1
|
Polenghi M, Taverna E. Intracellular traffic and polarity in brain development. Front Neurosci 2023; 17:1172016. [PMID: 37859764 PMCID: PMC10583573 DOI: 10.3389/fnins.2023.1172016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/31/2023] [Indexed: 10/21/2023] Open
Abstract
Neurons forming the human brain are generated during embryonic development by neural stem and progenitor cells via a process called neurogenesis. A crucial feature contributing to neural stem cell morphological and functional heterogeneity is cell polarity, defined as asymmetric distribution of cellular components. Cell polarity is built and maintained thanks to the interplay between polarity proteins and polarity-generating organelles, such as the endoplasmic reticulum (ER) and the Golgi apparatus (GA). ER and GA affect the distribution of membrane components and work as a hub where glycans are added to nascent proteins and lipids. In the last decades our knowledge on the role of polarity in neural stem and progenitor cells have increased tremendously. However, the role of traffic and associated glycosylation in neural stem and progenitor cells is still relatively underexplored. In this review, we discuss the link between cell polarity, architecture, identity and intracellular traffic, and highlight how studies on neurons have shaped our knowledge and conceptual framework on traffic and polarity. We will then conclude by discussing how a group of rare diseases, called congenital disorders of glycosylation (CDG) offers the unique opportunity to study the contribution of traffic and glycosylation in the context of neurodevelopment.
Collapse
|
2
|
Bucurica S, Gaman L, Jinga M, Popa AA, Ionita-Radu F. Golgi Apparatus Target Proteins in Gastroenterological Cancers: A Comprehensive Review of GOLPH3 and GOLGA Proteins. Cells 2023; 12:1823. [PMID: 37508488 PMCID: PMC10378073 DOI: 10.3390/cells12141823] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/04/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
The Golgi apparatus plays a central role in protein sorting, modification and trafficking within cells; its dysregulation has been implicated in various cancers including those affecting the GI tract. This review highlights two Golgi target proteins, namely GOLPH3 and GOLGA proteins, from this apparatus as they relate to gastroenterological cancers. GOLPH3-a highly conserved protein of the trans-Golgi network-has become a key player in cancer biology. Abnormal expression of GOLPH3 has been detected in various gastrointestinal cancers including gastric, colorectal and pancreatic cancers. GOLPH3 promotes tumor cell proliferation, survival, migration and invasion via various mechanisms including activating the PI3K/Akt/mTOR signaling pathway as well as altering Golgi morphology and vesicular trafficking. GOLGA family proteins such as GOLGA1 (golgin-97) and GOLGA7 (golgin-84) have also been implicated in gastroenterological cancers. GOLGA1 plays an essential role in protein trafficking within the Golgi apparatus and has been associated with poor patient survival rates and increased invasiveness; GOLGA7 maintains Golgi structure while having been shown to affect protein glycosylation processes. GOLPH3 and GOLGA proteins play a pivotal role in gastroenterological cancer, helping researchers unlock molecular mechanisms and identify therapeutic targets. Their dysregulation affects various cellular processes including signal transduction, vesicular trafficking and protein glycosylation, all contributing to tumor aggressiveness and progression.
Collapse
Affiliation(s)
- Sandica Bucurica
- Department of Gastroenterology, "Carol Davila" University of Medicine and Pharmacy Bucharest, 020021 Bucharest, Romania
- Department of Gastroenterology, "Carol Davila" University Central Emergency Military Hospital, 010825 Bucharest, Romania
| | - Laura Gaman
- Department of Biochemistry, "Carol Davila" University of Medicine and Pharmacy Bucharest, 020021 Bucharest, Romania
| | - Mariana Jinga
- Department of Gastroenterology, "Carol Davila" University of Medicine and Pharmacy Bucharest, 020021 Bucharest, Romania
- Department of Gastroenterology, "Carol Davila" University Central Emergency Military Hospital, 010825 Bucharest, Romania
| | - Andrei Adrian Popa
- Student of General Medicine, "Carol Davila" University of Medicine and Pharmacy Bucharest, 020021 Bucharest, Romania
| | - Florentina Ionita-Radu
- Department of Gastroenterology, "Carol Davila" University of Medicine and Pharmacy Bucharest, 020021 Bucharest, Romania
- Department of Gastroenterology, "Carol Davila" University Central Emergency Military Hospital, 010825 Bucharest, Romania
| |
Collapse
|
3
|
Elsharkawi I, Wongkittichote P, James Paul Daniel E, Starosta RT, Ueda K, Ng BG, Freeze HH, He M, Shinawi M. DDOST-CDG: Clinical and molecular characterization of a third patient with a milder and a predominantly movement disorder phenotype. J Inherit Metab Dis 2023; 46:92-100. [PMID: 36214423 PMCID: PMC9852036 DOI: 10.1002/jimd.12565] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/02/2022] [Accepted: 09/30/2022] [Indexed: 01/22/2023]
Abstract
Congenital disorders of glycosylation (CDG) are a group of heterogeneous inherited metabolic disorders affecting posttranslational protein modification. DDOST-CDG, caused by biallelic pathogenic variants in DDOST which encodes dolichyl-diphospho-oligosaccharide-protein glycosyltransferase, a subunit of N-glycosylation oligosaccharyltransferase (OST) complex, is an ultra-rare condition that has been described in two patients only. The main clinical features in the two reported patients include profound developmental delay, failure to thrive, and hypotonia. In addition, both patients had abnormal transferrin glycosylation. Here, we report an 18-year-old male who presented with moderate developmental delay, progressive opsoclonus, myoclonus, ataxia, tremor, and dystonia. Biochemical studies by carbohydrate deficient transferrin analysis showed a type I CDG pattern. Exome sequencing identified compound heterozygous variants in DDOST: a maternally inherited variant, c.1142dupT (p.Leu381Phefs*11), and a paternally inherited variant, c.661 T > C (p.Ser221Pro). Plasma N-glycan profiling showed mildly increased small high mannose glycans including Man0-5 GlcNAc2, a pattern consistent with what was previously reported in DDOST-CDG or defects in other subunits of OST complex. Western blot analysis on patient's fibroblasts revealed decreased expression of DDOST and reduced intracellular N-glycosylation, as evident by the biomarkers ICAM-1 and LAMP2. Our study highlights the clinical variability, expands the clinical and biochemical phenotypes, and describes new genotype, which all are essential for diagnosing and managing patients with DDOST-CDG.
Collapse
Affiliation(s)
- Ibrahim Elsharkawi
- Division of Genetics and Genomic Medicine, Department of Pediatrics, St. Louis Children’s Hospital, Washington University School of Medicine, St. Louis, MO, USA
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Parith Wongkittichote
- Division of Genetics and Genomic Medicine, Department of Pediatrics, St. Louis Children’s Hospital, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Rodrigo Tzovenos Starosta
- Division of Genetics and Genomic Medicine, Department of Pediatrics, St. Louis Children’s Hospital, Washington University School of Medicine, St. Louis, MO, USA
| | - Keisuke Ueda
- Division of Pediatric Neurology, Department of Neurology, St. Louis Children’s Hospital, Washington University School of Medicine, St. Louis, MO, USA
| | - Bobby G. Ng
- Human Genetics Program, Sanford Children’s Health Research Center, La Jolla, CA, USA
| | - Hudson H. Freeze
- Human Genetics Program, Sanford Children’s Health Research Center, La Jolla, CA, USA
| | - Miao He
- Palmieri Metabolic Disease Laboratory, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Marwan Shinawi
- Division of Genetics and Genomic Medicine, Department of Pediatrics, St. Louis Children’s Hospital, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
4
|
Lausmann H, Zacharias M, Neuhann TM, Locher MK, Schettler KF. Case Report: DPM1-CDG: Novel Variant with Severe Phenotype and Literature Review. Front Genet 2022; 13:889829. [PMID: 35910228 PMCID: PMC9326363 DOI: 10.3389/fgene.2022.889829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/10/2022] [Indexed: 12/05/2022] Open
Abstract
Background: Congenital disorders of glycosylation (CDG) type I include variants in the DPM1 gene leading to DPM1-CDG. The nine previously reported patients showed developmental delay, seizures, electroencephalography abnormalities and dysmorphic features with varying disease onset and severity. Methods: Clinical features of a new patient are described. Whole exome sequencing using NGS was performed, followed by molecular simulation of the structural changes in the protein. Results: Our patient with DPM1-CDG presented with more severe symptoms and an earlier onset, specifically non-febrile seizures from the age of 3 weeks, global developmental delay, and severely retarded motor skills. She died at the age of 11 weeks after fulminant sepsis. We identified compound heterozygous variants in the DPM1 gene, one previously reported point mutation c.1A > C p.? as well as the novel variant c.239_241del p.(Lys80del), resulting in the first in-frame deletion located in exon 2. Loss of Lys80 may lead to an impaired α-helical configuration next to the GDP/GTP binding site. Conclusion: The presented case extends the spectrum of DPM1-CDG to a very young and severely affected child. The deletion of Lys80 in DPM1 results in an impaired helical configuration. This has implications for further understanding the association of structure and function of DPM1.
Collapse
Affiliation(s)
- Hanna Lausmann
- Children’s Hospital St. Marien gGmbH, Landshut, Germany
- *Correspondence: Hanna Lausmann,
| | - Martin Zacharias
- Center of Functional Protein Assemblies, Technical University of Munich, Garching, Germany
| | | | | | | |
Collapse
|
5
|
A FUNCTIONAL PLATFORM FOR THE SELECTION OF PATHOGENIC VARIANTS OF
PMM2
AMENABLE TO RESCUE VIA THE USE OF PHARMACOLOGICAL CHAPERONES. Hum Mutat 2022; 43:1430-1442. [DOI: 10.1002/humu.24431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/31/2022] [Accepted: 07/01/2022] [Indexed: 11/07/2022]
|
6
|
Park JH, Marquardt T. Treatment Options in Congenital Disorders of Glycosylation. Front Genet 2021; 12:735348. [PMID: 34567084 PMCID: PMC8461064 DOI: 10.3389/fgene.2021.735348] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/23/2021] [Indexed: 12/15/2022] Open
Abstract
Despite advances in the identification and diagnosis of congenital disorders of glycosylation (CDG), treatment options remain limited and are often constrained to symptomatic management of disease manifestations. However, recent years have seen significant advances in treatment and novel therapies aimed both at the causative defect and secondary disease manifestations have been transferred from bench to bedside. In this review, we aim to give a detailed overview of the available therapies and rising concepts to treat these ultra-rare diseases.
