1
|
Ilovaisky AI, Scherbakov AM, Chernoburova EI, Shchetinina MA, Merkulova VM, Bogdanov FB, Sorokin DV, Salnikova DI, Bozhenko EI, Zavarzin IV, Terent'ev AO. Secosteroid diacylhydrazines as novel effective agents against hormone-dependent breast cancer cells. J Steroid Biochem Mol Biol 2024; 244:106597. [PMID: 39127416 DOI: 10.1016/j.jsbmb.2024.106597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/25/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
This research aimed to develop novel selective secosteroids that are highly active against hormone-dependent breast cancer. A simple and convenient approach to N'-acylated 13,17-secoestra-1,3,5(10)-trien-17-oic acid hydrazides was disclosed and these novel types of secosteroids were screened for cytotoxicity against the hormone-dependent human breast cancer cell line MCF7. Most secosteroid N'-benzoyl hydrazides have demonstrated high cytotoxicity against MCF7 cells with IC50 values below 5 μM, which are superior to that of the reference drug cisplatin. Hit compounds 2c, 2e and 2i were characterized by high cytotoxicity (IC50 = 1.6-1.9 μM) and very good selectivity towards MCF7 breast cancer cells. The lead secosteroids 2c, 2e and 2i also exhibit antiestrogenic effects and alter the expression of cell cycle regulating proteins. The effect of selected compounds on PARP (poly(ADP-ribose) polymerase) and Bcl-2 (B-cell CLL/lymphoma 2) indicates their proapoptotic potential. The synthesized secosteroids may be considered as new promising anti-breast cancer agents targeting ERα and apoptosis pathways.
Collapse
Affiliation(s)
- Alexey I Ilovaisky
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Alexander M Scherbakov
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24, Moscow 115522, Russia; Gause Institute of New Antibiotics, Bol'shaya Pirogovskaya ulitsa 11, Moscow 119021, Russia
| | - Elena I Chernoburova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Marina A Shchetinina
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Valentina M Merkulova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Fedor B Bogdanov
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24, Moscow 115522, Russia
| | - Danila V Sorokin
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24, Moscow 115522, Russia
| | - Diana I Salnikova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia; N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24, Moscow 115522, Russia
| | - Eugene I Bozhenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Igor V Zavarzin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia.
| |
Collapse
|
2
|
Liao H, Liu S, Ma Q, Huang H, Goel A, Torabian P, Mohan CD, Duan C. Endoplasmic reticulum stress induced autophagy in cancer and its potential interactions with apoptosis and ferroptosis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1872:119869. [PMID: 39490702 DOI: 10.1016/j.bbamcr.2024.119869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/19/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
The endoplasmic reticulum (ER) is a dynamic organelle that is a site of the synthesis of proteins and lipids, contributing to the regulation of proteostasis, lipid metabolism, redox balance, and calcium storage/-dependent signaling events. The disruption of ER homeostasis due to the accumulation of misfolded proteins in the ER causes ER stress which activates the unfolded protein response (UPR) system through the activation of IRE1, PERK, and ATF6. Activation of UPR is observed in various cancers and therefore, its association with process of carcinogenesis has been of importance. Tumor cells effectively utilize the UPR system to overcome ER stress. Moreover, ER stress and autophagy are the stress response mechanisms operating together to maintain cellular homeostasis. In human cancers, ER stress-driven autophagy can function as either pro-survival or pro-death in a context-dependent manner. ER stress-mediated autophagy can have crosstalk with other types of cell death pathways including apoptosis and ferroptosis. In this connection, the present review has evaluated the role of ER stress in the regulation of autophagy-mediated tumorigenesis and its interactions with other cell death mechanisms such as apoptosis and ferroptosis. We have also comprehensively discussed the effect of ER stress-mediated autophagy on cancer progression and chemotherapeutic resistance.
Collapse
Affiliation(s)
- Haitang Liao
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China; Department of Intensive Care Unit, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, China
| | - Shuang Liu
- Department of Ultrasound, Chongqing Health Center for Women and Children/Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Qiang Ma
- Department of Oncology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - He Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Arul Goel
- University of California Santa Barbara, Santa Barbara, CA, USA
| | - Pedram Torabian
- Arnie Charbonneau Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada; Department of Medical Sciences, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Chakrabhavi Dhananjaya Mohan
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Chenyang Duan
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|
3
|
Guarini C, Santoro AN, Melaccio A, Lanotte L, Gadaleta-Caldarola G, Giuliani F, Pinto A, Fedele P. Metronomic chemotherapy and breast cancer: a critical evaluation of its role in the new landscape of therapeutics. Expert Opin Drug Saf 2024:1-8. [PMID: 39422380 DOI: 10.1080/14740338.2024.2419547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/20/2024] [Accepted: 10/15/2024] [Indexed: 10/19/2024]
Abstract
INTRODUCTION Breast cancer (BC) remains a prevalent and challenging malignancy among women, with significant advancements in treatment strategies over the past decades. Traditional chemotherapy has been progressively supplemented by newer modalities, including Antibody-Drug Conjugates (ADCs), Immunotherapy (IO), and Targeted Therapies (TT). Despite these advancements, there remains a critical need for strategies that maintain efficacy while minimizing toxicity. AREAS COVERED This review delves into metronomic chemotherapy (MC), a novel approach involving the frequent administration of low-dose chemotherapy without prolonged breaks. We explore MC's impact across various breast cancer subtypes, such as Estrogen Receptor-Positive (ER+), HER2-Positive, and Triple-Negative Breast Cancer (TNBC). The literature reviewed highlights MC's mechanisms, including its anti-angiogenic, immunomodulatory, and antiproliferative effects, and its potential to improve treatment tolerability and address drug resistance. EXPERT OPINION MC represents a promising adjunct to existing therapies, particularly in advanced or resistant cases. Its unique dosing schedule could offer sustained antitumor activity with reduced toxicity, making it a viable option for long-term management. However, further research is warranted to establish optimal dosing regimens, identify predictive biomarkers, and delineate its role within combination treatment strategies. Clarifying these aspects could refine MC's application, potentially reshaping treatment paradigms and enhancing patient outcomes in breast cancer management.
Collapse
Affiliation(s)
- Chiara Guarini
- Medical Oncology Unit, 'Dario Camberlingo' Hospital, Francavilla Fontana, Brindisi, Italy
| | - Anna Natalizia Santoro
- Medical Oncology Unit, 'Dario Camberlingo' Hospital, Francavilla Fontana, Brindisi, Italy
| | | | - Laura Lanotte
- Medical Oncology Unit, 'Mons. Dimiccoli' Hospital, Barletta, Italy
| | | | | | - Antonello Pinto
- Medical Oncology Unit, 'Dario Camberlingo' Hospital, Francavilla Fontana, Brindisi, Italy
| | - Palma Fedele
- Medical Oncology Unit, 'Dario Camberlingo' Hospital, Francavilla Fontana, Brindisi, Italy
| |
Collapse
|
4
|
Korucu EN, Aydemir S, Menevse E, Erkoc Kaya D, Azzawri AA. Gene expression of MTATP6 and cytochrome P450 in MCF-7 and MDA-MB -231 breast cancer cell lines with juglone and curcumin supplemented. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-17. [PMID: 39437263 DOI: 10.1080/15257770.2024.2418907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
It is aimed to determine the effects of naphthoquinones as juglone and curcumin application on cell viability and expression analyzes of CYP3A4 and MTATP6 genes in MCF-7 and MDA-MB-231 human breast cancer cell lines. MCF-7 and MDA-MB-231 cells were incubated, were replaced with containing various concentrations of 5, 10, 15 μM curcumin and 5, 10, 15 μM juglone for MCF-7 and 1, 5, 10 μM curcumin and 1, 2, 3 μM juglone for MDA-MB-231 for 24 h. CYP3A4 and MTATP6 gene expression levels in both cell lines were determined by quantitative real-time polymerase chain reaction (qPCR) method and western blot method. IC50 values for 24 h were found as 22.41 μM for curcumin, and 16.27 μM for juglone in MCF-7, and 10.43 μM for curcumin, and 3.42 μM for juglone in MDA-MB-231 cells. Curcumin showed anti-proliferative, and antioxidant effects. CYP3A4 and MTATP6 gene expressions were decreased in MCF-7 breast cancer cell line when the cells treated with juglone or curcumin. CYP3A4 and MTATP6 gene expressions were decreased at all application doses of juglone in MDA-MB-231 cells whereas CYP3A4 and MTATP6 protein levels were only decreased at 10 μM curcumin compared with the control group.
