1
|
Imai Y, Kusano K, Aiba T, Ako J, Asano Y, Harada-Shiba M, Kataoka M, Kosho T, Kubo T, Matsumura T, Minamino T, Minatoya K, Morita H, Nishigaki M, Nomura S, Ogino H, Ohno S, Takamura M, Tanaka T, Tsujita K, Uchida T, Yamagishi H, Ebana Y, Fujita K, Ida K, Inoue S, Ito K, Kuramoto Y, Maeda J, Matsunaga K, Neki R, Sugiura K, Tada H, Tsuji A, Yamada T, Yamaguchi T, Yamamoto E, Kimura A, Kuwahara K, Maemura K, Minamino T, Morisaki H, Tokunaga K. JCS/JCC/JSPCCS 2024 Guideline on Genetic Testing and Counseling in Cardiovascular Disease. Circ J 2024; 88:2022-2099. [PMID: 39343605 DOI: 10.1253/circj.cj-23-0926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Affiliation(s)
- Yasushi Imai
- Division of Clinical Pharmacology and Division of Cardiovascular Medicine, Jichi Medical University
| | - Kengo Kusano
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Takeshi Aiba
- Department of Clinical Laboratory Medicine and Genetics, National Cerebral and Cardiovascular Center
| | - Junya Ako
- Department of Cardiovascular Medicine, Kitasato University School of Medicine
| | - Yoshihiro Asano
- Department of Genomic Medicine, National Cerebral and Cardiovascular Center
| | | | - Masaharu Kataoka
- The Second Department of Internal Medicine, University of Occupational and Environmental Health
| | - Tomoki Kosho
- Department of Medical Genetics, Shinshu University School of Medicine
| | - Toru Kubo
- Department of Cardiology and Geriatrics, Kochi Medical School, Kochi University
| | - Takayoshi Matsumura
- Division of Human Genetics, Center for Molecular Medicine, Jichi Medical University
| | - Tetsuo Minamino
- Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University
| | - Kenji Minatoya
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University
| | - Hiroyuki Morita
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
| | - Masakazu Nishigaki
- Department of Genetic Counseling, International University of Health and Welfare
| | - Seitaro Nomura
- Department of Frontier Cardiovascular Science, Graduate School of Medicine, The University of Tokyo
| | | | - Seiko Ohno
- Medical Genome Center, National Cerebral and Cardiovascular Center
| | - Masayuki Takamura
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences
| | - Toshihiro Tanaka
- Department of Human Genetics and Disease Diversity, Tokyo Medical and Dental University
| | - Kenichi Tsujita
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University
| | - Tetsuro Uchida
- Department of Surgery II (Division of Cardiovascular, Thoracic and Pediatric Surgery), Yamagata University Faculty of Medicine
| | | | - Yusuke Ebana
- Life Science and Bioethics Research Center, Tokyo Medical and Dental University Hospital
| | - Kanna Fujita
- Department of Cardiovascular Medicine, The University of Tokyo Hospital
- Department of Computational Diagnostic Radiology and Preventive Medicine, Graduate School of Medicine, The University of Tokyo
| | - Kazufumi Ida
- Division of Counseling for Medical Genetics, National Cerebral and Cardiovascular Center
| | - Shunsuke Inoue
- Department of Cardiovascular Medicine, The University of Tokyo Hospital
| | - Kaoru Ito
- Laboratory for Cardiovascular Genomics and Informatics, RIKEN Center for Integrative Medical Sciences
| | - Yuki Kuramoto
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine
| | - Jun Maeda
- Department of Cardiology, Tokyo Metropolitan Children's Medical Center
| | - Keiji Matsunaga
- Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University
| | - Reiko Neki
- Division of Counseling for Medical Genetics, Department of Obstetrics and Gynecology, National Cerebral and Cardiovascular Center
| | - Kenta Sugiura
- Department of Cardiology and Geriatrics, Kochi Medical School, Kochi University
| | - Hayato Tada
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University
| | - Akihiro Tsuji
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | | | | | | | - Akinori Kimura
- Institutional Research Office, Tokyo Medical and Dental University
| | - Koichiro Kuwahara
- Department of Cardiovascular Medicine, Shinshu University School of Medicine
| | - Koji Maemura
- Department of Cardiovascular Medicine, Nagasaki University Graduate School of Biomedical Sciences
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine
| | | | - Katsushi Tokunaga
- Genome Medical Science Project, National Center for Global Health and Medicine
| |
Collapse
|
2
|
Yokawa K, Hoshino M, Yagi N, Nakashima Y, Nakagawa K, Okita Y, Okada K, Tsukube T. Density of fresh wall of acute aortic dissection with synchrotron-based x-ray phase tomography. INTERDISCIPLINARY CARDIOVASCULAR AND THORACIC SURGERY 2024; 39:ivae157. [PMID: 39271147 PMCID: PMC11580683 DOI: 10.1093/icvts/ivae157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/22/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
OBJECTIVES The mechanisms behind the onset of acute aortic dissection have not been fully elucidated. We developed dynamic synchrotron-based X-ray phase-contrast tomography to quantitatively study the dynamics of biological samples and applied it to the fresh aortic wall in acute type-A aortic dissection (ATAAD). METHODS Fresh, ring-shaped aortas undergoing aortic repair in ATAAD were measured in a container filled with normal cold saline within 24 h of surgery. As a control, we obtained 5 formalin-fixed normal ascending aortas from autopsies (female: 2, 59.7 years) [standard deviation (SD): 5.5 years]. To evaluate the quantitative morphological change, we estimated the density at each step stretched by 2 mm per step. The fresh specimens were analysed pathologically using the area ratio of the elastic fibres. RESULTS Samples were obtained from 5 patients [1 man and 4 women, 59.4 (SD: 8.7) years]. The overall density of the tunica media (TM) in the fresh aorta was 1.062 (SD: 0.006) g/cm3 and differed significantly between the dissected and non-dissected portions [1.05 (SD: 0.004) vs 1.066 (SD: 0.004) g/cm3, respectively; P = 0.0122]. When the fresh aortic wall was stretched and became thinner, the density of the TM remained unchanged. Compared with the pathological findings, the area ratios of the elastic fibres of the TM were lower in the non-dissected portion than normal [48.6 (SD: 7.1)% vs 60.5 (SD: 5.7 %, P < 0.001]. CONCLUSIONS Dynamic synchrotron-based X-ray phase-contrast tomography can trace the deformation process that occurs in situ in fresh aorta in ATAAD. We confirmed that the densitometric property of the aortic wall in ATAAD was unchanged during the stretching process.
Collapse
Affiliation(s)
- Koki Yokawa
- Division of Cardiovascular Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masato Hoshino
- Research & Utilization Division, Japan Synchrotron Radiation Research Institute/SPring-8, Sayo, Hyogo, Japan
| | - Naoto Yagi
- Research & Utilization Division, Japan Synchrotron Radiation Research Institute/SPring-8, Sayo, Hyogo, Japan
| | - Yutaka Nakashima
- Division of Pathology, Japanese Red Cross Fukuoka Hospital, Fukuoka, Japan
| | - Kazunori Nakagawa
- Pathophysiological and Experimental Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yutaka Okita
- Division of Cardiovascular Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
- Division of Cardiovascular Surgery, Takatsuki General Hospital, Takatsuki, Japan
| | - Kenji Okada
- Division of Cardiovascular Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takuro Tsukube
- Division of Cardiovascular Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
- Division of Cardiovascular Surgery, Japanese Red Cross Kobe Hospital, Kobe, Japan
| |
Collapse
|
3
|
Yu S, Huang L, Ren J, Zhang X. Association of polymorphisms in FBN1, MYH11, and TGF-β signaling-related genes with susceptibility of sporadic thoracic aortic aneurysm and dissection in the Zhejiang Han population. Open Med (Wars) 2024; 19:20241025. [PMID: 39291280 PMCID: PMC11406435 DOI: 10.1515/med-2024-1025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/13/2024] [Accepted: 08/06/2024] [Indexed: 09/19/2024] Open
Abstract
Background Sporadic thoracic aortic aneurysm and dissection (sTAAD) is a complicated vascular disease with a high mortality rate. And its genetic basis has not been fully explored. Method Here, 122 sTAAD patients and 98 healthy individuals were recruited, and 10 single nucleotide polymorphisms were selected and analyzed (FBN1 rs10519177, rs1036477, rs2118181, MYH11 rs115364997, rs117593370, TGFβ1 rs1800469, TGFβ2 rs900, TGFβR2 rs764522, rs1036095, and rs6785385). Moreover, multiple logistic regression analysis was used to evaluate gene-environment interactions. Results We identified that TGFβR2 rs1036095 dominant model CC + CG genotype (GT) (P = 0.004) may be a factor of increased risk of sTAAD, especially for women. FBN1 rs1036477 recessive model AA GT (P = 0.009) and FBN1 rs2118181 dominant model CC + CT GT (P = 0.009) were correlated to an increased death rate in sTAAD men patients. Gene-environment interactions indicated TGFβR2 rs1036095 dominant model (CC + CG)/GG to be a higher-risk factor for sTAAD (odds ratio = 3.255; 95% confidence interval: 1.324-8.000, P = 0.01). Conclusions TGFβR2 rs1036095, FBN1 rs1036477, and FBN1 rs2118181 were identified as factors of increased risk of sTAAD. Gene-environment interactions were associated with the risk of sTAAD.
Collapse
Affiliation(s)
- Shasha Yu
- Ningbo Medical Center Lihuili Hospital, Zhejiang, China
| | - Lujie Huang
- Ningbo Medical Center Lihuili Hospital, Zhejiang, China
| | - Jianfei Ren
- Ningbo Medical Center Lihuili Hospital, Zhejiang, China
| | - Xiaoying Zhang
- Ningbo Medical Center Lihuili Hospital, 57 Xingning Road, Zhejiang, China
| |
Collapse
|
4
|
Chen MH, Deng ES, Yamada JM, Choudhury S, Scotellaro J, Kelley L, Isselbacher E, Lindsay ME, Walsh CA, Doan RN. Contributions of Germline and Somatic Mosaic Genetics to Thoracic Aortic Aneurysms in Nonsyndromic Individuals. J Am Heart Assoc 2024; 13:e033232. [PMID: 38958128 PMCID: PMC11292778 DOI: 10.1161/jaha.123.033232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/20/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Thoracic aortic aneurysm (TAA) is associated with significant morbidity and mortality. Although individuals with family histories of TAA often undergo clinical molecular genetic testing, adults with nonsyndromic TAA are not typically evaluated for genetic causes. We sought to understand the genetic contribution of both germline and somatic mosaic variants in a cohort of adult individuals with nonsyndromic TAA at a single center. METHODS AND RESULTS One hundred eighty-one consecutive patients <60 years who presented with nonsyndromic TAA at the Massachusetts General Hospital underwent deep (>500×) targeted sequencing across 114 candidate genes associated with TAA and its related functional pathways. Samples from 354 age- and sex-matched individuals without TAA were also sequenced, with a 2:1 matching. We found significant enrichments for germline (odds ratio [OR], 2.44, P=4.6×10-6 [95% CI, 1.67-3.58]) and also somatic mosaic variants (OR, 4.71, P=0.026 [95% CI, 1.20-18.43]) between individuals with and without TAA. Likely genetic causes were present in 24% with nonsyndromic TAA, of which 21% arose from germline variants and 3% from somatic mosaic alleles. The 3 most frequently mutated genes in our cohort were FLNA (encoding Filamin A), NOTCH3 (encoding Notch receptor 3), and FBN1 (encoding Fibrillin-1). There was increased frequency of both missense and loss of function variants in TAA individuals. CONCLUSIONS Likely contributory dominant acting genetic variants were found in almost one quarter of nonsyndromic adults with TAA. Our findings suggest a more extensive genetic architecture to TAA than expected and that genetic testing may improve the care and clinical management of adults with nonsyndromic TAA.
Collapse
Affiliation(s)
- Ming Hui Chen
- Department of CardiologyBoston Children’s HospitalBostonMAUSA
- Division of Genetics and Genomics, Department of PediatricsBoston Children’s HospitalBostonMAUSA
- Department of PediatricsHarvard Medical SchoolBostonMAUSA
| | - Ellen S. Deng
- Division of Genetics and Genomics, Department of PediatricsBoston Children’s HospitalBostonMAUSA
| | - Jessica M. Yamada
- Division of Genetics and Genomics, Department of PediatricsBoston Children’s HospitalBostonMAUSA
| | - Sangita Choudhury
- Division of Genetics and Genomics, Department of PediatricsBoston Children’s HospitalBostonMAUSA
- Department of PediatricsHarvard Medical SchoolBostonMAUSA
| | - Julia Scotellaro
- Division of Genetics and Genomics, Department of PediatricsBoston Children’s HospitalBostonMAUSA
| | - Lily Kelley
- Division of Genetics and Genomics, Department of PediatricsBoston Children’s HospitalBostonMAUSA
| | - Eric Isselbacher
- Division of Cardiology, Massachusetts General Hospital Department of MedicineHarvard Medical SchoolBostonMAUSA
| | - Mark E. Lindsay
- Division of Cardiology, Massachusetts General Hospital Department of MedicineHarvard Medical SchoolBostonMAUSA
| | - Christopher A. Walsh
- Division of Genetics and Genomics, Department of PediatricsBoston Children’s HospitalBostonMAUSA
- Department of PediatricsHarvard Medical SchoolBostonMAUSA
- Department of NeurologyHarvard Medical SchoolBostonMAUSA
- Department of PediatricsHoward Hughes Medical Institute, Boston Children’s HospitalBostonMAUSA
| | - Ryan N. Doan
- Division of Genetics and Genomics, Department of PediatricsBoston Children’s HospitalBostonMAUSA
- Department of PediatricsHarvard Medical SchoolBostonMAUSA
| |
Collapse
|
5
|
Yang Y, Feng H, Tang Y, Wang Z, Qiu P, Huang X, Chang L, Zhang J, Chen YE, Mizrak D, Yang B. Bioengineered vascular grafts with a pathogenic TGFBR1 variant model aneurysm formation in vivo and reveal underlying collagen defects. Sci Transl Med 2024; 16:eadg6298. [PMID: 38718134 PMCID: PMC11193908 DOI: 10.1126/scitranslmed.adg6298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/17/2024] [Indexed: 05/30/2024]
Abstract
Thoracic aortic aneurysm (TAA) is a life-threatening vascular disease frequently associated with underlying genetic causes. An inadequate understanding of human TAA pathogenesis highlights the need for better disease models. Here, we established a functional human TAA model in an animal host by combining human induced pluripotent stem cells (hiPSCs), bioengineered vascular grafts (BVGs), and gene editing. We generated BVGs from isogenic control hiPSC-derived vascular smooth muscle cells (SMCs) and mutant SMCs gene-edited to carry a Loeys-Dietz syndrome (LDS)-associated pathogenic variant (TGFBR1A230T). We also generated hiPSC-derived BVGs using cells from a patient with LDS (PatientA230T/+) and using genetically corrected cells (Patient+/+). Control and experimental BVGs were then implanted into the common carotid arteries of nude rats. The TGFBR1A230T variant led to impaired mechanical properties of BVGs, resulting in lower burst pressure and suture retention strength. BVGs carrying the variant dilated over time in vivo, resembling human TAA formation. Spatial transcriptomics profiling revealed defective expression of extracellular matrix (ECM) formation genes in PatientA230T/+ BVGs compared with Patient+/+ BVGs. Histological analysis and protein assays validated quantitative and qualitative ECM defects in PatientA230T/+ BVGs and patient tissue, including decreased collagen hydroxylation. SMC organization was also impaired in PatientA230T/+ BVGs as confirmed by vascular contraction testing. Silencing of collagen-modifying enzymes with small interfering RNAs reduced collagen proline hydroxylation in SMC-derived tissue constructs. These studies demonstrated the utility of BVGs to model human TAA formation in an animal host and highlighted the role of reduced collagen modifying enzyme activity in human TAA formation.
