1
|
Chen F, Sheng J, Li X, Gao Z, Hu L, Chen M, Fei J, Song Z. Tumor-associated macrophages: orchestrators of cholangiocarcinoma progression. Front Immunol 2024; 15:1451474. [PMID: 39290697 PMCID: PMC11405194 DOI: 10.3389/fimmu.2024.1451474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a rare but highly invasive cancer, with its incidence rising in recent years. Currently, surgery remains the most definitive therapeutic option for CCA. However, similar to other malignancies, most CCA patients are not eligible for surgical intervention at the time of diagnosis. The chemotherapeutic regimen of gemcitabine combined with cisplatin is the standard treatment for advanced CCA, but its effectiveness is often hampered by therapeutic resistance. Recent research highlights the remarkable plasticity of tumor-associated macrophages (TAMs) within the tumor microenvironment (TME). TAMs play a crucial dual role in either promoting or suppressing tumor development, depending on the factors that polarize them toward pro-tumorigenic or anti-tumorigenic phenotypes, as well as their interactions with cancer cells and other stromal components. In this review, we critically examine recent studies on TAMs in CCA, detailing the expression patterns and prognostic significance of different TAM subtypes in CCA, the mechanisms by which TAMs influence CCA progression and immune evasion, and the potential for reprogramming TAMs to enhance anticancer therapies. This review aims to provide a framework for deeper future research.
Collapse
Affiliation(s)
- Fei Chen
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Jian Sheng
- Department of Research and Teaching, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Xiaoping Li
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Zhaofeng Gao
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Lingyu Hu
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Minjie Chen
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Jianguo Fei
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Zhengwei Song
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
2
|
Rogers J, Bajur AT, Salaita K, Spillane KM. Mechanical control of antigen detection and discrimination by T and B cell receptors. Biophys J 2024; 123:2234-2255. [PMID: 38794795 PMCID: PMC11331051 DOI: 10.1016/j.bpj.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/10/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024] Open
Abstract
The adaptive immune response is orchestrated by just two cell types, T cells and B cells. Both cells possess the remarkable ability to recognize virtually any antigen through their respective antigen receptors-the T cell receptor (TCR) and B cell receptor (BCR). Despite extensive investigations into the biochemical signaling events triggered by antigen recognition in these cells, our ability to predict or control the outcome of T and B cell activation remains elusive. This challenge is compounded by the sensitivity of T and B cells to the biophysical properties of antigens and the cells presenting them-a phenomenon we are just beginning to understand. Recent insights underscore the central role of mechanical forces in this process, governing the conformation, signaling activity, and spatial organization of TCRs and BCRs within the cell membrane, ultimately eliciting distinct cellular responses. Traditionally, T cells and B cells have been studied independently, with researchers working in parallel to decipher the mechanisms of activation. While these investigations have unveiled many overlaps in how these cell types sense and respond to antigens, notable differences exist. To fully grasp their biology and harness it for therapeutic purposes, these distinctions must be considered. This review compares and contrasts the TCR and BCR, placing emphasis on the role of mechanical force in regulating the activity of both receptors to shape cellular and humoral adaptive immune responses.
Collapse
Affiliation(s)
- Jhordan Rogers
- Department of Chemistry, Emory University, Atlanta, Georgia
| | - Anna T Bajur
- Department of Physics, King's College London, London, United Kingdom; Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, Georgia; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia.
| | - Katelyn M Spillane
- Department of Physics, King's College London, London, United Kingdom; Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom; Department of Life Sciences, Imperial College London, London, United Kingdom.
| |
Collapse
|
3
|
Ran B, Qin J, Wu Y, Wen F. Causal role of immune cells in chronic obstructive pulmonary disease: Mendelian randomization study. Expert Rev Clin Immunol 2024; 20:413-421. [PMID: 38108202 DOI: 10.1080/1744666x.2023.2295987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
OBJECTIVES Innate and adaptive immunity play different roles in the pathogenesis of chronic obstructive pulmonary disease (COPD). However, previous studies on the relationship between immune cells and COPD reported inconsistent results. METHODS The causal connection between 731 immune cells and COPD was established using a two-sample Mendelian randomization (MR) analysis through publicly accessible genetic data. The heterogeneity and horizontal pleiotropism of the findings were confirmed using sensitivity analysis. RESULTS In the B-cell panel, B-cell activating factor receptor (BAFF-R) on CD20- and CD20 on IgD-CD38bright (OR (95% CI): 0.93 (0.88, 0.99) and 0.97 (0.95, 0.98), respectively) were discovered to be protective. In the cDC panel, CD62L- plasmacytoid DC AC, CD80 on monocytes and CD11c on myeloid DCs (OR (95% CI): 0.94 (0.92, 0.97), 0.97 (0.94, 0.99) and (0.97 (0.95, 0.98), respectively) exerted protective effects. However, unswitched memory AC (OR (95%CI): 1.08 (1.01,1.15)) and CD 19 on IgD- CD 27- (OR (95%CI): 1.06 (1.02,1.10)) were hazardous in the B-cell panel. However, among the 731 immune cell phenotypes, no causal relationship was found for COPD on immune cells. CONCLUSION This study found a potential causal relationship between immune cells in COPD, ruling out reverse causation. This study provides new avenues for studying the mechanisms of COPD.
Collapse
Affiliation(s)
- Bi Ran
- Department of Respiratory and Critical Care Medicine, West China Hospital and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Sichuan University. Guoxuexiang 37, Chengdu, Sichuan, China
| | - Jiangyue Qin
- Department of General Practice, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yanqiu Wu
- Department of Respiratory and Critical Care Medicine, West China Hospital and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Sichuan University. Guoxuexiang 37, Chengdu, Sichuan, China
| | - Fuqiang Wen
- Department of Respiratory and Critical Care Medicine, West China Hospital and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Sichuan University. Guoxuexiang 37, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Mandato E, Yan Q, Ouyang J, Paczkowska J, Qin Y, Hao Y, Bojarczuk K, Hansen J, Chapuy B, Rodig SJ, Khan SJ, Redd RA, Shipp MA. MYD88L265P augments proximal B-cell receptor signaling in large B-cell lymphomas via an interaction with DOCK8. Blood 2023; 142:1219-1232. [PMID: 37467575 DOI: 10.1182/blood.2023019865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/31/2023] [Accepted: 06/16/2023] [Indexed: 07/21/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a clinically and genetically heterogeneous disease with at least 5 recognized molecular subtypes. Cluster 5 (C5)/MCD tumors frequently exhibit concurrent alterations in the toll-like receptor (TLR) and B-cell receptor (BCR) pathway members, MYD88L265P and CD79B, and have a less favorable prognosis. In healthy B cells, the synergy between TLR and BCR signaling pathways integrates innate and adaptive immune responses and augments downstream NF-κB activation. In addition, physiologic TLR9 pathway engagement via MYD88, protein tyrosine kinase 2 (PYK2), and dedicator of cytokinesis 8 (DOCK8) increases proximal BCR signaling in healthy murine B cells. Although C5/MCD DLBCLs are selectively sensitive to Bruton tyrosine kinase (BTK) inhibition in in vitro studies and certain clinical trials, the role of mutated MYD88 in proximal BCR signaling remains undefined. Using engineered DLBCL cell line models, we found that concurrent MYD88L265P and CD79B alterations significantly increased the magnitude and duration of proximal BCR signaling, at the level of spleen tyrosine kinase and BTK, and augmented PYK2-dependent DOCK8 phosphorylation. MYD88L265P DLBCLs have significantly increased colocalization of DOCK8 with both MYD88 and the proximal BCR-associated Src kinase, LYN, in comparison with MYD88WT DLBCLs, implicating DOCK8 in MYD88L265P/proximal BCR cross talk. Additionally, DOCK8 depletion selectively decreased proximal BCR signaling, cellular proliferation, and viability of DLBCLs with endogenous MYD88L265P/CD79BY196F alterations and increased the efficacy of BTK blockade in these lymphomas. Therefore, MYD88L265P/DOCK8-enhanced proximal BCR signaling is a likely mechanism for the increased sensitivity of C5/MCD DLBCLs to BTK blockade.
Collapse
Affiliation(s)
- Elisa Mandato
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Qingsheng Yan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Jing Ouyang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Bristol Myers Squibb, Cambridge, MA
| | - Julia Paczkowska
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Yan Qin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Parthenon Therapeutics, Boston, MA
| | - Yansheng Hao
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Pathology, University of Rochester Medical Center, Rochester, NY
| | - Kamil Bojarczuk
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Julia Hansen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Björn Chapuy
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Hematology, Oncology, and Tumor Immunology, Charité - University Medical Center Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Scott J Rodig
- Department of Pathology, Brigham and Women's Hospital, Boston, MA
| | - Sumbul Jawed Khan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Robert A Redd
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
| | - Margaret A Shipp
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|
5
|
Chiu YS, Wu KJ, Yu SJ, Wu KL, Wang YS, Lin J, Chu CY, Chen S, Chen H, Hsu SC, Wang Y, Chen YH. Peptide immunization against the C-terminal of alpha-synuclein reduces locomotor activity in mice overexpressing alpha-synuclein. PLoS One 2023; 18:e0291927. [PMID: 37733672 PMCID: PMC10513202 DOI: 10.1371/journal.pone.0291927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 09/09/2023] [Indexed: 09/23/2023] Open
Abstract
Abnormal accumulation of alpha-synuclein (αSyn) in the remaining nigra dopaminergic neurons is a common neuropathological feature found in patients with Parkinson's disease (PD). Antibody-based immunotherapy has been considered a potential approach for PD treatment. This study aims to investigate the effectiveness of active immunization against αSyn in a mouse model of PD. Adult mice were immunized with or without a synthetic peptide containing the C-terminal residues of human αSyn and activation epitopes, followed by an intranigral injection of adeno-associated virus vectors for overexpressing human αSyn. Upon the peptide injection, αSyn-specific antibodies were raised, accompanied by degeneration of dopaminergic neurons and motor deficits. Furthermore, the induction of neuroinflammation was postulated by the elevation of astroglial and microglial markers in the immunized mice. Instead of lessening αSyn toxicity, this peptide vaccine caused an increase in the pathogenic species of αSyn. Our data demonstrated the potential adverse effects of active immunization to raise antibodies against the C-terminal fragment of αSyn. This drawback highlights the need for further investigation to weigh the pros and cons of immunotherapy in PD. Applying the αSyn C-terminal peptide vaccine for PD treatment should be cautiously exercised. This study provides valuable insights into the intricate interplay among immune intervention, αSyn accumulation, and neurodegeneration.