Collapse
Affiliation(s)
- Emine Nedime Korucu
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Konya, Turkey
| | - Saliha Aydemir
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Konya, Turkey
| | - Esma Menevse
- Department of Medical Biochemistry, Faculty of Medicine, Selcuk University, Konya, Turkey
| | - Dudu Erkoc Kaya
- Department of Medical Biology, Faculty of Medicine, Selcuk University, Konya, Turkey
| | - Ali Ahmed Azzawri
- Department of Medical Genetics, Faculty of Medicine, Selcuk University, Konya, Turkey
| |
Collapse
|
5
|
Karami F, Osanloo M, Alipanah H, Zarenezhad E, Moghimi F, Ghanbariasad A. Comparison of the efficacy of alginate nanoparticles containing Cymbopogon citratus essential oil and citral on melanoma and breast cancer cell lines under normoxic and hypoxic conditions. BMC Complement Med Ther 2024; 24:372. [PMID: 39427126 PMCID: PMC11490153 DOI: 10.1186/s12906-024-04673-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/01/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Solid tumors often develop hypoxic regions, leading to aggressive behavior and increased drug resistance. METHODS The chemical composition of Cymbopogon citratus essential oil (EO) was analyzed using GC-MS. Alginate nanoparticles containing the EO and its primary component, citral, were synthesized via the ionic gelation method. Encapsulation was confirmed using ATR-FTIR analysis. The anticancer efficacy of C. citratus EO, citral, and their respective alginate nanoparticles was evaluated under normoxic (21% oxygen) and hypoxic (1% oxygen) conditions on breast cancer (MDA-MB-231) and melanoma (A-375) cell lines. Additionally, qPCR and flow cytometry were used to assess apoptosis gene expression ratios (Bax/Bcl-2) and levels of apoptosis. RESULTS Citral (80.98%) was identified as the major component of the EO. Alginate nanoparticles containing C. citratus EO and citral (C. citratus-AlgNPs and citral-AlgNPs) were synthesized with particle sizes of 195 ± 4 nm and 222 ± 9 nm, and zeta potentials of -22 ± 3 mV and - 17 ± 1 mV, respectively. Both samples demonstrated significantly greater efficacy under hypoxic conditions. Citral and C. citratus-AlgNPs had IC50 values of 27 (19-39) µg/mL and 25 (4-147) µg/mL, respectively, against MDA-MB-231 and A-375 cells. Flow cytometry showed increased apoptosis under hypoxic conditions, with the highest rates observed for citral-AlgNPs and C. citratus-AlgNPs (84 ± 5 and 92 ± 5% in MDA-MB-231 and A-375 cells, respectively). CONCLUSION This study demonstrates that alginate nanoparticles enhance the anticancer activity of C. citratus-AlgNPs and citral, particularly under hypoxic conditions, highlighting their potential for hypoxia-targeted cancer therapies.
Collapse
Affiliation(s)
- Farnaz Karami
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Mahmoud Osanloo
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| | - Hiva Alipanah
- Department of Physiology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Elham Zarenezhad
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Fatemeh Moghimi
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Ali Ghanbariasad
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
6
|
Peng Z, Lan Y, Nimmo SL, Bui RH, Benbrook DM, Burgett AWG, Yang Z. Mass Spectrometry Quantification of Anticancer Drug Uptake in Single Multicellular Tumor Spheroids. ACS Pharmacol Transl Sci 2024; 7:3011-3016. [PMID: 39416972 PMCID: PMC11475282 DOI: 10.1021/acsptsci.4c00525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/18/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
Although most advanced-stage ovarian cancers initially respond to platinum- and taxane-based chemotherapy, the majority of them will recur and eventually develop chemoresistance. Among all drug resistance mechanisms, reduced drug uptake in tumors is regarded as an important pathway acquired by drug-resistant cancer cells. For patients with ovarian cancer, chemoresistant cells can develop into multicellular spheroids and spread through ascite fluid that accumulates in their abdomen. These spheroids consist of 3D structures that are highly heterogeneous with different shapes, sizes, and compositions of cell types. Thus, studying drug uptake at the single spheroid level is important for understanding chemosensitivity and chemoresistance; however, drug-uptake studies in single spheroids have not been previously reported due to the lack of a suitable analytical technique. In this study, we cultured spheroids using the ovarian cancer cell line (OVCAR-8) and treated them using paclitaxel or OSW-1, a natural compound with anticancer properties. We then developed a method of quantifying drug uptake in single spheroids using LC/MS measurements and then normalized the drug amount in each spheroid to its size and total protein content. Our method can be used in translational studies of drug development, treatment, and prediction of drug efficacy prior to chemotherapy.
Collapse
Affiliation(s)
- Zongkai Peng
- Department
of Chemistry and Biochemistry, University
of Oklahoma, Norman, Oklahoma 73019, United States
| | - Yunpeng Lan
- Department
of Chemistry and Biochemistry, University
of Oklahoma, Norman, Oklahoma 73019, United States
| | - Susan L. Nimmo
- Department
of Pharmaceutical Sciences, University of
Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73117, United States
| | - Richard Hoang Bui
- Department
of Obstetrics & Gynecology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
- Department
of Pharmaceutical Sciences, University of
Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73117, United States
| | - Doris M. Benbrook
- Stephenson
Cancer Center, University of Oklahoma Health
Sciences Center, Oklahoma City, Oklahoma 73104, United States
- Department
of Obstetrics & Gynecology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
- Department
of Pharmaceutical Sciences, University of
Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73117, United States
| | - Anthony W. G. Burgett
- Stephenson
Cancer Center, University of Oklahoma Health
Sciences Center, Oklahoma City, Oklahoma 73104, United States
- Department
of Pharmaceutical Sciences, University of
Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73117, United States
| | - Zhibo Yang
- Department
of Chemistry and Biochemistry, University
of Oklahoma, Norman, Oklahoma 73019, United States
- Stephenson
Cancer Center, University of Oklahoma Health
Sciences Center, Oklahoma City, Oklahoma 73104, United States
| |
Collapse
|
7
|
Padovano F, Villa C. The development of drug resistance in metastatic tumours under chemotherapy: An evolutionary perspective. J Theor Biol 2024; 595:111957. [PMID: 39369787 DOI: 10.1016/j.jtbi.2024.111957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024]
Abstract
We present a mathematical model of the evolutionary dynamics of a metastatic tumour under chemotherapy, comprising non-local partial differential equations for the phenotype-structured cell populations in the primary tumour and its metastasis. These equations are coupled with a physiologically-based pharmacokinetic model of drug administration and distribution, implementing a realistic delivery schedule. The model is carefully calibrated from the literature, focusing on BRAF-mutated melanoma treated with Dabrafenib as a case study. By means of long-time asymptotic and global sensitivity analyses, as well as numerical simulations, we explore the impact of cell migration from the primary to the metastatic site, physiological aspects of the tumour tissues and drug dose on the development of chemoresistance and treatment efficacy. Our findings provide a possible explanation for empirical evidence indicating that chemotherapy may foster metastatic spread and that metastases may be less impacted by the chemotherapeutic agent.
Collapse
Affiliation(s)
- Federica Padovano
- Sorbonne Université, CNRS, Université de Paris, Laboratoire Jacques-Louis Lions UMR 7598, 4 place Jussieu, 75005 Paris, France.
| | - Chiara Villa
- Sorbonne Université, CNRS, Université de Paris, Inria, Laboratoire Jacques-Louis Lions UMR 7598, 4 place Jussieu, 75005 Paris, France.
