D. pseudoobscura and D. miranda to explore whether changes in the binding motifs between species can account for changes in the recombination landscape, analogous to the effect observed in PRDM9 among human populations. We identified a handful of potential recombination-associated sequence motifs, but the associations are generally tenuous and their biological relevance remains uncertain. Furthermore, we found no evidence that changes in zinc finger DNA binding explains variation in recombination rate between species. We therefore conclude that there is no protein with a DNA sequence specific human-PRDM9-like function in Drosophila. We suggest these findings could be explained by the existence of a different recombination initiation system in Drosophila.
Collapse
Affiliation(s)
- Caiti S S Heil
- Department of Biology, Duke University, Durham, North Carolina, USA.
| | | |
Collapse
|
27
|
Lake CM, Hawley RS. The molecular control of meiotic chromosomal behavior: events in early meiotic prophase in Drosophila oocytes. Annu Rev Physiol 2012; 74:425-51. [PMID: 22335798 DOI: 10.1146/annurev-physiol-020911-153342] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We review the critical events in early meiotic prophase in Drosophila melanogaster oocytes. We focus on four aspects of this process: the formation of the synaptonemal complex (SC) and its role in maintaining homologous chromosome pairings, the critical roles of the meiosis-specific process of centromere clustering in the formation of a full-length SC, the mechanisms by which preprogrammed double-strand breaks initiate meiotic recombination, and the checkpoints that govern the progression and coordination of these processes. Central to this discussion are the roles that somatic pairing events play in establishing the necessary conditions for proper SC formation, the roles of centromere pairing in synapsis initiation, and the mechanisms by which oocytes detect failures in SC formation and/or recombination. Finally, we correlate what is known in Drosophila oocytes with our understanding of these processes in other systems.
Collapse
Affiliation(s)
- Cathleen M Lake
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA.
| | | |
Collapse
|
28
|
DAVIS GREGORYK. Cyclical Parthenogenesis and Viviparity in Aphids as Evolutionary Novelties. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2012; 318:448-59. [DOI: 10.1002/jez.b.22441] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Revised: 11/23/2011] [Accepted: 12/01/2011] [Indexed: 11/09/2022]
Affiliation(s)
- GREGORY K. DAVIS
- Department of Biology; Bryn Mawr College; Bryn Mawr; Pennsylvania
| |
Collapse
|
29
|
Khurana JS, Wang J, Xu J, Koppetsch BS, Thomson TC, Nowosielska A, Li C, Zamore PD, Weng Z, Theurkauf WE. Adaptation to P element transposon invasion in Drosophila melanogaster. Cell 2012; 147:1551-63. [PMID: 22196730 DOI: 10.1016/j.cell.2011.11.042] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 08/29/2011] [Accepted: 11/17/2011] [Indexed: 01/03/2023]
Abstract
Transposons evolve rapidly and can mobilize and trigger genetic instability. Piwi-interacting RNAs (piRNAs) silence these genome pathogens, but it is unclear how the piRNA pathway adapts to invasion of new transposons. In Drosophila, piRNAs are encoded by heterochromatic clusters and maternally deposited in the embryo. Paternally inherited P element transposons thus escape silencing and trigger a hybrid sterility syndrome termed P-M hybrid dysgenesis. We show that P-M hybrid dysgenesis activates both P elements and resident transposons and disrupts the piRNA biogenesis machinery. As dysgenic hybrids age, however, fertility is restored, P elements are silenced, and P element piRNAs are produced de novo. In addition, the piRNA biogenesis machinery assembles, and resident elements are silenced. Significantly, resident transposons insert into piRNA clusters, and these new insertions are transmitted to progeny, produce novel piRNAs, and are associated with reduced transposition. P element invasion thus triggers heritable changes in genome structure that appear to enhance transposon silencing.