Collapse
Affiliation(s)
- Yu-Sung Chiu
- Department of Life Science, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Kuo-Jen Wu
- National Health Research Institutes, Center for Neuropsychiatric Research, Zhunan, Taiwan
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan
| | - Seong-Jin Yu
- National Health Research Institutes, Center for Neuropsychiatric Research, Zhunan, Taiwan
| | - Kun-Lieh Wu
- Department of Electrical Engineering of I-Shou University, Kaohsiung, Taiwan
| | - Yu-Syuan Wang
- National Health Research Institutes, Center for Neuropsychiatric Research, Zhunan, Taiwan
| | - Jing Lin
- Department of Life Science, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Chia-Ying Chu
- Department of Life Science, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Shuchun Chen
- Department of Life Science, Fu-Jen Catholic University, New Taipei City, Taiwan
- National Health Research Institutes, Center for Neuropsychiatric Research, Zhunan, Taiwan
| | - Hsi Chen
- National Health Research Institutes, Center for Neuropsychiatric Research, Zhunan, Taiwan
| | - Shu-Ching Hsu
- Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
- PhD Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung City, Taiwan
- Graduate Institute of Biomedical Science, China Medical University, Taichung City, Taiwan
- Immunology Research and Development Center, China Medical University, Taichung City, Taiwan
- Department of Life Sciences, Tzu Chi University, Hualien, Taiwan
| | - Yun Wang
- National Health Research Institutes, Center for Neuropsychiatric Research, Zhunan, Taiwan
| | - Yun-Hsiang Chen
- Department of Life Science, Fu-Jen Catholic University, New Taipei City, Taiwan
- National Health Research Institutes, Center for Neuropsychiatric Research, Zhunan, Taiwan
| |
Collapse
|
6
|
Chakraborty P, Aravindhan V, Mukherjee S. Helminth-derived biomacromolecules as therapeutic agents for treating inflammatory and infectious diseases: What lessons do we get from recent findings? Int J Biol Macromol 2023; 241:124649. [PMID: 37119907 DOI: 10.1016/j.ijbiomac.2023.124649] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
Despite the tremendous progress in healthcare sectors, a number of life-threatening infectious, inflammatory, and autoimmune diseases are continuously challenging mankind throughout the globe. In this context, recent successes in utilizing helminth parasite-derived bioactive macromolecules viz. glycoproteins, enzymes, polysaccharides, lipids/lipoproteins, nucleic acids/nucleotides, and small organic molecules for treating various disorders primarily resulted from inflammation. Among the several parasites that infect humans, helminths (cestodes, nematodes, and trematodes) are known as efficient immune manipulators owing to their explicit ability to modulate and modify the innate and adaptive immune responses of humans. These molecules selectively bind to immune receptors on innate and adaptive immune cells and trigger multiple signaling pathways to elicit anti-inflammatory cytokines, expansion of alternatively activated macrophages, T-helper 2, and immunoregulatory T regulatory cell types to induce an anti-inflammatory milieu. Reduction of pro-inflammatory responses and repair of tissue damage by these anti-inflammatory mediators have been exploited for treating a number of autoimmune, allergic, and metabolic diseases. Herein, the potential and promises of different helminths/helminth-derived products as therapeutic agents in ameliorating immunopathology of different human diseases and their mechanistic insights of function at cell and molecular level alongside the molecular signaling cross-talks have been reviewed by incorporating up-to-date findings achieved in the field.
Collapse
Affiliation(s)
- Pritha Chakraborty
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol 713340, India
| | | | - Suprabhat Mukherjee
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol 713340, India.
| |
Collapse
|
7
|
Sonowal H, Rice WG, Howell SB. Luxeptinib interferes with LYN-mediated activation of SYK and modulates BCR signaling in lymphoma. PLoS One 2023; 18:e0277003. [PMID: 36888611 PMCID: PMC9994718 DOI: 10.1371/journal.pone.0277003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/19/2023] [Indexed: 03/09/2023] Open
Abstract
Luxeptinib (LUX) is a novel oral kinase inhibitor that inhibits FLT3 and also interferes with signaling from the BCR and cell surface TLRs, as well as activation of the NLRP3 inflammasome. Ongoing clinical trials are testing its activity in patients with lymphoma and AML. This study sought to refine understanding of how LUX modulates the earliest steps downstream of the BCR following its activation by anti-IgM in lymphoma cells in comparison to ibrutinib (IB). LUX decreased anti-IgM-induced phosphorylation of BTK at Y551 and Y223 but its ability to reduce phosphorylation of kinases further upstream suggests that BTK is not the primary target. LUX was more effective than IB at reducing both steady state and anti-IgM-induced phosphorylation of LYN and SYK. LUX decreased phosphorylation of SYK (Y525/Y526) and BLNK (Y96) which are necessary regulators of BTK activation. Further upstream, LUX blunted the anti-IgM-induced phosphorylation of LYN (Y397) whose activation is required for phosphorylation of SYK and BLNK. These results indicate that LUX is targeting autophosphorylation of LYN or a step further upstream of LYN in the cascade of signal generated by BCR and that it does so more effectively than IB. The fact that LUX has activity at or upstream of LYN is important because LYN is an essential signaling intermediate in multiple cellular signaling processes that regulate growth, differentiation, apoptosis, immunoregulation, migration and EMT in normal and cancer cells.
Collapse
Affiliation(s)
- Himangshu Sonowal
- Moores Cancer Center, Division of Hematology, Department of Medicine, University of California, San Diego, San Diego, California, United States of America
| | - William G. Rice
- Aptose Biosciences, Inc., San Diego, California, United States of America
| | - Stephen B. Howell
- Moores Cancer Center, Division of Hematology, Department of Medicine, University of California, San Diego, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
8
|
Cheng J, Liu Y, Yan J, Zhao L, Zhou Y, Shen X, Chen Y, Chen Y, Meng X, Zhang X, Jiang P. Fumarate suppresses B-cell activation and function through direct inactivation of LYN. Nat Chem Biol 2022; 18:954-962. [PMID: 35710616 DOI: 10.1038/s41589-022-01052-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 05/05/2022] [Indexed: 11/09/2022]
Abstract
Activated B cells increase central carbon metabolism to fulfill their bioenergetic demands, yet the mechanistic basis for this, as well as metabolic regulation in B cells, remains largely unknown. Here, we demonstrate that B-cell activation reprograms the tricarboxylic acid cycle and boosts the expression of fumarate hydratase (FH), leading to decreased cellular fumarate abundance. Fumarate accumulation by FH inhibition or dimethyl-fumarate treatment suppresses B-cell activation, proliferation and antibody production. Mechanistically, fumarate is a covalent inhibitor of tyrosine kinase LYN, a key component of the BCR signaling pathway. Fumarate can directly succinate LYN at C381 and abrogate LYN activity, resulting in a block to B-cell activation and function in vitro and in vivo. Therefore, our findings uncover a previously unappreciated metabolic regulation of B cells, and reveal LYN is a natural sensor of fumarate, connecting cellular metabolism to B-cell antigen receptor signaling.
Collapse
Affiliation(s)
- Jie Cheng
- School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Ying Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Jinxin Yan
- School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Lina Zhao
- School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Yinglin Zhou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Xuyang Shen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yunan Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yining Chen
- School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Xianbin Meng
- National Center for Protein Science, Tsinghua University, Beijing, China
| | - Xinxiang Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
| | - Peng Jiang
- School of Life Sciences, Tsinghua University, Beijing, China. .,Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
9
|
The C3d-fused foot-and-mouth disease vaccine platform overcomes maternally-derived antibody interference by inducing a potent adaptive immunity. NPJ Vaccines 2022; 7:70. [PMID: 35764653 PMCID: PMC9240001 DOI: 10.1038/s41541-022-00496-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/31/2022] [Indexed: 12/04/2022] Open
Abstract
Vaccination prevents and controls foot-and-mouth disease (FMD). However, the current FMD vaccine remains disadvantageous since it cannot overcome maternally-derived antibody (MDA) interference in weeks-old animals, which suppress active immunity via vaccination. To address this, we developed the immune-enhancing O PA2-C3d and A22-C3d FMD vaccine strains that can stimulate receptors on the surface of B cells by inserting C3d (a B cell epitope) into the VP1 region of O PA2 (FMDV type O) and A22 (FMDV type A). We purified inactivated viral antigens from these vaccine strains and evaluated their immunogenicity and host defense against FMDV infection in mice. We also verified its efficacy in inducing an adaptive immune response and overcome MDA interference in MDA-positive (MDA(+), FMD-seropositive) and -negative (MDA(−), FMD-seronegative) pigs. These results suggest a key strategy for establishing novel FMD vaccine platform to overcome MDA interference and induce a robust adaptive immune response.