Collapse
Affiliation(s)
- Julien H Park
- Department of General Pediatrics, Metabolic Diseases, University Children's Hospital Münster, Münster, Germany
| | - Thorsten Marquardt
- Department of General Pediatrics, Metabolic Diseases, University Children's Hospital Münster, Münster, Germany
| |
Collapse
|
7
|
Fructose and Mannose in Inborn Errors of Metabolism and Cancer. Metabolites 2021; 11:metabo11080479. [PMID: 34436420 PMCID: PMC8397987 DOI: 10.3390/metabo11080479] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 12/19/2022] Open
Abstract
History suggests that tasteful properties of sugar have been domesticated as far back as 8000 BCE. With origins in New Guinea, the cultivation of sugar quickly spread over centuries of conquest and trade. The product, which quickly integrated into common foods and onto kitchen tables, is sucrose, which is made up of glucose and fructose dimers. While sugar is commonly associated with flavor, there is a myriad of biochemical properties that explain how sugars as biological molecules function in physiological contexts. Substantial research and reviews have been done on the role of glucose in disease. This review aims to describe the role of its isomers, fructose and mannose, in the context of inborn errors of metabolism and other metabolic diseases, such as cancer. While structurally similar, fructose and mannose give rise to very differing biochemical properties and understanding these differences will guide the development of more effective therapies for metabolic disease. We will discuss pathophysiology linked to perturbations in fructose and mannose metabolism, diagnostic tools, and treatment options of the diseases.
Collapse
|
8
|
Abstract
The surfaces of all living organisms and most secreted proteins share a common feature: They are glycosylated. As the outermost-facing molecules, glycans participate in nearly all immunological processes, including driving host-pathogen interactions, immunological recognition and activation, and differentiation between self and nonself through a complex array of pathways and mechanisms. These fundamental immunologic roles are further cast into sharp relief in inflammatory, autoimmune, and cancer disease states in which immune regulation goes awry. Here, we review the broad impact of glycans on the immune system and discuss the changes and clinical opportunities associated with the onset of immunologic disease.
Collapse
Affiliation(s)
- Julie Y Zhou
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-7288, USA;
| | - Brian A Cobb
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-7288, USA;
| |
Collapse
|
9
|
Zhang K, Sun Y, Li M, Long R. CrUGT87A1, a UDP-sugar glycosyltransferases (UGTs) gene from Carex rigescens, increases salt tolerance by accumulating flavonoids for antioxidation in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 159:28-36. [PMID: 33321375 DOI: 10.1016/j.plaphy.2020.12.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/07/2020] [Indexed: 05/15/2023]
Abstract
Salt stress is a serious abiotic stressor impeding plant growth and crop production around the world. Plant glycosyltransferases are thought to serve important roles in dealing with stress conditions, however, the functional role of how UGTs cope with salt stress is not well understood. Carex rigescens (Franch.) V. Krecz, is a widely distributed species of turfgrass with strong salinity tolerance found in northern China. To investigate how the glycosyltransferase gene, CrUGT87A1, functions in C. rigescens, we performed analyses of cloning, transcriptional expression, subcellular localization, and overexpression. The full-length sequence of CrUGT87A1 is 1455 bp with a 1338 bp length ORF, which encodes 445 amino acids, while CrUGT87A1 was found to be a nuclear and plasmalemma-localized protein. We found that the transcriptional expression of CrUGT87A1 was up-regulated under ABA, heat, salt, and drought treatments in leaf tissues. CrUGT87A1 overexpression in Arabidopsis plants had a significantly higher germination rate, better growth and physiology, and a higher expression levels of transcripts related to salt stress-related genes under high-salinity conditions, suggesting that CrUGT87A1 is involved in salt tolerance. The transcriptional expression of genes related to flavonoid-synthesis related and the flavonoid content reflected higher accumulations of flavonoids in transgenic plants. Our study demonstrated that CrUGT87A1 could play an important role in resisting salt stress due to increased flavonoid accumulation, which can promote antioxidation when dealing with high-salinity conditions. This study advances our collective understanding of the functional role of UGTs and can be used to improve the salt tolerance and breeding of crops and plants.
Collapse
Affiliation(s)
- Kun Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; College of Grassland Science and Technology, China Agricultural University, Beijing, 100093, PR China; College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, PR China
| | - Yan Sun
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100093, PR China
| | - Mingna Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| | - Ruicai Long
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| |
Collapse
|
10
|
Hansen L, Husein DM, Gericke B, Hansen T, Pedersen O, Tambe MA, Freeze HH, Naim HY, Henrissat B, Wandall HH, Clausen H, Bennett EP. A mutation map for human glycoside hydrolase genes. Glycobiology 2020; 30:500-515. [PMID: 32039448 PMCID: PMC7372926 DOI: 10.1093/glycob/cwaa010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 12/11/2022] Open
Abstract
Glycoside hydrolases (GHs) are found in all domains of life, and at least 87 distinct genes encoding proteins related to GHs are found in the human genome. GHs serve diverse functions from digestion of dietary polysaccharides to breakdown of intracellular oligosaccharides, glycoproteins, proteoglycans and glycolipids. Congenital disorders of GHs (CDGHs) represent more than 30 rare diseases caused by mutations in one of the GH genes. We previously used whole-exome sequencing of a homogenous Danish population of almost 2000 individuals to probe the incidence of deleterious mutations in the human glycosyltransferases (GTs) and developed a mutation map of human GT genes (GlyMAP-I). While deleterious disease-causing mutations in the GT genes were very rare, and in many cases lethal, we predicted deleterious mutations in GH genes to be less rare and less severe given the higher incidence of CDGHs reported worldwide. To probe the incidence of GH mutations, we constructed a mutation map of human GH-related genes (GlyMAP-II) using the Danish WES data, and correlating this with reported disease-causing mutations confirmed the higher prevalence of disease-causing mutations in several GH genes compared to GT genes. We identified 76 novel nonsynonymous single-nucleotide variations (nsSNVs) in 32 GH genes that have not been associated with a CDGH phenotype, and we experimentally validated two novel potentially damaging nsSNVs in the congenital sucrase-isomaltase deficiency gene, SI. Our study provides a global view of human GH genes and disease-causing mutations and serves as a discovery tool for novel damaging nsSNVs in CDGHs.
Collapse
Affiliation(s)
- Lars Hansen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Mærsk Building, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Diab M Husein
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Bünteweg 2, 30559 Hannover, Germany
| | - Birthe Gericke
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Bünteweg 2, 30559 Hannover, Germany
| | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Mærsk Building, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Oluf Pedersen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Mærsk Building, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Mitali A Tambe
- Human Genetics Program, Sanford-Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Hudson H Freeze
- Human Genetics Program, Sanford-Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Hassan Y Naim
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Bünteweg 2, 30559 Hannover, Germany
| | - Bernard Henrissat
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Mærsk Building, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (CNRS) and Aix-Marseille University Marseille, 163 Avenue de Luminy, 13288 Marseille CEDEX 09, France
| | - Hans H Wandall
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Mærsk Building, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Mærsk Building, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Eric P Bennett
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Mærsk Building, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
- School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Nørre Allé 20, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
11
|
Tran ML, Génisson Y, Ballereau S, Dehoux C. Second-Generation Pharmacological Chaperones: Beyond Inhibitors. Molecules 2020; 25:molecules25143145. [PMID: 32660097 PMCID: PMC7397201 DOI: 10.3390/molecules25143145] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/29/2020] [Accepted: 07/05/2020] [Indexed: 02/06/2023] Open
Abstract
Protein misfolding induced by missense mutations is the source of hundreds of conformational diseases. The cell quality control may eliminate nascent misfolded proteins, such as enzymes, and a pathological loss-of-function may result from their early degradation. Since the proof of concept in the 2000s, the bioinspired pharmacological chaperone therapy became a relevant low-molecular-weight compound strategy against conformational diseases. The first-generation pharmacological chaperones were competitive inhibitors of mutant enzymes. Counterintuitively, in binding to the active site, these inhibitors stabilize the proper folding of the mutated protein and partially rescue its cellular function. The main limitation of the first-generation pharmacological chaperones lies in the balance between enzyme activity enhancement and inhibition. Recent research efforts were directed towards the development of promising second-generation pharmacological chaperones. These non-inhibitory ligands, targeting previously unknown binding pockets, limit the risk of adverse enzymatic inhibition. Their pharmacophore identification is however challenging and likely requires a massive screening-based approach. This review focuses on second-generation chaperones designed to restore the cellular activity of misfolded enzymes. It intends to highlight, for a selected set of rare inherited metabolic disorders, the strategies implemented to identify and develop these pharmacologically relevant small organic molecules as potential drug candidates.
Collapse
Affiliation(s)
| | | | | | - Cécile Dehoux
- Correspondence: (S.B.); (C.D.); Tel.: +33-5-6155-6127 (C.D.)
| |
Collapse
|
12
|
Monticelli M, Liguori L, Allocca M, Andreotti G, Cubellis MV. β-Glucose-1,6-Bisphosphate Stabilizes Pathological Phophomannomutase2 Mutants In Vitro and Represents a Lead Compound to Develop Pharmacological Chaperones for the Most Common Disorder of Glycosylation, PMM2-CDG. Int J Mol Sci 2019; 20:E4164. [PMID: 31454904 PMCID: PMC6747070 DOI: 10.3390/ijms20174164] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/13/2019] [Accepted: 08/22/2019] [Indexed: 12/13/2022] Open
Abstract
A large number of mutations causing PMM2-CDG, which is the most frequent disorder of glycosylation, destabilize phosphomannomutase2. We looked for a pharmacological chaperone to cure PMM2-CDG, starting from the structure of a natural ligand of phosphomannomutase2, α-glucose-1,6-bisphosphate. The compound, β-glucose-1,6-bisphosphate, was synthesized and characterized via 31P-NMR. β-glucose-1,6-bisphosphate binds its target enzyme in silico. The binding induces a large conformational change that was predicted by the program PELE and validated in vitro by limited proteolysis. The ability of the compound to stabilize wild type phosphomannomutase2, as well as frequently encountered pathogenic mutants, was measured using thermal shift assay. β-glucose-1,6-bisphosphate is relatively resistant to the enzyme that specifically hydrolyses natural esose-bisphosphates.