Collapse
Affiliation(s)
- Jaspreet S Khurana
- Program in Cell and Developmental Dynamics, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ferguson SB, Blundon MA, Klovstad MS, Schüpbach T. Modulation of gurken translation by insulin and TOR signaling in Drosophila. J Cell Sci 2012; 125:1407-19. [PMID: 22328499 DOI: 10.1242/jcs.090381] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Localized Gurken (Grk) translation specifies the anterior-posterior and dorsal-ventral axes of the developing Drosophila oocyte; spindle-class females lay ventralized eggs resulting from inefficient grk translation. This phenotype is thought to result from inhibition of the Vasa RNA helicase. In a screen for modifiers of the eggshell phenotype in spn-B flies, we identified a mutation in the lnk gene. We show that lnk mutations restore Grk expression but do not suppress the persistence of double-strand breaks nor other spn-B phenotypes. This suppression does not affect Egfr directly, but rather overcomes the translational block of grk messages seen in spindle mutants. Lnk was recently identified as a component of the insulin/insulin-like growth factor signaling (IIS) and TOR pathway. Interestingly, direct inhibition of TOR with rapamycin in spn-B or vas mutant mothers can also suppress the ventralized eggshell phenotype. When dietary protein is inadequate, reduced IIS-TOR activity inhibits cap-dependent translation by promoting the activity of the translation inhibitor eIF4E-binding protein (4EBP). We hypothesize that reduced TOR activity promotes grk translation independent of the canonical Vasa- and cap-dependent mechanism. This model might explain how flies can maintain the translation of developmentally important transcripts during periods of nutrient limitation when bulk cap-dependent translation is repressed.
Collapse
|
31
|
Abstract
Recombination rates vary owing to an individual's genetic composition and/or its environmental condition. Yet, the effects of mating partner on recombination rates have not been considered. Here, I document a previously undescribed, male-mediated effect on female recombination rates. After crossing females to males from different genetic backgrounds, I observed a significant difference in proportion of recombinant offspring based on the genetic background of the father (P= 0.0292; df = 3; F= 3.07). Genetic variation in male ability to affect recombination rate in their mates suggests the potential for sexual conflict on optimal proportion of recombinant offspring, perhaps leading to changes in population-level recombination rates with varying levels of sexual selection.
Collapse
Affiliation(s)
- Laurie S Stevison
- Department of Biology, Duke University, Durham, North Carolina 27708 E-mail:
| |
Collapse
|
32
|
Tanneti N, Landy K, Joyce E, McKim K. A Pathway for Synapsis Initiation during Zygotene in Drosophila Oocytes. Curr Biol 2011; 21:1852-7. [DOI: 10.1016/j.cub.2011.10.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 09/27/2011] [Accepted: 10/04/2011] [Indexed: 10/15/2022]
|
33
|
Joyce EF, McKim KS. Meiotic checkpoints and the interchromosomal effect on crossing over in Drosophila females. Fly (Austin) 2011; 5:134-40. [PMID: 21339705 DOI: 10.4161/fly.5.2.14767] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
During prophase of meiosis I, genetic recombination is initiated with a Spo11-dependent DNA double-strand break (DSB). Repair of these DSBs can generate crossovers, which become chiasmata and are important for the process of chromosome segregation. To ensure at least one chiasma per homologous pair of chromosomes, the number and distribution of crossovers is regulated. One system contributing to the distribution of crossovers is the pachytene checkpoint, which requires the conserved gene pch2 that encodes an AAA+ATPase family member. Pch2-dependent pachytene checkpoint function causes delays in pachytene progression when there are defects in processes required for crossover formation, such as mutations in DSB-repair genes and when there are defects in the structure of the meiotic chromosome axis. Thus, the pachytene checkpoint appears to monitor events leading up to the generation of crossovers. Interestingly, heterozygous chromosome rearrangements cause Pch2-dependent pachytene delays and as little as two breaks in the continuity of the paired chromosome axes are sufficient to evoke checkpoint activity. These chromosome rearrangements also cause an interchromosomal effect on recombination whereby crossing over is suppressed between the affected chromosomes but is increased between the normal chromosome pairs. We have shown that this phenomenon is also due to pachytene checkpoint activity.