Collapse
MESH Headings
- Animals
- Humans
- Receptor, Transforming Growth Factor-beta Type I/metabolism
- Receptor, Transforming Growth Factor-beta Type I/genetics
- Induced Pluripotent Stem Cells/metabolism
- Collagen/metabolism
- Blood Vessel Prosthesis
- Aortic Aneurysm, Thoracic/genetics
- Aortic Aneurysm, Thoracic/pathology
- Aortic Aneurysm, Thoracic/metabolism
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Rats, Nude
- Disease Models, Animal
- Rats
- Bioengineering
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Gene Editing
- Loeys-Dietz Syndrome/genetics
- Loeys-Dietz Syndrome/pathology
- Male
Collapse
Affiliation(s)
- Ying Yang
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hao Feng
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI 48109, USA
- Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Ying Tang
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI 48109, USA
- Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zhenguo Wang
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ping Qiu
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xihua Huang
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lin Chang
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jifeng Zhang
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yuqing Eugene Chen
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dogukan Mizrak
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Bo Yang
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
6
|
Yu ZP, Wang YK, Wang XY, Gong LN, Tan HL, Jiang MX, Wang LF, Yu GH, Deng KY, Xin HB. Smooth-Muscle-Cell-Specific Deletion of CD38 Protects Mice from AngII-Induced Abdominal Aortic Aneurysm through Inhibiting Vascular Remodeling. Int J Mol Sci 2024; 25:4356. [PMID: 38673941 PMCID: PMC11049988 DOI: 10.3390/ijms25084356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/24/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Abdominal aortic aneurysm (AAA) is a serious vascular disease which is associated with vascular remodeling. CD38 is a main NAD+-consuming enzyme in mammals, and our previous results showed that CD38 plays the important roles in many cardiovascular diseases. However, the role of CD38 in AAA has not been explored. Here, we report that smooth-muscle-cell-specific deletion of CD38 (CD38SKO) significantly reduced the morbidity of AngII-induced AAA in CD38SKOApoe-/- mice, which was accompanied with a increases in the aortic diameter, medial thickness, collagen deposition, and elastin degradation of aortas. In addition, CD38SKO significantly suppressed the AngII-induced decreases in α-SMA, SM22α, and MYH11 expression; the increase in Vimentin expression in VSMCs; and the increase in VCAM-1 expression in smooth muscle cells and macrophage infiltration. Furthermore, we demonstrated that the role of CD38SKO in attenuating AAA was associated with the activation of sirtuin signaling pathways. Therefore, we concluded that CD38 plays a pivotal role in AngII-induced AAA through promoting vascular remodeling, suggesting that CD38 may serve as a potential therapeutic target for the prevention of AAA.
Collapse
MESH Headings
- Animals
- Male
- Mice
- ADP-ribosyl Cyclase 1/metabolism
- ADP-ribosyl Cyclase 1/genetics
- Angiotensin II
- Aortic Aneurysm, Abdominal/chemically induced
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/pathology
- Disease Models, Animal
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/genetics
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Myosin Heavy Chains/metabolism
- Myosin Heavy Chains/genetics
- Signal Transduction
- Vascular Remodeling/genetics
Collapse
Affiliation(s)
- Zhen-Ping Yu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Z.-P.Y.); (Y.-K.W.); (X.-Y.W.); (L.-N.G.); (H.-L.T.); (M.-X.J.); (L.-F.W.); (G.-H.Y.)
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Yi-Kai Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Z.-P.Y.); (Y.-K.W.); (X.-Y.W.); (L.-N.G.); (H.-L.T.); (M.-X.J.); (L.-F.W.); (G.-H.Y.)
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Xiao-Yu Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Z.-P.Y.); (Y.-K.W.); (X.-Y.W.); (L.-N.G.); (H.-L.T.); (M.-X.J.); (L.-F.W.); (G.-H.Y.)
| | - Li-Na Gong
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Z.-P.Y.); (Y.-K.W.); (X.-Y.W.); (L.-N.G.); (H.-L.T.); (M.-X.J.); (L.-F.W.); (G.-H.Y.)
| | - Hui-Lan Tan
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Z.-P.Y.); (Y.-K.W.); (X.-Y.W.); (L.-N.G.); (H.-L.T.); (M.-X.J.); (L.-F.W.); (G.-H.Y.)
| | - Mei-Xiu Jiang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Z.-P.Y.); (Y.-K.W.); (X.-Y.W.); (L.-N.G.); (H.-L.T.); (M.-X.J.); (L.-F.W.); (G.-H.Y.)
| | - Ling-Fang Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Z.-P.Y.); (Y.-K.W.); (X.-Y.W.); (L.-N.G.); (H.-L.T.); (M.-X.J.); (L.-F.W.); (G.-H.Y.)
| | - Guan-Hui Yu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Z.-P.Y.); (Y.-K.W.); (X.-Y.W.); (L.-N.G.); (H.-L.T.); (M.-X.J.); (L.-F.W.); (G.-H.Y.)
- School of Pharmacy, Nanchang University, Nanchang 330031, China
| | - Ke-Yu Deng
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Z.-P.Y.); (Y.-K.W.); (X.-Y.W.); (L.-N.G.); (H.-L.T.); (M.-X.J.); (L.-F.W.); (G.-H.Y.)
- College of Life Science, Nanchang University, Nanchang 330031, China
- School of Pharmacy, Nanchang University, Nanchang 330031, China
| | - Hong-Bo Xin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Z.-P.Y.); (Y.-K.W.); (X.-Y.W.); (L.-N.G.); (H.-L.T.); (M.-X.J.); (L.-F.W.); (G.-H.Y.)
- College of Life Science, Nanchang University, Nanchang 330031, China
- School of Pharmacy, Nanchang University, Nanchang 330031, China
| |
Collapse
|
7
|
Pan M, Tan X, Sun T, Zhu W, Liu H, Liu Q, Dong H. A harmful MYH11 variant detected in a family with thoracic aortic dissection and patent ductus arteriosus. Forensic Sci Med Pathol 2024; 20:212-218. [PMID: 37306888 DOI: 10.1007/s12024-023-00650-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2023] [Indexed: 06/13/2023]
Abstract
Thoracic aortic dissection (TAD) is an important cause of sudden cardiac death and is characterized by high morbidity, mortality, and a poor prognosis. Patent ductus arteriosus (PDA) is a common congenital heart disease. The pathogenesis of both TAD and PDA has been reported to be related to genetic factors. The MYH11 gene, which encodes myosin heavy chain 11, has been reported in individuals with both TAD and PDA. Herein, we first detected a harmful MYH11 missense variant (c. T3728C, p. L1243P) in a TAD and PDA family. This missense variant co-segregated with the TAD/PDA phenotype in this family of four individuals, providing evidence of its harmfulness. Histopathological examinations revealed the presence of fragmented, broken, and lessened elastic fibers and the deposition of proteoglycans in the median of aortic dissection. Moreover, the immunofluorescence results showed that the labeled MYH11 protein in the tissue of the aortic dissection was weaker than that in the normal aorta. We present this familial case to stress the necessity of postmortem genetic testing in such cases among forensic practices. Identifying those culprit gene variants can direct effective genetic counseling and personalized health management in family members (especially first-degree relatives) with high-risk genotypes.
Collapse
Affiliation(s)
- Meichen Pan
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, 13 Hangkong Road, Hankou, Wuhan, 430030, Hubei, China
| | - Xiaoshan Tan
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, 13 Hangkong Road, Hankou, Wuhan, 430030, Hubei, China
| | - Tianying Sun
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, 13 Hangkong Road, Hankou, Wuhan, 430030, Hubei, China
| | - Weiwei Zhu
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, 13 Hangkong Road, Hankou, Wuhan, 430030, Hubei, China
| | - Huine Liu
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, 13 Hangkong Road, Hankou, Wuhan, 430030, Hubei, China
| | - Qian Liu
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, 13 Hangkong Road, Hankou, Wuhan, 430030, Hubei, China
| | - Hongmei Dong
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, 13 Hangkong Road, Hankou, Wuhan, 430030, Hubei, China.
| |
Collapse
|
8
|
Pedroza AJ, Cheng P, Dalal AR, Baeumler K, Kino A, Tognozzi E, Shad R, Yokoyama N, Nakamura K, Mitchel O, Hiesinger W, MacFarlane EG, Fleischmann D, Woo YJ, Quertermous T, Fischbein MP. Early clinical outcomes and molecular smooth muscle cell phenotyping using a prophylactic aortic arch replacement strategy in Loeys-Dietz syndrome. J Thorac Cardiovasc Surg 2023; 166:e332-e376. [PMID: 37500053 DOI: 10.1016/j.jtcvs.2023.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/12/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023]
Abstract
OBJECTIVES Patients with Loeys-Dietz syndrome demonstrate a heightened risk of distal thoracic aortic events after valve-sparing aortic root replacement. This study assesses the clinical risks and hemodynamic consequences of a prophylactic aortic arch replacement strategy in Loeys-Dietz syndrome and characterizes smooth muscle cell phenotype in Loeys-Dietz syndrome aneurysmal and normal-sized downstream aorta. METHODS Patients with genetically confirmed Loeys-Dietz syndrome (n = 8) underwent prophylactic aortic arch replacement during valve-sparing aortic root replacement. Four-dimensional flow magnetic resonance imaging studies were performed in 4 patients with Loeys-Dietz syndrome (valve-sparing aortic root replacement + arch) and compared with patients with contemporary Marfan syndrome (valve-sparing aortic root replacement only, n = 5) and control patients (without aortopathy, n = 5). Aortic tissues from 4 patients with Loeys-Dietz syndrome and 2 organ donors were processed for anatomically segmented single-cell RNA sequencing and histologic assessment. RESULTS Patients with Loeys-Dietz syndrome valve-sparing aortic root replacement + arch had no deaths, major morbidity, or aortic events in a median of 2 years follow-up. Four-dimensional magnetic resonance imaging demonstrated altered flow parameters in patients with postoperative aortopathy relative to controls, but no clear deleterious changes due to arch replacement. Integrated analysis of aortic single-cell RNA sequencing data (>49,000 cells) identified a continuum of abnormal smooth muscle cell phenotypic modulation in Loeys-Dietz syndrome defined by reduced contractility and enriched extracellular matrix synthesis, adhesion receptors, and transforming growth factor-beta signaling. These modulated smooth muscle cells populated the Loeys-Dietz syndrome tunica media with gradually reduced density from the overtly aneurysmal root to the nondilated arch. CONCLUSIONS Patients with Loeys-Dietz syndrome demonstrated excellent surgical outcomes without overt downstream flow or shear stress disturbances after concomitant valve-sparing aortic root replacement + arch operations. Abnormal smooth muscle cell-mediated aortic remodeling occurs within the normal diameter, clinically at-risk Loeys-Dietz syndrome arch segment. These initial clinical and pathophysiologic findings support concomitant arch replacement in Loeys-Dietz syndrome.
Collapse
Affiliation(s)
- Albert J Pedroza
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Paul Cheng
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, Calif
| | - Alex R Dalal
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Kathrin Baeumler
- Department of Radiology, Stanford University School of Medicine, Stanford, Calif
| | - Aya Kino
- Department of Radiology, Stanford University School of Medicine, Stanford, Calif
| | - Emily Tognozzi
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Rohan Shad
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Nobu Yokoyama
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Ken Nakamura
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Olivia Mitchel
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - William Hiesinger
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Elena Gallo MacFarlane
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Dominik Fleischmann
- Department of Radiology, Stanford University School of Medicine, Stanford, Calif
| | - Y Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Thomas Quertermous
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, Calif
| | - Michael P Fischbein
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif.
| |
Collapse
|
9
|
Tomida S, Ishima T, Sawaki D, Imai Y, Nagai R, Aizawa K. Multi-Omics of Familial Thoracic Aortic Aneurysm and Dissection: Calcium Transport Impairment Predisposes Aortas to Dissection. Int J Mol Sci 2023; 24:15213. [PMID: 37894894 PMCID: PMC10607035 DOI: 10.3390/ijms242015213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Several genetic defects, including a mutation in myosin heavy chain 11 (Myh11), are reported to cause familial thoracic aortic aneurysm and dissection (FTAAD). We recently showed that mice lacking K1256 of Myh11 developed aortic dissection when stimulated with angiotensin II, despite the absence of major pathological phenotypic abnormalities prior to stimulation. In this study, we used a comprehensive, data-driven, unbiased, multi-omics approach to find underlying changes in transcription and metabolism that predispose the aorta to dissection in mice harboring the Myh11 K1256del mutation. Pathway analysis of transcriptomes showed that genes involved in membrane transport were downregulated in homozygous mutant (Myh11ΔK/ΔK) aortas. Furthermore, expanding the analysis with metabolomics showed that two mechanisms that raise the cytosolic Ca2+ concentration-multiple calcium channel expression and ADP-ribose synthesis-were attenuated in Myh11ΔK/ΔK aortas. We suggest that the impairment of the Ca2+ influx attenuates aortic contraction and that suboptimal contraction predisposes the aorta to dissection.
Collapse
Affiliation(s)
- Shota Tomida
- Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, Shimotsuke 329-0498, Tochigi, Japan; (S.T.); (T.I.); (D.S.); (Y.I.)
| | - Tamaki Ishima
- Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, Shimotsuke 329-0498, Tochigi, Japan; (S.T.); (T.I.); (D.S.); (Y.I.)
| | - Daigo Sawaki
- Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, Shimotsuke 329-0498, Tochigi, Japan; (S.T.); (T.I.); (D.S.); (Y.I.)
| | - Yasushi Imai
- Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, Shimotsuke 329-0498, Tochigi, Japan; (S.T.); (T.I.); (D.S.); (Y.I.)
| | - Ryozo Nagai
- Jichi Medical University, Shimotsuke 329-0498, Tochigi, Japan;
| | - Kenichi Aizawa
- Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, Shimotsuke 329-0498, Tochigi, Japan; (S.T.); (T.I.); (D.S.); (Y.I.)
- Clinical Pharmacology Center, Jichi Medical University Hospital, Shimotsuke 329-0498, Tochigi, Japan
- Division of Translational Research, Clinical Research Center, Jichi Medical University Hospital, Shimotsuke 329-0498, Tochigi, Japan
| |
Collapse
|
10
|
Atkinson G, Bianco R, Di Gregoli K, Johnson JL. The contribution of matrix metalloproteinases and their inhibitors to the development, progression, and rupture of abdominal aortic aneurysms. Front Cardiovasc Med 2023; 10:1248561. [PMID: 37799778 PMCID: PMC10549934 DOI: 10.3389/fcvm.2023.1248561] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/07/2023] [Indexed: 10/07/2023] Open
Abstract
Abdominal aortic aneurysms (AAAs) account for up to 8% of deaths in men aged 65 years and over and 2.2% of women. Patients with AAAs often have atherosclerosis, and intimal atherosclerosis is generally present in AAAs. Accordingly, AAAs are considered a form of atherosclerosis and are frequently referred to as atherosclerotic aneurysms. Pathological observations advocate inflammatory cell infiltration alongside adverse extracellular matrix degradation as key contributing factors to the formation of human atherosclerotic AAAs. Therefore, macrophage production of proteolytic enzymes is deemed responsible for the damaging loss of ECM proteins, especially elastin and fibrillar collagens, which characterise AAA progression and rupture. Matrix metalloproteinases (MMPs) and their regulation by tissue inhibitors metalloproteinases (TIMPs) can orchestrate not only ECM remodelling, but also moderate the proliferation, migration, and apoptosis of resident aortic cells, alongside the recruitment and subsequent behaviour of inflammatory cells. Accordingly, MMPs are thought to play a central regulatory role in the development, progression, and eventual rupture of abdominal aortic aneurysms (AAAs). Together, clinical and animal studies have shed light on the complex and often diverse effects MMPs and TIMPs impart during the development of AAAs. This dichotomy is underlined from evidence utilising broad-spectrum MMP inhibition in animal models and clinical trials which have failed to provide consistent protection from AAA progression, although more encouraging results have been observed through deployment of selective inhibitors. This review provides a summary of the supporting evidence connecting the contribution of individual MMPs to AAA development, progression, and eventual rupture. Topics discussed include structural, functional, and cell-specific diversity of MMP members; evidence from animal models of AAA and comparisons with findings in humans; the dual role of MMPs and the requirement to selectively target individual MMPs; and the advances in identifying aberrant MMP activity. As evidenced, our developing understanding of the multifaceted roles individual MMPs perform during the progression and rupture of AAAs, should motivate clinical trials assessing the therapeutic potential of selective MMP inhibitors, which could restrict AAA-related morbidity and mortality worldwide.