Collapse
Affiliation(s)
- Maria Monticelli
- Dipartimento di Biologia, Università Federico II, 80126 Napoli, Italy
| | - Ludovica Liguori
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania "Luigi Vanvitelli", 81100 Caserta, Italy
- Istituto di Chimica Biomolecolare-CNR, 80078 Pozzuoli, Italy
| | - Mariateresa Allocca
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania "Luigi Vanvitelli", 81100 Caserta, Italy
- Istituto di Chimica Biomolecolare-CNR, 80078 Pozzuoli, Italy
| | | | - Maria Vittoria Cubellis
- Dipartimento di Biologia, Università Federico II, 80126 Napoli, Italy
- Istituto di Chimica Biomolecolare-CNR, 80078 Pozzuoli, Italy
| |
Collapse
|
13
|
Yau LF, Liu J, Jiang M, Bai G, Wang JR, Jiang ZH. An integrated approach for comprehensive profiling and quantitation of IgG-Fc glycopeptides with application to rheumatoid arthritis. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1122-1123:64-72. [DOI: 10.1016/j.jchromb.2019.05.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/22/2019] [Accepted: 05/26/2019] [Indexed: 11/29/2022]
|
14
|
Rojas-Macias MA, Mariethoz J, Andersson P, Jin C, Venkatakrishnan V, Aoki NP, Shinmachi D, Ashwood C, Madunic K, Zhang T, Miller RL, Horlacher O, Struwe WB, Watanabe Y, Okuda S, Levander F, Kolarich D, Rudd PM, Wuhrer M, Kettner C, Packer NH, Aoki-Kinoshita KF, Lisacek F, Karlsson NG. Towards a standardized bioinformatics infrastructure for N- and O-glycomics. Nat Commun 2019; 10:3275. [PMID: 31332201 PMCID: PMC6796180 DOI: 10.1038/s41467-019-11131-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/24/2019] [Indexed: 12/21/2022] Open
Abstract
The mass spectrometry (MS)-based analysis of free polysaccharides and glycans released from proteins, lipids and proteoglycans increasingly relies on databases and software. Here, we review progress in the bioinformatics analysis of protein-released N- and O-linked glycans (N- and O-glycomics) and propose an e-infrastructure to overcome current deficits in data and experimental transparency. This workflow enables the standardized submission of MS-based glycomics information into the public repository UniCarb-DR. It implements the MIRAGE (Minimum Requirement for A Glycomics Experiment) reporting guidelines, storage of unprocessed MS data in the GlycoPOST repository and glycan structure registration using the GlyTouCan registry, thereby supporting the development and extension of a glycan structure knowledgebase.
Collapse
Affiliation(s)
- Miguel A Rojas-Macias
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530, Sweden
| | - Julien Mariethoz
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, Geneva, 1211, Switzerland
- Computer Science Department, University of Geneva, Geneva, 1227, Switzerland
| | - Peter Andersson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530, Sweden
| | - Chunsheng Jin
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530, Sweden
| | - Vignesh Venkatakrishnan
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530, Sweden
| | - Nobuyuki P Aoki
- Soka University, Hachioji, 192-8577, Tokyo, Japan
- SparqLite LLC., Hachioji, 192-0032, Tokyo, Japan
| | - Daisuke Shinmachi
- Soka University, Hachioji, 192-8577, Tokyo, Japan
- SparqLite LLC., Hachioji, 192-0032, Tokyo, Japan
| | - Christopher Ashwood
- Department of Molecular Sciences, Macquarie University, Sydney, 2109, Australia
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | | | - Tao Zhang
- Leiden University Medical Center, Leiden, 2333ZA, Netherlands
| | - Rebecca L Miller
- Copenhagen Centre for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, København, DK-2200, Denmark
| | - Oliver Horlacher
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, Geneva, 1211, Switzerland
| | - Weston B Struwe
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Yu Watanabe
- Graduate School of Medical and Dental Sciences, Niigata University, 950-2181, Niigata, Japan
| | - Shujiro Okuda
- Graduate School of Medical and Dental Sciences, Niigata University, 950-2181, Niigata, Japan
| | - Fredrik Levander
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Department of Immunotechnology, Lund University, Lund, 22387, Sweden
| | - Daniel Kolarich
- Institute for Glycomics, Gold Coast Campus, Griffith University, Gold Coast, QLD, QLD 4222, Australia
- ARC Centre for Nanoscale BioPhotonics, Macquarie University and Griffith University, North Ryde and Gold Coast, NSW and QLD, NSW 2109 and QLD 4222, Australia
| | - Pauline M Rudd
- Bioprocessing Technology Institute, AStar, Singapore, 138668, Singapore
| | - Manfred Wuhrer
- Leiden University Medical Center, Leiden, 2333ZA, Netherlands
| | | | - Nicolle H Packer
- Department of Molecular Sciences, Macquarie University, Sydney, 2109, Australia
- Institute for Glycomics, Gold Coast Campus, Griffith University, Gold Coast, QLD, QLD 4222, Australia
- ARC Centre for Nanoscale BioPhotonics, Macquarie University and Griffith University, North Ryde and Gold Coast, NSW and QLD, NSW 2109 and QLD 4222, Australia
| | | | - Frédérique Lisacek
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, Geneva, 1211, Switzerland
- Computer Science Department, University of Geneva, Geneva, 1227, Switzerland
- Section of Biology, University of Geneva, Geneva, 1211, Switzerland
| | - Niclas G Karlsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530, Sweden.
| |
Collapse
|
15
|
Lu H, Sathe AA, Xing C, Lehrman MA. The Lec5 glycosylation mutant links homeobox genes with cholesterol and lipid-linked oligosaccharides. Glycobiology 2019; 29:106-109. [PMID: 30388226 PMCID: PMC6330018 DOI: 10.1093/glycob/cwy103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/01/2018] [Indexed: 11/12/2022] Open
Abstract
Discovered 40 years ago, the Lec5 glycosylation mutant cell line has a complex recessive genotype and is characterized by accumulation of lipid-linked oligosaccharide assembly intermediates, reduced conversion of polyprenols to dolichols, and an unusual phenotypic dependence upon cell culture conditions such as temperature, plating density and medium quality. The heritable defect in Lec5 is unknown. Here we demonstrate an unexpected epigenetic basis for Lec5, with a surprising linkage to increased expression of homeobox genes, which in turn is associated with increased transcription of cholesterol biosynthesis genes. These results suggest testable hypotheses for the biochemical abnormalities of the Lec5 mutant.
Collapse
Affiliation(s)
- Hua Lu
- Department of Pharmacology, UT Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX, USA
| | - Adwait Amod Sathe
- Eugene McDermott Center for Human Growth & Development, UT Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX, USA
| | - Chao Xing
- Eugene McDermott Center for Human Growth & Development, UT Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX, USA
- Department of Bioinformatics, UT Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX, USA
- Department of Clinical Sciences, UT Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX, USA
| | - Mark A Lehrman
- Department of Pharmacology, UT Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX, USA
| |
Collapse
|
16
|
ALG9 Associated Gillessen-Kaesbach–Nishimura Syndrome (GIKANIS): An Uncommon Aetiology of Enlarged Foetal Kidneys. JOURNAL OF FETAL MEDICINE 2018. [DOI: 10.1007/s40556-018-0183-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Chang IJ, He M, Lam CT. Congenital disorders of glycosylation. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:477. [PMID: 30740408 DOI: 10.21037/atm.2018.10.45] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Congenital disorders of glycosylation are a genetically and clinically heterogeneous group of >130 diseases caused by defects in various steps along glycan modification pathways. The vast majority of these monogenic diseases are autosomal recessive and have multi-systemic manifestations, mainly growth failure, developmental delay, facial dysmorphisms, and variable coagulation and endocrine abnormalities. Carbohydrate deficient transferrin (CDT) and protein-linked glycan analysis with mass spectrometry can diagnose some subtypes of congenital disorders of glycosylation (CDG), while many currently rely on massively parallel genomic sequencing for diagnosis. Early detection is important, as a few of these disorders are treatable. Molecular and biochemical techniques continue to further our understanding of this rapidly expanding group of clinically and genetically diverse disorders.
Collapse
Affiliation(s)
- Irene J Chang
- Division of Biochemical Genetics, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Miao He
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Christina T Lam
- Division of Biochemical Genetics, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
18
|
Mankad K, Talenti G, Tan AP, Gonçalves FG, Robles C, Kan EYL, Siddiqui A. Neurometabolic Disorders of the Newborn. Top Magn Reson Imaging 2018; 27:179-196. [PMID: 30086107 DOI: 10.1097/rmr.0000000000000176] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
There is an extensive and diverse set of medical conditions affecting the neonatal brain within the spectrum of neurometabolic disorders. As such, their clinical presentations can be rather nonspecific, and can often mimic acquired entities such as hypoxic-ischemic encephalopathy and sepsis. Similarly, the radiological findings in these entities can also be frequently nonspecific, but a more detailed analysis of imaging findings (especially magnetic resonance imaging) alongside the relevant clinical details can be a rewarding experience, thus enabling a timely and targeted diagnosis. Early diagnosis of an underlying neurometabolic disorder is vital, as some of these entities are potentially treatable, and laboratory and genetic testing can be precisely targeted. Further, their detection helps with counselling families for future pregnancies. We present a review of neurometabolic disorders specific to the newborns with a focus on how neuroimaging findings match their clinical presentation patterns.