| |
Collapse
|
8
|
Shahpouri P, Mehralitabar H, Kheirabadi M, Kazemi Noureini S. Potential suppression of multidrug-resistance-associated protein 1 by coumarin derivatives: an insight from molecular docking and MD simulation studies. J Biomol Struct Dyn 2024; 42:9184-9200. [PMID: 37667877 DOI: 10.1080/07391102.2023.2250456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/15/2023] [Indexed: 09/06/2023]
Abstract
Human MRP1 protein plays a vital role in cancer multidrug resistance. Coumarins show promising pharmacological properties. Virtual screening, ADMET, molecular docking and molecular dynamics (MD) simulations were utilized as pharmacoinformatic tools to identify potential MRP1 inhibitors among coumarin derivatives. Using in silico ADMET, 50 hits were further investigated for their selectivity toward the nucleotide-binding domains (NBDs) of MRP1 using molecular docking. Accordingly, coumarin, its symmetrical ketone derivative Lig. No. 4, and Reversan were candidates for focused docking study with the NBDs domains compared with ATP. The result indicates that Lig. No. 4, with the best binding score, interacts with NBDs via hydrogen bonds with residues: GLN713, LYS684, GLY683, CYS682 in NBD1, and GLY1432, GLY771, SER769 and GLN1374 in NBD2, which mostly overlap with ATP binding residues. Moreover, doxorubicin (Doxo) was docked to the transmembrane domains (TMDs) active site of MRP1. Doxo interaction with TMDs was subjected to MD simulation in the NBDs free and occupied with Lig. No. 4 states. The results showed that Doxo interacts more strongly with TMD residues in inward facing feature of TMDs helices. However, when Lig. No. 4 exists in NBDs, Doxo interactions are different, and TMD helices show more outward-facing conformation. This result may suggest a partial competitive inhibition mechanism for the Lig. No. 4 on MRP1 compared with ATP. So, it may inhibit active complex formation by interfering with ATP entrance to NBDs and locking MRP1 conformation in outward-facing mode. This study suggests a valuable coumarin derivative that can be further investigated for potent MRP1 inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Parisa Shahpouri
- Department of Biology, Faculty of Science, Hakim Sabzevari University, Sabzevar, Iran
| | - Havva Mehralitabar
- Department of Biology, Faculty of Science, Hakim Sabzevari University, Sabzevar, Iran
| | - Mitra Kheirabadi
- Department of Biology, Faculty of Science, Hakim Sabzevari University, Sabzevar, Iran
| | | |
Collapse
|
9
|
Nandi S, Sikder R, Nag A, Khatua S, Sen S, Chakraborty N, Naskar A, Zhakipbekov K, Acharya K, Habtemariam S, Arslan Ateşşahin D, Goloshvili T, Ahmed Aldahish A, Sharifi‐Rad J, Calina D. Updated aspects of alpha-Solanine as a potential anticancer agent: Mechanistic insights and future directions. Food Sci Nutr 2024; 12:7088-7107. [PMID: 39479710 PMCID: PMC11521658 DOI: 10.1002/fsn3.4221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/11/2024] [Accepted: 05/01/2024] [Indexed: 11/02/2024] Open
Abstract
Cancer remains a critical global health challenge, with limited progress in reducing mortality despite advancements in diagnosis and treatment. The growing resistance of tumors to existing chemotherapy exacerbates this burden. In response, the search for new anticancer compounds from plants has intensified, given their historical success in yielding effective treatments. This review focuses on α-solanine, a glycoalkaloid primarily derived from potato tubers and nightshade family plants, recognized for its diverse biological activities, including anti-allergic, antipyretic, anti-inflammatory, anti-diabetic, and antibiotic properties. Recently, α-solanine has gained attention as a potential anticancer agent. Utilizing resources like PubMed/MedLine, ScienceDirect, Web of Science, Scopus, the American Chemical Society, Google Scholar, Springer Link, Wiley, and various commercial websites, this review consolidates two decades of research on α-solanine's anticancer effects and mechanisms against nine different cancers, highlighting its role in modulating various signaling pathways. It also discusses α-solanine's potential as a lead compound in cancer therapy. The abundant availability of potato peel, often discarded as waste or sold cheaply, is suggested as a sustainable source for large-scale α-solanine extraction. The study concludes that α-solanine holds promise as a standalone or adjunctive cancer treatment. However, further research is necessary to optimize this lead compound and mitigate its toxicity through various strategies.
Collapse
Affiliation(s)
- Sudeshna Nandi
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of BotanyUniversity of CalcuttaKolkataIndia
| | - Rimpa Sikder
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of BotanyUniversity of CalcuttaKolkataIndia
| | - Anish Nag
- Department of Life SciencesCHRIST (Deemed to be University)BangaloreKarnatakaIndia
| | - Somanjana Khatua
- Department of Botany, Faculty of ScienceUniversity of AllahabadPrayagrajUttar PradeshIndia
| | - Surjit Sen
- Department of BotanyFakir Chand CollegeKolkataIndia
| | | | - Arghya Naskar
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of BotanyUniversity of CalcuttaKolkataIndia
| | - Kairat Zhakipbekov
- Department of Organization and Management and Economics of Pharmacy and Clinical PharmacyAsfendiyarov Kazakh National Medical UniversityAlmatyKazakhstan
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of BotanyUniversity of CalcuttaKolkataIndia
| | | | - Dilek Arslan Ateşşahin
- Department of Plant and Animal Production, Baskil Vocational SchoolFırat UniversityElazıgTurkey
| | - Tamar Goloshvili
- Department of Plant Physiology and Genetic ResourcesInstitute of Botany, Ilia State UniversityTbilisiGeorgia
| | - Afaf Ahmed Aldahish
- Department of Pharmacology, College of PharmacyKing Khalid UniversityAbhaKingdom of Saudi Arabia
| | - Javad Sharifi‐Rad
- Department of Biomedical SciencesCollege of Medicine, Korea UniversitySeoulRepublic of Korea
| | - Daniela Calina
- Department of Clinical PharmacyUniversity of Medicine and Pharmacy of CraiovaCraiovaRomania
| |
Collapse
|
10
|
Ung J, Kassai M, Tan SF, Loughran TP, Feith DJ, Cabot MC. The Drug Transporter P-Glycoprotein and Its Impact on Ceramide Metabolism-An Unconventional Ally in Cancer Treatment. Int J Mol Sci 2024; 25:9825. [PMID: 39337312 PMCID: PMC11432138 DOI: 10.3390/ijms25189825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
The tumor-suppressor sphingolipid ceramide is recognized as a key participant in the cytotoxic mechanism of action of many types of chemotherapy drugs, including anthracyclines, Vinca alkaloids, the podophyllotoxin etoposide, taxanes, and the platinum drug oxaliplatin. These drugs can activate de novo synthesis of ceramide or stimulate the production of ceramide via sphingomyelinases to limit cancer cell survival. On the contrary, dysfunctional sphingolipid metabolism, a prominent factor in cancer survival and therapy resistance, blunts the anticancer properties of ceramide-orchestrated cell death pathways, especially apoptosis. Although P-glycoprotein (P-gp) is famous for its role in chemotherapy resistance, herein, we propose alternate interpretations and discuss the capacity of this multidrug transporter as a "ceramide neutralizer", an unwelcome event, highlighting yet another facet of P-gp's versatility in drug resistance. We introduce sphingolipid metabolism and its dysfunctional regulation in cancer, present a summary of factors that contribute to chemotherapy resistance, explain how P-gp "neutralizes" ceramide by hastening its glycosylation, and consider therapeutic applications of the P-gp-ceramide connection in the treatment of cancer.
Collapse
Affiliation(s)
- Johnson Ung
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA;
| | - Miki Kassai
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, The East Carolina Diabetes and Obesity Institute, Greenville, NC 27834, USA;
| | - Su-Fern Tan
- University of Virginia Cancer Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; (S.-F.T.); (D.J.F.)
- Department of Medicine, Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Thomas P. Loughran
- University of Virginia Cancer Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; (S.-F.T.); (D.J.F.)
- Department of Medicine, Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - David J. Feith
- University of Virginia Cancer Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; (S.-F.T.); (D.J.F.)
- Department of Medicine, Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Myles C. Cabot
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, The East Carolina Diabetes and Obesity Institute, Greenville, NC 27834, USA;
| |
Collapse
|
11
|
Dinić J, Podolski-Renić A, Novaković M, Li L, Opsenica I, Pešić M. Plant-Based Products Originating from Serbia That Affect P-glycoprotein Activity. Molecules 2024; 29:4308. [PMID: 39339303 PMCID: PMC11433820 DOI: 10.3390/molecules29184308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Our review paper evaluates the impact of plant-based products, primarily derived from plants from Serbia, on P-glycoprotein (P-gp) activity and their potential in modulating drug resistance in cancer therapy. We focus on the role and regulation of P-gp in cellular physiology and its significance in addressing multidrug resistance in cancer therapy. Additionally, we discuss the modulation of P-gp activity by 55 natural product drugs, including derivatives for some of them, based on our team's research findings since 2011. Specifically, we prospect into sesquiterpenoids from the genera Artemisia, Curcuma, Ferula, Inula, Petasites, and Celastrus; diterpenoids from the genera Salvia and Euphorbia; chalcones from the genera Piper, Glycyrrhiza, Cullen, Artemisia, and Humulus; riccardins from the genera Lunularia, Monoclea, Dumortiera, Plagiochila, and Primula; and diarylheptanoids from the genera Alnus and Curcuma. Through comprehensive analysis, we aim to highlight the potential of natural products mainly identified in plants from Serbia in influencing P-gp activity and overcoming drug resistance in cancer therapy, while also providing insights into future perspectives in this field.