Collapse
Affiliation(s)
| | | | | | - Jason L. Johnson
- Laboratory of Cardiovascular Pathology, Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
11
|
Song J, Peng H, Lai M, Kang H, Chen X, Cheng Y, Su X. Relationship between inflammatory-related cytokines with aortic dissection. Int Immunopharmacol 2023; 122:110618. [PMID: 37480750 DOI: 10.1016/j.intimp.2023.110618] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/24/2023]
Abstract
Aortic dissection, characterized by severe intramural hematoma formation and acute endometrial rupture, is caused by excessive bleeding within the aortic wall or a severe tear within the intimal layer of the aorta, which subsequently promotes the separation or dissection in the layers of the aortic wall. Epidemiological surveys showed that aortic dissection was most observed among those patients from 55 to 80 years of age, with a prevalence of approximately 40 cases per 100,000 individuals per year, posing serious risks to future health and leading to high mortality. Other risk factors of aortic dissection progression contained dyslipidemia, hypertension, and genetic disorders, such as Marfan syndrome. Currently, emerging evidence indicates the pathological progression of aortic dissection is significantly complicated, which is correlated with the aberrant infiltration of pro-inflammatory cells into the aortic wall, subsequently facilitating the apoptosis of vascular smooth muscle cells (VSMCs) and inducing the aberrant expression of pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interferon (IF). Other pro-inflammatory-related cytokines, including the colony-stimulating factor (CSF), chemotactic factor, and growth factor (GF), played an essential function in facilitating aortic dissection. Multiple studies focused on the important relationship between pro-inflammatory cytokines and aortic dissection, which could deepen the understanding of aortic dissection and further guide the therapeutic strategies in clinical practice. The present review elucidated pro-inflammatory cytokines' functions in modulating the risk of aortic dissection are summarized. Moreover, the emerging evidence that aimed to elucidate the potential mechanisms wherebyvarious pro-inflammatory cytokines affected the pathological development of aortic dissection was also listed.
Collapse
Affiliation(s)
- Jingjin Song
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China
| | - Hua Peng
- Department of Cardiac Macrovascular Surgery, The Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China
| | - Min Lai
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China
| | - Huiyuan Kang
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China
| | - Xiaofang Chen
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China
| | - Ye Cheng
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China.
| | - Xin Su
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
12
|
Flanary SM, Jo S, Ravichandran R, Alejandro EU, Barocas VH. A computational bridge between traction force microscopy and tissue contraction. JOURNAL OF APPLIED PHYSICS 2023; 134:074901. [PMID: 37593660 PMCID: PMC10431945 DOI: 10.1063/5.0157507] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/26/2023] [Indexed: 08/19/2023]
Abstract
Arterial wall active mechanics are driven by resident smooth muscle cells, which respond to biological, chemical, and mechanical stimuli and activate their cytoskeletal machinery to generate contractile stresses. The cellular mechanoresponse is sensitive to environmental perturbations, often leading to maladaptation and disease progression. When investigated at the single cell scale, however, these perturbations do not consistently result in phenotypes observed at the tissue scale. Here, a multiscale model is introduced that translates microscale contractility signaling into a macroscale, tissue-level response. The microscale framework incorporates a biochemical signaling network along with characterization of fiber networks that govern the anisotropic mechanics of vascular tissue. By incorporating both biochemical and mechanical components, the model is more flexible and more broadly applicable to physiological and pathological conditions. The model can be applied to both cell and tissue scale systems, allowing for the analysis of in vitro, traction force microscopy and ex vivo, isometric contraction experiments in parallel. When applied to aortic explant rings and isolated smooth muscle cells, the model predicts that active contractility is not a function of stretch at intermediate strain. The model also successfully predicts cell-scale and tissue-scale contractility and matches experimentally observed behaviors, including the hypercontractile phenotype caused by chronic hyperglycemia. The connection of the microscale framework to the macroscale through the multiscale model presents a framework that can translate the wealth of information already collected at the cell scale to tissue scale phenotypes, potentially easing the development of smooth muscle cell-targeting therapeutics.
Collapse
Affiliation(s)
- Shannon M. Flanary
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Seokwon Jo
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Rohit Ravichandran
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Emilyn U. Alejandro
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Victor H. Barocas
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
13
|
Rega S, Farina F, Bouhuis S, de Donato S, Chiesa M, Poggio P, Cavallotti L, Bonalumi G, Giambuzzi I, Pompilio G, Perrucci GL. Multi-omics in thoracic aortic aneurysm: the complex road to the simplification. Cell Biosci 2023; 13:131. [PMID: 37475058 DOI: 10.1186/s13578-023-01080-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 07/05/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND Thoracic aortic aneurysm (TAA) is a serious condition that affects the aorta, characterized by the dilation of its first segment. The causes of TAA (e.g., age, hypertension, genetic syndromes) are heterogeneous and contribute to the weakening of the aortic wall. This complexity makes treating this life-threatening aortopathy challenging, as there are currently no etiological therapy available, and pharmacological strategies, aimed at avoiding surgical aortic replacement, are merely palliative. Recent studies on novel therapies for TAA have focused on identifying biological targets and etiological mechanisms of the disease by using advanced -omics techniques, including epigenomics, transcriptomics, proteomics, and metabolomics approaches. METHODS This review presents the latest findings from -omics approaches and underscores the importance of integrating multi-omics data to gain more comprehensive understanding of TAA. RESULTS Literature suggests that the alterations in TAA mediators frequently involve members of pro-fibrotic process (i.e., TGF-β signaling pathways) or proteins associated with cell/extracellular structures (e.g., aggrecans). Further analyses often reported the importance in TAA of processes as inflammation (PCR, CD3, leukotriene compounds), oxidative stress (chromatin OXPHOS, fatty acids), mitochondrial respiration and glycolysis/gluconeogenesis (e.g., PPARs and HIF1a). Of note, more recent metabolomics studies added novel molecular markers to the list of TAA-specific detrimental mediators (proteoglycans). CONCLUSION It is increasingly clear that integrating data from different -omics branches, along with clinical data, is essential as well as complicated both to reveal hidden relevant information and to address complex diseases such as TAA. Importantly, recent progresses in metabolomics highlighted novel potential and unprecedented marks in TAA diagnosis and therapy.
Collapse
Affiliation(s)
- Sara Rega
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Unit for the Study of Aortic, Valvular and Coronary Pathologies, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Floriana Farina
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU) München, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Silvia Bouhuis
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Silvia de Donato
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Mattia Chiesa
- Bioinformatics and Artificial Intelligence Facility, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Electronics, Information and Biomedical Engineering, Politecnico Di Milano, Milan, Italy
| | - Paolo Poggio
- Unit for the Study of Aortic, Valvular and Coronary Pathologies, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Laura Cavallotti
- Department of Cardiovascular Surgery, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Giorgia Bonalumi
- Department of Cardiovascular Surgery, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Ilaria Giambuzzi
- Department of Cardiovascular Surgery, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Clinical Sciences and Community Health, Università Degli Studi Di Milano, Milan, Italy
| | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Cardiovascular Surgery, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, Università Degli Studi Di Milano, Milan, Italy
| | - Gianluca L Perrucci
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milan, Italy.
| |
Collapse
|
14
|
Ban E, Kalogerakos PD, Khosravi R, Ziganshin BA, Ellauzi H, Ramachandra AB, Zafar MA, Humphrey JD, Elefteriades JA. Extended law of laplace for measurement of the cloverleaf anatomy of the aortic root. Int J Cardiovasc Imaging 2023; 39:1345-1356. [PMID: 37046157 PMCID: PMC10250276 DOI: 10.1007/s10554-023-02847-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/27/2023] [Indexed: 04/14/2023]
Abstract
The cross-sectional shape of the aortic root is cloverleaf, not circular, raising controversy regarding how best to measure its radiographic "diameter" for aortic event prediction. We mathematically extended the law of Laplace to estimate aortic wall stress within this cloverleaf region, simultaneously identifying a new metric of aortic root dimension that can be applied to clinical measurement of the aortic root and sinuses of Valsalva on clinical computerized tomographic scans. Enforcing equilibrium between blood pressure and wall stress, finite element computations were performed to evaluate the mathematical derivation. The resulting Laplace diameter was compared with existing methods of aortic root measurement across four patient groups: non-syndromic aneurysm, bicuspid aortic valve, Marfan syndrome, and non-dilated root patients (total 106 patients, 62 M, 44 F). (1) Wall stress: Mean wall stress at the depth of the sinuses followed this equation: Wall stress = BP × Circumscribing circle diameter/(2 × Aortic wall thickness). Therefore, the diameter of the circle enclosing the root cloverleaf, that is, twice the distance between the center, where the sinus-to-commissure lines coincide, and the depth of the sinuses, may replace diameter in the Laplace relation for a cloverleaf cross-section (or any shaped cross-section with two or more planes of symmetry). This mathematically derived result was verified by computational finite element analyses. (2) Diameters: CT scan measurements showed a significant difference between this new metric, the Laplace diameter, and the sinus-to-commissure, mid-sinus-to-mid-sinus, and coronal measurements in all four groups (p-value < 0.05). The average Laplace diameter measurements differed significantly from the other measurements in all patient groups. Among the various possible measurements within the aortic root, the diameter of the circumscribing circle, enclosing the cloverleaf, represents the diameter most closely related to wall stress. This diameter is larger than the other measurements, indicating an underestimation of wall stress by prior measurements, and otherwise provides an unbiased, convenient, consistent, physics-based measurement for clinical use. "Diameter" applies to circles. Our mathematical derivation of an extension of the law of Laplace, from circular to cloverleaf cross-sectional geometries of the aortic root, has implications for measurement of aortic root "diameter." The suggested method is as follows: (1) the "center" of the aortic root is identified by drawing three sinus-to-commissure lines. The intersection of these three lines identifies the "center" of the cloverleaf. (2) The largest radius from this center point to any of the sinuses is identified as the "radius" of the aortic root. (3) This radius is doubled to give the "diameter" of the aortic root. We find that this diameter best corresponds to maximal wall stress in the aortic root. Please note that this diameter defines the smallest circle that completely encloses the cloverleaf shape, touching the depths of all three sinuses.
Collapse
Affiliation(s)
- Ehsan Ban
- Department of Biomedical Engineering, Yale University, New Haven, USA
| | | | - Ramak Khosravi
- Department of Biomedical Engineering, Yale University, New Haven, USA
| | - Bulat A Ziganshin
- Aortic Institute, Yale School of Medicine, CB-3, 789 Howard Ave., New Haven, CT, 06510, USA
| | - Hesham Ellauzi
- Aortic Institute, Yale School of Medicine, CB-3, 789 Howard Ave., New Haven, CT, 06510, USA
| | | | - Mohammad A Zafar
- Aortic Institute, Yale School of Medicine, CB-3, 789 Howard Ave., New Haven, CT, 06510, USA
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, USA
| | - John A Elefteriades
- Aortic Institute, Yale School of Medicine, CB-3, 789 Howard Ave., New Haven, CT, 06510, USA.
| |
Collapse
|
15
|
Krywanczyk A, Rodriguez ER, Tan CD, Gilson T. Thoracic Aortic Aneurysm and Dissection: Review and Recommendations for Evaluation. Am J Forensic Med Pathol 2023; 44:69-76. [PMID: 36877084 DOI: 10.1097/paf.0000000000000819] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
ABSTRACT Aortic dissection and rupture (collectively termed "sudden aortic death") are commonly encountered by forensic pathologists, with an estimated incidence at autopsy between 0.6% and 7.7%. Despite this, there is no standard of practice for the evaluation of sudden aortic death at autopsy.Recent studies have shown 20% of patients with thoracic aortic aneurysm or dissection (TAAD) have an identifiable genetic syndrome, and 19% will have an affected first-degree relative. The past 2 decades have seen identification of new culprit genes and syndromes, which can have subtle or nonexistent external phenotypes. A high index of suspicion is warranted to identify possible hereditary TAAD (H-TAAD), allowing family members to obtain screening to avoid catastrophic vascular events. Forensic pathologists need broad knowledge of the spectrum of H-TAAD and awareness of the relative significance of hypertension, pregnancy, substance use, and microscopic changes of aortic architecture.This article reviews the common subtypes of H-TAAD, including Marfan syndrome, vascular Ehlers-Danlos, Loeys-Dietz, and familial thoracic aortic aneurysm and dissection. Recommendations for the evaluation of sudden aortic death at autopsy are presented, including (1) performance of a complete autopsy, (2) documentation of aortic circumference and valve morphology, (3) notifying family of the need for screening, and (4) preservation of a sample for potential genetic testing.
Collapse
Affiliation(s)
| | - E Rene Rodriguez
- Department of Pathology and Laboratory Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Carmela D Tan
- Department of Pathology and Laboratory Medicine, Cleveland Clinic, Cleveland, Ohio
| | | |
Collapse
|
16
|
Zhang JM, Au DT, Sawada H, Franklin MK, Moorleghen JJ, Howatt DA, Wang P, Aicher BO, Hampton B, Migliorini M, Ni F, Mullick AE, Wani MM, Ucuzian AA, Lu HS, Muratoglu SC, Daugherty A, Strickland DK. LRP1 protects against excessive superior mesenteric artery remodeling by modulating angiotensin II-mediated signaling. JCI Insight 2023; 8:e164751. [PMID: 36472907 PMCID: PMC9977308 DOI: 10.1172/jci.insight.164751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Vascular smooth muscle cells (vSMCs) exert a critical role in sensing and maintaining vascular integrity. These cells abundantly express the low-density lipoprotein receptor-related protein 1 (LRP1), a large endocytic signaling receptor that recognizes numerous ligands, including apolipoprotein E-rich lipoproteins, proteases, and protease-inhibitor complexes. We observed the spontaneous formation of aneurysms in the superior mesenteric artery (SMA) of both male and female mice in which LRP1 was genetically deleted in vSMCs (smLRP1-/- mice). Quantitative proteomics revealed elevated abundance of several proteins in smLRP1-/- mice that are known to be induced by angiotensin II-mediated (AngII-mediated) signaling, suggesting that this pathway was dysregulated. Administration of losartan, an AngII type I receptor antagonist, or an angiotensinogen antisense oligonucleotide to reduce plasma angiotensinogen concentrations restored the normal SMA phenotype in smLRP1-/- mice and prevented aneurysm formation. Additionally, using a vascular injury model, we noted excessive vascular remodeling and neointima formation in smLRP1-/- mice that was restored by losartan administration. Together, these findings reveal that LRP1 regulates vascular integrity and remodeling of the SMA by attenuating excessive AngII-mediated signaling.
Collapse
Affiliation(s)
- Jackie M Zhang
- Center for Vascular and Inflammatory Diseases and
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Dianaly T Au
- Center for Vascular and Inflammatory Diseases and
| | - Hisashi Sawada
- Saha Cardiovascular Research Center and Saha Aortic Center and
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | | | | | | | - Pengjun Wang
- Saha Cardiovascular Research Center and Saha Aortic Center and
| | - Brittany O Aicher
- Center for Vascular and Inflammatory Diseases and
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | - Fenge Ni
- Center for Vascular and Inflammatory Diseases and
| | | | | | - Areck A Ucuzian
- Center for Vascular and Inflammatory Diseases and
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Vascular Services, Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, USA
| | - Hong S Lu
- Saha Cardiovascular Research Center and Saha Aortic Center and
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | | | - Alan Daugherty
- Saha Cardiovascular Research Center and Saha Aortic Center and
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Dudley K Strickland
- Center for Vascular and Inflammatory Diseases and
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
17
|
Salmasi MY, Alwis S, Cyclewala S, Jarral OA, Mohamed H, Mozalbat D, Nienaber CA, Athanasiou T, Morris-Rosendahl D. The genetic basis of thoracic aortic disease: The future of aneurysm classification? Hellenic J Cardiol 2023; 69:41-50. [PMID: 36202327 DOI: 10.1016/j.hjc.2022.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/24/2022] [Accepted: 09/25/2022] [Indexed: 11/04/2022] Open
Abstract
The expansion in the repertoire of genes linked to thoracic aortic aneurysms (TAA) has revolutionised our understanding of the disease process. The clinical benefits of such progress are numerous, particularly helping our understanding of non-syndromic hereditary causes of TAA (HTAAD) and further refinement in the subclassification of disease. Furthermore, the understanding of aortic biomechanics and mechanical homeostasis has been significantly informed by the discovery of deleterious mutations and their effect on aortic phenotype. The drawbacks in genetic testing in TAA lie with the inability to translate genotype to accurate prognostication in the risk of thoracic aortic dissection (TAD), which is a life-threatening condition. Under current guidelines, there are no metrics by which those at risk for dissection with normal aortic diameters may undergo preventive surgery. Future research lies with more advanced genetic diagnosis of HTAAD and investigation of the diverse pathways involved in its pathophysiology, which will i) serve to improve our understanding of the underlying mechanisms, ii) improve guidelines for treatment and iii) prevent complications for HTAAD and sporadic aortopathies.