Collapse
|
10
|
Sicard T, Kassardjian A, Julien JP. B cell targeting by molecular adjuvants for enhanced immunogenicity. Expert Rev Vaccines 2020; 19:1023-1039. [PMID: 33252273 DOI: 10.1080/14760584.2020.1857736] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Adjuvants are critical components of vaccines to improve the quality and durability of immune responses. Molecular adjuvants are a specific subclass of adjuvants where ligands of known immune-modulatory receptors are directly fused to an antigen. Co-stimulation of the B cell receptor (BCR) and immune-modulatory receptors through this strategy can augment downstream signaling to improve antibody titers and/or potency, and survival in challenge models. AREAS COVERED C3d has been the most extensively studied molecular adjuvant and shown to improve immune responses to a number of antigens. Similarly, tumor necrosis superfamily ligands, such as BAFF and APRIL, as well as CD40, CD180, and immune complex ligands can also improve humoral immunity as molecular adjuvants. EXPERT OPINION However, no single strategy has emerged that improves immune outcomes in all contexts. Thus, systematic exploration of molecular adjuvants that target B cell receptors will be required to realize their full potential as next-generation vaccine technologies.
Collapse
Affiliation(s)
- Taylor Sicard
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute , Toronto, ON, Canada.,Department of Biochemistry, University of Toronto , ON, Canada
| | - Audrey Kassardjian
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute , Toronto, ON, Canada.,Department of Immunology, University of Toronto , ON, Canada
| | - Jean-Philippe Julien
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute , Toronto, ON, Canada.,Department of Biochemistry, University of Toronto , ON, Canada.,Department of Immunology, University of Toronto , ON, Canada
| |
Collapse
|
11
|
Pournia F, Dang-Lawson M, Choi K, Mo V, Lampe PD, Matsuuchi L. Identification of serine residues in the connexin43 carboxyl tail important for BCR-mediated spreading of B-lymphocytes. J Cell Sci 2020; 133:jcs237925. [PMID: 31964709 PMCID: PMC10682646 DOI: 10.1242/jcs.237925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/20/2019] [Indexed: 11/20/2022] Open
Abstract
B-lymphocytes recognize antigen via B-cell antigen receptors (BCRs). This binding induces signaling, leading to B-cell activation, proliferation and differentiation. Early events of BCR signaling include reorganization of actin and membrane spreading, which facilitates increased antigen gathering. We have previously shown that the gap junction protein connexin43 (Cx43; also known as GJA1) is phosphorylated upon BCR signaling, and its carboxyl tail (CT) is important for BCR-mediated spreading. Here, specific serine residues in the Cx43 CT that are phosphorylated following BCR stimulation were identified. A chimeric protein containing the extracellular and transmembrane domains of CD8 fused to the Cx43 CT was sufficient to support cell spreading. Cx43 CT truncations showed that the region between amino acids 246-307 is necessary for B-cell spreading. Site-specific serine-to-alanine mutations (S255A, S262A, S279A and S282A) resulted in differential effects on both BCR signaling and BCR-mediated spreading. These serine residues can serve as potential binding sites for actin remodeling mediators and/or BCR signaling effectors; therefore, our results may reflect unique roles for each of these serines in terms of linking the Cx43 CT to actin remodeling.
Collapse
Affiliation(s)
- Farnaz Pournia
- Cell and Developmental Biology Graduate Program, Life Sciences Institute, University of British Columbia (UBC), 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- Department of Zoology, Life Sciences Institute, University of British Columbia (UBC), 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - May Dang-Lawson
- Department of Zoology, Life Sciences Institute, University of British Columbia (UBC), 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia (UBC), 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Kate Choi
- Cell and Developmental Biology Graduate Program, Life Sciences Institute, University of British Columbia (UBC), 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- Department of Zoology, Life Sciences Institute, University of British Columbia (UBC), 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia (UBC), 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Victor Mo
- Cell and Developmental Biology Graduate Program, Life Sciences Institute, University of British Columbia (UBC), 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- Department of Zoology, Life Sciences Institute, University of British Columbia (UBC), 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Paul D Lampe
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N, Seattle, WA 98109-1024, USA
| | - Linda Matsuuchi
- Cell and Developmental Biology Graduate Program, Life Sciences Institute, University of British Columbia (UBC), 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- Department of Zoology, Life Sciences Institute, University of British Columbia (UBC), 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
12
|
Rey-Suarez I, Wheatley BA, Koo P, Bhanja A, Shu Z, Mochrie S, Song W, Shroff H, Upadhyaya A. WASP family proteins regulate the mobility of the B cell receptor during signaling activation. Nat Commun 2020; 11:439. [PMID: 31974357 PMCID: PMC6978525 DOI: 10.1038/s41467-020-14335-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
Abstract
Regulation of membrane receptor mobility tunes cellular response to external signals, such as in binding of B cell receptors (BCR) to antigen, which initiates signaling. However, whether BCR signaling is regulated by BCR mobility, and what factors mediate this regulation, are not well understood. Here we use single molecule imaging to examine BCR movement during signaling activation and a novel machine learning method to classify BCR trajectories into distinct diffusive states. Inhibition of actin dynamics downstream of the actin nucleating factors, Arp2/3 and formin, decreases BCR mobility. Constitutive loss or acute inhibition of the Arp2/3 regulator, N-WASP, which is associated with enhanced signaling, increases the proportion of BCR trajectories with lower diffusivity. Furthermore, loss of N-WASP reduces the diffusivity of CD19, a stimulatory co-receptor, but not that of FcγRIIB, an inhibitory co-receptor. Our results implicate a dynamic actin network in fine-tuning receptor mobility and receptor-ligand interactions for modulating B cell signaling. B cell receptors (BCR) capture antigen and initiate downstream antibody responses, but whether and how BCR signaling is regulated by BCR mobility is still unclear. Here the authors show, using single molecule imaging and machine learning analyses, that BCR and CD19 mobility is modulated by the actin nucleation regulators Arp2/3 and N-WASP to control BCR signaling.
Collapse
Affiliation(s)
- Ivan Rey-Suarez
- Biophysics Program, University of Maryland, College Park, MD, 20742, USA.,National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Brittany A Wheatley
- Department of Physics, University of Maryland, College Park, MD, 20742, USA.,Institute for Physical Science and Technology, University of Maryland, College Park, MD, 20742, USA
| | - Peter Koo
- Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Anshuman Bhanja
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Zhou Shu
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD, 20742, USA.,Division of Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Simon Mochrie
- Department of Physics, Yale University, New Haven, CT, 06520, USA
| | - Wenxia Song
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Hari Shroff
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Arpita Upadhyaya
- Biophysics Program, University of Maryland, College Park, MD, 20742, USA. .,Department of Physics, University of Maryland, College Park, MD, 20742, USA. .,Institute for Physical Science and Technology, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
13
|
Wilhelm I, Levit-Zerdoun E, Jakob J, Villringer S, Frensch M, Übelhart R, Landi A, Müller P, Imberty A, Thuenauer R, Claudinon J, Jumaa H, Reth M, Eibel H, Hobeika E, Römer W. Carbohydrate-dependent B cell activation by fucose-binding bacterial lectins. Sci Signal 2019; 12:12/571/eaao7194. [PMID: 30837305 DOI: 10.1126/scisignal.aao7194] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bacterial lectins are typically multivalent and bind noncovalently to specific carbohydrates on host tissues to facilitate bacterial adhesion. Here, we analyzed the effects of two fucose-binding lectins, BambL from Burkholderia ambifaria and LecB from Pseudomonas aeruginosa, on specific signaling pathways in B cells. We found that these bacterial lectins induced B cell activation, which, in vitro, was dependent on the cell surface expression of the B cell antigen receptor (BCR) and its co-receptor CD19, as well as on spleen tyrosine kinase (Syk) activity. The resulting release of intracellular Ca2+ was followed by an increase in the cell surface abundance of the activation marker CD86, augmented cytokine secretion, and subsequent cell death, replicating all of the events that are observed in vitro upon canonical and antigen-mediated B cell activation. Moreover, injection of BambL in mice resulted in a substantial, BCR-independent loss of B cells in the bone marrow with simultaneous, transient enlargement of the spleen (splenomegaly), as well as an increase in the numbers of splenic B cells and myeloid cells. Together, these data suggest that bacterial lectins can initiate polyclonal activation of B cells through their sole capacity to bind to fucose.
Collapse
Affiliation(s)
- Isabel Wilhelm
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Ella Levit-Zerdoun
- Max Planck Institute of Immunology and Epigenetics Freiburg, 79108 Freiburg, Germany.,International Max Planck Research School (IMPRS), Max Planck Institute of Immunobiology and Epigenetics Freiburg, 79108 Freiburg, Germany.,German Cancer Consortium (DKTK) partner site Freiburg, German Cancer Center (DKFZ), Heidelberg, Institute of Molecular Medicine and Cell Research, 79104 Freiburg, Germany
| | - Johanna Jakob
- Institute for Immunology, University Medical Centre Ulm, 89081 Ulm, Germany
| | - Sarah Villringer
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Marco Frensch
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany.,International Max Planck Research School (IMPRS), Max Planck Institute of Immunobiology and Epigenetics Freiburg, 79108 Freiburg, Germany
| | - Rudolf Übelhart
- Institute for Immunology, University Medical Centre Ulm, 89081 Ulm, Germany
| | - Alessia Landi
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Peter Müller
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Anne Imberty
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| | - Roland Thuenauer
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Julie Claudinon
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Hassan Jumaa
- Institute for Immunology, University Medical Centre Ulm, 89081 Ulm, Germany
| | - Michael Reth
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany.,Max Planck Institute of Immunology and Epigenetics Freiburg, 79108 Freiburg, Germany
| | - Hermann Eibel
- CCI-Center for Chronic Immunodeficiency (CCI), University Medical Centre, 79106 Freiburg, Germany.,Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Elias Hobeika
- Institute for Immunology, University Medical Centre Ulm, 89081 Ulm, Germany.