Collapse
Affiliation(s)
- Kshitij Mankad
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | | | - Ai Peng Tan
- Department of Diagnostic Imaging, National University Health System, Singapore, Singapore
| | | | - Carlos Robles
- Department of Radiology, Hospital Clinico Universidad de Chile, Región Metropolitana, Chile
| | - Elaine Y L Kan
- Department of Radiology, Hong Kong Children's Hospital, Kai Tak, Hong Kong
| | - Ata Siddiqui
- Department of Neuroradiology, King's College Hospital, London, UK
| |
Collapse
|
19
|
Zhu Y, Yan M, Lasanajak Y, Smith DF, Song X. Large scale preparation of high mannose and paucimannose N-glycans from soybean proteins by oxidative release of natural glycans (ORNG). Carbohydr Res 2018; 464:19-27. [PMID: 29803109 PMCID: PMC6309449 DOI: 10.1016/j.carres.2018.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/07/2018] [Accepted: 05/07/2018] [Indexed: 11/18/2022]
Abstract
Despite the important advances in chemical and chemoenzymatic synthesis of glycans, access to large quantities of complex natural glycans remains a major impediment to progress in Glycoscience. Here we report a large-scale preparation of N-glycans from a kilogram of commercial soy proteins using oxidative release of natural glycans (ORNG). The high mannose and paucimannose N-glycans were labeled with a fluorescent tag and purified by size exclusion and multidimensional preparative HPLC. Side products are identified and potential mechanisms for the oxidative release of natural N-glycans from glycoproteins are proposed. This study demonstrates the potential for using the ORNG approach as a complementary route to synthetic approaches for the preparation of multi-milligram quantities of biomedically relevant complex glycans.
Collapse
Affiliation(s)
- Yuyang Zhu
- Department of Biochemistry, Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Maomao Yan
- Department of Biochemistry, Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yi Lasanajak
- Department of Biochemistry, Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - David F Smith
- Department of Biochemistry, Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xuezheng Song
- Department of Biochemistry, Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
20
|
Rodríguez Cruz PM, Palace J, Beeson D. The Neuromuscular Junction and Wide Heterogeneity of Congenital Myasthenic Syndromes. Int J Mol Sci 2018; 19:ijms19061677. [PMID: 29874875 PMCID: PMC6032286 DOI: 10.3390/ijms19061677] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/17/2018] [Accepted: 05/21/2018] [Indexed: 01/16/2023] Open
Abstract
Congenital myasthenic syndromes (CMS) are genetic disorders characterised by impaired neuromuscular transmission. This review provides an overview on CMS and highlights recent advances in the field, including novel CMS causative genes and improved therapeutic strategies. CMS due to mutations in SLC5A7 and SLC18A3, impairing the synthesis and recycling of acetylcholine, have recently been described. In addition, a novel group of CMS due to mutations in SNAP25B, SYT2, VAMP1, and UNC13A1 encoding molecules implicated in synaptic vesicles exocytosis has been characterised. The increasing number of presynaptic CMS exhibiting CNS manifestations along with neuromuscular weakness demonstrate that the myasthenia can be only a small part of a much more extensive disease phenotype. Moreover, the spectrum of glycosylation abnormalities has been increased with the report that GMPPB mutations can cause CMS, thus bridging myasthenic disorders with dystroglycanopathies. Finally, the discovery of COL13A1 mutations and laminin α5 deficiency has helped to draw attention to the role of extracellular matrix proteins for the formation and maintenance of muscle endplates. The benefit of β2-adrenergic agonists alone or combined with pyridostigmine or 3,4-Dyaminopiridine is increasingly being reported for different subtypes of CMS including AChR-deficiency and glycosylation abnormalities, thus expanding the therapeutic repertoire available.
Collapse
Affiliation(s)
- Pedro M Rodríguez Cruz
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK.
- Neurosciences Group, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford OX3 9DS, UK.
| | - Jacqueline Palace
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK.
| | - David Beeson
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK.
- Neurosciences Group, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford OX3 9DS, UK.
| |
Collapse
|
21
|
Nrf2 activation attenuates genetic endoplasmic reticulum stress induced by a mutation in the phosphomannomutase 2 gene in zebrafish. Proc Natl Acad Sci U S A 2018; 115:2758-2763. [PMID: 29472449 DOI: 10.1073/pnas.1714056115] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Nrf2 plays critical roles in animals' defense against electrophiles and oxidative stress by orchestrating the induction of cytoprotective genes. We previously isolated the zebrafish mutant it768, which displays up-regulated expression of Nrf2 target genes in an uninduced state. In this paper, we determine that the gene responsible for it768 was the zebrafish homolog of phosphomannomutase 2 (Pmm2), which is a key enzyme in the initial steps of N-glycosylation, and its mutation in humans leads to PMM2-CDG (congenital disorders of glycosylation), the most frequent type of CDG. The pmm2it768 larvae exhibited mild defects in N-glycosylation, indicating that the pmm2it768 mutation is a hypomorph, as in human PMM2-CDG patients. A gene expression analysis showed that pmm2it768 larvae display up-regulation of endoplasmic reticulum (ER) stress, suggesting that the activation of Nrf2 was induced by the ER stress. Indeed, the treatment with the ER stress-inducing compounds up-regulated the gstp1 expression in an Nrf2-dependent manner. Furthermore, the up-regulation of gstp1 by the pmm2 inactivation was diminished by knocking down or out double-stranded RNA-activated protein kinase (PKR)-like ER kinase (PERK), one of the main ER stress sensors, suggesting that Nrf2 was activated in response to the ER stress via the PERK pathway. ER stress-induced activation of Nrf2 was reported previously, but the results have been controversial. Our present study clearly demonstrated that ER stress can indeed activate Nrf2 and this regulation is evolutionarily conserved among vertebrates. Moreover, ER stress induced in pmm2it768 mutants was ameliorated by the treatment of the Nrf2-activator sulforaphane, indicating that Nrf2 plays significant roles in the reduction of ER stress.
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Congenital myasthenic syndromes (CMS) are a group of heterogeneous inherited disorders caused by mutations in genes encoding proteins essential for the integrity of neuromuscular transmission. This review updates the reader on recent findings that have expanded the phenotypic spectrum and suggested improved treatment strategies. RECENT FINDINGS The use of next-generation sequencing is continuing to unearth new genes in which mutations can give rise to defective neuromuscular transmission. The defective transmission may be part of an overall more complex phenotype in which there may be muscle, central nervous system or other involvement. Notably, mutations in series of genes encoding presynaptic proteins are being identified. Further work on mutations found in the AGRN-MUSK acetylcholine receptor clustering pathway has helped characterize the role of LRP4 and broadened the phenotypic spectrum for AGRN mutations. Mutations in another extracellular matrix protein, collagen 13A1 and in GMPPB have also been found to cause a CMS. Finally, there are an increasing number of reports for the beneficial effects of treatment with β2-adrenergic receptor agonists. SUMMARY Recent studies of the CMS illustrate the increasing complexity of the genetics, pathophysiological mechanisms and the need to tailor therapy for the genetic disorders of the neuromuscular junction.
Collapse
|
23
|
de Freitas C, dos Reis V, Silva S, Videira PA, Morava E, Jaeken J. Public and patient involvement in needs assessment and social innovation: a people-centred approach to care and research for congenital disorders of glycosylation. BMC Health Serv Res 2017; 17:682. [PMID: 28950866 PMCID: PMC5615629 DOI: 10.1186/s12913-017-2625-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 09/18/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Public and patient involvement in the design of people-centred care and research is vital for communities whose needs are underserved, as are people with rare diseases. Innovations devised collectively by patients, caregivers, professionals and other members of the public can foster transformative change toward more responsive services and research. However, attempts to involve lay and professional stakeholders in devising community-framed strategies to address the unmet needs of rare diseases are lacking. In this study, we engaged with the community of Congenital Disorders of Glycosylation (CDG) to assess its needs and elicit social innovations to promote people-centred care and research. METHODS Drawing on a qualitative study, we conducted three think tanks in France with a total of 48 participants, including patients/family members (n = 18), health care professionals (n = 7), researchers (n = 7) and people combining several of these roles (n = 16). Participants came from 20 countries across five continents. They were selected from the registry of the Second World Conference on CDG through heterogeneity and simple random sampling. Inductive and deductive approaches were employed to conduct interpretational analysis using open, axial and selective coding, and the constant-comparison method to facilitate the emergence of categories and core themes. RESULTS The CDG community has unmet needs for information, quality health care, psychosocial support and representation in decision-making concerned with care and research. According to participants, these needs can be addressed through a range of social innovations, including peer-support communities, web-based information resources and a CDG expertise platform. CONCLUSION This is one of the few studies to engage lay and professional experts in needs assessment and innovation for CDG at a global level. Implementing the innovations proposed by the CDG community is likely to have ethical, legal and social implications associated with the potential donation of patients' clinical and biological material that need to be assessed and regulated with involvement from all stakeholders. To promote people-centred care for the CDG community, and increase its participation in the governance of care and research, it is necessary to create participatory spaces in which the views of people affected by CDG can be fully expressed.
Collapse
Affiliation(s)
- Cláudia de Freitas
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Institutional address 1: Rua das Taipas 135, 4050-600, Porto, Portugal
- Centre for Research and Studies in Sociology - University Institute of Lisbon, Porto, Portugal
- Institutional address 2: Avenida das Forças Armadas, 1649-026, Lisbon, Portugal
| | - Vanessa dos Reis
- Founder of the Portuguese Association for CDG (APCDG), Porto, Portugal
- Institutional address: Rua Manuel da Fonseca 46, 2820-389, Almada, Portugal
| | - Susana Silva
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Institutional address 1: Rua das Taipas 135, 4050-600, Porto, Portugal
| | - Paula A. Videira
- Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Lisbon, Portugal
- Institutional address: Glycoimmunology group Lab 3.19 - Departamento Ciências da Vida (Ed Departamental), Faculdade de Ciências e Tecnologia, 2829-516 Caparica, Portugal
| | - Eva Morava
- School of Medicine, Tulane University, New Orleans, USA
- Institutional address: Hayward Genetics Center SL#31, Tulane University Medical School, 1430 Tulane Ave, New Orleans, LA 70112 USA
| | - Jaak Jaeken
- Department of Pediatrics, Center for Metabolic Disease, University Hospital Gasthuisberg, Leuven, Belgium
- Institutional Address: Herestraat 49, 3000, Leuven, Belgium
| |
Collapse
|
24
|
Exome sequence identified a c.320A > G ALG13 variant in a female with infantile epileptic encephalopathy with normal glycosylation and random X inactivation: Review of the literature. Eur J Med Genet 2017; 60:541-547. [PMID: 28778787 DOI: 10.1016/j.ejmg.2017.07.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 07/12/2017] [Accepted: 07/30/2017] [Indexed: 12/24/2022]
Abstract
Congenital Disorders of Glycosylation (CDG) are new and rapidly expanding neurometabolic disorders with multisystem involvements, broad phenotypic manifestations, and variable severity. The majority results from a defect of one of the steps involved with protein or lipid N-glycosylation pathway. Almost all are inherited in autosomal recessive patterns with a few exceptions such as the X-linked ALG13. Mutations of ALG13 are reported, so far in only 10 patients, all were ascertained through exome/genome sequencing. Specifically, the ALG13 c.320A > G (p.Asn107Ser) variant was reported only in females and in all were de novo mutations. These findings may suggest an X-linked dominant inheritance of this mutation with embryonic male lethality. These patients presented with severe infantile epileptic encephalopathy, global developmental delay, and multisystem abnormalities. Only two of these females had glycosylation studies done, and both showed normal pattern of glycosylated serum transferrin isoforms, and none had their X-chromosome inactivation patterns studied. Here, we report on another female patient who is heterozygous for the same ALG13 c.320A > G (p.Asn107Ser) variant. She presented with infantile spasms, epileptic encephalopathy, hypsarrhythmia, hypotonia, developmental delay, intellectual disability, abnormal coagulation profile, feeding problems, hypotonia, and dysmorphic features. The diagnosis of CGD was suspected clinically, but glycosylation studies were done twice and showed normal patterns on both occasions. Her X-inactivation study was also done and, surprisingly, showed a random pattern of X-inactivation, with no evidence of skewness.