Collapse
Affiliation(s)
| | | | | | - Omar A Jarral
- Department of Surgery and Cancer, Imperial College London, UK
| | - Heba Mohamed
- Royal Brompton and Harefield Foundation Trust, UK
| | | | | | | | | |
Collapse
|
18
|
Summers KM, Bush SJ, Davis MR, Hume DA, Keshvari S, West JA. Fibrillin-1 and asprosin, novel players in metabolic syndrome. Mol Genet Metab 2023; 138:106979. [PMID: 36630758 DOI: 10.1016/j.ymgme.2022.106979] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Fibrillin-1 is a major component of the extracellular microfibrils, where it interacts with other extracellular matrix proteins to provide elasticity to connective tissues, and regulates the bioavailability of TGFβ family members. A peptide consisting of the C-terminal 140 amino acids of fibrillin-1 has recently been identified as a glucogenic hormone, secreted from adipose tissue during fasting and targeting the liver to release glucose. This fragment, called asprosin, also signals in the hypothalamus to stimulate appetite. Asprosin levels are correlated with many of the pathologies indicative of metabolic syndrome, including insulin resistance and obesity. Previous studies and reviews have addressed the therapeutic potential of asprosin as a target in obesity, diabetes and related conditions without considering mechanisms underlying the relationship between generation of asprosin and expression of the much larger fibrillin-1 protein. Profibrillin-1 undergoes obligatory cleavage at the cell surface as part of its assembly into microfibrils, producing the asprosin peptide as well as mature fibrillin-1. Patterns of FBN1 mRNA expression are inconsistent with the necessity for regulated release of asprosin. The asprosin peptide may be protected from degradation in adipose tissue. We present evidence for an alternative possibility, that asprosin mRNA is generated independently from an internal promoter within the 3' end of the FBN1 gene, which would allow for regulation independent of fibrillin-synthesis and is more economical of cellular resources. The discovery of asprosin opened exciting possibilities for treatment of metabolic syndrome related conditions, but there is much to be understood before such therapies could be introduced into the clinic.
Collapse
Affiliation(s)
- Kim M Summers
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, Queensland 4102, Australia.
| | - Stephen J Bush
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DS, United Kingdom.
| | - Margaret R Davis
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, United Kingdom
| | - David A Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, Queensland 4102, Australia.
| | - Sahar Keshvari
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, Queensland 4102, Australia.
| | - Jennifer A West
- Faculty of Medicine, The University of Queensland, Mayne Medical Building, 288 Herston Road, Herston, Queensland 4006, Australia.
| |
Collapse
|
19
|
Rodríguez-Rovira I, Arce C, De Rycke K, Pérez B, Carretero A, Arbonés M, Teixidò-Turà G, Gómez-Cabrera MC, Campuzano V, Jiménez-Altayó F, Egea G. Allopurinol blocks aortic aneurysm in a mouse model of Marfan syndrome via reducing aortic oxidative stress. Free Radic Biol Med 2022; 193:538-550. [PMID: 36347404 DOI: 10.1016/j.freeradbiomed.2022.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Increasing evidence indicates that redox stress participates in MFS aortopathy, though its mechanistic contribution is little known. We reported elevated reactive oxygen species (ROS) formation and NADPH oxidase NOX4 upregulation in MFS patients and mouse aortae. Here we address the contribution of xanthine oxidoreductase (XOR), which catabolizes purines into uric acid and ROS in MFS aortopathy. METHODS AND RESULTS In aortic samples from MFS patients, XOR protein expression, revealed by immunohistochemistry, increased in both the tunicae intima and media of the dilated zone. In MFS mice (Fbn1C1041G/+), aortic XOR mRNA transcripts and enzymatic activity of the oxidase form (XO) were augmented in the aorta of 3-month-old mice but not in older animals. The administration of the XOR inhibitor allopurinol (ALO) halted the progression of aortic root aneurysm in MFS mice. ALO administrated before the onset of the aneurysm prevented its subsequent development. ALO also inhibited MFS-associated endothelial dysfunction as well as elastic fiber fragmentation, nuclear translocation of pNRF2 and increased 3'-nitrotyrosine levels, and collagen maturation remodeling, all occurring in the tunica media. ALO reduced the MFS-associated large aortic production of H2O2, and NOX4 and MMP2 transcriptional overexpression. CONCLUSIONS Allopurinol interferes in aortic aneurysm progression acting as a potent antioxidant. This study strengthens the concept that redox stress is an important determinant of aortic aneurysm formation and progression in MFS and warrants the evaluation of ALO therapy in MFS patients.
Collapse
Affiliation(s)
- Isaac Rodríguez-Rovira
- Department of Biomedical Sciences, University of Barcelona School of Medicine and Health Sciences, 08036, Barcelona, Spain
| | - Cristina Arce
- Department of Biomedical Sciences, University of Barcelona School of Medicine and Health Sciences, 08036, Barcelona, Spain
| | - Karo De Rycke
- Department of Biomedical Sciences, University of Barcelona School of Medicine and Health Sciences, 08036, Barcelona, Spain
| | - Belén Pérez
- Department of Pharmacology, Toxicology and Therapeutics, Neuroscience Institute, School of Medicine, Autonomous University of Barcelona, 08193, Cerdanyola del Vallès, Spain
| | - Aitor Carretero
- Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Marc Arbonés
- Department of Biomedical Sciences, University of Barcelona School of Medicine and Health Sciences, 08036, Barcelona, Spain
| | - Gisela Teixidò-Turà
- Department of Cardiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain; CIBER-CV, Vall d'Hebrón Institut de Recerca (VHIR), Barcelona, Spain
| | - Mari Carmen Gómez-Cabrera
- Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Victoria Campuzano
- Department of Biomedical Sciences, University of Barcelona School of Medicine and Health Sciences, 08036, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Spain
| | - Francesc Jiménez-Altayó
- Department of Pharmacology, Toxicology and Therapeutics, Neuroscience Institute, School of Medicine, Autonomous University of Barcelona, 08193, Cerdanyola del Vallès, Spain
| | - Gustavo Egea
- Department of Biomedical Sciences, University of Barcelona School of Medicine and Health Sciences, 08036, Barcelona, Spain.
| |
Collapse
|
20
|
Death due to extensive aortic dissection with an unusual retrograde extension in a young adult. J Forensic Leg Med 2022; 92:102437. [DOI: 10.1016/j.jflm.2022.102437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/02/2022] [Indexed: 11/18/2022]
|
21
|
Fang ZM, Feng X, Chen Y, Luo H, Jiang DS, Yi X. Targeting autophagy in aortic aneurysm and dissection. Biomed Pharmacother 2022; 153:113547. [PMID: 36076620 DOI: 10.1016/j.biopha.2022.113547] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 01/18/2023] Open
|
22
|
Tracking an Elusive Killer: State of the Art of Molecular-Genetic Knowledge and Laboratory Role in Diagnosis and Risk Stratification of Thoracic Aortic Aneurysm and Dissection. Diagnostics (Basel) 2022; 12:diagnostics12081785. [PMID: 35892496 PMCID: PMC9329974 DOI: 10.3390/diagnostics12081785] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 02/08/2023] Open
Abstract
The main challenge in diagnosing and managing thoracic aortic aneurysm and dissection (TAA/D) is represented by the early detection of a disease that is both deadly and “elusive”, as it generally grows asymptomatically prior to rupture, leading to death in the majority of cases. Gender differences exist in aortic dissection in terms of incidence and treatment options. Efforts have been made to identify biomarkers that may help in early diagnosis and in detecting those patients at a higher risk of developing life-threatening complications. As soon as the hereditability of the TAA/D was demonstrated, several genetic factors were found to be associated with both the syndromic and non-syndromic forms of the disease, and they currently play a role in patient diagnosis/prognosis and management-guidance purposes. Likewise, circulating biomarker could represent a valuable resource in assisting the diagnosis, and several studies have attempted to identify specific molecules that may help with risk stratification outside the emergency department. Even if promising, those data lack specificity/sensitivity, and, in most cases, they need more testing before entering the “clinical arena”. This review summarizes the state of the art of the laboratory in TAA/D diagnostics, with particular reference to the current and future role of molecular-genetic testing.
Collapse
|
23
|
Kiema M, Sarin JK, Kauhanen SP, Torniainen J, Matikka H, Luoto ES, Jaakkola P, Saari P, Liimatainen T, Vanninen R, Ylä-Herttuala S, Hedman M, Laakkonen JP. Wall Shear Stress Predicts Media Degeneration and Biomechanical Changes in Thoracic Aorta. Front Physiol 2022; 13:934941. [PMID: 35874533 PMCID: PMC9301078 DOI: 10.3389/fphys.2022.934941] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/15/2022] [Indexed: 11/20/2022] Open
Abstract
Objectives: In thoracic aortic aneurysm (TAA) of the ascending aorta (AA), AA is progressively dilating due to the weakening of the aortic wall. Predicting and preventing aortic dissections and ruptures in TAA continues to be challenging, and more accurate assessment of the AA dilatation, identification of high-risk patients, and timing of repair surgery are required. We investigated whether wall shear stress (WSS) predicts pathological and biomechanical changes in the aortic wall in TAA. Methods: The study included 12 patients with bicuspid (BAV) and 20 patients with the tricuspid aortic valve (TAV). 4D flow magnetic resonance imaging (MRI) was performed a day before aortic replacement surgery. Biomechanical and histological parameters, including assessing of wall strength, media degeneration, elastin, and cell content were analyzed from the resected AA samples. Results: WSSs were greater in the outer curves of the AA compared to the inner curves in all TAA patients. WSSs correlated with media degeneration of the aortic wall (ρ = -0.48, p < 0.01), elastin content (ρ = 0.47, p < 0.01), and aortic wall strength (ρ = -0.49, p = 0.029). Subsequently, the media of the outer curves was thinner, more rigid, and tolerated lower failure strains. Failure values were shown to correlate with smooth muscle cell (SMC) density (ρ = -0.45, p < 0.02), and indicated the more MYH10+ SMCs the lower the strength of the aortic wall structure. More macrophages were detected in patients with severe media degeneration and the areas with lower WSSs. Conclusion: The findings indicate that MRI-derived WSS predicts pathological and biomechanical changes in the aortic wall in patients with TAA and could be used for identification of high-risk patients.
Collapse
Affiliation(s)
- Miika Kiema
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jaakko K. Sarin
- Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
- Department of Medical Physics, Medical Imaging Center, Pirkanmaa Hospital District, Tampere, Finland
| | - S. Petteri Kauhanen
- Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Jari Torniainen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Hanna Matikka
- Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Emma-Sofia Luoto
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pekka Jaakkola
- Department of Heart and Thoracic Surgery, Kuopio University Hospital, Heart Center, Kuopio, Finland
| | - Petri Saari
- Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Timo Liimatainen
- Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
- Research Unit of Medical Imaging, Physics and Technology, Oulu University Hospital, Oulu, Finland
| | - Ritva Vanninen
- Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Science Service Center, Kuopio University Hospital, Kuopio, Finland
- Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| | - Marja Hedman
- Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
- Department of Heart and Thoracic Surgery, Kuopio University Hospital, Heart Center, Kuopio, Finland
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Johanna P. Laakkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- *Correspondence: Johanna P. Laakkonen,
| |
Collapse
|
24
|
Li D, Xiao CS, Chen L, Wu Y, Jiang W, Jiang SL. SERPINE1 Gene Is a Reliable Molecular Marker for the Early Diagnosis of Aortic Dissection. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:5433868. [PMID: 35836829 PMCID: PMC9276487 DOI: 10.1155/2022/5433868] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/26/2022] [Accepted: 06/10/2022] [Indexed: 11/29/2022]
Abstract
With the acceleration of population aging, the detection rate of aortic dissection has increased. The incidence rate of aortic dissection has increased year by year and has become a serious threat to human health. However, the current clinical treatment of aortic dissection is mainly limited to surgery (including intracavity), but the complexity of the disease and the high risk of surgery seriously affect the overall treatment effect of the disease. Therefore, an in-depth study of the pathogenesis of aortic dissection and the development of early diagnosis methods is not only expected to control the development of aortic dissection but also to improve the existing clinical treatment effect. Based on the bioinformatics analysis of the related mRNA sequence data of aortic dissection in GEO database, the gene expression regulatory network of aortic dissection was constructed. Through the screening of key node genes, the key factors (molecular markers) that may affect the occurrence of aortic dissection were obtained, and their functions were tested in human aortic smooth muscle cells (HAoSMC). Finally, it was concluded that SERPINE1 gene is a reliable molecular marker for the early diagnosis of aortic dissection.
Collapse
Affiliation(s)
- Dong Li
- Department of Cardiovascular Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Cang-Song Xiao
- Department of Cardiovascular Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Lei Chen
- Department of Cardiovascular Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Yang Wu
- Department of Cardiovascular Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Wei Jiang
- Department of Cardiovascular Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Sheng-Li Jiang
- Department of Cardiovascular Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
25
|
Heck R, Fischer-Zirnsak B, Photiadis J, Horn D, Gehle P. Different ascending aortic phenotypes with similar mutations in 2 patients with Loeys-Dietz syndrome type 2. Interact Cardiovasc Thorac Surg 2022; 35:6605854. [PMID: 35689619 PMCID: PMC9240761 DOI: 10.1093/icvts/ivac159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/16/2022] [Accepted: 06/08/2022] [Indexed: 11/28/2022] Open
Abstract
Our goal was to present 2 infants with confirmed Loeys-Dietz syndrome. The missense mutations in exon 7 of the TGFBR2 gene are only 5 codons apart (c.1597T>C and c.1582C>G). Phenotypically, the aneurysms of the ascending aorta were restricted to different segments of the aorta: the suprajunctional segment in 1 patient and the aortic root in another. These cases highlight the complexity of signaling pathways and gene expression in the pathogenesis of aortic aneurysms.
Collapse
Affiliation(s)
- Roland Heck
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin , Berlin, Germany
| | - Björn Fischer-Zirnsak
- Department of Medical Genetics and Human Genetics, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health , Berlin, Germany
- Max Planck Institute for Molecular Genetics FG Development and Disease , Berlin, Germany
| | - Joachim Photiadis
- Department of Congenital Heart Surgery, Pediatric Heart Surgery, German Heart Center Berlin , Berlin, Germany
| | - Denise Horn
- Department of Medical Genetics and Human Genetics, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health , Berlin, Germany
| | - Petra Gehle
- Department of Cardiology, Charité – Universitätsmedizin Berlin , Berlin, Germany
| |
Collapse
|
26
|
Kaw A, Kaw K, Hostetler EM, Beleza-Meireles A, Smith-Collins A, Armstrong C, Scurr I, Cotts T, Aatre R, Bamshad MJ, Earl D, Groner A, Agre K, Raveh Y, Kwartler CS, Milewicz DM. Expanding ACTA2 genotypes with corresponding phenotypes overlapping with smooth muscle dysfunction syndrome. Am J Med Genet A 2022; 188:2389-2396. [PMID: 35567597 PMCID: PMC9283281 DOI: 10.1002/ajmg.a.62775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/13/2022] [Accepted: 04/09/2022] [Indexed: 11/07/2022]
Abstract
Pathogenic variants in ACTA2, encoding smooth muscle α-actin, predispose to thoracic aortic aneurysms and dissections. ACTA2 variants altering arginine 179 predispose to a more severe, multisystemic disease termed smooth muscle dysfunction syndrome (SMDS; OMIM 613834). Vascular complications of SMDS include patent ductus arteriosus (PDA) or aortopulmonary window, early-onset thoracic aortic disease (TAD), moyamoya-like cerebrovascular disease, and primary pulmonary hypertension. Patients also have dysfunction of other smooth muscle-dependent systems, including congenital mydriasis, hypotonic bladder, and gut hypoperistalsis. Here, we describe five patients with novel heterozygous ACTA2 missense variants, p.Arg179Gly, p.Met46Arg, p.Thr204Ile, p.Arg39Cys, and p.Ile66Asn, who have clinical complications that align or overlap with SMDS. Patients with the ACTA2 p.Arg179Gly and p.Thr204Ile variants display classic features of SMDS. The patient with the ACTA2 p.Met46Arg variant exhibits exclusively vascular complications of SMDS, including early-onset TAD, PDA, and moyamoya-like cerebrovascular disease. The patient with the ACTA2 p.Ile66Asn variant has an unusual vascular complication, a large fusiform internal carotid artery aneurysm. The patient with the ACTA2 p.Arg39Cys variant has pulmonary, gastrointestinal, and genitourinary complications of SMDS but no vascular manifestations. Identifying pathogenic ACTA2 variants associated with features of SMDS is critical for aggressive surveillance and management of vascular and nonvascular complications and delineating the molecular pathogenesis of SMDS.