Collapse
Affiliation(s)
- Eric F Joyce
- Waksman Institute and Department of Genetics, Rutgers the State University of New Jersey, Piscataway, NJ, USA
| | | |
Collapse
|
34
|
Khurana JS, Xu J, Weng Z, Theurkauf WE. Distinct functions for the Drosophila piRNA pathway in genome maintenance and telomere protection. PLoS Genet 2010; 6:e1001246. [PMID: 21179579 PMCID: PMC3003142 DOI: 10.1371/journal.pgen.1001246] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 11/11/2010] [Indexed: 12/30/2022] Open
Abstract
Transposons and other selfish DNA elements can be found in all phyla, and mobilization of these elements can compromise genome integrity. The piRNA (PIWI-interacting RNA) pathway silences transposons in the germline, but it is unclear if this pathway has additional functions during development. Here we show that mutations in the Drosophila piRNA pathway genes, armi, aub, ago3, and rhi, lead to extensive fragmentation of the zygotic genome during the cleavage stage of embryonic divisions. Additionally, aub and armi show defects in telomere resolution during meiosis and the cleavage divisions; and mutations in lig-IV, which disrupt non-homologous end joining, suppress these fusions. By contrast, lig-IV mutations enhance chromosome fragmentation. Chromatin immunoprecipitation studies show that aub and armi mutations disrupt telomere binding of HOAP, which is a component of the telomere protection complex, and reduce expression of a subpopulation of 19- to 22-nt telomere-specific piRNAs. Mutations in rhi and ago3, by contrast, do not block HOAP binding or production of these piRNAs. These findings uncover genetically separable functions for the Drosophila piRNA pathway. The aub, armi, rhi, and ago3 genes silence transposons and maintain chromosome integrity during cleavage-stage embryonic divisions. However, the aub and armi genes have an additional function in assembly of the telomere protection complex.
Collapse
Affiliation(s)
- Jaspreet S. Khurana
- Program in Cell and Developmental Dynamics and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Jia Xu
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology and Department in Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - William E. Theurkauf
- Program in Cell and Developmental Dynamics and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
35
|
Meyer RE, Delaage M, Rosset R, Capri M, Aït-Ahmed O. A single mutation results in diploid gamete formation and parthenogenesis in a Drosophila yemanuclein-alpha meiosis I defective mutant. BMC Genet 2010; 11:104. [PMID: 21080953 PMCID: PMC2998452 DOI: 10.1186/1471-2156-11-104] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 11/16/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sexual reproduction relies on two key events: formation of cells with a haploid genome (the gametes) and restoration of diploidy after fertilization. Therefore the underlying mechanisms must have been evolutionary linked and there is a need for evidence that could support such a model. RESULTS We describe the identification and the characterization of yem1, the first yem-alpha mutant allele (V478E), which to some extent affects diploidy reduction and its restoration. Yem-alpha is a member of the Ubinuclein/HPC2 family of proteins that have recently been implicated in playing roles in chromatin remodeling in concert with HIRA histone chaperone. The yem1 mutant females exhibited disrupted chromosome behavior in the first meiotic division and produced very low numbers of viable progeny. Unexpectedly these progeny did not display paternal chromosome markers, suggesting that they developed from diploid gametes that underwent gynogenesis, a form of parthenogenesis that requires fertilization. CONCLUSIONS We focus here on the analysis of the meiotic defects exhibited by yem1 oocytes that could account for the formation of diploid gametes. Our results suggest that yem1 affects chromosome segregation presumably by affecting kinetochores function in the first meiotic division. This work paves the way to further investigations on the evolution of the mechanisms that support sexual reproduction.