| | - Winfried Römer
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany. .,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
14
|
Xie J, Du G, Zhang Y, Zhou F, Wu J, Jiao H, Li Y, Chen Y, Ouyang L, Bo D, Feng C, Yang W, Fan G. ECG conduction disturbances and ryanodine receptor expression levels in occupational lead exposure workers. Occup Environ Med 2019; 76:151-156. [DOI: 10.1136/oemed-2018-105463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/11/2018] [Accepted: 12/15/2018] [Indexed: 11/03/2022]
Abstract
ObjectivesA significant number of researches have evidenced that occupational lead (Pb) exposure increased risks of cardiovascular disease. However, evidences about the potential effects of Pb on the cardiac conduction system are sparse and inconclusive. Besides, ryanodine receptors (RyRs) induced dysfunction of cardiac excitation contraction coupling which is considered to be one of the mechanisms in cardiovascular diseases. Therefore, we examined the association between occupational Pb exposure and ECG conduction abnormalities, as well as RyRs in Pb-induced ECG abnormalities.MethodsWe investigated 529 Pb smelter workers, and measured blood lead (BPb), zinc protoporphyrin (ZPP), ECG outcomes and RyR expression levels. Based on BPb levels, the workers were divided into three groups: the BPb not elevated group, the BPb elevated group and the Pb poisoning group. Descriptive and multivariable analyses were performed.ResultsCompared with the BPb not elevated group, the Pb poisoning group had a higher incidence of high QRS voltage, and a lower level of RyR1 gene expression (p<0.05). Further unconditional multivariable logistic regression analyses showed that high QRS voltage was positively related to BPb (OR=1.045, 95% CI 1.014 to 1.078) and inversely associated with RyR1 expression (OR=0.042, 95% CI 0.002 to 0.980) after adjusting for potential confounders. In addition, multiple linear regression analyses showed that the QTc interval was positively associated with ZPP (β=0.299, 95% CI 0.130 to 0.468) after adjusting for potential confounders.ConclusionsOur study provided evidences that occupational exposure to Pb may be associated with worse ECG outcomes (high QRS voltage), which might be related to decreased levels of RyR1.
Collapse
|
15
|
Abstract
The ability of B lymphocytes to capture external antigens (Ag) and present them as peptide fragments, loaded on major histocompatibility complex (MHC) class II molecules, to CD4+ T cells is a crucial part of the adaptive immune response. This allows for T-B cooperation, a cellular communication that is required for B cells to develop into germinal centers (GC) and form mature high affinity antibody producing cells and to further develop B cell memory. MHC class II antigen presentation by B lymphocytes is a multistep process involving (1) Recognition and capture of external Ag by B lymphocytes through their B cell receptor (BCR), (2) Ag processing, which comprises the degradation of Ag in internal compartments within the B cell and loading of the corresponding peptide fragments on MHC class II molecules, and (3) Presentation of MHCII-peptide complexes to CD4+ T cells. Here, we describe how to study the biochemical and morphological changes that occur in B lymphocytes at these three major levels.
Collapse
|
16
|
Peng X, Zhao G, Lin J, Qu J, Zhang Y, Li C. Phospholipase Cγ2 is critical for Ca 2+ flux and cytokine production in anti-fungal innate immunity of human corneal epithelial cells. BMC Ophthalmol 2018; 18:170. [PMID: 30005593 PMCID: PMC6043966 DOI: 10.1186/s12886-018-0847-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 07/06/2018] [Indexed: 11/10/2022] Open
Abstract
Background Fungal keratitis (FK) is a sight-threatening disease, accounting for a significant portion with its complex presentation, suboptimal efficacy of the existing therapies and uncontrollable excessive innate inflammation. Phospholipase C-γ2 (PLCγ2) is a non-receptor tyrosine kinase that plays an important role at the early period of innate immunity. This study aimed to identify the role of PLCγ2 in Dectin-1-mediated Ca2+ Flux and its effect on the expression of proinflammatory mediators at the exposure to Aspergillus fumigatus (A. fumigatus) hyphae antigens in human corneal epithelial cells (HCECs). Methods The HCECs were preincubated with or without different inhibitors respectively before A. fumigatus hyphae stimulation. Intracellular calcium flux in HCECs and levels of PLCγ2 and spleen-tyrosine kinase (Syk) were detected by fluorescence imaging and Western Blotting. The expression of proinflammatory mediators was determined by reverse transcriptase polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA). Results We demonstrated that an intracellular Ca2+ flux in HCECs was triggered by A. fumigatus hyphae and could be reduced by pre-treatment with PLCγ2-inhibitor U73122. A. fumigatus hyphae induced PLCγ2 phosphorylation was regulated by Dectin-1 via Syk. Furthermore, PLCγ2-deficient HCECs showed a drastic impairment in the Ca2+ signaling and the secretion of IL-6, CXCL1 and TNF-α. Conclusions PLCγ2 plays a critical role for Ca2+ Flux in HCECs stimulated by A. fumigatus hyphae. Syk acts upstream of PLCγ2 in the Dectin-1 signaling pathway. The expressions of proinflammatory mediators induced by A. fumigatus are regulated by the activation of Dectin-1-mediated PLCγ2 signaling pathway in HCECs.
Collapse
Affiliation(s)
- Xudong Peng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, NO. 16 Jiangsu Road, Qingdao, 266003, Shandong Province, China
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, NO. 16 Jiangsu Road, Qingdao, 266003, Shandong Province, China.
| | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, NO. 16 Jiangsu Road, Qingdao, 266003, Shandong Province, China
| | - Jianqiu Qu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, NO. 16 Jiangsu Road, Qingdao, 266003, Shandong Province, China
| | - Yingxue Zhang
- Department of Biochemistry, Immunology and Microbiology, Wayne State University School of Medicine, 540 E. Canfield Avenue, Detroit, MI, 48201, USA
| | - Cui Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, NO. 16 Jiangsu Road, Qingdao, 266003, Shandong Province, China
| |
Collapse
|
17
|
Metryka E, Chibowska K, Gutowska I, Falkowska A, Kupnicka P, Barczak K, Chlubek D, Baranowska-Bosiacka I. Lead (Pb) Exposure Enhances Expression of Factors Associated with Inflammation. Int J Mol Sci 2018; 19:ijms19061813. [PMID: 29925772 PMCID: PMC6032409 DOI: 10.3390/ijms19061813] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 05/31/2018] [Accepted: 06/12/2018] [Indexed: 11/16/2022] Open
Abstract
The human immune system is constantly exposed to xenobiotics and pathogens from the environment. Although the mechanisms underlying their influence have already been at least partially recognized, the effects of some factors, such as lead (Pb), still need to be clarified. The results of many studies indicate that Pb has a negative effect on the immune system, and in our review, we summarize the most recent evidence that Pb can promote inflammatory response. We also discuss possible molecular and biochemical mechanisms of its proinflammatory action, including the influence of Pb on cytokine metabolism (interleukins IL-2, IL-4, IL-8, IL-1b, IL-6), interferon gamma (IFNγ), and tumor necrosis factor alpha (TNF-α); the activity and expression of enzymes involved in the inflammatory process (cyclooxygenases); and the effect on selected acute phase proteins: C-reactive protein (CRP), haptoglobin, and ceruloplasmin. We also discuss the influence of Pb on the immune system cells (T and B lymphocytes, macrophages, Langerhans cells) and the secretion of IgA, IgE, IgG, histamine, and endothelin.
Collapse
Affiliation(s)
- Emilia Metryka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland.
| | - Karina Chibowska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland.
| | - Izabela Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Broniewskiego 24, 71-460 Szczecin, Poland.
| | - Anna Falkowska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland.
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland.
| | - Katarzyna Barczak
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland.
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland.
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland.
| |
Collapse
|
18
|
Yao Y, Huang W, Li X, Li X, Qian J, Han H, Sun H, An X, Lu L, Zhao H. Tespa1 Deficiency Dampens Thymus-Dependent B-Cell Activation and Attenuates Collagen-Induced Arthritis in Mice. Front Immunol 2018; 9:965. [PMID: 29867947 PMCID: PMC5960706 DOI: 10.3389/fimmu.2018.00965] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/18/2018] [Indexed: 12/21/2022] Open
Abstract
Thymocyte-expressed, positive selection-associated 1 (Tespa1) plays an important role in both T cell receptor (TCR)-driven thymocyte development and in the FcεRI-mediated activation of mast cells. Herein, we show that lack of Tespa1 does not impair B cell development but dampens the in vitro activation and proliferation of B cells induced by T cell-dependent (TD) antigens, significantly reduces serum antibody concentrations in vivo, and impairs germinal center formation in both aged and TD antigen-immunized mice. We also provide evidence that dysregulated signaling in Tespa1-deficient B cells may be linked to CD40-induced TRAF6 degradation, and subsequent effects on 1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase gamma-2 (PLCγ2) phosphorylation, MAPK activation, and calcium influx. Furthermore, we demonstrate that Tespa1 plays a critical role in pathogenic B cells, since Tespa1-deficient chimeric mice showed a lower incidence and clinical disease severity of collagen-induced arthritis. Overall, our study demonstrates that Tespa1 is essential for TD B cell responses, and suggests an important role for Tespa1 during the development of autoimmune arthritis.