Collapse
Affiliation(s)
- Jelena Dinić
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11108 Belgrade, Serbia; (J.D.); (A.P.-R.)
| | - Ana Podolski-Renić
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11108 Belgrade, Serbia; (J.D.); (A.P.-R.)
| | - Miroslav Novaković
- Institute of Chemistry, Technology and Metallurgy—National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia;
| | - Liang Li
- Key Laboratory of Bioactive Substance and Function of Natural Medicines, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Biotechnology for Microbial Drugs, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Tiantan Xili, Beijing 100050, China;
| | - Igor Opsenica
- Faculty of Chemistry, University of Belgrade, Studentski trg 12–16, 11158 Belgrade, Serbia;
| | - Milica Pešić
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11108 Belgrade, Serbia; (J.D.); (A.P.-R.)
| |
Collapse
|
12
|
Guo Y, Zhong W, Peng C, Guo L. Topical Delivery of Dual Loaded Nano-Transfersomes Mediated Chemo-Photodynamic Therapy against Melanoma via Inducing Cell Cycle Arrest and Apoptosis. Int J Mol Sci 2024; 25:9611. [PMID: 39273560 PMCID: PMC11394987 DOI: 10.3390/ijms25179611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Melanoma is a malignant skin cancer associated with high mortality rates and drug resistance, posing a significant threat to human health. The combination of chemotherapy and photodynamic therapy (PDT) represents a promising strategy to enhance antitumor efficacy through synergistic anti-cancer effects. Topical delivery of chemotherapeutic drugs and photosensitizers (PS) offers a non-invasive and safe way to treat melanoma. However, the effectiveness of these treatments is often hindered by challenges such as limited skin permeability and instability of the PS. In this study, transfersomes (TFS) were designed to facilitate transdermal delivery of the chemotherapeutic drug 5-Fluorouracil (5-FU) and the PS Imperatorin (IMP) for combined chemo-photodynamic therapy for melanoma. The cytotoxic and phototoxic effects of TFS-mediated PDT (TFS-UVA) were investigated in A375 cells and nude mice. The study also demonstrated that TFS-UVA generated intracellular ROS, induced G2/ M phase cell cycle arrest, and promoted cell apoptosis. In conclusion, this study indicated that 5-FU/ IMP-TFS serves as an effective transdermal therapeutic strategy for chemo-PDT in treating melanoma.
Collapse
Affiliation(s)
- Yiping Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wenxiao Zhong
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
13
|
Hakami MA. Harnessing machine learning potential for personalised drug design and overcoming drug resistance. J Drug Target 2024; 32:918-930. [PMID: 38842417 DOI: 10.1080/1061186x.2024.2365934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/07/2024]
Abstract
Drug resistance in cancer treatment presents a significant challenge, necessitating innovative approaches to improve therapeutic efficacy. Integrating machine learning (ML) in cancer research is promising as ML algorithms outrival in analysing complex datasets, identifying patterns, and predicting treatment outcomes. Leveraging diverse data sources such as genomic profiles, clinical records, and drug response assays, ML uncovers molecular mechanisms of drug resistance, enabling personalised treatment, maximising efficacy and minimising adverse effects. Various ML algorithms contribute to the drug discovery process - Random Forest and Decision Trees predict drug-target interactions and aid in virtual screening, and SVM classify leads on bioactivity data. Neural Networks model QSAR to optimise lead compounds and K-means clustering group compounds with similar chemical properties aiding compound selection. Gaussian Processes predict drug responses, Bayesian Networks infer causal relationships, Autoencoders generate novel compounds, and Genetic Algorithms optimise molecular structures. These algorithms collectively enhance efficiency and success rates in drug design endeavours, from lead identification to optimisation and are cost-effective, empowering clinicians with real-time treatment monitoring and improving patient outcomes. This review highlights the immense potential of ML in revolutionising cancer care through effective drug design to reduce drug resistance, and we have also discussed various limitations and research gaps to understand better.
Collapse
Affiliation(s)
- Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Al-Quwayiyah, Riyadh, Saudi Arabia
| |
Collapse
|
14
|
Kaur S, Kaur J, Zarger BA, Islam N, Mir N. Quantitative structure-activity relationship and ADME prediction studies on series of spirooxindoles derivatives for anti-cancer activity against colon cancer cell line HCT-116. Heliyon 2024; 10:e35897. [PMID: 39224319 PMCID: PMC11367057 DOI: 10.1016/j.heliyon.2024.e35897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Forty-one derivatives of spirooxindoles, active against HCT-116 colon cancer cells, underwent pharmacophore-based 3D-QSAR analysis to understand their correlation with anti-cancer activity. The study identified a seven-point pharmacophore model (ADHHRRR1) and QSAR models, offering insights for lead optimization and novel analogue design, thus advancing anti-cancer drug discovery. This research underscores the value of molecular modeling in elucidating structure-activity relationships and enhancing drug development efforts.
Collapse
Affiliation(s)
- Sukhmeet Kaur
- P.G. Department of Chemistry, Khalsa College, Amritsar, India
| | - Jasneet Kaur
- P.G. Department of Chemistry, Khalsa College, Amritsar, India
| | | | - Nasarul Islam
- Department of Chemistry, HKM-Govt Degree College Bandipora, 193502, J&K, India
| | - Nazirah Mir
- Department of Chemistry, HKM-Govt Degree College Bandipora, 193502, J&K, India
| |
Collapse
|
15
|
Chan ET, Kural C. Targeting endocytosis to sensitize cancer cells to programmed cell death. Biochem Soc Trans 2024; 52:1703-1713. [PMID: 39092762 PMCID: PMC11519968 DOI: 10.1042/bst20231332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/01/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024]
Abstract
Evading programmed cell death (PCD) is a hallmark of cancer that allows tumor cells to survive and proliferate unchecked. Endocytosis, the process by which cells internalize extracellular materials, has emerged as a key regulator of cell death pathways in cancer. Many tumor types exhibit dysregulated endocytic dynamics that fuel their metabolic demands, promote resistance to cytotoxic therapies, and facilitate immune evasion. This review examines the roles of endocytosis in apoptotic resistance and immune escape mechanisms utilized by cancer cells. We highlight how inhibiting endocytosis can sensitize malignant cells to therapeutic agents and restore susceptibility to PCD. Strategies to modulate endocytosis for enhanced cancer treatment are discussed, including targeting endocytic regulatory proteins, altering membrane biophysical properties, and inhibiting Rho-associated kinases. While promising, challenges remain regarding the specificity and selectivity of endocytosis-targeting agents. Nonetheless, harnessing endocytic pathways represents an attractive approach to overcome apoptotic resistance and could yield more effective therapies by rendering cancer cells vulnerable to PCD. Understanding the interplay between endocytosis and PCD regulation is crucial for developing novel anticancer strategies that selectively induce tumor cell death.
Collapse
Affiliation(s)
- Emily T. Chan
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, U.S.A
| | - Cömert Kural
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, U.S.A
- Department of Physics, The Ohio State University, Columbus, OH 43210, U.S.A
| |
Collapse
|
16
|
Schwarz FM, Kuhlmann JD, Kämpfer J, Klimova A, Klotz DM, Freitag L, Herrmann P, Zinnow V, Smith J, Scheller T, Walther W, Wimberger P, Stein U. Induction of circulating ABCB1 transcripts under platinum-based chemotherapy indicates poor prognosis and a bone micrometastatic phenotype in ovarian cancer patients. Mol Cancer 2024; 23:174. [PMID: 39180062 PMCID: PMC11342548 DOI: 10.1186/s12943-024-02087-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/13/2024] [Indexed: 08/26/2024] Open
Abstract
The drug efflux transporter P-glycoprotein, encoded by the ABCB1 gene, promotes acquired chemoresistance. We explored the presence and clinical relevance of circulating cell-free ABCB1 transcripts (cfABCB1tx) in ovarian cancer patients (173 longitudinal serum samples from 79 cancer patients) using digital droplet PCR. cfABCB1tx were readily detectable at primary diagnosis (median 354 mRNA copies/20 µl serum), paralleled FIGO-stage and predicted surgical outcome (p = 0.023, p=0.022, respectively). Increased cfABCB1tx levels at primary diagnosis indicated poor PFS (HR = 2.329, 95%CI:1.374-3.947, p = 0.0017) and OS (HR = 2.074, 95%CI:1.194-3.601, p = 0.0096). cfABCB1tx induction under platinum-based chemotherapy was an independent predictor for poor OS (HR = 2.597, 95%CI: 1.218-5.538, p = 0.013) and paralelled a micrometastatic phenotype, shaped by the presence of disseminated tumor cells in the bone marrow. A strong correlation was observed between cfABCB1tx and circulating transcripts of the metastasis-inducer MACC1, which is the transcriptional activator of ABCB1. Combined assessment of cfABCB1tx and circulating cell-free MACC1 transcripts (cfMACC1tx) resulted in an improved prognostic prediction, with the cfABCB1tx-high/cfMACC1tx-high phenotype bearing the highest risk for relapse and death. Conclusively, we provide proof of principle, that ABCB1 transcripts are readily traceable in the liquid-biopsy of ovarian cancer patients, advancing a new dimension for systemic monitoring of ABCB1/P-glycoprotein expression dynamics.