Collapse
Affiliation(s)
- Anita Kaw
- Division of Medical Genetic, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Kaveeta Kaw
- Division of Medical Genetic, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ellen M Hostetler
- Division of Medical Genetic, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ana Beleza-Meireles
- Bristol Regional Clinical Genetics Service, St Michael's Hospital, Bristol, UK
| | - Adam Smith-Collins
- Regional Neonatal Intensive Care Unit, St Michael's Hospital, Bristol, UK
| | | | - Ingrid Scurr
- Bristol Regional Clinical Genetics Service, St Michael's Hospital, Bristol, UK
| | - Timothy Cotts
- Division of Pediatric Cardiology, Department of Pediatrics, Michigan Medicine, University of Michigan at Ann Arbor, Ann Arbor, Michigan, USA
| | - Rajani Aatre
- Franklin Cardiovascular Center, Department of Internal Medicine, Michigan Medicine, University of Michigan at Ann Arbor, Ann Arbor, Michigan, USA
| | - Michael J Bamshad
- Division of Medical Genetics, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Dawn Earl
- Division of Medical Genetics, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Abraham Groner
- Division of Cardiology, Department of Pediatrics, The University of Chicago, Chicago, Illinois, USA
| | | | - Yehuda Raveh
- Department of Anesthesia, University of Miami/Jackson Memorial Hospital, Miami, Florida, USA
| | - Callie S Kwartler
- Division of Medical Genetic, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Dianna M Milewicz
- Division of Medical Genetic, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
27
|
Functional Remodeling of the Contractile Smooth Muscle Cell Cortex, a Provocative Concept, Supported by Direct Visualization of Cortical Remodeling. BIOLOGY 2022; 11:biology11050662. [PMID: 35625390 PMCID: PMC9138025 DOI: 10.3390/biology11050662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/06/2022] [Accepted: 04/24/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary As a key element of the smooth muscle cell contractile apparatus, the actin cytoskeleton participates in the development of force by acting as a molecular track for the myosin cross bridge motor. At the same time, the actin cytoskeleton must transmit the force developed during contraction to the extracellular matrix and, thus, to neighboring cells. This propagation of force to the cell periphery and beyond is initiated in part on specifically localized cellular cortical actin filaments also involved in mechano-chemical transduction. During the contractile process itself and in response to extracellular structural and chemical alterations, the smooth muscle actin cytoskeletal remodels. This indicates that the cytoskeleton is a dynamic cellular organelle that adapts to the changes in cell shape and chemical cues. Current evidence connecting contractile function and mechano-transduction mechanisms to the plasticity of the vascular smooth muscle actin cytoskeleton is reviewed; we then describe new evidence for cytoskeletal remodeling in vascular smooth muscle cells. Here, using immunoelectron microscopy, we visualize the actin binding proteins filamin A, zyxin and talin in these cells and show that they participate in the cortical cell cytoskeletal alteration, thus supporting the premise that smooth muscle cell remodeling occurs during contraction. Abstract Considerable controversy has surrounded the functional anatomy of the cytoskeleton of the contractile vascular smooth muscle cell. Recent studies have suggested a dynamic nature of the cortical cytoskeleton of these cells, but direct proof has been lacking. Here, we review past studies in this area suggesting a plasticity of smooth muscle cells. We also present images testing these suggestions by using the technique of immunoelectron microscopy of metal replicas to directly visualize the cortical actin cytoskeleton of the contractile smooth muscle cell along with interactions by representative cytoskeletal binding proteins. We find the cortical cytoskeletal matrix to be a branched, interconnected network of linear actin bundles. Here, the focal adhesion proteins talin and zyxin were localized with nanometer accuracy. Talin is reported in past studies to span the integrin–cytoplasm distance in fibroblasts and zyxin is known to be an adaptor protein between alpha-actinin and VASP. In response to activation of signal transduction with the alpha-agonist phenylephrine, we found that no movement of talin was detectable but that the zyxin-zyxin spacing was statistically significantly decreased in the smooth muscle cells examined. Contractile smooth muscle is often assumed to have a fixed cytoskeletal structure. Thus, the results included here are important in that they directly support the concept at the electron microscopic level that the focal adhesion of the contractile smooth muscle cell has a dynamic nature and that the protein–protein interfaces showing plasticity are protein-specific.
Collapse
|
28
|
Rombouts KB, van Merrienboer TAR, Ket JCF, Bogunovic N, van der Velden J, Yeung KK. The role of vascular smooth muscle cells in the development of aortic aneurysms and dissections. Eur J Clin Invest 2022; 52:e13697. [PMID: 34698377 PMCID: PMC9285394 DOI: 10.1111/eci.13697] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/12/2021] [Accepted: 10/11/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Aortic aneurysms (AA) are pathological dilations of the aorta, associated with an overall mortality rate up to 90% in case of rupture. In addition to dilation, the aortic layers can separate by a tear within the layers, defined as aortic dissections (AD). Vascular smooth muscle cells (vSMC) are the predominant cell type within the aortic wall and dysregulation of vSMC functions contributes to AA and AD development and progression. However, since the exact underlying mechanism is poorly understood, finding potential therapeutic targets for AA and AD is challenging and surgery remains the only treatment option. METHODS In this review, we summarize current knowledge about vSMC functions within the aortic wall and give an overview of how vSMC functions are altered in AA and AD pathogenesis, organized per anatomical location (abdominal or thoracic aorta). RESULTS Important functions of vSMC in healthy or diseased conditions are apoptosis, phenotypic switch, extracellular matrix regeneration and degradation, proliferation and contractility. Stressors within the aortic wall, including inflammatory cell infiltration and (epi)genetic changes, modulate vSMC functions and cause disturbance of processes within vSMC, such as changes in TGF-β signalling and regulatory RNA expression. CONCLUSION This review underscores a central role of vSMC dysfunction in abdominal and thoracic AA and AD development and progression. Further research focused on vSMC dysfunction in the aortic wall is necessary to find potential targets for noninvasive AA and AD treatment options.
Collapse
Affiliation(s)
- Karlijn B Rombouts
- Department of Surgery, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center and AMC, Amsterdam, The Netherlands.,Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, Amsterdam, The Netherlands
| | - Tara A R van Merrienboer
- Department of Surgery, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center and AMC, Amsterdam, The Netherlands.,Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, Amsterdam, The Netherlands
| | | | - Natalija Bogunovic
- Department of Surgery, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center and AMC, Amsterdam, The Netherlands.,Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, Amsterdam, The Netherlands.,Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, Amsterdam, The Netherlands
| | - Kak Khee Yeung
- Department of Surgery, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center and AMC, Amsterdam, The Netherlands.,Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
29
|
Sun L, Chang Y, Jiang P, Ma Y, Yuan Q, Ma X. Association of gene polymorphisms in FBN1 and TGF-β signaling with the susceptibility and prognostic outcomes of Stanford type B aortic dissection. BMC Med Genomics 2022; 15:65. [PMID: 35307021 PMCID: PMC8935688 DOI: 10.1186/s12920-022-01213-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Background This study is aimed at investigating the association of Fibrillin-1 (FBN1) and transforming growth factor β (TGF-β) signaling-related gene polymorphisms with the susceptibility of Stanford type B aortic dissection (AD) and its clinical prognostic outcomes. Methods Five single-nucleotide polymorphism (SNPs) (FBN1rs 145233125, rs201170905, rs11070646, TGFB1rs1800469, and TGFB2rs900) were analyzed in patients with Stanford type B AD (164) and healthy controls (317). Gene–gene and gene–environment interactions were assessed by generalized multifactor dimensionality reduction. A 4-year follow-up was performed for all AD patients. Results G carriers of FBN1 rs201170905 and TGFB1 rs1800469 have an increased risk of Stanford type B AD. The interaction of FBN1, TGFB1, TGFB2 and environmental promoted to the increased risk of type B AD (cross-validation consistency = 10/10, P = 0.001). Dominant models of FBN1rs145233125 TC + CC genotype (P = 0.028), FBN1 rs201170905 AG + GG (P = 0.047) and TGFB1 rs1800469 AG + GG (P = 0.052) were associated with an increased risk of death of Stanford type B AD. The recessive model of FBN1 rs145233125 CC genotype (P < 0.001), FBN1rs201170905 GG (P < 0.001), TGFB1 rs1800469 AG + GG genotype (P = 0.011) was associated with an increased risk of recurrence of chest pain in Stanford type B AD. Conclusions The interactions of gene–gene and gene–environment are related with the risk of Stanford type B AD. C carriers of rs145233125, G carriers of rs201170905 and G carriers of rs1800469 may be the poor clinical outcome indicators of mortality and recurrent chest pain in Stanford type B AD. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01213-z.
Collapse
|
30
|
Yin F, Zhang H, Guo P, Wu Y, Zhao X, Li F, Bian C, Chen C, Han Y, Liu K. Comprehensive Analysis of Key m6A Modification Related Genes and Immune Infiltrates in Human Aortic Dissection. Front Cardiovasc Med 2022; 9:831561. [PMID: 35369349 PMCID: PMC8967178 DOI: 10.3389/fcvm.2022.831561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/17/2022] [Indexed: 11/20/2022] Open
Abstract
Objective To identify the feature of N6-methyladenosine (m6A) methylation modification genes in acute aortic dissection (AAD) and explore their relationships with immune infiltration. Methods The GSE52093 dataset including gene expression data from patients with AAD and healthy controls was downloaded from Gene Expression Omnibus (GEO) database in order to obtain the differentially expressed genes (DEGs). The differentially methylated m6A genes were obtained from the GSE147027 dataset. The differentially expressed m6A-related genes were obtained based on the intersection results. Meanwhile, the protein-protein interaction (PPI) network of differentially expressed m6A-related genes was constructed, and hub genes with close relationships in the network were selected. Later, hub genes were verified by using the GSE153434 dataset. Thereafter, the relationships between these genes and immune cells infiltration were analyzed. Results A total of 279 differentially expressed m6A-related genes were identified in the GSE52093 and GSE147027 datasets. Among them, 94 genes were up-regulated in aortic dissection (AD), while the remaining 185 were down-regulated. As indicated by Gene Ontology (GO) functional enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, these genes were mainly associated with extracellular matrix (ECM) and smooth muscle cells (SMCs). The seven hub genes, namely, DDX17, CTGF, FLNA, SPP1, MYH11, ITGA5 and CACNA1C, were all confirmed as the potential biomarkers for AD. According to immune infiltration analysis, it was found that hub genes were related to some immune cells. For instance, DDX17, FLNA and MYH11 were correlated with Macrophages M2. Conclusion Our study identifies hub genes of AD that may serve as the potential biomarkers, illustrates of the molecular mechanism of AD, and provides support for subsequent research and treatment development.
Collapse
Affiliation(s)
- Fanxing Yin
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Dalian, China
| | - Hao Zhang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Dalian, China
| | - Panpan Guo
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Dalian, China
| | - Yihao Wu
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Dalian, China
| | - Xinya Zhao
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Dalian, China
| | - Fangjun Li
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Dalian, China
| | - Ce Bian
- Department of Cardiovascular Surgery, The General Hospital of the PLA Rocket Force, Beijing Normal University, Beijing, China
| | - Chen Chen
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Yanshuo Han
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Dalian, China
- *Correspondence: Yanshuo Han ; orcid.org/0000-0002-4897-2998
| | - Kun Liu
- Department of Cardiac Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Kun Liu
| |
Collapse
|
31
|
Nicholson CJ, Xing Y, Lee S, Liang S, Mohan S, O'Rourke C, Kang J, Morgan KG. Ageing causes an aortic contractile dysfunction phenotype by targeting the expression of members of the extracellular signal-regulated kinase pathway. J Cell Mol Med 2022; 26:1456-1465. [PMID: 35181997 PMCID: PMC8899171 DOI: 10.1111/jcmm.17118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 11/30/2022] Open
Abstract
The extracellular signal-regulated kinase (ERK) pathway is a well-known regulator of vascular smooth muscle cell proliferation, but it also serves as a regulator of caldesmon, which negatively regulates vascular contractility. This study examined whether aortic contractile function requires ERK activation and if this activation is regulated by ageing. Biomechanical experiments revealed that contractile responses to the alpha1-adrenergic agonist phenylephrine are attenuated specifically in aged mice, which is associated with downregulation of ERK phosphorylation. ERK inhibition attenuates phenylephrine-induced contractility, indicating that the contractile tone is at least partially ERK-dependent. To explore the mechanisms of this age-related downregulation of ERK phosphorylation, we transfected microRNAs, miR-34a and miR-137 we have previously shown to increase with ageing and demonstrated that in A7r5 cells, both miRs downregulate the expression of Src and paxillin, known regulators of ERK signalling, as well as ERK phosphorylation. Further studies in aortic tissues transfected with miRs show that miR-34a but not miR-137 has a negative effect on mRNA levels of Src and paxillin. Furthermore, ERK phosphorylation is decreased in aortic tissue treated with the Src inhibitor PP2. Increases in miR-34a and miR-137 with ageing downregulate the expression of Src and paxillin, leading to impaired ERK signalling and aortic contractile dysfunction.
Collapse
Affiliation(s)
- Christopher J Nicholson
- Department of Health Sciences, Boston University, Boston, MA, USA.,Department of Medicine, Cardiology Division, Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yi Xing
- Department of Health Sciences, Boston University, Boston, MA, USA
| | - Sophie Lee
- Department of Health Sciences, Boston University, Boston, MA, USA
| | - Stephanie Liang
- Department of Health Sciences, Boston University, Boston, MA, USA
| | - Shivani Mohan
- Department of Health Sciences, Boston University, Boston, MA, USA
| | - Caitlin O'Rourke
- Department of Health Sciences, Boston University, Boston, MA, USA
| | - Joshua Kang
- Department of Health Sciences, Boston University, Boston, MA, USA
| | | |
Collapse
|
32
|
Guan X, Xin H, Xu M, Ji J, Li J. The Role and Mechanism of SIRT6 in Regulating Phenotype Transformation of Vascular Smooth Muscle Cells in Abdominal Aortic Aneurysm. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3200798. [PMID: 35035519 PMCID: PMC8758316 DOI: 10.1155/2022/3200798] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Data mining of current gene expression databases has not been previously performed to determine whether sirtuin 6 (SIRT6) expression participates in the pathological process of abdominal aortic aneurysm (AAA). The present study was aimed at investigating the role and mechanism of SIRT6 in regulating phenotype transformation of vascular smooth muscle cells (VSMC) in AAA. METHODS Three gene expression microarray datasets of AAA patients in the Gene Expression Omnibus (GEO) database and one dataset of SIRT6-knockout (KO) mice were selected, and the differentially expressed genes (DEGs) were identified using GEO2R. Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of both the AAA-related DEGs and the SIRT6-related DEGs were conducted. RESULTS GEO2R analysis showed that the expression of SIRT6 was downregulated for three groups and upregulated for one group in the three datasets, and none of them satisfied statistical significance. There were top 5 DEGs (KYNU, NPTX2, SCRG1, GRK5, and RGS5) in both of the human AAA group and SIRT6-KO mouse group. Top 25 ontology of the SIRT6-KO-related DEGs showed that several pathways including tryptophan catabolic process to kynurenine and negative regulation of cell growth were enriched in the tissues of thickness aortic wall biopsies of AAA patients. CONCLUSIONS Although SIRT6 mRNA level itself did not change among AAA patients, SIRT6 may play an important role in regulating several signaling pathways with significant association with AAA, suggesting that SIRT6 mRNA upregulation is a protective factor for VSMC against AAA.