Collapse
Affiliation(s)
- Yunliang Yao
- Program in Molecular and Translational Medicine (PMTM), School of Medicine, Huzhou University, Huzhou, China
| | - Wei Huang
- The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyu Li
- Program in Molecular and Translational Medicine (PMTM), School of Medicine, Huzhou University, Huzhou, China
| | - Xiawei Li
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jin Qian
- Program in Molecular and Translational Medicine (PMTM), School of Medicine, Huzhou University, Huzhou, China
| | - Hui Han
- First Affiliated Hospital, Huzhou University, Huzhou, China
| | - Hui Sun
- First Affiliated Hospital, Huzhou University, Huzhou, China
| | - Xiangli An
- Program in Molecular and Translational Medicine (PMTM), School of Medicine, Huzhou University, Huzhou, China
| | - Linrong Lu
- School of Medicine, Institute of Immunology, Zhejiang University, Hangzhou, China
| | - Hongxing Zhao
- First Affiliated Hospital, Huzhou University, Huzhou, China
| |
Collapse
|
19
|
Li YQ, Zhang J, Li J, Sun L. First characterization of fish CD22: An inhibitory role in the activation of peripheral blood leukocytes. Vet Immunol Immunopathol 2017; 190:39-44. [DOI: 10.1016/j.vetimm.2017.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/24/2017] [Accepted: 07/11/2017] [Indexed: 01/05/2023]
|
20
|
Li M, Liu ZS, Liu XL, Hui Q, Lu SY, Qu LL, Li YS, Zhou Y, Ren HL, Hu P. Clinical targeting recombinant immunotoxins for cancer therapy. Onco Targets Ther 2017; 10:3645-3665. [PMID: 28790855 PMCID: PMC5530862 DOI: 10.2147/ott.s134584] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Recombinant immunotoxins (RITs) are proteins that contain a toxin fused to an antibody or small molecules and are constructed by the genetic engineering technique. RITs can bind to and be internalized by cells and kill cancerous or non-cancerous cells by inhibiting protein synthesis. A wide variety of RITs have been tested against different cancers in cell culture, xenograft models, and human patients during the past several decades. RITs have shown activity in therapy of several kinds of cancers, but different levels of side effects, mainly related to vascular leak syndrome, were also observed in the treated patients. High immunogenicity of RITs limited their long-term or repeat applications in clinical cases. Recent advances in the design of immunotoxins, such as humanization of antibody fragment, PEGylation, and modification of human B- and T-cell epitopes, are overcoming the above mentioned problems, which predict the use of these immunotoxins as a potential therapeutic method to treat cancer patients.
Collapse
Affiliation(s)
- Meng Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, China-Japan Union Hospital, The First Hospital, Jilin University, Changchun
| | - Zeng-Shan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, China-Japan Union Hospital, The First Hospital, Jilin University, Changchun
| | - Xi-Lin Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, China-Japan Union Hospital, The First Hospital, Jilin University, Changchun
| | - Qi Hui
- School of Pharmacy, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Shi-Ying Lu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, China-Japan Union Hospital, The First Hospital, Jilin University, Changchun
| | - Lin-Lin Qu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, China-Japan Union Hospital, The First Hospital, Jilin University, Changchun
| | - Yan-Song Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, China-Japan Union Hospital, The First Hospital, Jilin University, Changchun
| | - Yu Zhou
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, China-Japan Union Hospital, The First Hospital, Jilin University, Changchun
| | - Hong-Lin Ren
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, China-Japan Union Hospital, The First Hospital, Jilin University, Changchun
| | - Pan Hu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, China-Japan Union Hospital, The First Hospital, Jilin University, Changchun
| |
Collapse
|
21
|
Wang JQ, Jeelall YS, Humburg P, Batchelor EL, Kaya SM, Yoo HM, Goodnow CC, Horikawa K. Synergistic cooperation and crosstalk between MYD88L265P and mutations that dysregulate CD79B and surface IgM. J Exp Med 2017; 214:2759-2776. [PMID: 28701369 PMCID: PMC5584117 DOI: 10.1084/jem.20161454] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 04/30/2017] [Accepted: 06/13/2017] [Indexed: 12/26/2022] Open
Abstract
Wang et al. show cooperation between MYD88L265P and CD79B mutations dysregulating B cell responses to self-antigen and differentiation into plasma cells. Their results reveal that CD79B and surface IgM constitute a rate-limiting checkpoint against MYD88L265P, explaining the co-occurrence of MYD88 and CD79B mutations in human lymphomas. CD79B and MYD88 mutations are frequently and simultaneously detected in B cell malignancies. It is not known if these mutations cooperate or how crosstalk occurs. Here we analyze the consequences of CD79B and MYD88L265P mutations individually and combined in normal activated mouse B lymphocytes. CD79B mutations alone increased surface IgM but did not enhance B cell survival, proliferation, or altered NF-κB responsive markers. Conversely, B cells expressing MYD88L265P decreased surface IgM coupled with accumulation of endoglycosidase H–sensitive IgM intracellularly, resembling the trafficking block in anergic B cells repeatedly stimulated by self-antigen. Mutation or overexpression of CD79B counteracted the effect of MYD88L265P. In B cells chronically stimulated by self-antigen, CD79B and MYD88L265P mutations in combination, but not individually, blocked peripheral deletion and triggered differentiation into autoantibody secreting plasmablasts. These results reveal that CD79B and surface IgM constitute a rate-limiting checkpoint against B cell dysregulation by MYD88L265P and provide an explanation for the co-occurrence of MYD88 and CD79B mutations in lymphomas.
Collapse
Affiliation(s)
- James Q Wang
- Australian Cancer Research Foundation Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Yogesh S Jeelall
- Australian Cancer Research Foundation Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Peter Humburg
- Garvan Institute of Medical Research, Sydney, Australia
| | - Emma L Batchelor
- Australian Cancer Research Foundation Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Sarp M Kaya
- Australian Cancer Research Foundation Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Hee Min Yoo
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | | | - Keisuke Horikawa
- Australian Cancer Research Foundation Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| |
Collapse
|
22
|
Benichou JIC, van Heijst JWJ, Glanville J, Louzoun Y. Converging evolution leads to near maximal junction diversity through parallel mechanisms in B and T cell receptors. Phys Biol 2017; 14:045003. [PMID: 28510537 DOI: 10.1088/1478-3975/aa7366] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
T and B cell receptor (TCR and BCR) complementarity determining region 3 (CDR3) genetic diversity is produced through multiple diversification and selection stages. Potential holes in the CDR3 repertoire were argued to be linked to immunodeficiencies and diseases. In contrast with BCRs, TCRs have practically no Dβ germline genetic diversity, and the question emerges as to whether they can produce a diverse CDR3 repertoire. In order to address the genetic diversity of the adaptive immune system, appropriate quantitative measures for diversity and large-scale sequencing are required. Such a diversity method should incorporate the complex diversification mechanisms of the adaptive immune response and the BCR and TCR loci structure. We combined large-scale sequencing and diversity measures to show that TCRs have a near maximal CDR3 genetic diversity. Specifically, TCR have a larger junctional and V germline diversity, which starts more 5' in Vβ than BCRs. Selection decreases the TCR repertoire diversity, but does not affect BCR repertoire. As a result, TCR is as diverse as BCR repertoire, with a biased CDR3 length toward short TCRs and long BCRs. These differences suggest parallel converging evolutionary tracks to reach the required diversity to avoid holes in the CDR3 repertoire.
Collapse
|
23
|
Roles of Zinc Signaling in the Immune System. J Immunol Res 2016; 2016:6762343. [PMID: 27872866 PMCID: PMC5107842 DOI: 10.1155/2016/6762343] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/11/2016] [Indexed: 02/07/2023] Open
Abstract
Zinc (Zn) is an essential micronutrient for basic cell activities such as cell growth, differentiation, and survival. Zn deficiency depresses both innate and adaptive immune responses. However, the precise physiological mechanisms of the Zn-mediated regulation of the immune system have been largely unclear. Zn homeostasis is tightly controlled by the coordinated activity of Zn transporters and metallothioneins, which regulate the transport, distribution, and storage of Zn. There is growing evidence that Zn behaves like a signaling molecule, facilitating the transduction of a variety of signaling cascades in response to extracellular stimuli. In this review, we highlight the emerging functional roles of Zn and Zn transporters in immunity, focusing on how crosstalk between Zn and immune-related signaling guides the normal development and function of immune cells.
Collapse
|
24
|
Rajasekaran K, Riese MJ, Rao S, Wang L, Thakar MS, Sentman CL, Malarkannan S. Signaling in Effector Lymphocytes: Insights toward Safer Immunotherapy. Front Immunol 2016; 7:176. [PMID: 27242783 PMCID: PMC4863891 DOI: 10.3389/fimmu.2016.00176] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 04/20/2016] [Indexed: 12/15/2022] Open
Abstract
Receptors on T and NK cells systematically propagate highly complex signaling cascades that direct immune effector functions, leading to protective immunity. While extensive studies have delineated hundreds of signaling events that take place upon receptor engagement, the precise molecular mechanism that differentially regulates the induction or repression of a unique effector function is yet to be fully defined. Such knowledge can potentiate the tailoring of signal transductions and transform cancer immunotherapies. Targeted manipulations of signaling cascades can augment one effector function such as antitumor cytotoxicity while contain the overt generation of pro-inflammatory cytokines that contribute to treatment-related toxicity such as “cytokine storm” and “cytokine-release syndrome” or lead to autoimmune diseases. Here, we summarize how individual signaling molecules or nodes may be optimally targeted to permit selective ablation of toxic immune side effects.
Collapse
Affiliation(s)
- Kamalakannan Rajasekaran
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute , Milwaukee, WI , USA
| | - Matthew J Riese
- Laboratory of Lymphocyte Biology, Blood Research Institute, Milwaukee, WI, USA; Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sridhar Rao
- Laboratory of Stem Cell Transcriptional Regulation, Blood Research Institute, Milwaukee, WI, USA; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Li Wang
- Department of Medicine, Medical College of Wisconsin , Milwaukee, WI , USA
| | - Monica S Thakar
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, USA; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Charles L Sentman
- Department of Microbiology and Immunology, Center for Synthetic Immunity at the Geisel School of Medicine at Dartmouth , Lebanon, NH , USA
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, USA; Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
25
|
Thorarinsdottir K, Camponeschi A, Gjertsson I, Mårtensson IL. CD21 -/low B cells: A Snapshot of a Unique B Cell Subset in Health and Disease. Scand J Immunol 2015; 82:254-61. [PMID: 26119182 DOI: 10.1111/sji.12339] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 06/25/2015] [Indexed: 01/23/2023]
Abstract
B cells represent one of the cellular components of the immune system that protects the individual from invading pathogens. In response to the invader, these cells differentiate into plasma cells and produce large amounts of antibodies that bind to and eliminate the pathogen. A hallmark of autoimmune diseases is the production of autoantibodies i.e. antibodies that recognize self. Those that are considered pathogenic can damage tissues and organs, either by direct binding or when deposited as immune complexes. For decades, B cells have been considered to play a major role in autoimmune diseases by antibody production. However, as pathogenic autoantibodies appear to derive mainly from T cell dependent responses, T cells have been the focus for many years. The successful treatment of patients with autoimmune diseases with either B cell depletion therapy (rituximab) or inhibition of B cell survival (belimumab), suggested that not only the autoantibodies but also other B cell features are important. This has caused a surge of interest in B cells and their biology resulting in the identification of various subsets e.g. regulatory B cells, several memory B cell subsets etc. Also, in other conditions such as chronic viral infections and primary immunodeficiency, several B cell subsets with unique characteristics have been identified. In this review, we will discuss one of these subsets, a subset that is expanded in conditions characterized by chronic immune stimulation. This B cell subset lacks, or expresses low, surface levels of the complement receptor 2 (CD21) and has therefore been termed CD21(-/low) B cells.