Collapse
|
25
|
Alsubhi S, Alhashem A, Faqeih E, Alfadhel M, Alfaifi A, Altuwaijri W, Alsahli S, Aldhalaan H, Alkuraya FS, Hundallah K, Mahmoud A, Alasmari A, Mutairi FA, Abduraouf H, AlRasheed L, Alshahwan S, Tabarki B. Congenital disorders of glycosylation: The Saudi experience. Am J Med Genet A 2017; 173:2614-2621. [DOI: 10.1002/ajmg.a.38358] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/10/2017] [Accepted: 06/14/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Sarah Alsubhi
- Division of Pediatric Neurology; Department of Pediatrics, Prince Sultan Military Medical City; Riyadh Saudi Arabia
| | - Amal Alhashem
- Division of Genetics; Department of Pediatrics; Prince Sultan Military Medical City; Riyadh Saudi Arabia
| | - Eissa Faqeih
- Department of Pediatric Subspecialties; Children's Hospital, King Fahad Medical City; Riyadh Saudi Arabia
| | - Majid Alfadhel
- Division of Genetics; Department of Pediatrics, King Abdulaziz Medical City; Riyadh Saudi Arabia
| | - Abdullah Alfaifi
- Division of Genetics; Department of Pediatrics, King Abdulaziz Medical City; Riyadh Saudi Arabia
| | - Waleed Altuwaijri
- Division of Pediatric Neurology; Department of Pediatrics, King Abdulaziz Medical City; Riyadh Saudi Arabia
| | - Saud Alsahli
- Division of Genetics; Department of Pediatrics, King Abdulaziz Medical City; Riyadh Saudi Arabia
| | - Hesham Aldhalaan
- Division of Pediatric Neurology; Department of Neurosciences, King Faisal Specialist Hospital and Research Center; Riyadh Saudi Arabia
| | - Fowzan S. Alkuraya
- Department of Genetics; King Faisal Specialist Hospital and Research Center; Riyadh Saudi Arabia
- Department of Anatomy and Cell Biology; College of Medicine, Alfaisal University; Riyadh Saudi Arabia
| | - Khalid Hundallah
- Division of Pediatric Neurology; Department of Pediatrics, Prince Sultan Military Medical City; Riyadh Saudi Arabia
| | - Adel Mahmoud
- Department of Pediatric Subspecialties; Children's Hospital, King Fahad Medical City; Riyadh Saudi Arabia
| | - Ali Alasmari
- Department of Pediatric Subspecialties; Children's Hospital, King Fahad Medical City; Riyadh Saudi Arabia
| | - Fuad Al Mutairi
- Division of Genetics; Department of Pediatrics, King Abdulaziz Medical City; Riyadh Saudi Arabia
| | - Hanem Abduraouf
- Division of Genetics; Department of Pediatrics; Prince Sultan Military Medical City; Riyadh Saudi Arabia
| | - Layan AlRasheed
- Division of Genetics; Department of Pediatrics; Prince Sultan Military Medical City; Riyadh Saudi Arabia
| | - Saad Alshahwan
- Division of Pediatric Neurology; Department of Pediatrics, Prince Sultan Military Medical City; Riyadh Saudi Arabia
| | - Brahim Tabarki
- Division of Pediatric Neurology; Department of Pediatrics, Prince Sultan Military Medical City; Riyadh Saudi Arabia
| |
Collapse
|
26
|
Totten SM, Feasley CL, Bermudez A, Pitteri SJ. Parallel Comparison of N-Linked Glycopeptide Enrichment Techniques Reveals Extensive Glycoproteomic Analysis of Plasma Enabled by SAX-ERLIC. J Proteome Res 2017; 16:1249-1260. [PMID: 28199111 DOI: 10.1021/acs.jproteome.6b00849] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protein glycosylation is of increasing interest due to its important roles in protein function and aberrant expression with disease. Characterizing protein glycosylation remains analytically challenging due to its low abundance, ion suppression issues, and microheterogeneity at glycosylation sites, especially in complex samples such as human plasma. In this study, the utility of three common N-linked glycopeptide enrichment techniques is compared using human plasma. By analysis on an LTQ-Orbitrap Elite mass spectrometer, electrostatic repulsion hydrophilic interaction liquid chromatography using strong anion exchange solid-phase extraction (SAX-ERLIC) provided the most extensive N-linked glycopeptide enrichment when compared with multilectin affinity chromatography (M-LAC) and Sepharose-HILIC enrichments. SAX-ERLIC enrichment yielded 191 unique glycoforms across 72 glycosylation sites from 48 glycoproteins, which is more than double that detected using other enrichment techniques. The greatest glycoform diversity was observed in SAX-ERLIC enrichment, with no apparent bias toward specific glycan types. SAX-ERLIC enrichments were additionally analyzed by an Orbitrap Fusion Lumos mass spectrometer to maximize glycopeptide identifications for a more comprehensive assessment of protein glycosylation. In these experiments, 829 unique glycoforms were identified across 208 glycosylation sites from 95 plasma glycoproteins, a significant improvement from the initial method comparison and one of the most extensive site-specific glycosylation analysis in immunodepleted human plasma to date. Data are available via ProteomeXchange with identifier PXD005655.
Collapse
Affiliation(s)
- Sarah M Totten
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine , 3155 Porter Drive MC5483, Palo Alto, California 94304, United States
| | - Christa L Feasley
- ThermoFisher Scientific , 1400 Northpoint Parkway Suite 10, West Palm Beach, Florida 33407, United States
| | - Abel Bermudez
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine , 3155 Porter Drive MC5483, Palo Alto, California 94304, United States
| | - Sharon J Pitteri
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine , 3155 Porter Drive MC5483, Palo Alto, California 94304, United States
| |
Collapse
|
27
|
Abstract
The zebrafish skeleton shares many similarities with human and other vertebrate skeletons. Over the past years, work in zebrafish has provided an extensive understanding of the basic developmental mechanisms and cellular pathways directing skeletal development and homeostasis. This review will focus on the cell biology of cartilage and bone and how the basic cellular processes within chondrocytes and osteocytes function to assemble the structural frame of a vertebrate body. We will discuss fundamental functions of skeletal cells in production and secretion of extracellular matrix and cellular activities leading to differentiation of progenitors to mature cells that make up the skeleton. We highlight important examples where findings in zebrafish provided direction for the search for genes causing human skeletal defects and also how zebrafish research has proven important for validating candidate human disease genes. The work we cover here illustrates utility of zebrafish in unraveling molecular mechanisms of cellular functions necessary to form and maintain a healthy skeleton.
Collapse
Affiliation(s)
- Lauryn N Luderman
- Vanderbilt University Medical Center, Nashville, TN, United States; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States; Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, United States
| | - Gokhan Unlu
- Vanderbilt University Medical Center, Nashville, TN, United States; Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, United States; Vanderbilt University, Nashville, TN, United States
| | - Ela W Knapik
- Vanderbilt University Medical Center, Nashville, TN, United States; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States; Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, United States; Vanderbilt University, Nashville, TN, United States.
| |
Collapse
|
28
|
Thiesler CT, Cajic S, Hoffmann D, Thiel C, van Diepen L, Hennig R, Sgodda M, Weiβmann R, Reichl U, Steinemann D, Diekmann U, Huber NMB, Oberbeck A, Cantz T, Kuss AW, Körner C, Schambach A, Rapp E, Buettner FFR. Glycomic Characterization of Induced Pluripotent Stem Cells Derived from a Patient Suffering from Phosphomannomutase 2 Congenital Disorder of Glycosylation (PMM2-CDG). Mol Cell Proteomics 2016; 15:1435-52. [PMID: 26785728 PMCID: PMC4824866 DOI: 10.1074/mcp.m115.054122] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Indexed: 01/08/2023] Open
Abstract
PMM2-CDG, formerly known as congenital disorder of glycosylation-Ia (CDG-Ia), is caused by mutations in the gene encoding phosphomannomutase 2 (PMM2). This disease is the most frequent form of inherited CDG-diseases affecting protein N-glycosylation in human. PMM2-CDG is a multisystemic disease with severe psychomotor and mental retardation. In order to study the pathophysiology of PMM2-CDG in a human cell culture model, we generated induced pluripotent stem cells (iPSCs) from fibroblasts of a PMM2-CDG-patient (PMM2-iPSCs). Expression of pluripotency factors and in vitro differentiation into cell types of the three germ layers was unaffected in the analyzed clone PMM2-iPSC-C3 compared with nondiseased human pluripotent stem cells (hPSCs), revealing no broader influence of the PMM2 mutation on pluripotency in cell culture. Analysis of gene expression by deep-sequencing did not show obvious differences in the transcriptome between PMM2-iPSC-C3 and nondiseased hPSCs. By multiplexed capillary gel electrophoresis coupled to laser induced fluorescence detection (xCGE-LIF) we could show that PMM2-iPSC-C3 exhibit the common hPSC N-glycosylation pattern with high-mannose-type N-glycans as the predominant species. However, phosphomannomutase activity of PMM2-iPSC-C3 was 27% compared with control hPSCs and lectin staining revealed an overall reduced protein glycosylation. In addition, quantitative assessment of N-glycosylation by xCGE-LIF showed an up to 40% reduction of high-mannose-type N-glycans in PMM2-iPSC-C3, which was in concordance to the observed reduction of the Glc3Man9GlcNAc2 lipid-linked oligosaccharide compared with control hPSCs. Thus we could model the PMM2-CDG disease phenotype of hypoglycosylation with patient derived iPSCs in vitro. Knock-down of PMM2 by shRNA in PMM2-iPSC-C3 led to a residual activity of 5% and to a further reduction of the level of N-glycosylation. Taken together we have developed human stem cell-based cell culture models with stepwise reduced levels of N-glycosylation now enabling to study the role of N-glycosylation during early human development.