Collapse
Affiliation(s)
- Franziska Maria Schwarz
- Department of Gynaecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumour Diseases (NCT), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan Dominik Kuhlmann
- Department of Gynaecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumour Diseases (NCT), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jorrin Kämpfer
- Department of Gynaecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumour Diseases (NCT), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anna Klimova
- National Center for Tumour Diseases (NCT), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Institute for Medical Informatics and Biometry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Daniel Martin Klotz
- Department of Gynaecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumour Diseases (NCT), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lisa Freitag
- Department of Gynaecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumour Diseases (NCT), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pia Herrmann
- Experimental and Clinical Research Center, Department of Translational Oncology of Solid Tumours, Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, Berlin, D-13125, Germany
| | - Viktoria Zinnow
- Experimental and Clinical Research Center, Department of Translational Oncology of Solid Tumours, Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, Berlin, D-13125, Germany
| | - Janice Smith
- Experimental and Clinical Research Center, Department of Translational Oncology of Solid Tumours, Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, Berlin, D-13125, Germany
| | | | - Wolfgang Walther
- Experimental and Clinical Research Center, Department of Translational Oncology of Solid Tumours, Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, Berlin, D-13125, Germany
| | - Pauline Wimberger
- Department of Gynaecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumour Diseases (NCT), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ulrike Stein
- Experimental and Clinical Research Center, Department of Translational Oncology of Solid Tumours, Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, Berlin, D-13125, Germany.
- German Cancer Consortium (DKTK), Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
17
|
Exertier C, Antonelli L, Fiorillo A, Bernardini R, Colotti B, Ilari A, Colotti G. Sorcin in Cancer Development and Chemotherapeutic Drug Resistance. Cancers (Basel) 2024; 16:2810. [PMID: 39199583 PMCID: PMC11352664 DOI: 10.3390/cancers16162810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/31/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
SOluble Resistance-related Calcium-binding proteIN (sorcin) earned its name due to its co-amplification with ABCB1 in multidrug-resistant cells. Initially thought to be an accidental consequence of this co-amplification, recent research indicates that sorcin plays a more active role as an oncoprotein, significantly impacting multidrug resistance (MDR). Sorcin is a highly expressed calcium-binding protein, often overproduced in human tumors and multidrug-resistant cancers, and is a promising novel MDR marker. In tumors, sorcin levels inversely correlate with both patient response to chemotherapy and overall prognosis. Multidrug-resistant cell lines consistently exhibit higher sorcin expression compared to their parental counterparts. Furthermore, sorcin overexpression via gene transfection enhances drug resistance to various chemotherapeutic drugs across numerous cancer lines. Conversely, silencing sorcin expression reverses drug resistance in many cell lines. Sorcin participates in several mechanisms of MDR, including drug efflux, drug sequestering, cell death inhibition, gene amplification, epithelial-to-mesenchymal transition, angiogenesis, and metastasis. The present review focuses on the structure and function of sorcin, on sorcin's role in cancer and drug resistance, and on the approaches aimed at targeting sorcin.
Collapse
Affiliation(s)
- Cécile Exertier
- Institute of Molecular Biology and Pathology, Italian National Research Council (IBPM-CNR), c/o Department Biochemical Sciences, Sapienza University of Rome, Ed. CU027, P.le A.Moro 5, 00185 Rome, Italy; (C.E.); (A.I.)
| | - Lorenzo Antonelli
- Department Biochemical Sciences, Sapienza University of Rome, Ed. CU027, P.le A.Moro 5, 00185 Rome, Italy; (L.A.); (A.F.)
| | - Annarita Fiorillo
- Department Biochemical Sciences, Sapienza University of Rome, Ed. CU027, P.le A.Moro 5, 00185 Rome, Italy; (L.A.); (A.F.)
| | - Roberta Bernardini
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy;
| | - Beatrice Colotti
- Child Neuropsychiatry Unit, Child Neuropsychiatry School, University Hospital of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology, Italian National Research Council (IBPM-CNR), c/o Department Biochemical Sciences, Sapienza University of Rome, Ed. CU027, P.le A.Moro 5, 00185 Rome, Italy; (C.E.); (A.I.)
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council (IBPM-CNR), c/o Department Biochemical Sciences, Sapienza University of Rome, Ed. CU027, P.le A.Moro 5, 00185 Rome, Italy; (C.E.); (A.I.)
| |
Collapse
|
18
|
Ticona-Pérez FV, Chen X, Pandiella A, Díaz-Rodríguez E. Multiple mechanisms contribute to acquired TRAIL resistance in multiple myeloma. Cancer Cell Int 2024; 24:275. [PMID: 39098932 PMCID: PMC11299348 DOI: 10.1186/s12935-024-03466-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024] Open
Abstract
Multiple Myeloma (MM) prognosis has recently improved thanks to the incorporation of new therapies to the clinic. Nonetheless, it is still a non-curable malignancy. Targeting cancer cells with agents inducing cell death has been an appealing alternative investigated over the years, as is the case of TRAIL, an agonist of DR4 and DR5 death receptors. This pathway, involved in apoptosis triggering, has demonstrated efficacy on MM cells. In this research, we have investigated the sensitivity of a panel of MM cells to this agent and generated TRAIL-resistant models by continuous culture of sensitive cells with this peptide. Using genomic and biochemical approaches, the mechanisms underlying resistance were investigated. In TRAIL-resistant cells, a strong reduction in cell-surface receptor levels was detected and impaired the apoptotic machinery to respond to the treatment, enabling cells to efficiently form the Death Inducing Signalling Complex. In addition, an upregulation of the inhibitory protein c-FLIP was detected. Even though the manipulation of these proteins was able to modify cellular responses to TRAIL, it was not complete, pointing to other mechanisms involved in TRAIL resistance.
Collapse
Affiliation(s)
- Fany V Ticona-Pérez
- Instituto de Biología Molecular y Celular del Cáncer. CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Xi Chen
- Instituto de Biología Molecular y Celular del Cáncer. CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Atanasio Pandiella
- Instituto de Biología Molecular y Celular del Cáncer. CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain.
- CIBERONC, Madrid, Spain.
- IBSAL, Salamanca, Spain.
| | - Elena Díaz-Rodríguez
- Instituto de Biología Molecular y Celular del Cáncer. CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain.
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, Spain.
- CIBERONC, Madrid, Spain.
- IBSAL, Salamanca, Spain.
| |
Collapse
|
19
|
Tu Y, Gong J, Mou J, Jiang H, Zhao H, Gao J. Strategies for the development of stimuli-responsive small molecule prodrugs for cancer treatment. Front Pharmacol 2024; 15:1434137. [PMID: 39144632 PMCID: PMC11322083 DOI: 10.3389/fphar.2024.1434137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024] Open
Abstract
Approved anticancer drugs typically face challenges due to their narrow therapeutic window, primarily because of high systemic toxicity and limited selectivity for tumors. Prodrugs are initially inactive drug molecules designed to undergo specific chemical modifications. These modifications render the drugs inactive until they encounter specific conditions or biomarkers in vivo, at which point they are converted into active drug molecules. This thoughtful design significantly improves the efficacy of anticancer drug delivery by enhancing tumor specificity and minimizing off-target effects. Recent advancements in prodrug design have focused on integrating these strategies with delivery systems like liposomes, micelles, and polymerosomes to further improve targeting and reduce side effects. This review outlines strategies for designing stimuli-responsive small molecule prodrugs focused on cancer treatment, emphasizing their chemical structures and the mechanisms controlling drug release. By providing a comprehensive overview, we aim to highlight the potential of these innovative approaches to revolutionize cancer therapy.