Collapse
Affiliation(s)
- K Thorarinsdottir
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - A Camponeschi
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - I Gjertsson
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - I-L Mårtensson
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
26
|
|
27
|
Peng XD, Zhao GQ, Lin J, Jiang N, Xu Q, Zhu CC, Qu JQ, Cong L, Li H. Fungus induces the release of IL-8 in human corneal epithelial cells, via Dectin-1-mediated protein kinase C pathways. Int J Ophthalmol 2015; 8:441-7. [PMID: 26085988 DOI: 10.3980/j.issn.2222-3959.2015.03.02] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/05/2015] [Indexed: 12/11/2022] Open
Abstract
AIM To identify whether Aspergillus fumigatus (A. fumigatus) hyphae antigens induced the release of interleukin-8 (IL-8) in anti-fungal innate immunity of cultured human corneal epithelial cells (HCECs) and determine the involvement of intracellular signalling pathways. METHODS HCECs were treated with A. fumigatus hyphae antigens with different concentrations and time. The cytoplasmic calcium of HCECs were assessed by fluorescence imaging. Western blot was used to detect the expression of Ca(2+)-dependent protein kinase C (PKC). The IL-8 levels were determined by specific human IL-8 enzyme-linked immunosorbent assay (ELISA) and reverse transcriptase polymerase chain reaction (RT-PCR). Using a series of pharmacological inhibitors, we examined the upstream signalling pathway responsible for IL-8 expression in response to A. fumigatus hyphae antigens. RESULTS Cells exposed to A. fumigatus hyphae antigens showed higher level of IL-8 mRNA expression and protein production. We demonstrated here that stimulation of HCECs with A. fumigatus hyphae triggers an intracellular Ca(2+) flux and results in the activation of Ca(2+)-dependent PKC (α, βI and βII) which can be attenuated by pre-treatment of cells with laminarin, suggesting that Dectin-1 signals pathway induced cytoplasmic calcium and influence the activation of PKC in HCECs. Inhibitors of Ca(2+)-dependent PKC (Ro-31-8220 and Go6976) significantly abolished hyphae-induced expression of IL-8. CONCLUSION Our findings suggest that A. fumigatus hyphae-induced IL-8 expression was regulated by the activation of Dectin-1-mediated Ca(2+)-dependent PKC in HCECs.
Collapse
Affiliation(s)
- Xu-Dong Peng
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Gui-Qiu Zhao
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Jing Lin
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Nan Jiang
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Qiang Xu
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Cheng-Cheng Zhu
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Jian-Qiu Qu
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Lin Cong
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Hui Li
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| |
Collapse
|
28
|
Kremlitzka M, Mácsik-Valent B, Erdei A. Syk is indispensable for CpG-induced activation and differentiation of human B cells. Cell Mol Life Sci 2015; 72:2223-36. [PMID: 25543269 PMCID: PMC11113211 DOI: 10.1007/s00018-014-1806-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 11/21/2014] [Accepted: 12/15/2014] [Indexed: 12/11/2022]
Abstract
B cells are efficiently activated by CpG oligodeoxynucleotides (ODNs) to produce pro-inflammatory cytokines and antibody (Ab). Here, we describe a so far unidentified, spleen tyrosine kinase (Syk)-dependent pathway, which is indispensable for CpG-induced human B cell activation. We show that triggering of B cells by CpG results in Syk and src kinase phosphorylation, proliferation, as well as cytokine and Ab production independent of the BCR. Notably, all these functions are abrogated when Syk is inhibited. We demonstrate that CpG-induced Syk activation originates from the cell surface in a TLR9-dependent manner. While inhibition of Syk does not influence the uptake of CpG ODNs, activation of the kinase is a prerequisite for the delivery of CpG into TLR9-containing endolysosomes and for the CpG-induced up-regulation of TLR9 expression. Our results reveal an alternative, Syk-dependent pathway of CpG-induced B cell stimulation, which is initiated at the plasma membrane and seems to be an upstream requirement for endosomal TLR9-driven B cell proliferation and differentiation.
Collapse
Affiliation(s)
| | - Bernadett Mácsik-Valent
- Department of Immunology, Eötvös Loránd University, 1117 Budapest Pázmány s. 1/c, Budapest, Hungary
| | - Anna Erdei
- Department of Immunology, Eötvös Loránd University, 1117 Budapest Pázmány s. 1/c, Budapest, Hungary
- MTA-ELTE Immunology Research Group, Budapest, Hungary
| |
Collapse
|
29
|
Yuseff MI, Lennon-Duménil AM. B Cells use Conserved Polarity Cues to Regulate Their Antigen Processing and Presentation Functions. Front Immunol 2015; 6:251. [PMID: 26074919 PMCID: PMC4445385 DOI: 10.3389/fimmu.2015.00251] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/07/2015] [Indexed: 11/13/2022] Open
Abstract
The ability of B cells to produce high-affinity antibodies and to establish immunological memory in response to a wide range of pathogenic antigens is an essential part of the adaptive immune response. The initial step that triggers a humoral immune response involves the acquisition of antigens by B cells via their surface immunoglobulin, the B cell receptor (BCR). BCR-engaged antigens are transported into specialized lysosomal compartments where proteolysis and production of MHC class II-peptide complexes occur, a process referred to as antigen processing. Expression of MHC class II complexes at the B cell surface allows them to interact with T cells and to receive their help to become fully activated. In this review, we describe how B cells rely on conserved cell polarity mechanisms to coordinate local proteolytic secretion and mechanical forces at the B cell synapse enabling them to efficiently acquire and present extracellular antigens. We foresee that the mechanisms that dictate B cell activation can be used to tune B cell responses in the context of autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Maria-Isabel Yuseff
- Department of Cellular and Molecular Biology, Pontificia Universidad Católica de Chile , Santiago , Chile
| | | |
Collapse
|
30
|
Seda V, Mraz M. B-cell receptor signalling and its crosstalk with other pathways in normal and malignant cells. Eur J Haematol 2014; 94:193-205. [PMID: 25080849 DOI: 10.1111/ejh.12427] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2014] [Indexed: 12/13/2022]
Abstract
The physiology of B cells is intimately connected with the function of their B-cell receptor (BCR). B-cell lymphomas frequently (dys)regulate BCR signalling and thus take advantage of this pre-existing pathway for B-cell proliferation and survival. This has recently been underscored by clinical trials demonstrating that small molecules (fosfamatinib, ibrutinib, idelalisib) inhibiting BCR-associated kinases (SYK, BTK, PI3K) have an encouraging clinical effect. Here we describe the current knowledge of the specific aspects of BCR signalling in diffuse large B-cell lymphoma (DLBCL), follicular lymphoma, chronic lymphocytic leukaemia (CLL) and normal B cells. Multiple factors can contribute to BCR pathway (dys)regulation in these malignancies and the activation of 'chronic' or 'tonic' BCR signalling. In lymphoma B cells, the balance of initiation, amplitude and duration of BCR activation can be influenced by a specific immunoglobulin structure, the expression and mutations of adaptor molecules (like GAB1, BLNK, GRB2, CARD11), the activity of kinases (like LYN, SYK, PI3K) or phosphatases (like SHIP-1, SHP-1 and PTEN) and levels of microRNAs. We also discuss the crosstalk of BCR with other signalling pathways (NF-κB, adhesion through integrins, migration and chemokine signalling) to emphasise that the 'BCR inhibitors' target multiple pathways interconnected with BCR, which might explain some of their clinical activity.
Collapse
Affiliation(s)
- Vaclav Seda
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | | |
Collapse
|
31
|
Xu Y, Xu L, Zhao M, Xu C, Fan Y, Pierce SK, Liu W. No receptor stands alone: IgG B-cell receptor intrinsic and extrinsic mechanisms contribute to antibody memory. Cell Res 2014; 24:651-64. [PMID: 24839903 PMCID: PMC4042179 DOI: 10.1038/cr.2014.65] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Acquired immunological memory is a striking phenomenon. A lethal epidemic sweeps through a naïve population, many die but those who survive are never "attacked twice - never at least fatally", as the historian Thucydides observed in 430 BCE. Antibody memory is critical for protection against many human infectious diseases and is the basis for nearly all current human vaccines. Antibody memory is encoded, in part, in isotype-switched immunoglobulin (Ig)G-expressing memory B cells that are generated in the primary response to antigen and give rise to rapid, high-affinity and high-titered antibody responses upon challenge with the same antigen. How IgG-B-cell receptors (BCRs) and antigen-induced IgG-BCR signaling contribute to memory antibody responses are not fully understood. In this review, we summarize exciting new advances that are revealing the cellular and molecular mechanisms at play in antibody memory and discuss how studies using different experimental approaches will help elucidate the complex phenomenon of B-cell memory.