Collapse
Affiliation(s)
- Christina T Thiesler
- From the ‡REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; §Institute for Cellular Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Samanta Cajic
- ¶Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany
| | - Dirk Hoffmann
- From the ‡REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; ‖Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Christian Thiel
- **Center for Child and Adolescent Medicine, Department Kinderheilkunde I, 69120 Heidelberg, Germany
| | - Laura van Diepen
- ‡‡Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute for Genetics and Functional Genomics, Ernst-Moritz-Arndt University, 17475 Greifswald, Germany
| | - René Hennig
- ¶Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany; §§glyXera GmbH, 39120 Magdeburg, Germany
| | - Malte Sgodda
- From the ‡REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; ¶¶Translational Hepatology and Stem Cell Biology, Dept. of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
| | - Robert Weiβmann
- ‡‡Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute for Genetics and Functional Genomics, Ernst-Moritz-Arndt University, 17475 Greifswald, Germany
| | - Udo Reichl
- ¶Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany
| | - Doris Steinemann
- From the ‡REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; ‖‖Institute of Human Genetics, Hannover Medical School, 30625 Hannover, Germany
| | - Ulf Diekmann
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Nicolas M B Huber
- From the ‡REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; §Institute for Cellular Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Astrid Oberbeck
- From the ‡REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; §Institute for Cellular Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Tobias Cantz
- From the ‡REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; ¶¶Translational Hepatology and Stem Cell Biology, Dept. of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
| | - Andreas W Kuss
- ‡‡Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute for Genetics and Functional Genomics, Ernst-Moritz-Arndt University, 17475 Greifswald, Germany
| | - Christian Körner
- **Center for Child and Adolescent Medicine, Department Kinderheilkunde I, 69120 Heidelberg, Germany
| | - Axel Schambach
- From the ‡REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; ‖Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Erdmann Rapp
- ¶Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany; §§glyXera GmbH, 39120 Magdeburg, Germany
| | - Falk F R Buettner
- From the ‡REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; §Institute for Cellular Chemistry, Hannover Medical School, 30625 Hannover, Germany;
| |
Collapse
|
29
|
Emergence of a Genetic Diagnosis: Case Presentation of a Preterm Infant With Cardiofaciocutaneous Syndrome. Adv Neonatal Care 2015. [PMID: 26225596 DOI: 10.1097/anc.0000000000000210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Advanced prenatal screening and diagnostic testing have increased the number of newborns born with a confirmed diagnosis. Not all infants, however, are born with a known diagnosis. In fact, for some conditions, physical findings evolve over time and diagnosis can be further delayed because of premature birth. PURPOSE This article shares a case report of a dysmorphic preterm infant admitted to the intensive care nursery for routine care. The emergence of physical findings as the baby matured during the first weeks of life and the stepwise, diagnostic approach used to confirm a rare genetic condition, cardiofaciocutaneous (CFC) syndrome, is provided. CASE FINDINGS/RESULTS Key physical differences apparent at birth prompted screening for several genetic syndromes and a number of inborn errors of metabolism. As the phenotype emerged, a type of RASopathy entered the differential, the most likely of which was CFC syndrome. IMPLICATIONS FOR PRACTICE Although CFC syndrome is rare, the combined incidence rate of RASopathies is greater, and as such, providers should be familiar with such conditions. Classic features may not be apparent in preterm infants so providers must remain astute to physical changes and communicate them with genetic consultants. IMPLICATIONS FOR RESEARCH Gaining a better understanding of how providers can best support parents through the lengthy, diagnostic odyssey of genetic testing is important. In addition, ongoing research is needed to try to identify a genotype-phenotype correlation for CFC syndrome to guide patient surveillance and provide prognostic information to parents.
Collapse
|
30
|
Potelle S, Klein A, Foulquier F. Golgi post-translational modifications and associated diseases. J Inherit Metab Dis 2015; 38:741-51. [PMID: 25967285 DOI: 10.1007/s10545-015-9851-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/02/2015] [Accepted: 04/08/2015] [Indexed: 11/24/2022]
Abstract
For non specialists, Golgi is a very well known subcellular compartment involved in secretion and correct targeting of soluble and transmembrane proteins. Nevertheless, Golgi is also specifically involved in many different and diverse post-translational modifications. Through its diverse functions, Golgi is not only able to modify secreted and transmembrane proteins but also cytoplasmic proteins. The Golgi apparatus research field is so broad that an exhaustive review of this organelle is not doable here. The goal of this review is to cover the main post-translational modifications occurring at the Golgi level and present the identified associated diseases.
Collapse
Affiliation(s)
- Sven Potelle
- CNRS-UMR 8576, Structural and Functional Glycobiology unit, FRABIO, University of Lille, 59655, Villeneuve d'Ascq, France
| | | | | |
Collapse
|
31
|
Inherited disorders of the neuromuscular junction: an update. J Neurol 2014; 261:2234-43. [PMID: 25305004 DOI: 10.1007/s00415-014-7520-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 09/23/2014] [Indexed: 10/24/2022]
Abstract
Congenital myasthenic syndromes (CMSs) are a group of heterogeneous inherited disorders caused by mutations in genes affecting the function and structure of the neuromuscular junction. This review updates the reader on established and novel subtypes of congenital myasthenia, and the treatment strategies for these increasingly heterogeneous disorders. The discovery of mutations associated with the N-glycosylation pathway and in the family of serine peptidases has shown that causative genes encoding ubiquitously expressed molecules can produce defects at the human neuromuscular junction. By contrast, mutations in lipoprotein-like receptor 4 (LRP4), a long-time candidate gene for congenital myasthenia, and a novel phenotype of myasthenia with distal weakness and atrophy due to mutations in AGRN have now been described. In addition, a pathogenic splicing mutation in a nonfunctional exon of CHRNA1 has been reported emphasizing the importance of analysing nonfunctional exons in genetic analysis. The benefit of salbutamol and ephedrine alone or combined with pyridostigmine or 3,4-DAP is increasingly being reported for particular subtypes of CMS.
Collapse
|
32
|
Selective Screening for Metabolic Disorders in the Slovenian Pediatric Population. J Med Biochem 2014; 34:58-63. [PMID: 28356825 PMCID: PMC4922335 DOI: 10.2478/jomb-2014-0056] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 05/09/2014] [Indexed: 11/21/2022] Open
Abstract
Background Inborn errors of metabolism (IEM) are disorders with a block in the metabolic pathway caused by a genetic defect of a specific enzyme. Although each of these diseases is quite rare, as a group they account for a significant proportion of newborn and childhood morbidity and mortality. Early diagnosis is important to prevent complications or even death of the child. Selective screening is an important diagnostic tool for the diagnosis of IEM. Methods In Slovenia, symptomatic patients with suspected IEM are referred to the University Children’s Hospital Ljubljana. Techniques used for selective screening are gas chromatography-mass spectrometry, ion exchange chromatography-post-column derivatization, liquid chromatography-tandem mass spectrometry and isoelectric focusing. Fluorimetric method is used for enzyme activity measurement. Results There are 168 patients with amino and organic acidemias, 5 patients with disorders in fatty acids metabolism, 1 patient with a congenital disorder of glycosylation, 42 patients with Fabry disease (of which 37 are adult) and 20 patients with Gaucher disease (of which 18 are adult) in the Slovenian Register for Rare Diseases. Conclusions In Slovenia, management of patients with IEM is centralized at the University Children’s Hospital, with the exception of adult patients with Fabry and Gaucher disease. The team work is well organized with close cooperation between the laboratory and pediatricians specialized in metabolic disorders. According to the known frequencies of IEM from the literature, we would expect more positive results than obtained. To evaluate these results, we are planning to perform a pilot study on expanded newborn screening.
Collapse
|
33
|
|
34
|
Monies DM, Al-Hindi HN, Al-Muhaizea MA, Jaroudi DJ, Al-Younes B, Naim EA, Wakil SM, Meyer BF, Bohlega S. Clinical and pathological heterogeneity of a congenital disorder of glycosylation manifesting as a myasthenic/myopathic syndrome. Neuromuscul Disord 2014; 24:353-9. [DOI: 10.1016/j.nmd.2013.12.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 12/07/2013] [Accepted: 12/24/2013] [Indexed: 01/05/2023]
|
35
|
Messenger WB, Yang P, Pennesi ME. Ophthalmic findings in an infant with phosphomannomutase deficiency. Doc Ophthalmol 2014; 128:149-53. [PMID: 24493206 DOI: 10.1007/s10633-014-9427-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 01/28/2014] [Indexed: 10/25/2022]
Abstract
INTRODUCTION We present the ocular features including full-field electroretinography (ff-ERG) and spectral domain optical coherence tomography (SD-OCT) in a 14-month-old infant with congenital disorder of glycosylation type 1a (PMM2-CDG). METHODS AND RESULTS An infant with failure to thrive, bilateral neurosensory hearing loss, cerebellar hypoplasia, and pericardial effusions was referred to ophthalmic genetics for evaluation. The patient had fix and follow vision, an intermittent esotropia, moderate myopia, a hypo pigmented macula, and mild attenuation of the retinal vasculature. Electroretinography showed severe reduction in both rod and cone-dependent responses with a negative waveform pattern. Handheld SD-OCT revealed severe attenuation of the outer retina throughout the macula, but with preservation of outer retinal structures in the fovea. CONCLUSION PMM2-CDG is a rare congenital disorder for which both ff-ERG and SD-OCT were useful in demonstrating early changes in retinal architecture and function.