Collapse
Affiliation(s)
- Yuxuan Tu
- The Afffliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jianbao Gong
- Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao Municipal Hospital, Qingdao, China
| | - Jing Mou
- Department of Neonatology, Qingdao Women and Children’s Hospital, Qingdao University, Qingdao, Shandong, China
| | - Hongfei Jiang
- The Afffliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Haibo Zhao
- The Afffliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jiake Gao
- The Afffliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
20
|
Qahwaji R, Ashankyty I, Sannan NS, Hazzazi MS, Basabrain AA, Mobashir M. Pharmacogenomics: A Genetic Approach to Drug Development and Therapy. Pharmaceuticals (Basel) 2024; 17:940. [PMID: 39065790 PMCID: PMC11279827 DOI: 10.3390/ph17070940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
The majority of the well-known pharmacogenomics research used in the medical sciences contributes to our understanding of medication interactions. It has a significant impact on treatment and drug development. The broad use of pharmacogenomics is required for the progress of therapy. The main focus is on how genes and an intricate gene system affect the body's reaction to medications. Novel biomarkers that help identify a patient group that is more or less likely to respond to a certain medication have been discovered as a result of recent developments in the field of clinical therapeutics. It aims to improve customized therapy by giving the appropriate drug at the right dose at the right time and making sure that the right prescriptions are issued. A combination of genetic, environmental, and patient variables that impact the pharmacokinetics and/or pharmacodynamics of medications results in interindividual variance in drug response. Drug development, illness susceptibility, and treatment efficacy are all impacted by pharmacogenomics. The purpose of this work is to give a review that might serve as a foundation for the creation of new pharmacogenomics applications, techniques, or strategies.
Collapse
Affiliation(s)
- Rowaid Qahwaji
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 22254, Saudi Arabia; (R.Q.); (I.A.); (M.S.H.); (A.A.B.)
- Hematology Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ibraheem Ashankyty
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 22254, Saudi Arabia; (R.Q.); (I.A.); (M.S.H.); (A.A.B.)
| | - Naif S. Sannan
- College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Ar Rimayah, Riyadh 14611, Saudi Arabia;
- King Abdullah International Medical Research Center, Jeddah 22384, Saudi Arabia
| | - Mohannad S. Hazzazi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 22254, Saudi Arabia; (R.Q.); (I.A.); (M.S.H.); (A.A.B.)
- Hematology Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ammar A. Basabrain
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 22254, Saudi Arabia; (R.Q.); (I.A.); (M.S.H.); (A.A.B.)
- Hematology Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammad Mobashir
- Department of Biomedical Laboratory Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| |
Collapse
|
21
|
Braconi L, Riganti C, Parenti A, Cecchi M, Nocentini A, Bartolucci G, Menicatti M, Contino M, Colabufo NA, Manetti D, Romanelli MN, Supuran CT, Teodori E. Dual Inhibitors of P-gp and Carbonic Anhydrase XII (hCA XII) against Tumor Multidrug Resistance with Piperazine Scaffold. Molecules 2024; 29:3290. [PMID: 39064868 PMCID: PMC11279465 DOI: 10.3390/molecules29143290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
A new series of piperazine derivatives were synthesized and studied with the aim of obtaining dual inhibitors of P-glycoprotein (P-gp) and carbonic anhydrase XII (hCA XII) to synergistically overcome the P-gp-mediated multidrug resistance (MDR) in cancer cells expressing the two proteins, P-gp and hCA XII. Indeed, these hybrid compounds contain both P-gp and hCA XII binding groups on the two nitrogen atoms of the heterocyclic ring. All compounds showed good inhibitory activity on each protein (P-gp and hCA XII) studied individually, and many of them showed a synergistic effect in the resistant HT29/DOX and A549/DOX cell lines which overexpress both the target proteins. In particular, compound 33 displayed the best activity by enhancing the cytotoxicity and intracellular accumulation of doxorubicin in HT29/DOX and A549/DOX cells, thus resulting as promising P-gp-mediated MDR reverser with a synergistic mechanism. Furthermore, compounds 13, 27 and 32 induced collateral sensitivity (CS) in MDR cells, as they were more cytotoxic in resistant cells than in the sensitive ones; their CS mechanisms were extensively investigated.
Collapse
Affiliation(s)
- Laura Braconi
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy; (A.N.); (G.B.); (M.M.); (D.M.); (M.N.R.); (C.T.S.)
| | - Chiara Riganti
- Oncological Pharmacology Laboratory and Molecular Biotechnology Center “Guido Tarone”, Department of Oncology, University of Turin, Piazza Nizza 44, 10126 Torino, Italy;
| | - Astrid Parenti
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy;
| | - Marta Cecchi
- Section of Pharmacology and Toxicology, Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy;
| | - Alessio Nocentini
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy; (A.N.); (G.B.); (M.M.); (D.M.); (M.N.R.); (C.T.S.)
| | - Gianluca Bartolucci
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy; (A.N.); (G.B.); (M.M.); (D.M.); (M.N.R.); (C.T.S.)
| | - Marta Menicatti
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy; (A.N.); (G.B.); (M.M.); (D.M.); (M.N.R.); (C.T.S.)
| | - Marialessandra Contino
- Department of Pharmacy-Drug Sciences, University of Bari “A. Moro”, via Orabona 4, 70125 Bari, Italy; (M.C.); (N.A.C.)
| | - Nicola Antonio Colabufo
- Department of Pharmacy-Drug Sciences, University of Bari “A. Moro”, via Orabona 4, 70125 Bari, Italy; (M.C.); (N.A.C.)
| | - Dina Manetti
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy; (A.N.); (G.B.); (M.M.); (D.M.); (M.N.R.); (C.T.S.)
| | - Maria Novella Romanelli
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy; (A.N.); (G.B.); (M.M.); (D.M.); (M.N.R.); (C.T.S.)
| | - Claudiu T. Supuran
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy; (A.N.); (G.B.); (M.M.); (D.M.); (M.N.R.); (C.T.S.)
| | - Elisabetta Teodori
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy; (A.N.); (G.B.); (M.M.); (D.M.); (M.N.R.); (C.T.S.)
| |
Collapse
|
22
|
Mondal P, Alyateem G, Mitchell AV, Gottesman MM. A whole-genome CRISPR screen identifies the spindle accessory checkpoint as a locus of nab-paclitaxel resistance in a pancreatic cancer cell line. Sci Rep 2024; 14:15912. [PMID: 38987356 PMCID: PMC11236977 DOI: 10.1038/s41598-024-66244-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024] Open
Abstract
Pancreatic adenocarcinoma is one of the most aggressive and lethal forms of cancer. Chemotherapy is the primary treatment for pancreatic cancer, but resistance to the drugs used remains a major challenge. A genome-wide CRISPR interference and knockout screen in the PANC-1 cell line with the drug nab-paclitaxel has identified a group of spindle assembly checkpoint (SAC) genes that enhance survival in nab-paclitaxel. Knockdown of these SAC genes (BUB1B, BUB3, and TTK) attenuates paclitaxel-induced cell death. Cells treated with the small molecule inhibitors BAY 1217389 or MPI 0479605, targeting the threonine tyrosine kinase (TTK), also enhance survival in paclitaxel. Overexpression of these SAC genes does not affect sensitivity to paclitaxel. These discoveries have helped to elucidate the mechanisms behind paclitaxel cytotoxicity. The outcomes of this investigation may pave the way for a deeper comprehension of the diverse responses of pancreatic cancer to therapies including paclitaxel. Additionally, they could facilitate the formulation of novel treatment approaches for pancreatic cancer.