Collapse
Affiliation(s)
- Régis E Meyer
- Institut de Génétique Humaine (IGH), Unité Propre de Recherche 1142, Centre National de la Recherche Scientifique (CNRS), 141 Rue de la Cardonille, 34396 Montpellier cedex 5, France
| | | | | | | | | |
Collapse
|
36
|
Evidence based on studies of the mus309 mutant, deficient in DNA double-strand break repair, that meiotic crossing over in Drosophila melanogaster is a two-phase process. Genetica 2010; 138:1033-45. [PMID: 20803348 DOI: 10.1007/s10709-010-9489-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 08/19/2010] [Indexed: 10/19/2022]
Abstract
The mus309 gene in Drosophila melanogaster encodes a RecQ helicase which is involved in DNA double-strand break (DSB) repair and specifically in the choice between the different pathways of the repair. In a brood pattern analysis of mus309 and wild type females which either had or had not experienced a temperature shock, different parameters of meiotic crossing over including map distances and crossover interference in the X chromosome were measured. The results suggest that, like in other eukaryotes studied, the control of meiotic crossover formation also in D. melanogaster is a two-phase process. The first phase seems to be temperature shock sensitive, independent of the mus309 gene and coincidental with the premeiotic DNA synthesis, thus most likely representing the formation of DSBs. The second phase seems to be temperature shock tolerant, dependent on the mus309 gene, occurring during the meiotic prophase and most likely representing the choice made by the oocyte between the different pathways of the DSB repair. A hypothesis of the localization of chiasmata is also presented, combining the mechanisms of interference and the so-called centromere effect, and based on the balance between the SDSA and DSBR pathways of DSB repair.
Collapse
|
37
|
Portin P. Retraction: Effect of temperature shock treatment on crossing over in themus309mutant, deficient in DNA double-strand break repair, ofDrosophila melanogastersuggests a two-phase control of crossover formation and interference. Hereditas 2010. [DOI: 10.1111/j.1601-5223.2010.02180.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
38
|
Chromosome axis defects induce a checkpoint-mediated delay and interchromosomal effect on crossing over during Drosophila meiosis. PLoS Genet 2010; 6. [PMID: 20711363 PMCID: PMC2920846 DOI: 10.1371/journal.pgen.1001059] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 07/12/2010] [Indexed: 01/05/2023] Open
Abstract
Crossovers mediate the accurate segregation of homologous chromosomes during meiosis. The widely conserved pch2 gene of Drosophila melanogaster is required for a pachytene checkpoint that delays prophase progression when genes necessary for DSB repair and crossover formation are defective. However, the underlying process that the pachytene checkpoint is monitoring remains unclear. Here we have investigated the relationship between chromosome structure and the pachytene checkpoint and show that disruptions in chromosome axis formation, caused by mutations in axis components or chromosome rearrangements, trigger a pch2-dependent delay. Accordingly, the global increase in crossovers caused by chromosome rearrangements, known as the “interchromosomal effect of crossing over,” is also dependent on pch2. Checkpoint-mediated effects require the histone deacetylase Sir2, revealing a conserved functional connection between PCH2 and Sir2 in monitoring meiotic events from Saccharomyces cerevisiae to a metazoan. These findings suggest a model in which the pachytene checkpoint monitors the structure of chromosome axes and may function to promote an optimal number of crossovers. Meiosis is a specialized cell division in which diploid organisms form haploid gametes for sexual reproduction. This is accomplished by a single round of replication followed by two consecutive divisions. At the first meiotic division, the segregation of homologous chromosomes in most organisms is dependent upon genetic recombination, or crossing over. Crossing over must therefore be regulated to ensure that every pair of homologous chromosomes receives at least one reciprocal exchange. Homologous chromosomes that do not receive a crossover frequently undergo missegregation, yielding gametes that do not contain the normal chromosome number, conditions frequently associated in humans with infertility and birth defects. The pch2 gene is widely conserved and in Drosophila melanogaster is required for a meiosis-specific checkpoint that delays progression when crossover formation is defective. However, the underlying process that the checkpoint is monitoring remains unclear. Here we show that defects in axis components and homolog alignment are sufficient to induce checkpoint activity and increase crossing over across the genome. Based on these observations, we hypothesize that the checkpoint may monitor the integrity of chromosome axes and function to promote an optimal number of crossovers during meiosis.