Collapse
Affiliation(s)
- Xiaomei Guan
- Department of Vascular Surgery, Affiliated Hospital of Qingdao University, Qingdao 266700, China
| | - Hai Xin
- Department of Vascular Surgery, Affiliated Hospital of Qingdao University, Qingdao 266700, China
| | - Meiling Xu
- Department of Interventional Operating Room, Affiliated Hospital of Qingdao University, Qingdao 266700, China
| | - Jianlei Ji
- Department of Kidney Transplantation, Affiliated Hospital of Qingdao University, Qingdao 266700, China
| | - Jun Li
- Department of Vascular Surgery, Affiliated Hospital of Qingdao University, Qingdao 266700, China
| |
Collapse
|
33
|
Gharraee N, Sun Y, Swisher JA, Lessner SM. Age and sex dependency of thoracic aortopathy in a mouse model of Marfan syndrome. Am J Physiol Heart Circ Physiol 2022; 322:H44-H56. [PMID: 34714692 PMCID: PMC8698500 DOI: 10.1152/ajpheart.00255.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Thoracic aortic aneurysm is one of the manifestations of Marfan syndrome (MFS) that is known to affect men more severely than women. However, the incidence of MFS is similar between men and women. The aim of this study is to show that during pathological aortic dilation, sex-dependent severity of thoracic aortopathy in a mouse model of MFS translates into sex-dependent alterations in cells and matrix of the ascending aorta, consequently affecting aortic biomechanics. Fibrillin-1 C1041G/+ (Het) mice were used as a mouse model of MFS. Ultrasound measurements from 3 to 12 mo showed increased aortic diameter in Het aorta, with larger percentage increase in diameter for males compared with females. Immunohistochemistry showed decreased contractile smooth muscle cells in Het aortic wall compared with healthy aorta, which was accompanied by decreased contractility measured by wire myography. Elastin autofluorescence, second-harmonic generation microscopy of collagen fibers, and passive biomechanical assessments using myography showed more severe damage to elastin fibers, increased medial fibrosis, and increased stiffness of the aortic wall in MFS males but not females. Male and female Het mice showed increased expression of Sca-1-positive adventitial progenitor cells versus controls at young ages. In agreement with clinical data, Het mice demonstrate sex-dependent severity of thoracic aortopathy. It was also shown that aging exacerbates the disease state especially for males. Our findings suggest that female mice are protected from progression of aortic dilation at early ages, leading to a lag in aneurysm growth.NEW & NOTEWORTHY Male Fbn1C1041G/+ mice show more severe thoracic aortic changes compared with females, especially at 12 mo of age. Up to 6 mo of age, Sca-1+ smooth muscle progenitor cells are more abundant in the adventitia of both male and female Fbn1 Het mice compared with wild types (WTs). Male and female Het mice show similar patterns of expression of Sca-1+ cells at early ages.
Collapse
Affiliation(s)
- Nazli Gharraee
- 1Biomedical Engineering Program, University of South Carolina, Columbia, South Carolina
| | - Yujian Sun
- 2Physical Therapy Program, Brenau University, Gainesville, Georgia
| | - Joseph A. Swisher
- 3Internal Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Susan M. Lessner
- 1Biomedical Engineering Program, University of South Carolina, Columbia, South Carolina,4Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
34
|
Dawson A, Li Y, Li Y, Ren P, Vasquez HG, Zhang C, Rebello KR, Ageedi W, Azares AR, Mattar AB, Sheppard MB, Lu HS, Coselli JS, Cassis LA, Daugherty A, Shen YH, LeMaire SA. Single-Cell Analysis of Aneurysmal Aortic Tissue in Patients with Marfan Syndrome Reveals Dysfunctional TGF-β Signaling. Genes (Basel) 2021; 13:95. [PMID: 35052435 PMCID: PMC8774900 DOI: 10.3390/genes13010095] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 02/08/2023] Open
Abstract
The molecular and cellular processes leading to aortic aneurysm development in Marfan syndrome (MFS) remain poorly understood. In this study, we examined the changes of aortic cell populations and gene expression in MFS by performing single-cell RNA sequencing (scRNA seq) on ascending aortic aneurysm tissues from patients with MFS (n = 3) and age-matched non-aneurysmal control tissues from cardiac donors and recipients (n = 4). The expression of key molecules was confirmed by immunostaining. We detected diverse populations of smooth muscle cells (SMCs), fibroblasts, and endothelial cells (ECs) in the aortic wall. Aortic tissues from MFS showed alterations of cell populations with increased de-differentiated proliferative SMCs compared to controls. Furthermore, there was a downregulation of MYOCD and MYH11 in SMCs, and an upregulation of COL1A1/2 in fibroblasts in MFS samples compared to controls. We also examined TGF-β signaling, an important pathway in aortic homeostasis. We found that TGFB1 was significantly upregulated in two fibroblast clusters in MFS tissues. However, TGF-β receptor genes (predominantly TGFBR2) and SMAD genes were downregulated in SMCs, fibroblasts, and ECs in MFS, indicating impairment in TGF-β signaling. In conclusion, despite upregulation of TGFB1, the rest of the canonical TGF-β pathway and mature SMCs were consistently downregulated in MFS, indicating a potential compromise of TGF-β signaling and lack of stimulus for SMC differentiation.
Collapse
Affiliation(s)
- Ashley Dawson
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (A.D.); (Y.L.); (Y.L.); (P.R.); (H.G.V.); (C.Z.); (K.R.R.); (W.A.); (J.S.C.); (Y.H.S.)
| | - Yanming Li
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (A.D.); (Y.L.); (Y.L.); (P.R.); (H.G.V.); (C.Z.); (K.R.R.); (W.A.); (J.S.C.); (Y.H.S.)
| | - Yang Li
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (A.D.); (Y.L.); (Y.L.); (P.R.); (H.G.V.); (C.Z.); (K.R.R.); (W.A.); (J.S.C.); (Y.H.S.)
| | - Pingping Ren
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (A.D.); (Y.L.); (Y.L.); (P.R.); (H.G.V.); (C.Z.); (K.R.R.); (W.A.); (J.S.C.); (Y.H.S.)
| | - Hernan G. Vasquez
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (A.D.); (Y.L.); (Y.L.); (P.R.); (H.G.V.); (C.Z.); (K.R.R.); (W.A.); (J.S.C.); (Y.H.S.)
| | - Chen Zhang
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (A.D.); (Y.L.); (Y.L.); (P.R.); (H.G.V.); (C.Z.); (K.R.R.); (W.A.); (J.S.C.); (Y.H.S.)
| | - Kimberly R. Rebello
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (A.D.); (Y.L.); (Y.L.); (P.R.); (H.G.V.); (C.Z.); (K.R.R.); (W.A.); (J.S.C.); (Y.H.S.)
| | - Waleed Ageedi
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (A.D.); (Y.L.); (Y.L.); (P.R.); (H.G.V.); (C.Z.); (K.R.R.); (W.A.); (J.S.C.); (Y.H.S.)
| | - Alon R. Azares
- Department of Cardiovascular Surgery, Texas Heart Institute, Houston, TX 77030, USA;
| | - Aladdein Burchett Mattar
- Division of Cardiothoracic Transplantation and Circulatory Support, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Mary Burchett Sheppard
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536, USA; (M.B.S.); (H.S.L.); (A.D.)
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Hong S. Lu
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536, USA; (M.B.S.); (H.S.L.); (A.D.)
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Joseph S. Coselli
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (A.D.); (Y.L.); (Y.L.); (P.R.); (H.G.V.); (C.Z.); (K.R.R.); (W.A.); (J.S.C.); (Y.H.S.)
- Department of Cardiovascular Surgery, Texas Heart Institute, Houston, TX 77030, USA;
| | - Lisa A. Cassis
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA;
| | - Alan Daugherty
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536, USA; (M.B.S.); (H.S.L.); (A.D.)
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Ying H. Shen
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (A.D.); (Y.L.); (Y.L.); (P.R.); (H.G.V.); (C.Z.); (K.R.R.); (W.A.); (J.S.C.); (Y.H.S.)
- Department of Cardiovascular Surgery, Texas Heart Institute, Houston, TX 77030, USA;
| | - Scott A. LeMaire
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (A.D.); (Y.L.); (Y.L.); (P.R.); (H.G.V.); (C.Z.); (K.R.R.); (W.A.); (J.S.C.); (Y.H.S.)
- Department of Cardiovascular Surgery, Texas Heart Institute, Houston, TX 77030, USA;
| |
Collapse
|
35
|
Estrada AC, Irons L, Rego BV, Li G, Tellides G, Humphrey JD. Roles of mTOR in thoracic aortopathy understood by complex intracellular signaling interactions. PLoS Comput Biol 2021; 17:e1009683. [PMID: 34898595 PMCID: PMC8700007 DOI: 10.1371/journal.pcbi.1009683] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/23/2021] [Accepted: 11/26/2021] [Indexed: 02/01/2023] Open
Abstract
Thoracic aortopathy–aneurysm, dissection, and rupture–is increasingly responsible for significant morbidity and mortality. Advances in medical genetics and imaging have improved diagnosis and thus enabled earlier prophylactic surgical intervention in many cases. There remains a pressing need, however, to understand better the underlying molecular and cellular mechanisms with the hope of finding robust pharmacotherapies. Diverse studies in patients and mouse models of aortopathy have revealed critical changes in multiple smooth muscle cell signaling pathways that associate with disease, yet integrating information across studies and models has remained challenging. We present a new quantitative network model that includes many of the key smooth muscle cell signaling pathways and validate the model using a detailed data set that focuses on hyperactivation of the mechanistic target of rapamycin (mTOR) pathway and its inhibition using rapamycin. We show that the model can be parameterized to capture the primary experimental findings both qualitatively and quantitatively. We further show that simulating a population of cells by varying receptor reaction weights leads to distinct proteomic clusters within the population, and that these clusters emerge due to a bistable switch driven by positive feedback in the PI3K/AKT/mTOR signaling pathway. Cell signaling drives changes across scales, from altered transcription at the single-cell level to tissue-level growth and remodeling. Studying complex interactions within cell signaling pathways can lead to a better understanding of the progression of disease. In particular, we are interested in how vascular cells can change their phenotype in a way that exacerbates aortopathy, namely, the development of aneurysms, dissections, and rupture. In this study we built a novel cell signaling network model of a vascular smooth muscle cell using archival data and used it to capture the effects of a genetic knock-out and subsequent pharmacologic rescue. We then used the model to simulate populations of smooth muscle cells and found that small perturbations to the strength of signaling can lead to distinct clusters of cells. With further analysis of the network substructures, we found that a positive feedback loop within the network was responsible for the distinct phenotypes we saw in our clusters of simulated cells. We believe that this work not only helps us to understand changes in smooth muscle cell phenotype but also opens the possibility to study other signaling perturbations associated with aortopathy.
Collapse
Affiliation(s)
- Ana C. Estrada
- Department of Biomedical Engineering, Yale University; New Haven, Connecticut, United States of America
| | - Linda Irons
- Department of Biomedical Engineering, Yale University; New Haven, Connecticut, United States of America
| | - Bruno V. Rego
- Department of Biomedical Engineering, Yale University; New Haven, Connecticut, United States of America
| | - Guangxin Li
- Department of Surgery, Yale School of Medicine; New Haven, Connecticut, United States of America
| | - George Tellides
- Department of Surgery, Yale School of Medicine; New Haven, Connecticut, United States of America
- Vascular Biology and Therapeutics Program, Yale School of Medicine; New Haven, Connecticut, United States of America
| | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University; New Haven, Connecticut, United States of America
- Vascular Biology and Therapeutics Program, Yale School of Medicine; New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
36
|
Abudupataer M, Zhu S, Yan S, Xu K, Zhang J, Luo S, Ma W, Alam MF, Tang Y, Huang H, Chen N, Wang L, Yan G, Li J, Lai H, Wang C, Zhu K, Zhang W. Aorta smooth muscle-on-a-chip reveals impaired mitochondrial dynamics as a therapeutic target for aortic aneurysm in bicuspid aortic valve disease. eLife 2021; 10:69310. [PMID: 34486519 PMCID: PMC8451027 DOI: 10.7554/elife.69310] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 08/18/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Bicuspid aortic valve (BAV) is the most common congenital cardiovascular disease in general population and is frequently associated with the development of thoracic aortic aneurysm (TAA). There is no effective strategy to intervene with TAA progression due to an incomplete understanding of the pathogenesis. Insufficiency of NOTCH1 expression is highly related to BAV-TAA, but the underlying mechanism remains to be clarified. Methods: A comparative proteomics analysis was used to explore the biological differences between non-diseased and BAV-TAA aortic tissues. A microfluidics-based aorta smooth muscle-on-a-chip model was constructed to evaluate the effect of NOTCH1 deficiency on contractile phenotype and mitochondrial dynamics of human aortic smooth muscle cells (HAoSMCs). Results: Protein analyses of human aortic tissues showed the insufficient expression of NOTCH1 and impaired mitochondrial dynamics in BAV-TAA. HAoSMCs with NOTCH1-knockdown exhibited reduced contractile phenotype and were accompanied by attenuated mitochondrial fusion. Furthermore, we identified that mitochondrial fusion activators (leflunomide and teriflunomide) or mitochondrial fission inhibitor (Mdivi-1) partially rescued the disorders of mitochondrial dynamics in HAoSMCs derived from BAV-TAA patients. Conclusions: The aorta smooth muscle-on-a-chip model simulates the human pathophysiological parameters of aorta biomechanics and provides a platform for molecular mechanism studies of aortic disease and related drug screening. This aorta smooth muscle-on-a-chip model and human tissue proteomic analysis revealed that impaired mitochondrial dynamics could be a potential therapeutic target for BAV-TAA. Funding: National Key R and D Program of China, National Natural Science Foundation of China, Shanghai Municipal Science and Technology Major Project, Shanghai Science and Technology Commission, and Shanghai Municipal Education Commission. To function properly, the heart must remain a one-way system, pumping out oxygenated blood into the aorta – the largest artery in the body – so it can be distributed across the organism. The aortic valve, which sits at the entrance of the aorta, is a key component of this system. Its three flaps (or ‘cusps’) are pushed open when the blood exits the heart, and they shut tightly so it does not flow back in the incorrect direction. Nearly 1.4% of people around the world are born with ‘bicuspid’ aortic valves that only have two flaps. These valves may harden or become leaky, forcing the heart to work harder. This defect is also associated with bulges on the aorta which progressively weaken the artery, sometimes causing it to rupture. Open-heart surgery is currently the only way to treat these bulges (or ‘aneurysms’), as no drug exists that could slow down disease progression. This is partly because the biological processes involved in the aneurysms worsening and bursting open is unclear. Recent studies have highlighted that many individuals with bicuspid aortic valves also have lower levels of a protein known as NOTCH1, which plays a key signalling role for cells. Problems in the mitochondria – the structures that power up a cell – are also observed. However, it is not known how these findings are connected or linked with the aneurysms developing. To answer this question, Abudupataer et al. analyzed the proteins present in diseased and healthy aortic muscle cells, confirming a lower production of NOTCH1 and impaired mitochondria in diseased tissues. They also created an ‘aorta-on-a-chip’ model where aortic muscle cells were grown in the laboratory under conditions resembling those found in the body – including the rhythmic strain that the aorta is under because of the heart beating. Abudupataer et al. then reduced NOTCH1 levels in healthy samples, which made the muscle tissue less able to contract and reduced the activity of the mitochondria. Applying drugs that tweak mitochondrial activity helped tissues from patients with bicuspid aortic valves to work better. These compounds could potentially benefit individuals with deficient aortic valves, but experiments in animals and clinical trials would be needed first to confirm the results and assess safety. The aorta-on-a-chip model developed by Abudupataer et al. also provides a platform to screen for drugs and examine the molecular mechanisms at play in aortic diseases.
Collapse
Affiliation(s)
- Mieradilijiang Abudupataer
- Department of Cardiac Surgery and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shichao Zhu
- Department of Cardiac Surgery and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shiqiang Yan
- Institutes of Biomedical Sciences and the Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
| | - Kehua Xu
- Institutes of Biomedical Sciences and the Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jingjing Zhang
- Institutes of Biomedical Sciences and the Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shaman Luo
- Institutes of Biomedical Sciences and the Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China.,The State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
| | - Wenrui Ma
- Department of Cardiac Surgery and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Md Fazle Alam
- Institutes of Biomedical Sciences and the Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China.,The State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
| | - Yuyi Tang
- Institutes of Biomedical Sciences and the Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hui Huang
- Institutes of Biomedical Sciences and the Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
| | - Nan Chen
- Department of Cardiac Surgery and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Li Wang
- Institutes of Biomedical Sciences and the Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guoquan Yan
- Institutes of Biomedical Sciences and the Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jun Li
- Department of Cardiac Surgery and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences and the Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hao Lai
- Department of Cardiac Surgery and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunsheng Wang
- Department of Cardiac Surgery and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kai Zhu
- Department of Cardiac Surgery and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weijia Zhang
- Department of Cardiac Surgery and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences and the Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China.,The State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
| |
Collapse
|
37
|
Abstract
Marfan syndrome (MFS) is an autosomal dominant, age-related but highly penetrant condition with substantial intrafamilial and interfamilial variability. MFS is caused by pathogenetic variants in FBN1, which encodes fibrillin-1, a major structural component of the extracellular matrix that provides support to connective tissues, particularly in arteries, the pericondrium and structures in the eye. Up to 25% of individuals with MFS have de novo variants. The most prominent manifestations of MFS are asymptomatic aortic root aneurysms, aortic dissections, dislocation of the ocular lens (ectopia lentis) and skeletal abnormalities that are characterized by overgrowth of the long bones. MFS is diagnosed based on the Ghent II nosology; genetic testing confirming the presence of a FBN1 pathogenetic variant is not always required for diagnosis but can help distinguish MFS from other heritable thoracic aortic disease syndromes that can present with skeletal features similar to those in MFS. Untreated aortic root aneurysms can progress to life-threatening acute aortic dissections. Management of MFS requires medical therapy to slow the rate of growth of aneurysms and decrease the risk of dissection. Routine surveillance with imaging techniques such as transthoracic echocardiography, CT or MRI is necessary to monitor aneurysm growth and determine when to perform prophylactic repair surgery to prevent an acute aortic dissection.