Collapse
Affiliation(s)
- Priya Mondal
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - George Alyateem
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Allison V Mitchell
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Michael M Gottesman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
23
|
Musa S, Amara N, Selawi A, Wang J, Marchini C, Agbarya A, Mahajna J. Overcoming Chemoresistance in Cancer: The Promise of Crizotinib. Cancers (Basel) 2024; 16:2479. [PMID: 39001541 PMCID: PMC11240740 DOI: 10.3390/cancers16132479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Chemoresistance is a major obstacle in cancer treatment, often leading to disease progression and poor outcomes. It arises through various mechanisms such as genetic mutations, drug efflux pumps, enhanced DNA repair, and changes in the tumor microenvironment. These processes allow cancer cells to survive despite chemotherapy, underscoring the need for new strategies to overcome resistance and improve treatment efficacy. Crizotinib, a first-generation multi-target kinase inhibitor, is approved by the FDA for the treatment of ALK-positive or ROS1-positive non-small cell lung cancer (NSCLC), refractory inflammatory (ALK)-positive myofibroblastic tumors (IMTs) and relapsed/refractory ALK-positive anaplastic large cell lymphoma (ALCL). Crizotinib exists in two enantiomeric forms: (R)-crizotinib and its mirror image, (S)-crizotinib. It is assumed that the R-isomer is responsible for the carrying out various processes reviewed here The S-isomer, on the other hand, shows a strong inhibition of MTH1, an enzyme important for DNA repair mechanisms. Studies have shown that crizotinib is an effective multi-kinase inhibitor targeting various kinases such as c-Met, native/T315I Bcr/Abl, and JAK2. Its mechanism of action involves the competitive inhibition of ATP binding and allosteric inhibition, particularly at Bcr/Abl. Crizotinib showed synergistic effects when combined with the poly ADP ribose polymerase inhibitor (PARP), especially in ovarian cancer harboring BRCA gene mutations. In addition, crizotinib targets a critical vulnerability in many p53-mutated cancers. Unlike its wild-type counterpart, the p53 mutant promotes cancer cell survival. Crizotinib can cause the degradation of the p53 mutant, sensitizing these cancer cells to DNA-damaging substances and triggering apoptosis. Interestingly, other reports demonstrated that crizotinib exhibits anti-bacterial activity, targeting Gram-positive bacteria. Also, it is active against drug-resistant strains. In summary, crizotinib exerts anti-tumor effects through several mechanisms, including the inhibition of kinases and the restoration of drug sensitivity. The potential of crizotinib in combination therapies is emphasized, particularly in cancers with a high prevalence of the p53 mutant, such as triple-negative breast cancer (TNBC) and high-grade serous ovarian cancer (HGSOC).
Collapse
Affiliation(s)
- Sanaa Musa
- Department of Nutrition and Natural Products, Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
- Department of Biotechnology, Tel-Hai College, Kiryat Shmona 11016, Israel
| | - Noor Amara
- Department of Nutrition and Natural Products, Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
- Department of Biotechnology, Tel-Hai College, Kiryat Shmona 11016, Israel
| | - Adan Selawi
- Department of Nutrition and Natural Products, Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
- Department of Biotechnology, Tel-Hai College, Kiryat Shmona 11016, Israel
| | - Junbiao Wang
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Cristina Marchini
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Abed Agbarya
- Oncology Department, Bnai Zion MC, Haifa 31048, Israel
| | - Jamal Mahajna
- Department of Nutrition and Natural Products, Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
- Department of Biotechnology, Tel-Hai College, Kiryat Shmona 11016, Israel
| |
Collapse
|
24
|
Dechbumroong P, Hu R, Keaswejjareansuk W, Namdee K, Liang XJ. Recent advanced lipid-based nanomedicines for overcoming cancer resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:24. [PMID: 39050885 PMCID: PMC11267154 DOI: 10.20517/cdr.2024.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/09/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024]
Abstract
The increasing prevalence of cancer drug resistance not only critically limits the efficiency of traditional therapies but also causes relapses or recurrences of cancer. Consequently, there remains an urgent need to address the intricate landscape of drug resistance beyond traditional cancer therapies. Recently, nanotechnology has played an important role in the field of various drug delivery systems for the treatment of cancer, especially therapy-resistant cancer. Among advanced nanomedicine technologies, lipid-based nanomaterials have emerged as effective drug carriers for cancer treatment, significantly improving therapeutic effects. Due to their biocompatibility, simplicity of preparation, and potential for functionalization, lipid-based nanomaterials are considered powerful competitors for resistant cancer. In this review, an overview of lipid-based nanomaterials for addressing cancer resistance is discussed. We summarize the recent progress in overcoming drug resistance in cancer by these lipid-based nanomaterials, and highlight their potential in future applications to reverse cancer resistance.
Collapse
Affiliation(s)
- Piroonrat Dechbumroong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100049, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
- Authors contributed equally
| | - Runjing Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100049, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Authors contributed equally
| | - Wisawat Keaswejjareansuk
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Katawut Namdee
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100049, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
25
|
Li Y, Mu L, Li Y, Mi Y, Hu Y, Li X, Tao D, Qin J. Golgi dispersal in cancer stem cells promotes chemoresistance of colorectal cancer via the Golgi stress response. Cell Death Dis 2024; 15:417. [PMID: 38879509 PMCID: PMC11180190 DOI: 10.1038/s41419-024-06817-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/19/2024]
Abstract
Chemotherapy is a crucial treatment for colorectal tumors. However, its efficacy is restricted by chemoresistance. Recently, Golgi dispersal has been suggested to be a potential response to chemotherapy, particularly to drugs that induce DNA damage. However, the underlying mechanisms by which Golgi dispersal enhances the capacity to resist DNA-damaging agents remain unclear. Here, we demonstrated that DNA-damaging agents triggered Golgi dispersal in colorectal cancer (CRC), and cancer stem cells (CSCs) possessed a greater degree of Golgi dispersal compared with differentiated cancer cells (non-CSCs). We further revealed that Golgi dispersal conferred resistance against the lethal effects of DNA-damaging agents. Momentously, Golgi dispersal activated the Golgi stress response via the PKCα/GSK3α/TFE3 axis, resulting in enhanced protein and vesicle trafficking, which facilitated drug efflux through ABCG2. Identification of Golgi dispersal indicated an unexpected pathway regulating chemoresistance in CRC.
Collapse
Affiliation(s)
- Yangkun Li
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Lei Mu
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yanqi Li
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yulong Mi
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Department of Surgical Oncology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350013, Fujian, China
| | - Yibing Hu
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Department of Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, 518000, Guangdong, China
| | - Xiaolan Li
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Deding Tao
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jichao Qin
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Department of Gastrointestinal Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
26
|
Yang Q, To KKW, Hu G, Fu K, Yang C, Zhu S, Pan C, Wang F, Luo K, Fu L. BI-2865, a pan-KRAS inhibitor, reverses the P-glycoprotein induced multidrug resistance in vitro and in vivo. Cell Commun Signal 2024; 22:325. [PMID: 38872211 PMCID: PMC11170860 DOI: 10.1186/s12964-024-01698-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Multidrug resistance (MDR) limits successful cancer chemotherapy. P-glycoprotein (P-gp), BCRP and MRP1 are the key triggers of MDR. Unfortunately, no MDR modulator was approved by FDA to date. Here, we will investigate the effect of BI-2865, a pan-KRAS inhibitor, on reversing MDR induced by P-gp, BCRP and MRP1 in vitro and in vivo, and its reversal mechanisms will be explored. METHODS The cytotoxicity of BI-2865 and its MDR removal effect in vitro were tested by MTT assays, and the corresponding reversal function in vivo was assessed through the P-gp mediated KBv200 xenografts in mice. BI-2865 induced alterations of drug discharge and reservation in cells were estimated by experiments of Flow cytometry with fluorescent doxorubicin, and the chemo-drug accumulation in xenografts' tumor were analyzed through LC-MS. Mechanisms of BI-2865 inhibiting P-gp substrate's efflux were analyzed through the vanadate-sensitive ATPase assay, [125I]-IAAP-photolabeling assay and computer molecular docking. The effects of BI-2865 on P-gp expression and KRAS-downstream signaling were detected via Western blotting, Flow cytometry and/or qRT-PCR. Subcellular localization of P-gp was visualized by Immunofluorescence. RESULTS We found BI-2865 notably fortified response of P-gp-driven MDR cancer cells to the administration of chemo-drugs including paclitaxel, vincristine and doxorubicin, while such an effect was not observed in their parental sensitive cells and BCRP or MRP1-driven MDR cells. Importantly, the mice vivo combination study has verified that BI-2865 effectively improved the anti-tumor action of paclitaxel without toxic injury. In mechanism, BI-2865 prompted doxorubicin accumulating in carcinoma cells by directly blocking the efflux function of P-gp, which more specifically, was achieved by BI-2865 competitively binding to the drug-binding sites of P-gp. What's more, at the effective MDR reversal concentrations, BI-2865 neither varied the expression and location of P-gp nor reduced its downstream AKT or ERK1/2 signaling activity. CONCLUSIONS This study uncovered a new application of BI-2865 as a MDR modulator, which might be used to effectively, safely and specifically improve chemotherapeutic efficacy in the clinical P-gp mediated MDR refractory cancers.