Collapse
|
39
|
Anderson JA, Gilliland WD, Langley CH. Molecular population genetics and evolution of Drosophila meiosis genes. Genetics 2009; 181:177-85. [PMID: 18984573 PMCID: PMC2621166 DOI: 10.1534/genetics.108.093807] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 10/28/2008] [Indexed: 12/17/2022] Open
Abstract
While many functional elements of the meiotic process are well characterized in model organisms, the genetic basis of most of the natural phenotypic variation observed in meiotic pathways has not been determined. To begin to address this issue, we characterized patterns of polymorphism and divergence in the protein-coding regions of 33 genes across 31 lines of Drosophila melanogaster and 6 lines of Drosophila simulans. We sequenced genes known to be involved in chromosome segregation, recombination, DNA repair, and related heterochromatin binding. As expected, we found several of the genes to be highly conserved, consistent with purifying selection. However, a subset of genes showed patterns of polymorphism and divergence typical of other types of natural selection. Moreover, several intriguing differences between the two Drosophila lineages were evident: along the D. simulans lineage we consistently found evidence of adaptive protein evolution, whereas along the D. melanogaster lineage several loci exhibited patterns consistent with the maintenance of protein variation.
Collapse
|
40
|
Drosophila hold'em is required for a subset of meiotic crossovers and interacts with the dna repair endonuclease complex subunits MEI-9 and ERCC1. Genetics 2008; 181:335-40. [PMID: 18957705 DOI: 10.1534/genetics.108.093104] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Three Drosophila proteins, ERCC1, MUS312, and MEI-9, function in a complex proposed to resolve double-Holliday-junction intermediates into crossovers during meiosis. We report here the characterization of hold'em (hdm), whose protein product belongs to a single-strand-DNA-binding superfamily of proteins. Mutations in hdm result in reduced meiotic crossover formation and sensitivity to the DNA-damaging agent methyl methanesulfonate. Furthermore, HDM physically interacts with both MEI-9 and ERCC1 in a yeast two-hybrid assay. We conclude that HDM, MEI-9, MUS312, and ERCC1 form a complex that resolves meiotic recombination intermediates into crossovers.
Collapse
|
41
|
Abstract
Meiotic chromosome segregation occurs in Drosophila oocytes on an acentrosomal spindle, which raises interesting questions regarding spindle assembly and function. One is how to organize a bipolar spindle without microtubule organizing centers at the poles. Another question is how to orient the chromosomes without kinetochore capture of microtubules that grow from the poles. We have characterized the mei-38 gene in Drosophila and found it may be required for chromosome organization within the karyosome. Nondisjunction of homologous chromosomes occurs in mei-38 mutants primarily at the first meiotic division in females but not in males where centrosomes are present. Most meiotic spindles in mei-38 oocytes are bipolar but poorly organized, and the chromosomes appear disorganized at metaphase. mei-38 encodes a novel protein that is conserved in the Diptera and may be a member of a multigene family. Mei-38 was previously identified (as ssp1) due to a role in mitotic spindle assembly in a Drosophila cell line. MEI-38 protein localizes to a specific population of spindle microtubules, appearing to be excluded from the overlap of interpolar microtubules in the central spindle. We suggest MEI-38 is required for the stability of parallel microtubules, including the kinetochore microtubules.
Collapse
|
42
|
|
43
|
Abstract
Gene conversion plays an important part in shaping genetic diversity in populations, yet estimating the rate at which it occurs is difficult because of the short lengths of DNA involved. We have developed a new statistical approach to estimating gene conversion rates from genetic variation, by extending an existing model for haplotype data in the presence of crossover events. We show, by simulation, that when the rate of gene conversion events is at least comparable to the rate of crossover events, the method provides a powerful approach to the detection of gene conversion and estimation of its rate. Application of the method to data from the telomeric X chromosome of Drosophila melanogaster, in which crossover activity is suppressed, indicates that gene conversion occurs approximately 400 times more often than crossover events. We also extend the method to estimating variable crossover and gene conversion rates and estimate the rate of gene conversion to be approximately 1.5 times higher than the crossover rate in a region of human chromosome 1 with known recombination hotspots.