Collapse
Affiliation(s)
- Yinsheng Xu
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing 100084, China
| | - Liling Xu
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Meng Zhao
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - ChenGuang Xu
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yilin Fan
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Susan K Pierce
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| | - Wanli Liu
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing 100084, China
| |
Collapse
|
32
|
A critical role for cell polarity in antigen extraction, processing, and presentation by B lymphocytes. Adv Immunol 2014; 123:51-67. [PMID: 24840947 DOI: 10.1016/b978-0-12-800266-7.00001-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The activation of B lymphocytes in response to external stimuli represents a key step in the adaptive immune response, which is required for the production of high-affinity antibodies and for the generation of long-term memory. Because the dysregulation of B lymphocyte responses can lead to diverse pathological situations, B cells are considered today as valuable therapeutic targets for immunomodulation, in particular in the context of autoimmune reactions. Here, we review the fundamental molecular and cell biological mechanisms that enable B cells to efficiently sense, acquire, and respond to extracellular antigens. A special emphasis is given to cell polarity, which was shown to be critical for the regulation of antigen acquisition, processing, and presentation by B lymphocytes. How cell polarity coordinates the various steps of B lymphocyte activation and might impact the humoral immune response is further discussed.
Collapse
|
33
|
Xu L, Li G, Wang J, Fan Y, Wan Z, Zhang S, Shaheen S, Li J, Wang L, Yue C, Zhao Y, Wang F, Brzostowski J, Chen YH, Zheng W, Liu W. Through an ITIM-Independent Mechanism the FcγRIIB Blocks B Cell Activation by Disrupting the Colocalized Microclustering of the B Cell Receptor and CD19. THE JOURNAL OF IMMUNOLOGY 2014; 192:5179-91. [DOI: 10.4049/jimmunol.1400101] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
Passive delivery techniques for transcutaneous immunization. J Drug Deliv Sci Technol 2014. [DOI: 10.1016/s1773-2247(14)50045-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Yuseff MI, Pierobon P, Reversat A, Lennon-Duménil AM. How B cells capture, process and present antigens: a crucial role for cell polarity. Nat Rev Immunol 2013; 13:475-86. [PMID: 23797063 DOI: 10.1038/nri3469] [Citation(s) in RCA: 219] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
B cells are key components of the adaptive immune response. Their differentiation into either specific memory B cells or antibody-secreting plasma cells is a consequence of activation steps that involve the processing and presentation of antigens. The engagement of B cell receptors by surface-tethered antigens leads to the formation of an immunological synapse that coordinates cell signalling events and that promotes antigen uptake for presentation on MHC class II molecules. In this Review, we discuss membrane trafficking and the associated molecular mechanisms that are involved in antigen extraction and processing at the B cell synapse, and we highlight how B cells use cell polarity to coordinate the complex events that ultimately lead to efficient humoral responses.
Collapse
|
36
|
|
37
|
Packard TA, Cambier JC. B lymphocyte antigen receptor signaling: initiation, amplification, and regulation. F1000PRIME REPORTS 2013; 5:40. [PMID: 24167721 PMCID: PMC3790562 DOI: 10.12703/p5-40] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
B lymphocytes and their differentiated daughters are charged with responding to the myriad pathogens in our environment and production of protective antibodies. A sample of the protective antibody produced by each clone is utilized as a component of the cell's antigen receptor (BCR). Transmembrane signals generated upon antigen binding to this receptor provide the primary directive for the cell's subsequent response. In this report, we discuss recent progress and current controversy regarding B cell receptor signal initiation, transduction and regulation.
Collapse
Affiliation(s)
- Thomas A. Packard
- Integrated Department of Immunology, University of Colorado School of Medicine & National Jewish Health1400 Jackson St, Denver, CO 80206
| | - John C. Cambier
- Integrated Department of Immunology, University of Colorado School of Medicine & National Jewish Health1400 Jackson St, Denver, CO 80206
| |
Collapse
|
38
|
Castello A, Gaya M, Tucholski J, Oellerich T, Lu KH, Tafuri A, Pawson T, Wienands J, Engelke M, Batista FD. Nck-mediated recruitment of BCAP to the BCR regulates the PI(3)K-Akt pathway in B cells. Nat Immunol 2013; 14:966-75. [PMID: 23913047 DOI: 10.1038/ni.2685] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 07/10/2013] [Indexed: 12/13/2022]
Abstract
The adaptor Nck links receptor signaling to cytoskeleton regulation. Here we found that Nck also controlled the phosphatidylinositol-3-OH kinase (PI(3)K)-kinase Akt pathway by recruiting the adaptor BCAP after activation of B cells. Nck bound directly to the B cell antigen receptor (BCR) via the non-immunoreceptor tyrosine-based activation motif (ITAM) phosphorylated tyrosine residue at position 204 in the tail of the immunoglobulin-α component. Genetic ablation of Nck resulted in defective BCR signaling, which led to hampered survival and proliferation of B cells in vivo. Indeed, antibody responses in Nck-deficient mice were also considerably impaired. Thus, we demonstrate a previously unknown adaptor function for Nck in recruiting BCAP to sites of BCR signaling and thereby modulating the PI(3)K-Akt pathway in B cells.
Collapse
Affiliation(s)
- Angelo Castello
- Lymphocyte Interaction Laboratory, London Research Institute-Cancer Research UK, London, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Ning WH, Zhao K. Propionyl-L-carnitine induces eNOS activation and nitric oxide synthesis in endothelial cells via PI3 and Akt kinases. Vascul Pharmacol 2013; 59:76-82. [PMID: 23850990 DOI: 10.1016/j.vph.2013.07.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 06/09/2013] [Accepted: 07/04/2013] [Indexed: 11/20/2022]
Abstract
Propionyl-l-carnitine (PLC) is a natural short-chain derivative of l-carnitine (LC), a natural amino acid that plays an important role in fatty acid metabolism. Recent studies suggest that PLC has vascular protective effects. Because of the importance of endothelial nitric oxide synthase (eNOS) and its product, antiatherogenic molecule nitric oxide (NO), in vascular endothelial function, we sought to elucidate that if PLC would stimulate eNOS and its upstream activators Akt and phosphatidylinositol 3-kinase (PI3 Kinase) in cultured human aortic endothelial cells (HAEC). PLC caused eNOS phosphorylation at Ser-1177, and dominant negative Akt and a novel Akt-selective inhibitor MK-2206 inhibited both PLC-mediated phosphorylation and activation of the enzyme. PI3 kinase inhibition also blocked the phosphorylation and activation of eNOS by PLC. Studies with specific drug inhibitors PD173955 and PP2 showed that the non-receptor tyrosine kinase, src, is an upstream stimulator of the PI3 kinase-Akt pathway in this pathway. In addition, PLC significantly decreased intracellular ATP/ADP ratio and activate AMPK, subsequently leading to Src activation. Finally, we demonstrated that the effects of PLC to augment eNOS activity were associated with a net increase in NO release from endothelial cells. NO production following incubation with PLC was abolished in endothelial cells coincubated with L-NAME, PD173955, LY294002, MK-2206 and compound C. In conclusion, PLC, via AMPK/Src-mediated signaling that leads to activation of PI3 kinase and Akt, stimulates eNOS, leading to increased production of NO.
Collapse
Affiliation(s)
- Wen-hu Ning
- Department of Emergency, the Forth Clinical Hospital, Harbin Medical University, Heilongjiang Harbin 150001, China.
| | | |
Collapse
|
40
|
Li R, Wang T, Bird S, Zou J, Dooley H, Secombes CJ. B cell receptor accessory molecule CD79α: characterisation and expression analysis in a cartilaginous fish, the spiny dogfish (Squalus acanthias). FISH & SHELLFISH IMMUNOLOGY 2013; 34:1404-15. [PMID: 23454429 PMCID: PMC4034164 DOI: 10.1016/j.fsi.2013.02.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 02/08/2013] [Accepted: 02/18/2013] [Indexed: 05/16/2023]
Abstract
CD79α (also known as Igα) is a component of the B cell antigen receptor complex and plays an important role in B cell signalling. The CD79α protein is present on the surface of B cells throughout their life cycle, and is absent on all other healthy cells, making it a highly reliable marker for B cells in mammals. In this study the spiny dogfish (Squalus acanthias) CD79α (SaCD79α) is described and its expression studied under constitutive and stimulated conditions. The spiny dogfish CD79α cDNA contains an open reading frame of 618 bp, encoding a protein of 205 amino acids. Comparison of the SaCD79α gene with that of other species shows that the gross structure (number of exons, exon/intron boundaries, etc.) is highly conserved across phylogeny. Additionally, analysis of the 5' flanking region shows SaCD79α lacks a TATA box and possesses binding sites for multiple transcription factors implicated in its B cell-specific gene transcription in other species. Spiny dogfish CD79α is most highly expressed in immune tissues, such as spleen, epigonal and Leydig organ, and its transcript level significantly correlates with those of spiny dogfish immunoglobulin heavy chains. Additionally, CD79α transcription is up-regulated, to a small but significant degree, in peripheral blood cells following stimulation with pokeweed mitogen. These results strongly indicate that, as in mammals, spiny dogfish CD79α is expressed by shark B cells where it associates with surface-bound immunoglobulin to form a fully functional BCR, and thus may serve as a pan-B cell marker in future shark immunological studies.
Collapse
Affiliation(s)
- Ronggai Li
- Scottish Fish Immunology Research Centre, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | - Steve Bird
- Department of Biological Sciences, School of Science and Engineering, University of Waikato, New Zealand
| | - Jun Zou
- Scottish Fish Immunology Research Centre, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | - Helen Dooley
- Scottish Fish Immunology Research Centre, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | - Christopher J. Secombes
- Scottish Fish Immunology Research Centre, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
- Corresponding author. Tel.: +44 1224 278272; fax: +44 (0)1224 272396.
| |
Collapse
|
41
|
Abstract
The molecular biology revolution coupled with the development of monoclonal antibody technology enabled remarkable progress in rheumatology therapy, comprising an array of highly effective biologic agents. With advances in understanding of the molecular nature of immune cell receptors came elucidation of intracellular signalling pathways downstream of these receptors. These discoveries raise the question of whether selective targeting of key intracellular factors with small molecules would add to the rheumatologic armamentarium. In this Review, we discuss several examples of this therapeutic strategy that seem to be successful, and consider their implications for the future of immune-targeted treatments. We focus on kinase inhibitors, primarily those targeting Janus kinase family members and spleen tyrosine kinase, given their advanced status in clinical development and application. We also summarize other targets involved in signalling pathways that might offer promise for therapeutic intervention in the future.