Collapse
Affiliation(s)
- Wyatt B Messenger
- Casey Eye Institute, Oregon Health and Science University, 3375 SW Terwilliger Blvd, Portland, OR, 97239, USA
| | | | | |
Collapse
|
36
|
Abstract
Oligosaccharyltransferase (OT) catalyzes the signature reaction of the asparagine-linked glycosylation pathway, namely, the transfer of preformed glycans from the lipid-linked oligosaccharide Glc3Man9GlcNAc2-P-P-Dolichol (G3M9Gn2-LLO) to appropriate asparaginyl residues on acceptor polypeptides. We have identified a reaction, possibly catalyzed by OT, that results in the hydrolysis or "transfer to water" of host LLOs in response to viral infection with release of a free G3M9Gn2 glycan. The loss of LLO ostensibly hinders N-glycosylation of viral polypeptides. This response is achieved by a novel stress-activated signaling pathway in which free mannose-6-phosphate (M6P) acts as a second-messenger. Here, we describe methods with permeabilized mammalian cells for activation of the M6P-regulated LLO hydrolysis, or transfer of glycan to water, in vitro.
Collapse
|
37
|
Wolthuis DFGJ, van Asbeck EV, Kozicz T, Morava E. Abnormal fat distribution in PMM2-CDG. Mol Genet Metab 2013; 110:411-3. [PMID: 24063868 DOI: 10.1016/j.ymgme.2013.08.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/29/2013] [Accepted: 08/30/2013] [Indexed: 11/16/2022]
Abstract
We hypothesize that abnormal fat distribution, a common feature of PMM2-CDG, is associated with abnormal perinatal hormone regulation. We assessed 32 cases with PMM2-CDG, for the comorbidity of hypoglycemia/hyperinsulinism and fat pads. Ninety percent of patients with hypoketotic hypoglycemia and/or hyperinsulinism had abnormal fat distribution, while normoglycemic patients showed this feature in 50% of the cases. This statistically significant difference suggests an etiological role of the insulin receptor in developing abnormal fat distribution in PMM2-CDG.
Collapse
Affiliation(s)
- D F G J Wolthuis
- Hayward Genetics Center, Tulane University Medical School, 1430 Tulane Ave, New Orleans LA 70112, USA
| | | | | | | |
Collapse
|
38
|
Cline A, Gao N, Flanagan-Steet H, Sharma V, Rosa S, Sonon R, Azadi P, Sadler KC, Freeze HH, Lehrman MA, Steet R. A zebrafish model of PMM2-CDG reveals altered neurogenesis and a substrate-accumulation mechanism for N-linked glycosylation deficiency. Mol Biol Cell 2012; 23:4175-87. [PMID: 22956764 PMCID: PMC3484097 DOI: 10.1091/mbc.e12-05-0411] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
PMM2-CDG patients have phosphomannomutase (Pmm2) deficiency, with developmental and N-linked glycosylation defects attributed to depletion of mannose-1-phosphate and downstream lipid-linked oligosaccharides (LLOs). This, the first PMM2-CDG zebrafish model, shows, unexpectedly, that accumulation of the Pmm2 substrate mannose-6-phosphate explains LLO deficiency. Congenital disorder of glycosylation (PMM2-CDG) results from mutations in pmm2, which encodes the phosphomannomutase (Pmm) that converts mannose-6-phosphate (M6P) to mannose-1-phosphate (M1P). Patients have wide-spectrum clinical abnormalities associated with impaired protein N-glycosylation. Although it has been widely proposed that Pmm2 deficiency depletes M1P, a precursor of GDP-mannose, and consequently suppresses lipid-linked oligosaccharide (LLO) levels needed for N-glycosylation, these deficiencies have not been demonstrated in patients or any animal model. Here we report a morpholino-based PMM2-CDG model in zebrafish. Morphant embryos had developmental abnormalities consistent with PMM2-CDG patients, including craniofacial defects and impaired motility associated with altered motor neurogenesis within the spinal cord. Significantly, global N-linked glycosylation and LLO levels were reduced in pmm2 morphants. Although M1P and GDP-mannose were below reliable detection/quantification limits, Pmm2 depletion unexpectedly caused accumulation of M6P, shown earlier to promote LLO cleavage in vitro. In pmm2 morphants, the free glycan by-products of LLO cleavage increased nearly twofold. Suppression of the M6P-synthesizing enzyme mannose phosphate isomerase within the pmm2 background normalized M6P levels and certain aspects of the craniofacial phenotype and abrogated pmm2-dependent LLO cleavage. In summary, we report the first zebrafish model of PMM2-CDG and uncover novel cellular insights not possible with other systems, including an M6P accumulation mechanism for underglycosylation.
Collapse
Affiliation(s)
- Abigail Cline
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Wada Y, Kadoya M, Okamoto N. Mass spectrometry of apolipoprotein C-III, a simple analytical method for mucin-type O-glycosylation and its application to an autosomal recessive cutis laxa type-2 (ARCL2) patient. Glycobiology 2012; 22:1140-4. [PMID: 22611120 DOI: 10.1093/glycob/cws086] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Apolipoprotein C-III (apoCIII) is a small glycoprotein with a single mucin-type core-1 oligosaccharide and is analyzed by isoelectric focusing (IEF) for the diagnosis of genetic defects in O-glycan biosynthesis such as congenital disorders of glycosylation. In the present study, mass spectrometry of apoCIII, after a simple procedure for sample preparation using a small amount of serum, was demonstrated to be a reliable alternative to IEF. It allows reproducible glycan profiling and detection of unglycosylated species. This method was applied to an autosomal recessive cutis laxa type-2 patient and demonstrated decreased site occupancy by O-glycosylation.
Collapse
Affiliation(s)
- Yoshinao Wada
- Department of Molecular Medicine, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan.
| | | | | |
Collapse
|
40
|
Barvkar VT, Pardeshi VC, Kale SM, Kadoo NY, Gupta VS. Phylogenomic analysis of UDP glycosyltransferase 1 multigene family in Linum usitatissimum identified genes with varied expression patterns. BMC Genomics 2012; 13:175. [PMID: 22568875 PMCID: PMC3412749 DOI: 10.1186/1471-2164-13-175] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 05/08/2012] [Indexed: 10/28/2022] Open
Abstract
BACKGROUND The glycosylation process, catalyzed by ubiquitous glycosyltransferase (GT) family enzymes, is a prevalent modification of plant secondary metabolites that regulates various functions such as hormone homeostasis, detoxification of xenobiotics and biosynthesis and storage of secondary metabolites. Flax (Linum usitatissimum L.) is a commercially grown oilseed crop, important because of its essential fatty acids and health promoting lignans. Identification and characterization of UDP glycosyltransferase (UGT) genes from flax could provide valuable basic information about this important gene family and help to explain the seed specific glycosylated metabolite accumulation and other processes in plants. Plant genome sequencing projects are useful to discover complexity within this gene family and also pave way for the development of functional genomics approaches. RESULTS Taking advantage of the newly assembled draft genome sequence of flax, we identified 137 UDP glycosyltransferase (UGT) genes from flax using a conserved signature motif. Phylogenetic analysis of these protein sequences clustered them into 14 major groups (A-N). Expression patterns of these genes were investigated using publicly available expressed sequence tag (EST), microarray data and reverse transcription quantitative real time PCR (RT-qPCR). Seventy-three per cent of these genes (100 out of 137) showed expression evidence in 15 tissues examined and indicated varied expression profiles. The RT-qPCR results of 10 selected genes were also coherent with the digital expression analysis. Interestingly, five duplicated UGT genes were identified, which showed differential expression in various tissues. Of the seven intron loss/gain positions detected, two intron positions were conserved among most of the UGTs, although a clear relationship about the evolution of these genes could not be established. Comparison of the flax UGTs with orthologs from four other sequenced dicot genomes indicated that seven UGTs were flax diverged. CONCLUSIONS Flax has a large number of UGT genes including few flax diverged ones. Phylogenetic analysis and expression profiles of these genes identified tissue and condition specific repertoire of UGT genes from this crop. This study would facilitate precise selection of candidate genes and their further characterization of substrate specificities and in planta functions.
Collapse
Affiliation(s)
- Vitthal T Barvkar
- Plant Molecular Biology Group, Biochemical Sciences Division, National Chemical Laboratory, Pune, India
| | | | | | | | | |
Collapse
|
41
|
Mohamed M, Theodore M, Claahsen-van der Grinten H, van Herwaarden AE, Huijben K, van Dongen L, Kouwenberg D, Lefeber DJ, Wevers RA, Morava E. Thyroid function in PMM2-CDG: diagnostic approach and proposed management. Mol Genet Metab 2012; 105:681-3. [PMID: 22386715 DOI: 10.1016/j.ymgme.2012.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 02/01/2012] [Accepted: 02/01/2012] [Indexed: 10/28/2022]
Abstract
Glycoproteins are essential in the production, transport, storage and regulation of thyroid hormones. Altered glycosylation has a potential impact on thyroid function. Abnormal thyroid function tests have been described in patients with congenital disorders of glycosylation. We evaluated the reliability of biochemical markers and investigated thyroid function in 18 PMM2-CDG patients. We propose an expectative therapeutic approach for neonates with thyroid abnormalities in CDG.
Collapse
Affiliation(s)
- Miski Mohamed
- Department of Pediatrics, Radboud University Nijmegen Medical Center, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Congenital disorders of glycosylation (CDG) are a group of disorders involving a defect in the synthesis of oligosaccharides. Oligosaccharides are fundamental for protein stability and cellular communication and are present in almost every cell in the human body. A defect in the synthesis of oligosaccharides can result in multisystemic effects. Congenital disorders of glycosylation are classified into type I and type II disorders, each with subgroup classifications. All CDGs are autosomal recessive disorders, with CDG type I being the most common. This article will explore both types of CDG, their clinical presentation, diagnosis, and management.