Collapse
Affiliation(s)
- J Gay
- Department of Statistics, University of Oxford, Oxford OX1 3TG, United Kingdom
| | | | | |
Collapse
|
44
|
Trowbridge K, McKim K, Brill SJ, Sekelsky J. Synthetic lethality of Drosophila in the absence of the MUS81 endonuclease and the DmBlm helicase is associated with elevated apoptosis. Genetics 2007; 176:1993-2001. [PMID: 17603121 PMCID: PMC1950608 DOI: 10.1534/genetics.106.070060] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mus81-Mms4 (Mus81-Eme1 in some species) is a heterodimeric DNA structure-specific endonuclease that has been implicated in meiotic recombination and processing of damaged replication forks in fungi. We generated and characterized mutations in Drosophila melanogaster mus81 and mms4. Unlike the case in fungi, we did not find any role for MUS81-MMS4 in meiotic crossing over. A possible role for this endonuclease in repairing double-strand breaks that arise during DNA replication is suggested by the finding that mus81 and mms4 mutants are hypersensitive to camptothecin; however, these mutants are not hypersensitive to other agents that generate lesions that slow or block DNA replication. In fungi, mus81, mms4, and eme1 mutations are synthetically lethal with mutations in genes encoding RecQ helicase homologs. Similarly, we found that mutations in Drosophila mus81 and mms4 are synthetically lethal with null mutations in mus309, which encodes the ortholog of the Bloom Syndrome helicase. Synthetic lethality is associated with high levels of apoptosis in proliferating tissues. Lethality and elevated apoptosis were partially suppressed by a mutation in spn-A, which encodes the ortholog of the strand invasion protein Rad51. These findings provide insights into the causes of synthetic lethality.
Collapse
Affiliation(s)
- Kirsten Trowbridge
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
45
|
Radford SJ, McMahan S, Blanton HL, Sekelsky J. Heteroduplex DNA in meiotic recombination in Drosophila mei-9 mutants. Genetics 2007; 176:63-72. [PMID: 17339219 PMCID: PMC1893050 DOI: 10.1534/genetics.107.070557] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Accepted: 02/22/2007] [Indexed: 01/31/2023] Open
Abstract
Meiotic recombination gives rise to crossovers, which are required in most organisms for the faithful segregation of homologous chromosomes during meiotic cell division. Characterization of crossover-defective mutants has contributed much to our understanding of the molecular mechanism of crossover formation. We report here a molecular analysis of recombination in a Drosophila melanogaster crossover-defective mutant, mei-9. In the absence of mei-9 activity, postmeiotic segregation associated with noncrossovers occurs at the expense of crossover products, suggesting that the underlying meiotic function for MEI-9 is in crossover formation rather than mismatch repair. In support of this, analysis of the arrangement of heteroduplex DNA in the postmeiotic segregation products reveals different patterns from those observed in Drosophila Msh6 mutants, which are mismatch-repair defective. This analysis also provides evidence that the double-strand break repair model applies to meiotic recombination in Drosophila. Our results support a model in which MEI-9 nicks Holliday junctions to generate crossovers during meiotic recombination, and, in the absence of MEI-9 activity, the double Holliday junction intermediate instead undergoes dissolution to generate noncrossover products in which heteroduplex is unrepaired.
Collapse
Affiliation(s)
- Sarah J Radford
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
46
|
Swan A, Schüpbach T. The Cdc20 (Fzy)/Cdh1-related protein, Cort, cooperates with Fzy in cyclin destruction and anaphase progression in meiosis I and II in Drosophila. Development 2007; 134:891-9. [PMID: 17251266 PMCID: PMC2787194 DOI: 10.1242/dev.02784] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Meiosis is a highly specialized cell division that requires significant reorganization of the canonical cell-cycle machinery and the use of meiosis-specific cell-cycle regulators. The anaphase-promoting complex (APC) and a conserved APC adaptor, Cdc20 (also known as Fzy), are required for anaphase progression in mitotic cells. The APC has also been implicated in meiosis, although it is not yet understood how it mediates these non-canonical divisions. Cortex (Cort) is a diverged Fzy homologue that is expressed in the female germline of Drosophila, where it functions with the Cdk1-interacting protein Cks30A to drive anaphase in meiosis II. Here, we show that Cort functions together with the canonical mitotic APC adaptor Fzy to target the three mitotic cyclins (A, B and B3) for destruction in the egg and drive anaphase progression in both meiotic divisions. In addition to controlling cyclin destruction globally in the egg, Cort and Fzy appear to both be required for the local destruction of cyclin B on spindles. We find that cyclin B associates with spindle microtubules throughout meiosis I and meiosis II, and dissociates from the meiotic spindle in anaphase II. Fzy and Cort are required for this loss of cyclin B from the meiotic spindle. Our results lead to a model in which the germline-specific APC(Cort) cooperates with the more general APC(Fzy), both locally on the meiotic spindle and globally in the egg cytoplasm, to target cyclins for destruction and drive progression through the two meiotic divisions.