Collapse
|
42
|
Yuseff MI, Lennon-Dumenil AM. Studying MHC class II presentation of immobilized antigen by B lymphocytes. Methods Mol Biol 2013; 960:529-543. [PMID: 23329512 DOI: 10.1007/978-1-62703-218-6_39] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
The ability of B lymphocytes to capture external antigens (Ag) and present them as peptide fragments, loaded on Major Histocompatibility complex (MHC) class II molecules, to CD4(+) T cells is a crucial part of the adaptive immune response. This allows T-B cooperation, a cellular communication that is required for B cells to develop into germinal centers (GC) and form mature high-affinity antibody producing cells and to further develop B cell memory. MHC class II antigen presentation by B lymphocytes is a multistep process involving (1) Recognition and capture of external Ag by B lymphocytes through their B cell receptor (BCR); (2) Ag processing, which comprises the degradation of Ag in internal compartments within the B cell and loading of the corresponding peptide fragments on MHC class II molecules and (3) Presentation of MHC II-peptide complexes to CD4(+) T cells. Here, we describe how to study MHC class II antigen presentation by B lymphocytes at these three major levels.
Collapse
Affiliation(s)
- M I Yuseff
- Institut Curie, Inserm U932, Paris, France
| | | |
Collapse
|
43
|
Chu VT, Berek C. The establishment of the plasma cell survival niche in the bone marrow. Immunol Rev 2012; 251:177-88. [DOI: 10.1111/imr.12011] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Van T. Chu
- Deutsches Rheuma Forschungszentrum; ein Institut der Leibniz-Gemeinschaft; Berlin; Germany
| | - Claudia Berek
- Deutsches Rheuma Forschungszentrum; ein Institut der Leibniz-Gemeinschaft; Berlin; Germany
| |
Collapse
|
44
|
Sindhava VJ, Bondada S. Multiple regulatory mechanisms control B-1 B cell activation. Front Immunol 2012; 3:372. [PMID: 23251136 PMCID: PMC3523257 DOI: 10.3389/fimmu.2012.00372] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 11/21/2012] [Indexed: 12/24/2022] Open
Abstract
B-1 cells constitute a unique subset of B cells identified in several species including mice and humans. B-1 cells are further subdivided into B-1a and B-1b subsets as the former but not the later express CD5. The B-1a subset contributes to innate type of immune responses while the B-1b B cell subset contributes to adaptive responses. B-1 cell responses to B cell receptor (BCR) as well as Toll-like receptor (TLR) ligation are tightly regulated due to the cross-reactivity of antigen specific receptors on B-1 cells to self-antigens. B-1 cells are elevated in several autoimmune diseases. CD5 plays a major role in down regulation of BCR responses in the B-1a cell subset. Reduced amplification of BCR induced signals via CD19 and autoregulation of BCR and TLR responses by B-1 cell produced IL-10 appear to have a role in regulation of both B-1a and B-1b B cell responses. Siglec G receptors and Lyn kinase also regulate B-1 cell responses but their differential role in the two B-1 cell subsets is unknown.
Collapse
Affiliation(s)
- Vishal J Sindhava
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine Lexington, KY, USA
| | | |
Collapse
|
45
|
Asokan R, Banda NK, Szakonyi G, Chen XS, Holers VM. Human complement receptor 2 (CR2/CD21) as a receptor for DNA: implications for its roles in the immune response and the pathogenesis of systemic lupus erythematosus (SLE). Mol Immunol 2012; 53:99-110. [PMID: 22885687 DOI: 10.1016/j.molimm.2012.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/25/2012] [Accepted: 07/02/2012] [Indexed: 02/08/2023]
Abstract
Human CR2 is a B cell membrane glycoprotein that plays a central role in autoimmunity. Systemic lupus erythematosus (SLE) patients show reduced CR2 levels, and complete deficiency of CR2 and CR1 promotes the development of anti-DNA antibodies in mouse models of SLE. Here we show that multiple forms of DNA, including bacterial, viral and mammalian DNA, bind to human CR2 with moderately high affinity. Surface plasmon resonance studies showed that methylated DNA bound with high affinity with CR2 at a maximal K(D) of 6nM. DNA was bound to the first two domains of CR2 and this binding was blocked by using a specific inhibitory anti-CR2 mAb. DNA immunization in Cr2(-/-) mice revealed a specific defect in immune responses to bacterial DNA. CR2 can act as a receptor for DNA in the absence of complement C3 fixation to this ligand. These results suggest that CR2 plays a role in the recognition of foreign DNA during host-immune responses. This recognition function of CR2 may be a mechanism that influences the development of autoimmunity to DNA in SLE.
Collapse
Affiliation(s)
- Rengasamy Asokan
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | | | | | | | | |
Collapse
|
46
|
Affiliation(s)
- Sarah Lawrie
- Neuroimmunology Unit; Montreal Neurological Institute; McGill University; Montreal; QC; Canada
| | | |
Collapse
|
47
|
Paunovic V, Carter NA, Thalhamer T, Blair D, Gordon B, Lacey E, Michie AM, Harnett MM. Immune complex-mediated co-ligation of the BCR with FcγRIIB results in homeostatic apoptosis of B cells involving Fas signalling that is defective in the MRL/Lpr model of systemic lupus erythematosus. J Autoimmun 2012; 39:332-46. [PMID: 22647731 DOI: 10.1016/j.jaut.2012.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 04/18/2012] [Accepted: 04/25/2012] [Indexed: 12/15/2022]
Abstract
Negative regulation of B cell activation by cognate immune complexes plays an important homeostatic role in suppressing B cell hyperactivity and preventing consequent autoimmunity. Immune complexes co-ligate the BCR and FcγRIIB resulting in both growth arrest and apoptosis. We now show that such apoptotic signalling involves induction and activation of p53 and its target genes, the pro-apoptotic Bcl-2 family members, Bad and Bid, as well as nuclear export of p53. Collectively, these events result in destabilisation of the mitochondrial and lysosomal compartments with consequent activation and interplay of executioner caspases and endosomal-derived proteases. In addition, the upregulation of Fas and FasL with consequent activation of caspase 8-dependent death receptor signalling is required to facilitate efficient apoptosis of B cells. Consistent with this role for Fas death receptor signalling, apoptosis resulting from co-ligation of the BCR and FcγRIIB is defective in B cells from Fas-deficient MRL/MpJ-Fas(lpr) mice. As these mice develop spontaneous, immune complex-driven lupus-like glomerulonephritis, targeting this FcγRIIB-mediated apoptotic pathway may therefore have novel therapeutic implications for systemic autoimmune disease.
Collapse
Affiliation(s)
- Verica Paunovic
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Blanco R, Alarcón B. TCR Nanoclusters as the Framework for Transmission of Conformational Changes and Cooperativity. Front Immunol 2012; 3:115. [PMID: 22582078 PMCID: PMC3348506 DOI: 10.3389/fimmu.2012.00115] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 04/22/2012] [Indexed: 12/30/2022] Open
Abstract
Increasing evidence favors the notion that, before triggering, the T cell antigen receptor (TCR) forms nanometer-scale oligomers that are called nanoclusters. The organization of the TCR in pre-existing oligomers cannot be ignored when analyzing the properties of ligand (pMHC) recognition and signal transduction. As with other membrane receptors, the existence of TCR oligomers points out to cooperativity phenomena. We review the data in support of conformational changes in the TCR as the basic principle to transduce the activation signal to the cytoplasm and the incipient data suggesting cooperativity within nanoclusters.
Collapse
Affiliation(s)
- Raquel Blanco
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid Madrid, Spain
| | | |
Collapse
|
49
|
Sagatys EM, Zhang L. Clinical and Laboratory Prognostic Indicators in Chronic Lymphocytic Leukemia. Cancer Control 2012; 19:18-25. [DOI: 10.1177/107327481201900103] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background The clinical course of patients with chronic lymphocytic leukemia (CLL) is heterogeneous, with some patients experiencing rapid disease progression and others living for decades without requiring treatment. The Rai and Binet clinical staging systems are used to define disease extent and predict survival. The pathology laboratory also provides important prognostic information. Methods A review of the literature was performed on the subject of staging in CLL from clinical and pathologic standpoints. This article also reviews currently available diagnostic approaches related to disease prognosis and to timing of treatment and follow-up in patients with CLL. Results Novel biological and cytogenetic features such as immunoglobulin heavy-chain variable gene segment [IgVH], genomic aberrations including del(17p13), del(11q23), del(13q14), and trisomy 12, serum markers (thymidine kinase and beta-2 microglobulin), and cellular markers (CD38 and ZAP70) have become increasingly important in predicting prognosis at the time of diagnosis. Conclusions Current prognostic factors directly or indirectly influence the management of patients with CLL and help to predict treatment-free and overall survival.
Collapse
Affiliation(s)
- Elizabeth M. Sagatys
- Department of Hematopathology and Laboratory Medicine at the H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Ling Zhang
- Department of Hematopathology and Laboratory Medicine at the H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| |
Collapse
|
50
|
Polarized Secretion of Lysosomes at the B Cell Synapse Couples Antigen Extraction to Processing and Presentation. Immunity 2011; 35:361-74. [DOI: 10.1016/j.immuni.2011.07.008] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 04/30/2011] [Accepted: 07/08/2011] [Indexed: 11/17/2022]
|