Collapse
|
38
|
Buerger M, Klein O, Kapahnke S, Mueller V, Frese JP, Omran S, Greiner A, Sommerfeld M, Kaschina E, Jannasch A, Dittfeld C, Mahlmann A, Hinterseher I. Use of MALDI Mass Spectrometry Imaging to Identify Proteomic Signatures in Aortic Aneurysms after Endovascular Repair. Biomedicines 2021; 9:biomedicines9091088. [PMID: 34572274 PMCID: PMC8465851 DOI: 10.3390/biomedicines9091088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/15/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022] Open
Abstract
Endovascular repair (EVAR) has become the standard procedure in treating thoracic (TAA) or abdominal aortic aneurysms (AAA). Not entirely free of complications, a persisting perfusion of the aneurysm after EVAR, called Endoleak (EL), leads to reintervention and risk of secondary rupture. How the aortic wall responds to the implantation of a stentgraft and EL is mostly uncertain. We present a pilot study to identify peptide signatures and gain new insights in pathophysiological alterations of the aortic wall after EVAR using matrix-assisted laser desorption or ionization mass spectrometry imaging (MALDI-MSI). In course of or accompanying an open aortic repair, tissue sections from 15 patients (TAA = 5, AAA = 5, EVAR = 5) were collected. Regions of interest (tunica media and tunica adventitia) were defined and univariate (receiver operating characteristic analysis) statistical analysis for subgroup comparison was used. This proof-of-concept study demonstrates that MALDI-MSI is feasible to identify discriminatory peptide signatures separating TAA, AAA and EVAR. Decreased intensity distributions for actin, tropomyosin, and troponin after EVAR suggest impaired contractility in vascular smooth muscle cells. Furthermore, inability to provide energy caused by impaired respiratory chain function and continuous degradation of extracellular matrix components (collagen) might support aortic wall destabilization. In case of EL after EVAR, this mechanism may result in a weakened aortic wall with lacking ability to react on reinstating pulsatile blood flow.
Collapse
Affiliation(s)
- Matthias Buerger
- Berlin Institute of Health, Vascular Surgery Clinic, Charité—Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; (M.B.); (S.K.); (V.M.); (J.P.F.); (S.O.); (A.G.)
| | - Oliver Klein
- BIH Center for Regenerative Therapies BCRT, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany;
| | - Sebastian Kapahnke
- Berlin Institute of Health, Vascular Surgery Clinic, Charité—Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; (M.B.); (S.K.); (V.M.); (J.P.F.); (S.O.); (A.G.)
| | - Verena Mueller
- Berlin Institute of Health, Vascular Surgery Clinic, Charité—Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; (M.B.); (S.K.); (V.M.); (J.P.F.); (S.O.); (A.G.)
| | - Jan Paul Frese
- Berlin Institute of Health, Vascular Surgery Clinic, Charité—Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; (M.B.); (S.K.); (V.M.); (J.P.F.); (S.O.); (A.G.)
| | - Safwan Omran
- Berlin Institute of Health, Vascular Surgery Clinic, Charité—Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; (M.B.); (S.K.); (V.M.); (J.P.F.); (S.O.); (A.G.)
| | - Andreas Greiner
- Berlin Institute of Health, Vascular Surgery Clinic, Charité—Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; (M.B.); (S.K.); (V.M.); (J.P.F.); (S.O.); (A.G.)
| | - Manuela Sommerfeld
- Center for Cardiovascular Research (CCR), Institute of Pharmacology, Charité—Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Hessische Str. 3-4, 10115 Berlin, Germany; (M.S.); (E.K.)
| | - Elena Kaschina
- Center for Cardiovascular Research (CCR), Institute of Pharmacology, Charité—Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Hessische Str. 3-4, 10115 Berlin, Germany; (M.S.); (E.K.)
| | - Anett Jannasch
- Department of Cardiac Surgery, Herzzentrum Dresden, Medical Faculty Carl Gustav Carus Dresden, Technische Universität Dresden, 01307 Dresden, Germany; (A.J.); (C.D.)
| | - Claudia Dittfeld
- Department of Cardiac Surgery, Herzzentrum Dresden, Medical Faculty Carl Gustav Carus Dresden, Technische Universität Dresden, 01307 Dresden, Germany; (A.J.); (C.D.)
| | - Adrian Mahlmann
- University Center for Vascular Medicine, Department of Medicine—Section Angiology, University Hospital Carl Gustav Carus, Technische Universität, 01307 Dresden, Germany;
| | - Irene Hinterseher
- Berlin Institute of Health, Vascular Surgery Clinic, Charité—Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; (M.B.); (S.K.); (V.M.); (J.P.F.); (S.O.); (A.G.)
- Medizinische Hochschule Brandenburg Theordor Fontane, 16816 Neuruppin, Germany
- Correspondence: ; Tel.: +49-30-450-522725
| |
Collapse
|
39
|
Deleeuw V, De Clercq A, De Backer J, Sips P. An Overview of Investigational and Experimental Drug Treatment Strategies for Marfan Syndrome. J Exp Pharmacol 2021; 13:755-779. [PMID: 34408505 PMCID: PMC8366784 DOI: 10.2147/jep.s265271] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/19/2021] [Indexed: 12/26/2022] Open
Abstract
Marfan syndrome (MFS) is a heritable connective tissue disorder caused by pathogenic variants in the gene coding for the extracellular matrix protein fibrillin-1. While the disease affects multiple organ systems, the most life-threatening manifestations are aortic aneurysms leading to dissection and rupture. Other cardiovascular complications, including mitral valve prolapse, primary cardiomyopathy, and arrhythmia, also occur more frequently in patients with MFS. The standard medical care relies on cardiovascular imaging at regular intervals, along with pharmacological treatment with β-adrenergic receptor blockers aimed at reducing the aortic growth rate. When aortic dilatation reaches a threshold associated with increased risk of dissection, prophylactic surgical aortic replacement is performed. Although current clinical management has significantly improved the life expectancy of patients with MFS, no cure is available and fatal complications still occur, underscoring the need for new treatment options. In recent years, preclinical studies have identified a number of potentially promising therapeutic targets. Nevertheless, the translation of these results into clinical practice has remained challenging. In this review, we present an overview of the currently available knowledge regarding the underlying pathophysiological processes associated with MFS cardiovascular pathology. We then summarize the treatment options that have been developed based on this knowledge and are currently in different stages of preclinical or clinical development, provide a critical review of the limitations of current studies and highlight potential opportunities for future research.
Collapse
Affiliation(s)
- Violette Deleeuw
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, 9000, Belgium
| | - Adelbert De Clercq
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, 9000, Belgium
| | - Julie De Backer
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, 9000, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, 9000, Belgium
| | - Patrick Sips
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, 9000, Belgium
| |
Collapse
|
40
|
Zhou D, Feng H, Yang Y, Huang T, Qiu P, Zhang C, Olsen T, Zhang J, Chen YE, Mizrak D, Yang B. hiPSC Modeling of Lineage-Specific Smooth Muscle Cell Defects Caused by TGFBR1A230T Variant, and its Therapeutic Implications for Loeys-Dietz Syndrome. Circulation 2021; 144:1145-1159. [PMID: 34346740 DOI: 10.1161/circulationaha.121.054744] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background: Loeys-Dietz Syndrome (LDS) is an inherited disorder predisposing individuals to thoracic aortic aneurysm and dissection (TAAD). Currently, there are no medical treatments except surgical resection. Although the genetic basis of LDS is well-understood, molecular mechanisms underlying the disease remain elusive impeding the development of a therapeutic strategy. In addition, aortic smooth muscle cells (SMC) have heterogenous embryonic origins depending on their spatial location, and lineage-specific effects of pathogenic variants on SMC function, likely causing regionally constrained LDS manifestations, have been unexplored. Methods: We identified an LDS family with a dominant pathogenic variant in TGFBR1 gene (TGFBR1A230T) causing aortic root aneurysm and dissection. To accurately model the molecular defects caused by this mutation, we used human-induced pluripotent stem cells (hiPSC) from subject with normal aorta to generate hiPSC carrying TGFBR1A230T, and corrected the mutation in patient-derived hiPSC using CRISPR-Cas9 gene editing. Following their lineage-specific SMC differentiation through cardiovascular progenitor cell (CPC) and neural crest stem cell (NCSC) lineages, we employed conventional molecular techniques and single-cell RNA-sequencing (scRNA-seq) to characterize the molecular defects. The resulting data led to subsequent molecular and functional rescue experiments employing Activin A and rapamycin. Results: Our results indicate the TGFBR1A230T mutation impairs contractile transcript and protein levels, and function in CPC-SMC, but not in NCSC-SMC. ScRNA-seq results implicate defective differentiation even in TGFBR1A230T/+ CPC-SMC including disruption of SMC contraction, and extracellular matrix formation. Comparison of patient-derived and mutation-corrected cells supported the contractile phenotype observed in the mutant CPC-SMC. TGFBR1A230T selectively disrupted SMAD3 and AKT activation in CPC-SMC, and led to increased cell proliferation. Consistently, scRNA-seq revealed molecular similarities between a loss-of-function SMAD3 mutation (SMAD3c.652delA/+) and TGFBR1A230T/+. Lastly, combination treatment with Activin A and rapamycin during or after SMC differentiation significantly improved the mutant CPC-SMC contractile gene expression, and function; and rescued the mechanical properties of mutant CPC-SMC tissue constructs. Conclusions: This study reveals that a pathogenic TGFBR1 variant causes lineage-specific SMC defects informing the etiology of LDS-associated aortic root aneurysm. As a potential pharmacological strategy, our results highlight a combination treatment with Activin A and rapamycin that can rescue the SMC defects caused by the variant.
Collapse
Affiliation(s)
- Dong Zhou
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI; Xiangya School of Medicine, Central South University, Changsha, PRC
| | - Hao Feng
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI; Xiangya School of Medicine, Central South University, Changsha, PRC
| | - Ying Yang
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI
| | - Tingting Huang
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI; Xiangya School of Medicine, Central South University, Changsha, PRC
| | - Ping Qiu
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI
| | - Chengxin Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI
| | - Timothy Olsen
- Department of Systems Biology, Columbia University, New York, NY
| | - Jifeng Zhang
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Y Eugene Chen
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI; Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Dogukan Mizrak
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI
| | - Bo Yang
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI
| |
Collapse
|
41
|
Bogunovic N, Meekel JP, Majolée J, Hekhuis M, Pyszkowski J, Jockenhövel S, Kruse M, Riesebos E, Micha D, Blankensteijn JD, Hordijk PL, Ghazanfari S, Yeung KK. Patient-Specific 3-Dimensional Model of Smooth Muscle Cell and Extracellular Matrix Dysfunction for the Study of Aortic Aneurysms. J Endovasc Ther 2021; 28:604-613. [PMID: 33902345 PMCID: PMC8276336 DOI: 10.1177/15266028211009272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Abdominal aortic aneurysms (AAAs) are associated with overall high mortality in case of rupture. Since the pathophysiology is unclear, no adequate pharmacological therapy exists. Smooth muscle cells (SMCs) dysfunction and extracellular matrix (ECM) degradation have been proposed as underlying causes. We investigated SMC spatial organization and SMC-ECM interactions in our novel 3-dimensional (3D) vascular model. We validated our model for future use by comparing it to existing 2-dimensional (2D) cell culture. Our model can be used for translational studies of SMC and their role in AAA pathophysiology. MATERIALS AND METHODS SMC isolated from the medial layer of were the aortic wall of controls and AAA patients seeded on electrospun poly-lactide-co-glycolide scaffolds and cultured for 5 weeks, after which endothelial cells (EC) are added. Cell morphology, orientation, mechanical properties and ECM production were quantified for validation and comparison between controls and patients. RESULTS We show that cultured SMC proliferate into multiple layers after 5 weeks in culture and produce ECM proteins, mimicking their behavior in the medial aortic layer. EC attach to multilayered SMC, mimicking layer interactions. The novel SMC model exhibits viscoelastic properties comparable to biological vessels; cytoskeletal organization increases during the 5 weeks in culture; increased cytoskeletal alignment and decreased ECM production indicate different organization of AAA patients' cells compared with control. CONCLUSION We present a valuable preclinical model of AAA constructed with patient specific cells with applications in both translational research and therapeutic developments. We observed SMC spatial reorganization in a time course of 5 weeks in our robust, patient-specific model of SMC-EC organization and ECM production.
Collapse
Affiliation(s)
- Natalija Bogunovic
- Amsterdam Cardiovascular Sciences, Department of Vascular Surgery, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Department of Clinical Genetics, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Jorn P. Meekel
- Amsterdam Cardiovascular Sciences, Department of Vascular Surgery, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Jisca Majolée
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Marije Hekhuis
- Amsterdam Cardiovascular Sciences, Department of Clinical Genetics, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | | | - Stefan Jockenhövel
- Aachen-Maastricht Institute for Biobased Materials, Faculty of Science and Engineering, Maastricht University, Geleen, The Netherlands
- Department of Biohybrid & Medical Textiles (Biotex), RWTH Aachen University, Aachen, Germany
| | - Magnus Kruse
- Department of Biohybrid & Medical Textiles (Biotex), RWTH Aachen University, Aachen, Germany
- Institut für Textiltechnik der RWTH Aachen University, Aachen, Germany
| | - Elise Riesebos
- Amsterdam Cardiovascular Sciences, Department of Clinical Genetics, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Dimitra Micha
- Amsterdam Cardiovascular Sciences, Department of Clinical Genetics, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Jan D. Blankensteijn
- Amsterdam Cardiovascular Sciences, Department of Vascular Surgery, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Peter L. Hordijk
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Samaneh Ghazanfari
- Aachen-Maastricht Institute for Biobased Materials, Faculty of Science and Engineering, Maastricht University, Geleen, The Netherlands
- Department of Biohybrid & Medical Textiles (Biotex), RWTH Aachen University, Aachen, Germany
| | - Kak K. Yeung
- Amsterdam Cardiovascular Sciences, Department of Vascular Surgery, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| |
Collapse
|
42
|
Hofmann F. The cGMP system: components and function. Biol Chem 2021; 401:447-469. [PMID: 31747372 DOI: 10.1515/hsz-2019-0386] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 10/30/2019] [Indexed: 12/29/2022]
Abstract
The cyclic guanosine monophosphate (cGMP) signaling system is one of the most prominent regulators of a variety of physiological and pathophysiological processes in many mammalian and non-mammalian tissues. Targeting this pathway by increasing cGMP levels has been a very successful approach in pharmacology as shown for nitrates, phosphodiesterase (PDE) inhibitors and stimulators of nitric oxide-guanylyl cyclase (NO-GC) and particulate GC (pGC). This is an introductory review to the cGMP signaling system intended to introduce those readers to this system, who do not work in this area. This article does not intend an in-depth review of this system. Signal transduction by cGMP is controlled by the generating enzymes GCs, the degrading enzymes PDEs and the cGMP-regulated enzymes cyclic nucleotide-gated ion channels, cGMP-dependent protein kinases and cGMP-regulated PDEs. Part A gives a very concise introduction to the components. Part B gives a very concise introduction to the functions modulated by cGMP. The article cites many recent reviews for those who want a deeper insight.
Collapse
Affiliation(s)
- Franz Hofmann
- Pharmakologisches Institut, Technische Universität München, Biedersteiner Str. 29, D-80802 München, Germany
| |
Collapse
|
43
|
Zhu J, Angelov S, Alp Yildirim I, Wei H, Hu JH, Majesky MW, Brozovich FV, Kim F, Dichek DA. Loss of Transforming Growth Factor Beta Signaling in Aortic Smooth Muscle Cells Causes Endothelial Dysfunction and Aortic Hypercontractility. Arterioscler Thromb Vasc Biol 2021; 41:1956-1971. [PMID: 33853348 PMCID: PMC8159907 DOI: 10.1161/atvbaha.121.315878] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
[Figure: see text].