Collapse
Affiliation(s)
| | - Trudi Schüpbach
- Corresponding author: tel: (609) 258 1365 fax: (609) 258 6492
| |
Collapse
|
47
|
Pradillo M, López E, Romero C, Sánchez-Morán E, Cuñado N, Santos JL. An analysis of univalent segregation in meiotic mutants of Arabidopsis thaliana: a possible role for synaptonemal complex. Genetics 2006; 175:505-11. [PMID: 17151235 PMCID: PMC1800621 DOI: 10.1534/genetics.106.067595] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During first meiotic prophase, homologous chromosomes are normally kept together by both crossovers and synaptonemal complexes (SC). In most eukaryotes, the SC disassembles at diplotene, leaving chromosomes joined by chiasmata. The correct co-orientation of bivalents at metaphase I and the reductional segregation at anaphase I are facilitated by chiasmata and sister-chromatid cohesion. In the absence of meiotic reciprocal recombination, homologs are expected to segregate randomly at anaphase I. Here, we have analyzed the segregation of homologous chromosomes at anaphase I in four meiotic mutants of Arabidopsis thaliana, spo11-1-3, dsy1, mpa1, and asy1, which show a high frequency of univalents at diplotene. The segregation pattern of chromosomes 2, 4, and 5 was different in each mutant. Homologous univalents segregated randomly in spo11-1-3, whereas they did not in dsy1 and mpa1. An intermediate situation was observed in asy1. Also, we have found a parallelism between this behavior and the synaptic pattern displayed by each mutant. Thus, whereas spo11-1-3 and asy1 showed low amounts of SC stretches, dsy1 and mpa1 showed full synapsis. These findings suggest that in Arabidopsis there is a system, depending on the SC formation, that would facilitate regular disjunction of homologous univalents to opposite poles at anaphase I.
Collapse
Affiliation(s)
- Mónica Pradillo
- Departamento de Genética, Facultad de Biología, Universidad Complutense de Madrid, Madrid 28040, Spain
| | | | | | | | | | | |
Collapse
|
48
|
Mehrotra S, McKim KS. Temporal analysis of meiotic DNA double-strand break formation and repair in Drosophila females. PLoS Genet 2006; 2:e200. [PMID: 17166055 PMCID: PMC1657055 DOI: 10.1371/journal.pgen.0020200] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Accepted: 10/09/2006] [Indexed: 12/02/2022] Open
Abstract
Using an antibody against the phosphorylated form of His2Av (γ-His2Av), we have described the time course for the series of events leading from the formation of a double-strand break (DSB) to a crossover in Drosophila female meiotic prophase. MEI-P22 is required for DSB formation and localizes to chromosomes prior to γ-His2Av foci. Drosophila females, however, are among the group of organisms where synaptonemal complex (SC) formation is not dependent on DSBs. In the absence of two SC proteins, C(3)G and C(2)M, the number of DSBs in oocytes is significantly reduced. This is consistent with the appearance of SC protein staining prior to γ-His2Av foci. However, SC formation is incomplete or absent in the neighboring nurse cells, and γ-His2Av foci appear with the same kinetics as in oocytes and do not depend on SC proteins. Thus, competence for DSB formation in nurse cells occurs with a specific timing that is independent of the SC, whereas in the oocytes, some SC proteins may have a regulatory role to counteract the effects of a negative regulator of DSB formation. The SC is not sufficient for DSB formation, however, since DSBs were absent from the heterochromatin even though SC formation occurs in these regions. All γ-His2Av foci disappear before the end of prophase, presumably as repair is completed and crossovers are formed. However, oocytes in early prophase exhibit a slower response to X-ray–induced DSBs compared to those in the late pachytene stage. Assuming all DSBs appear as γ-His2Av foci, there is at least a 3:1 ratio of noncrossover to crossover products. From a comparison of the frequency of γ-His2Av foci and crossovers, it appears that Drosophila females have only a weak mechanism to ensure a crossover in the presence of a low number of DSBs. Meiosis is a specialized pair of cell divisions that creates haploid gametes by separating homologous chromosomes. Unlike most any other cell type, cells in meiotic prophase generate double-strand DNA breaks (DSBs) that are repaired using the homolog as a template. While there are several DSBs per chromosome, usually only one is repaired as a crossover, which is when the two homologs have exchanged large segments of genetic information. Each crossover is important because it creates a linkage that holds the homologs together during the first meiotic division. To learn more about how the meiotic cell regulates the formation of crossovers, the authors performed a temporal analysis of the events from break formation through repair into a crossover in Drosophila females. These results indicate that timing is a critical factor in both the formation and repair of DSBs. DSB formation occurs only during the earliest stages of meiotic prophase and initiates at a specific time after premeiotic DNA replication. Surprisingly, the response to DSBs is slower in the middle of meiotic prophase than at later time points. It is only during this time, mid–meiotic prophase, when the repair process is competent to produce crossovers.