Collapse
|
43
|
Abstract
Congenital disorders of glycosylation (CDG) are a group of rare genetically inherited disorders that involve the malfunction of attaching sugar molecules to lipids, proteins, or other organic molecules through an enzymatic process. The resulting defect in glycoprotein and glycolipid synthesis often has a heterogeneous range of multisystemic effects ranging from mild dysmorphism to profound organ failure and subsequent death. There are 2 types of CDG, type I and type II, with multiple subtypes within each. This column is a case presentation about an infant who presented with CDG type Ik.
Collapse
|
44
|
Targeted polymerase chain reaction-based enrichment and next generation sequencing for diagnostic testing of congenital disorders of glycosylation. Genet Med 2012; 13:921-32. [PMID: 21811164 DOI: 10.1097/gim.0b013e318226fbf2] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Congenital disorders of glycosylation are a heterogeneous group of disorders caused by deficient glycosylation, primarily affecting the N-linked pathway. It is estimated that more than 40% of congenital disorders of glycosylation patients lack a confirmatory molecular diagnosis. The purpose of this study was to improve molecular diagnosis for congenital disorders of glycosylation by developing and validating a next generation sequencing panel for comprehensive mutation detection in 24 genes known to cause congenital disorders of glycosylation. METHODS Next generation sequencing validation was performed on 12 positive control congenital disorders of glycosylation patients. These samples were blinded as to the disease-causing mutations. Both RainDance and Fluidigm platforms were used for sequence enrichment and targeted amplification. The SOLiD platform was used for sequencing the amplified products. Bioinformatic analysis was performed using NextGENe® software. RESULTS The disease-causing mutations were identified by next generation sequencing for all 12 positive controls. Additional variants were also detected in three controls that are known or predicted to impair gene function and may contribute to the clinical phenotype. CONCLUSIONS We conclude that development of next generation sequencing panels in the diagnostic laboratory where multiple genes are implicated in a disorder is more cost-effective and will result in improved and faster patient diagnosis compared with a gene-by-gene approach. Recommendations are also provided for data analysis from the next generation sequencing-derived data in the clinical laboratory, which will be important for the widespread use of this technology.
Collapse
|
45
|
Sorte H, Mørkrid L, Rødningen O, Kulseth MA, Stray-Pedersen A, Matthijs G, Race V, Houge G, Fiskerstrand T, Bjurulf B, Lyle R, Prescott T. Severe ALG8-CDG (CDG-Ih) associated with homozygosity for two novel missense mutations detected by exome sequencing of candidate genes. Eur J Med Genet 2012; 55:196-202. [PMID: 22306853 DOI: 10.1016/j.ejmg.2012.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Accepted: 01/08/2012] [Indexed: 02/08/2023]
Abstract
Posttranslationally glycosylated proteins are important in many biological processes in humans and Congenital disorders of glycosylation (CDGs) are associated with a broad range of phenotypes. Type I CDGs are a group of rare autosomal recessive conditions. To date 17 subtypes have been enzymatically and molecularly characterized. Impaired function of the enzyme dolichyl pyrophosphate Glc(1)Man(9)GlcNAc(2) alpha-1,3-glucosyltransferase encoded by the ALG8 gene, causes ALG8-CDG (CDG-Ih, OMIM #608104). This enzyme facilitates the transfer of a second glucose molecule to a growing lipid-linked oligosaccharide chain, a process that transpires in the endoplasmic reticulum (ER). We present a female patient of consanguineous parents, with pre- and postnatal growth retardation, dysmorphic features, significant developmental delay, visual impairment and an electrophoretic serum transferrin pattern indicative of a type I CDG. Type I CDG subgroup was determined by exome sequencing facilitated by homozygosity analysis. The patient was homozygous for two variants, nine nucleotides apart, in exon 8 of ALG8; c.799T > C [p.Ser267Pro] and c.808T > C [p.Phe270Leu]. Both missense mutations are predicted to affect a conserved region of an intraluminal ER loop of dolichyl pyrophosphate Glc(1)Man(9)GlcNAc(2) alpha-1,3-glucosyltransferase. To our knowledge, the current report describes the ninth published case of ALG8-CDG, contributing to the further delineation of this rare and variable disorder.
Collapse
Affiliation(s)
- Hanne Sorte
- Department of Medical Genetics, Oslo University Hospital, Nydalen, Oslo, Norway
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Glycosylation is an essential process by which sugars are attached to proteins and lipids. Complete lack of glycosylation is not compatible with life. Because of the widespread function of glycosylation, inherited disorders of glycosylation are multisystemic. Since the identification of the first defect on N-linked glycosylation in the 1980s, there are over 40 different congenital protein hypoglycosylation diseases. This review will include defects of N-linked glycosylation, O-linked glycosylation and disorders of combined N- and O-linked glycosylation.
Collapse
Affiliation(s)
- Susan E Sparks
- Department of Pediatrics, Levine Children's Hospital at Carolinas Medical Center, Charlotte, NC, USA; Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
47
|
Gao N, Shang J, Huynh D, Manthati VL, Arias C, Harding HP, Kaufman RJ, Mohr I, Ron D, Falck JR, Lehrman MA. Mannose-6-phosphate regulates destruction of lipid-linked oligosaccharides. Mol Biol Cell 2011; 22:2994-3009. [PMID: 21737679 PMCID: PMC3164449 DOI: 10.1091/mbc.e11-04-0286] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 06/08/2011] [Accepted: 06/28/2011] [Indexed: 12/22/2022] Open
Abstract
Mannose-6-phosphate (M6P) is an essential precursor for mannosyl glycoconjugates, including lipid-linked oligosaccharides (LLO; glucose(3)mannose(9)GlcNAc(2)-P-P-dolichol) used for protein N-glycosylation. In permeabilized mammalian cells, M6P also causes specific LLO cleavage. However, the context and purpose of this paradoxical reaction are unknown. In this study, we used intact mouse embryonic fibroblasts to show that endoplasmic reticulum (ER) stress elevates M6P concentrations, leading to cleavage of the LLO pyrophosphate linkage with recovery of its lipid and lumenal glycan components. We demonstrate that this M6P originates from glycogen, with glycogenolysis activated by the kinase domain of the stress sensor IRE1-α. The apparent futility of M6P causing destruction of its LLO product was resolved by experiments with another stress sensor, PKR-like ER kinase (PERK), which attenuates translation. PERK's reduction of N-glycoprotein synthesis (which consumes LLOs) stabilized steady-state LLO levels despite continuous LLO destruction. However, infection with herpes simplex virus 1, an N-glycoprotein-bearing pathogen that impairs PERK signaling, not only caused LLO destruction but depleted LLO levels as well. In conclusion, the common metabolite M6P is also part of a novel mammalian stress-signaling pathway, responding to viral stress by depleting host LLOs required for N-glycosylation of virus-associated polypeptides. Apparently conserved throughout evolution, LLO destruction may be a response to a variety of environmental stresses.
Collapse
Affiliation(s)
- Ningguo Gao
- Departments of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390
| | - Jie Shang
- Departments of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390
| | - Dang Huynh
- Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390
| | - Vijaya L. Manthati
- Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390
| | - Carolina Arias
- Department of Microbiology, New York University School of Medicine, New York, NY 10016
| | - Heather P. Harding
- University of Cambridge Metabolic Research Laboratories, Cambridge CB2 0QQ, United Kingdom
| | - Randal J. Kaufman
- Departments of Internal Medicine and Biological Chemistry, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Ian Mohr
- Department of Microbiology, New York University School of Medicine, New York, NY 10016
| | - David Ron
- University of Cambridge Metabolic Research Laboratories, Cambridge CB2 0QQ, United Kingdom
| | - John R. Falck
- Departments of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390
- Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390
| | - Mark A. Lehrman
- Departments of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390
| |
Collapse
|
48
|
Park C, Zhang J. Genome-wide evolutionary conservation of N-glycosylation sites. Mol Biol Evol 2011; 28:2351-7. [PMID: 21355035 DOI: 10.1093/molbev/msr055] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Although posttranslational protein modifications are generally thought to perform important cellular functions, recent studies showed that a large fraction of phosphorylation sites are not evolutionarily conserved. Whether the same is true for other protein modifications, such as N-glycosylation is an open question. N-glycosylation is a form of cotranslational and posttranslational modification that occurs by enzymatic addition of a polysaccharide, or glycan, to an asparagine (N) residue of a protein. Examining a large set of experimentally determined mouse N-glycosylation sites, we find that the evolutionary rate of glycosylated asparagines is significantly lower than that of nonglycosylated asparagines of the same proteins. We further confirm that the conservation of glycosylated asparagines is accompanied by the conservation of the canonical motif sequence for glycosylation, suggesting that the above substitution rate difference is related to glycosylation. Interestingly, when solvent accessibility is considered, the substitution rate disparity between glycosylated and nonglycosylated asparagines is highly significant at solvent accessible sites but not at solvent inaccessible sites. Thus, although the solvent inaccessible glycosylation sites were experimentally identified, they are unlikely to be genuine or physiologically important. For solvent accessible asparagines, our analysis reveals a widespread and strong functional constraint on glycosylation, unlike what has been observed for phosphorylation sites in most studies, including our own analysis. Because the majority of N-glycosylation occurs at solvent accessible sites, our results show an overall functional importance for N-glycosylation.
Collapse
Affiliation(s)
- Chungoo Park
- Department of Ecology and Evolutionary Biology, University of Michigan, USA
| | | |
Collapse
|
49
|
Shaik KS, Pabst M, Schwarz H, Altmann F, Moussian B. The Alg5 ortholog Wollknäuel is essential for correct epidermal differentiation during Drosophila late embryogenesis. Glycobiology 2011; 21:743-56. [DOI: 10.1093/glycob/cwq213] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
50
|
Frade-Pérez MD, Hernández-Cervantes A, Flores-Carreón A, Mora-Montes HM. Biochemical characterization of Candida albicans α-glucosidase I heterologously expressed in Escherichia coli. Antonie Van Leeuwenhoek 2010; 98:291-8. [DOI: 10.1007/s10482-010-9437-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 03/23/2010] [Indexed: 11/30/2022]
|