Collapse
MESH Headings
- Animals
- Aorta/metabolism
- Aorta/pathology
- Aorta/physiopathology
- Aortic Aneurysm/genetics
- Aortic Aneurysm/metabolism
- Aortic Aneurysm/pathology
- Aortic Aneurysm/physiopathology
- Cell Adhesion Molecules/metabolism
- Dilatation, Pathologic
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Endothelium, Vascular/physiopathology
- Female
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Microfilament Proteins/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myosin Heavy Chains/genetics
- Myosin Heavy Chains/metabolism
- Nitric Oxide/metabolism
- Nitric Oxide Synthase Type III/metabolism
- Phosphoproteins/metabolism
- Phosphorylation
- Receptor, Transforming Growth Factor-beta Type II/deficiency
- Receptor, Transforming Growth Factor-beta Type II/genetics
- Signal Transduction
- Transforming Growth Factor beta/metabolism
- Vasoconstriction
- Mice
Collapse
Affiliation(s)
- Jay Zhu
- Surgery (J.Z.), University of Washington, Seattle
| | - Stoyan Angelov
- Departments of Medicine (S.A., I.A.Y., H.W., J.H.H., F.K., D.A.D.), University of Washington, Seattle
| | - Ilkay Alp Yildirim
- Departments of Medicine (S.A., I.A.Y., H.W., J.H.H., F.K., D.A.D.), University of Washington, Seattle
- Now with Istanbul University Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (I.A.Y.)
| | - Hao Wei
- Departments of Medicine (S.A., I.A.Y., H.W., J.H.H., F.K., D.A.D.), University of Washington, Seattle
| | - Jie Hong Hu
- Departments of Medicine (S.A., I.A.Y., H.W., J.H.H., F.K., D.A.D.), University of Washington, Seattle
| | - Mark W Majesky
- Pediatrics (M.W.M.), University of Washington, Seattle
- Laboratory Medicine and Pathology (M.W.M., D.A.D.), University of Washington, Seattle
- The Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, WA (M.W.M.)
| | - Frank V Brozovich
- Department of Medicine, Mayo School of Medicine, Rochester, MN (F.V.B.)
| | - Francis Kim
- Departments of Medicine (S.A., I.A.Y., H.W., J.H.H., F.K., D.A.D.), University of Washington, Seattle
| | - David A Dichek
- Departments of Medicine (S.A., I.A.Y., H.W., J.H.H., F.K., D.A.D.), University of Washington, Seattle
- Laboratory Medicine and Pathology (M.W.M., D.A.D.), University of Washington, Seattle
| |
Collapse
|
44
|
Hashmi SK, Ceron RH, Heuckeroth RO. Visceral myopathy: clinical syndromes, genetics, pathophysiology, and fall of the cytoskeleton. Am J Physiol Gastrointest Liver Physiol 2021; 320:G919-G935. [PMID: 33729000 PMCID: PMC8285581 DOI: 10.1152/ajpgi.00066.2021] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Visceral smooth muscle is a crucial component of the walls of hollow organs like the gut, bladder, and uterus. This specialized smooth muscle has unique properties that distinguish it from other muscle types and facilitate robust dilation and contraction. Visceral myopathies are diseases where severe visceral smooth muscle dysfunction prevents efficient movement of air and nutrients through the bowel, impairs bladder emptying, and affects normal uterine contraction and relaxation, particularly during pregnancy. Disease severity exists along a spectrum. The most debilitating defects cause highly dysfunctional bowel, reduced intrauterine colon growth (microcolon), and bladder-emptying defects requiring catheterization, a condition called megacystis-microcolon-intestinal hypoperistalsis syndrome (MMIHS). People with MMIHS often die early in childhood. When the bowel is the main organ affected and microcolon is absent, the condition is known as myopathic chronic intestinal pseudo-obstruction (CIPO). Visceral myopathies like MMIHS and myopathic CIPO are most commonly caused by mutations in contractile apparatus cytoskeletal proteins. Here, we review visceral myopathy-causing mutations and normal functions of these disease-associated proteins. We propose molecular, cellular, and tissue-level models that may explain clinical and histopathological features of visceral myopathy and hope these observations prompt new mechanistic studies.
Collapse
Affiliation(s)
- Sohaib Khalid Hashmi
- 1Department of Pediatrics, The Children’s Hospital
of Philadelphia Research Institute and the Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, Philadelphia, Pennsylvania,2Department of Bioengineering, The University of Pennsylvania School of Engineering and Applied Science, Philadelphia, Pennsylvania
| | - Rachel Helen Ceron
- 1Department of Pediatrics, The Children’s Hospital
of Philadelphia Research Institute and the Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, Philadelphia, Pennsylvania,3Department of Physiology, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Robert O. Heuckeroth
- 1Department of Pediatrics, The Children’s Hospital
of Philadelphia Research Institute and the Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, Philadelphia, Pennsylvania
| |
Collapse
|
45
|
Aortic disease in Marfan syndrome is caused by overactivation of sGC-PRKG signaling by NO. Nat Commun 2021; 12:2628. [PMID: 33976159 PMCID: PMC8113458 DOI: 10.1038/s41467-021-22933-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 04/01/2021] [Indexed: 02/06/2023] Open
Abstract
Thoracic aortic aneurysm, as occurs in Marfan syndrome, is generally asymptomatic until dissection or rupture, requiring surgical intervention as the only available treatment. Here, we show that nitric oxide (NO) signaling dysregulates actin cytoskeleton dynamics in Marfan Syndrome smooth muscle cells and that NO-donors induce Marfan-like aortopathy in wild-type mice, indicating that a marked increase in NO suffices to induce aortopathy. Levels of nitrated proteins are higher in plasma from Marfan patients and mice and in aortic tissue from Marfan mice than in control samples, indicating elevated circulating and tissue NO. Soluble guanylate cyclase and cGMP-dependent protein kinase are both activated in Marfan patients and mice and in wild-type mice treated with NO-donors, as shown by increased plasma cGMP and pVASP-S239 staining in aortic tissue. Marfan aortopathy in mice is reverted by pharmacological inhibition of soluble guanylate cyclase and cGMP-dependent protein kinase and lentiviral-mediated Prkg1 silencing. These findings identify potential biomarkers for monitoring Marfan Syndrome in patients and urge evaluation of cGMP-dependent protein kinase and soluble guanylate cyclase as therapeutic targets. Aortic aneurysm and dissection, the major problem linked to Marfan syndrome (MFS), lacks effective pharmacological treatment. Here, the authors show that the NO pathway is overactivated in MFS and that inhibition of guanylate cyclase and cGMP-dependent protein kinase reverts MFS aortopathy in mice.
Collapse
|
46
|
Ren K, Li B, Liu Z, Xia L, Zhai M, Wei X, Duan W, Yu S. GDF11 prevents the formation of thoracic aortic dissection in mice: Promotion of contractile transition of aortic SMCs. J Cell Mol Med 2021; 25:4623-4636. [PMID: 33764670 PMCID: PMC8107100 DOI: 10.1111/jcmm.16312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/23/2020] [Accepted: 01/12/2021] [Indexed: 12/13/2022] Open
Abstract
Thoracic aortic dissection (TAD) is an aortic disease associated with dysregulated extracellular matrix composition and de‐differentiation of vascular smooth muscle cells (SMCs). Growth Differentiation Factor 11 (GDF11) is a member of transforming growth factor β (TGF‐β) superfamily associated with cardiovascular diseases. The present study attempted to investigate the expression of GDF11 in TAD and its effects on aortic SMC phenotype transition. GDF11 level was found lower in the ascending thoracic aortas of TAD patients than healthy aortas. The mouse model of TAD was established by β‐aminopropionitrile monofumarate (BAPN) combined with angiotensin II (Ang II). The expression of GDF11 was also decreased in thoracic aortic tissues accompanied with increased inflammation, arteriectasis and elastin degradation in TAD mice. Administration of GDF11 mitigated these aortic lesions and improved the survival rate of mice. Exogenous GDF11 and adeno‐associated virus type 2 (AAV‐2)‐mediated GDF11 overexpression increased the expression of contractile proteins including ACTA2, SM22α and myosin heavy chain 11 (MYH11) and decreased synthetic markers including osteopontin and fibronectin 1 (FN1), indicating that GDF11 might inhibit SMC phenotype transition and maintain its contractile state. Moreover, GDF11 inhibited the production of matrix metalloproteinase (MMP)‐2, 3, 9 in aortic SMCs. The canonical TGF‐β (Smad2/3) signalling was enhanced by GDF11, while its inhibition suppressed the inhibitory effects of GDF11 on SMC de‐differentiation and MMP production in vitro. Therefore, we demonstrate that GDF11 may contribute to TAD alleviation via inhibiting inflammation and MMP activity, and promoting the transition of aortic SMCs towards a contractile phenotype, which provides a therapeutic target for TAD.
Collapse
Affiliation(s)
- Kai Ren
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Buying Li
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhenhua Liu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Lin Xia
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Mengen Zhai
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xufeng Wei
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Weixun Duan
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shiqiang Yu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
47
|
Shalhub S, Wallace S, Okunbor O, Newhall K. Genetic aortic disease epidemiology, management principles, and disparities in care. Semin Vasc Surg 2021; 34:79-88. [PMID: 33757640 DOI: 10.1053/j.semvascsurg.2021.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Patients with syndromic and nonsyndromic heritable aortopathies (also known as genetic aortic disease) are a heterogeneous group of patients who present at younger ages with more rapid growth of aortic aneurysms and/or increased frequency of dissections compared with patients with atherosclerotic aortopathies. In this review, we describe the etiology, epidemiology, and appropriate care delivery for these conditions at each stage of management. Within each section, we discuss sex, gender, and race differences and highlight disparities in care and knowledge. We then discuss the role of the vascular team throughout the cycle of care and the evolving inclusion of patient input in research. This understanding is essential to the creation of effective health care policies that support equitable, appropriate, and patient-centered clinical practices.
Collapse
Affiliation(s)
- Sherene Shalhub
- Division of Vascular Surgery, Department of Surgery, University of Washington School of Medicine, 1959 NE Pacific Street, Box 356410, Seattle, WA 98195.
| | - Stephanie Wallace
- Division of Vascular Surgery, Department of Surgery, University of Washington School of Medicine, 1959 NE Pacific Street, Box 356410, Seattle, WA 98195
| | - Osa Okunbor
- Division of Vascular Surgery, Department of Surgery, University of Washington School of Medicine, 1959 NE Pacific Street, Box 356410, Seattle, WA 98195
| | - Karina Newhall
- Division of Vascular Surgery, Department of Surgery, University of Washington School of Medicine, 1959 NE Pacific Street, Box 356410, Seattle, WA 98195
| |
Collapse
|
48
|
Creamer TJ, Bramel EE, MacFarlane EG. Insights on the Pathogenesis of Aneurysm through the Study of Hereditary Aortopathies. Genes (Basel) 2021; 12:183. [PMID: 33514025 PMCID: PMC7912671 DOI: 10.3390/genes12020183] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/15/2022] Open
Abstract
Thoracic aortic aneurysms (TAA) are permanent and localized dilations of the aorta that predispose patients to a life-threatening risk of aortic dissection or rupture. The identification of pathogenic variants that cause hereditary forms of TAA has delineated fundamental molecular processes required to maintain aortic homeostasis. Vascular smooth muscle cells (VSMCs) elaborate and remodel the extracellular matrix (ECM) in response to mechanical and biochemical cues from their environment. Causal variants for hereditary forms of aneurysm compromise the function of gene products involved in the transmission or interpretation of these signals, initiating processes that eventually lead to degeneration and mechanical failure of the vessel. These include mutations that interfere with transduction of stimuli from the matrix to the actin-myosin cytoskeleton through integrins, and those that impair signaling pathways activated by transforming growth factor-β (TGF-β). In this review, we summarize the features of the healthy aortic wall, the major pathways involved in the modulation of VSMC phenotypes, and the basic molecular functions impaired by TAA-associated mutations. We also discuss how the heterogeneity and balance of adaptive and maladaptive responses to the initial genetic insult might contribute to disease.
Collapse
Affiliation(s)
- Tyler J. Creamer
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (T.J.C.); (E.E.B.)
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Emily E. Bramel
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (T.J.C.); (E.E.B.)
- Predoctoral Training in Human Genetics and Molecular Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Elena Gallo MacFarlane
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (T.J.C.); (E.E.B.)
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
49
|
Brunet J, Pierrat B, Badel P. Review of Current Advances in the Mechanical Description and Quantification of Aortic Dissection Mechanisms. IEEE Rev Biomed Eng 2021; 14:240-255. [PMID: 31905148 DOI: 10.1109/rbme.2019.2950140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Aortic dissection is a life-threatening event associated with a very poor outcome. A number of complex phenomena are involved in the initiation and propagation of the disease. Advances in the comprehension of the mechanisms leading to dissection have been made these last decades, thanks to improvements in imaging and experimental techniques. However, the micro-mechanics involved in triggering such rupture events remains poorly described and understood. It constitutes the primary focus of the present review. Towards the goal of detailing the dissection phenomenon, different experimental and modeling methods were used to investigate aortic dissection, and to understand the underlying phenomena involved. In the last ten years, research has tended to focus on the influence of microstructure on initiation and propagation of the dissection, leading to a number of multiscale models being developed. This review brings together all these materials in an attempt to identify main advances and remaining questions.
Collapse
|
50
|
Kopacz A, Klóska D, Werner E, Hajduk K, Grochot-Przęczek A, Józkowicz A, Piechota-Polańczyk A. A Dual Role of Heme Oxygenase-1 in Angiotensin II-Induced Abdominal Aortic Aneurysm in the Normolipidemic Mice. Cells 2021; 10:cells10010163. [PMID: 33467682 PMCID: PMC7830394 DOI: 10.3390/cells10010163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 11/16/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) bears a high risk of rupture and sudden death of the patient. The pathogenic mechanisms of AAA remain elusive, and surgical intervention represents the only treatment option. Heme oxygenase-1 (HO-1), a heme degrading enzyme, is induced in AAA, both in mice and humans. HO-1 was reported to mitigate AAA development in an angiotensin II (AngII)-induced model of AAA in hyperlipidemic ApoE-/- mice. Since the role of hyperlipidaemia in the pathogenesis of AAA remains controversial, we aimed to evaluate the significance of HO-1 in the development and progression of AAA in normolipidemic animals. The experiments were performed in HO-1-deficient mice and their wild-type counterparts. We demonstrated in non-hypercholesterolemic mice that the high-dose of AngII leads to the efficient formation of AAA, which is attenuated by HO-1 deficiency. Yet, if formed, they are significantly more prone to rupture upon HO-1 shortage. Differential susceptibility to AAA formation does not rely on enhanced inflammatory response or oxidative stress. AAA-resistant mice are characterized by an increase in regulators of aortic remodeling and angiotensin receptor-2 expression, significant medial thickening, and delayed blood pressure elevation in response to AngII. To conclude, we unveil a dual role of HO-1 deficiency in AAA in normolipidemic mice, where it protects against AAA development, but exacerbates the state of formed AAA.
Collapse
Affiliation(s)
- Aleksandra Kopacz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-392 Krakow, Poland; (A.K.); (D.K.); (E.W.); (K.H.); (A.G.-P.); (A.J.)
| | - Damian Klóska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-392 Krakow, Poland; (A.K.); (D.K.); (E.W.); (K.H.); (A.G.-P.); (A.J.)
| | - Ewa Werner
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-392 Krakow, Poland; (A.K.); (D.K.); (E.W.); (K.H.); (A.G.-P.); (A.J.)
- Department of Animal Reproduction, Anatomy and Genomic, Faculty of Animal Science, University of Agriculture, 30-059 Krakow, Poland
| | - Karolina Hajduk
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-392 Krakow, Poland; (A.K.); (D.K.); (E.W.); (K.H.); (A.G.-P.); (A.J.)
| | - Anna Grochot-Przęczek
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-392 Krakow, Poland; (A.K.); (D.K.); (E.W.); (K.H.); (A.G.-P.); (A.J.)
| | - Alicja Józkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-392 Krakow, Poland; (A.K.); (D.K.); (E.W.); (K.H.); (A.G.-P.); (A.J.)
| | - Aleksandra Piechota-Polańczyk
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-392 Krakow, Poland; (A.K.); (D.K.); (E.W.); (K.H.); (A.G.-P.); (A.J.)
- Correspondence:
| |
Collapse
|