Collapse
Affiliation(s)
- S Mehrotra
- Waksman Institute, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - K. S McKim
- Waksman Institute, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
- Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
49
|
Abstract
The vertebrate RNA and ssDNA-binding protein Translin has been suggested to function in a variety of cellular processes, including DNA damage response, RNA transport, and translational control. The Translin-associated factor X (Trax) interacts with Translin, and Trax protein stability depends on the presence of Translin. To determine the function of the Drosophila Translin and Trax, we generated a translin null mutant and isolated a trax nonsense mutation. translin and trax single and double mutants are viable, fertile, and phenotypically normal. Meiotic recombination rates and chromosome segregation are also not affected in translin and trax mutants. In addition, we found no evidence for an increased sensitivity for DNA double-strand damage in embryos and developing larvae. Together with the lack of evidence for their involvement in DNA double-strand break checkpoints, this argues against a critical role for Translin and Trax in sensing or repairing such DNA damage. However, Drosophila translin is essential for stabilizing the Translin interaction partner Trax, a function that is surprisingly conserved throughout evolution. Conversely, trax is not essential for Translin stability as trax mutants exhibit normal levels of Translin protein.
Collapse
Affiliation(s)
- Maike Claussen
- Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland
| | | | | | | |
Collapse
|
50
|
Iwai T, Yoshii A, Yokota T, Sakai C, Hori H, Kanamori A, Yamashita M. Structural components of the synaptonemal complex, SYCP1 and SYCP3, in the medaka fish Oryzias latipes. Exp Cell Res 2006; 312:2528-37. [PMID: 16764855 DOI: 10.1016/j.yexcr.2006.04.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Revised: 04/19/2006] [Accepted: 04/23/2006] [Indexed: 11/23/2022]
Abstract
The synaptonemal complex (SC) is a meiosis-specific structure essential for synapsis of homologous chromosomes. For the first time in any non-mammalian vertebrates, we have isolated cDNA clones encoding two structural components of the SC, SYCP1 and SYCP3, in the medaka, and investigated their protein expression during gametogenesis. As in the case of mammals, medaka SYCP1 and SYCP3 are expressed solely in meiotically dividing cells. In the diplotene stage, SYCP1 is diminished at desynaptic regions of chromosomes and completely lost on the chromosomes at later stages. SYCP3 is localized along the arm and centromeric regions of chromosomes at metaphase I, and its existence on the whole chromosomes persists up to anaphase I, a situation different from that reported in the mouse, in which SYCP3 is confined to the centromeric regions but lost on the arm regions at metaphase I. Thus, the expression patterns of SC components are different in mammals and fish despite the resemblance in morphological structure of the SC, suggesting divergence in the function of the SC in regulation of meiosis-specific chromosomal behavior. Since the antibody against medaka SYCP3 is cross-reactive to other fishes, it should be generally useful for a meiosis-specific marker in fish germ cells.
Collapse
Affiliation(s)
- Toshiharu Iwai
- Laboratory of Molecular and Cellular Interactions, Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | | | | | | | |
Collapse
|