Collapse
MESH Headings
- Humans
- Animals
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Multiple/drug effects
- Mice
- Cell Line, Tumor
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- Xenograft Model Antitumor Assays
- Mice, Nude
- Doxorubicin/pharmacology
- Mice, Inbred BALB C
- Female
Collapse
Affiliation(s)
- Qihong Yang
- People's Hospital of Longhua, Shenzhen, 518109, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Kenneth Kin Wah To
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Guilin Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Kai Fu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Chuan Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Shuangli Zhu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Can Pan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Fang Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Kewang Luo
- People's Hospital of Longhua, Shenzhen, 518109, China.
| | - Liwu Fu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
| |
Collapse
|
27
|
Li TF, Xu Z, Zhang K, Yang X, Thakur A, Zeng S, Yan Y, Liu W, Gao M. Effects and mechanisms of N6-methyladenosine RNA methylation in environmental pollutant-induced carcinogenesis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116372. [PMID: 38669875 DOI: 10.1016/j.ecoenv.2024.116372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/20/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
Environmental pollution, including air pollution, plastic contamination, and heavy metal exposure, is a pressing global issue. This crisis contributes significantly to pollution-related diseases and is a critical risk factor for chronic health conditions, including cancer. Mounting evidence underscores the pivotal role of N6-methyladenosine (m6A) as a crucial regulatory mechanism in pathological processes and cancer progression. Governed by m6A writers, erasers, and readers, m6A orchestrates alterations in target gene expression, consequently playing a vital role in a spectrum of RNA processes, covering mRNA processing, translation, degradation, splicing, nuclear export, and folding. Thus, there is a growing need to pinpoint specific m6A-regulated targets in environmental pollutant-induced carcinogenesis, an emerging area of research in cancer prevention. This review consolidates the understanding of m6A modification in environmental pollutant-induced tumorigenesis, explicitly examining its implications in lung, skin, and bladder cancer. We also investigate the biological mechanisms that underlie carcinogenesis originating from pollution. Specific m6A methylation pathways, such as the HIF1A/METTL3/IGF2BP3/BIRC5 network, METTL3/YTHDF1-mediated m6A modification of IL 24, METTL3/YTHDF2 dynamically catalyzed m6A modification of AKT1, METTL3-mediated m6A-modified oxidative stress, METTL16-mediated m6A modification, site-specific ATG13 methylation-mediated autophagy, and the role of m6A in up-regulating ribosome biogenesis, all come into play in this intricate process. Furthermore, we discuss the direction regarding the interplay between pollutants and RNA metabolism, particularly in immune response, providing new information on RNA modifications for future exploration.
Collapse
Affiliation(s)
- Tong-Fei Li
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Kui Zhang
- Pritzker School of Molecular Engineering, Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Xiaoxin Yang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Abhimanyu Thakur
- Pritzker School of Molecular Engineering, Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Shuangshuang Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Wangrui Liu
- Department of Thoracic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Ming Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
28
|
Sanese P, De Marco K, Lepore Signorile M, La Rocca F, Forte G, Latrofa M, Fasano C, Disciglio V, Di Nicola E, Pantaleo A, Bianco G, Spilotro V, Ferroni C, Tubertini M, Labarile N, De Marinis L, Armentano R, Gigante G, Lantone V, Lantone G, Naldi M, Bartolini M, Varchi G, Del Rio A, Grossi V, Simone C. The novel SMYD3 inhibitor EM127 impairs DNA repair response to chemotherapy-induced DNA damage and reverses cancer chemoresistance. J Exp Clin Cancer Res 2024; 43:151. [PMID: 38812026 PMCID: PMC11137994 DOI: 10.1186/s13046-024-03078-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND SMYD3 has been found implicated in cancer progression. Its overexpression correlates with cancer growth and invasion, especially in gastrointestinal tumors. SMYD3 transactivates multiple oncogenic mechanisms, favoring cancer development. Moreover, it was recently shown that SMYD3 is required for DNA restoration by promoting homologous recombination (HR) repair. METHODS In cellulo and in vivo models were employed to investigate the role of SMYD3 in cancer chemoresistance. Analyses of SMYD3-KO cells, drug-resistant cancer cell lines, patients' residual gastric or rectal tumors that were resected after neoadjuvant therapy and mice models were performed. In addition, the novel SMYD3 covalent inhibitor EM127 was used to evaluate the impact of manipulating SMYD3 activity on the sensitization of cancer cell lines, tumorspheres and cancer murine models to chemotherapeutics (CHTs). RESULTS Here we report that SMYD3 mediates cancer cell sensitivity to CHTs. Indeed, cancer cells lacking SMYD3 functions showed increased responsiveness to CHTs, while restoring its expression promoted chemoresistance. Specifically, SMYD3 is essential for the repair of CHT-induced double-strand breaks as it methylates the upstream sensor ATM and allows HR cascade propagation through CHK2 and p53 phosphorylation, thereby promoting cancer cell survival. SMYD3 inhibition with the novel compound EM127 showed a synergistic effect with CHTs in colorectal, gastric, and breast cancer cells, tumorspheres, and preclinical colorectal cancer models. CONCLUSIONS Overall, our results show that targeting SMYD3 may be an effective therapeutic strategy to overcome chemoresistance.
Collapse
Affiliation(s)
- Paola Sanese
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Katia De Marco
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Martina Lepore Signorile
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Francesca La Rocca
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Giovanna Forte
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Marialaura Latrofa
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Candida Fasano
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Vittoria Disciglio
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Elisabetta Di Nicola
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Antonino Pantaleo
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Giusy Bianco
- Animal Facility, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Vito Spilotro
- Animal Facility, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Claudia Ferroni
- Institute of Organic Synthesis and Photoreactivity - National Research Council, Bologna, 40129, Italy
| | - Matilde Tubertini
- Institute of Organic Synthesis and Photoreactivity - National Research Council, Bologna, 40129, Italy
- Department of Chemical and Environmental Sciences, University of Insubria, Como, 22100, Italy
| | - Nicoletta Labarile
- Histopathology Unit, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Lucia De Marinis
- Histopathology Unit, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Raffaele Armentano
- Histopathology Unit, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Gianluigi Gigante
- General Surgery Unit, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Valerio Lantone
- General Surgery Unit, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
- General Surgery Unit, Department of Precision and Regenerative Medicine and Jonic Area (DiMePRe-J), University of Bari Aldo Moro, Bari, 70124, Italy
| | | | - Marina Naldi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna, 40126, Italy
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna, 40126, Italy
| | - Greta Varchi
- Institute of Organic Synthesis and Photoreactivity - National Research Council, Bologna, 40129, Italy
| | - Alberto Del Rio
- Institute of Organic Synthesis and Photoreactivity - National Research Council, Bologna, 40129, Italy
- Innovamol Consulting Srl, Modena, 41126, Italy
| | - Valentina Grossi
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy.
| | - Cristiano Simone
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy.
- Medical Genetics, Department of Precision and Regenerative Medicine and Jonic Area (DiMePRe-J), University of Bari Aldo Moro, Bari, 70124, Italy.
| |
Collapse
|
29
|
Wu CP, Hung CY, Murakami M, Wu YS, Chu YH, Huang YH, Yu JS, Ambudkar SV. ABCG2 Mediates Resistance to the Dual EGFR and PI3K Inhibitor MTX-211 in Cancer Cells. Int J Mol Sci 2024; 25:5160. [PMID: 38791198 PMCID: PMC11121381 DOI: 10.3390/ijms25105160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
MTX-211 is a first-in-class dual inhibitor of epidermal growth factor receptor (EGFR) and phosphoinositide-3 kinase (PI3K) signaling pathways with a compelling pharmaceutical profile and could enhance the effectiveness of mitogen-activated protein kinase kinase (MEK) inhibitor therapy in colorectal tumors with KRAS mutations. However, the specific mechanisms contributing to the acquired resistance to MTX-211 in human cancers remain elusive. Here, we discovered that the overexpression of the ATP-binding cassette (ABC) drug transporter ABCG2, a prevalent mechanism associated with multidrug resistance (MDR), could diminish the effectiveness of MTX-211 in human cancer cells. We showed that the drug efflux activity of ABCG2 substantially decreased the intracellular accumulation of MTX-211 in cancer cells. As a result, the cytotoxicity and effectiveness of MTX-211 in suppressing the activation of the EGFR and PI3K pathways were significantly attenuated in cancer cells overexpressing ABCG2. Moreover, the enhancement of the MTX-211-stimulated ATPase activity of ABCG2 and the computational molecular docking analysis illustrating the binding of MTX-211 to the substrate-binding sites of ABCG2 offered a further indication for the interaction between MTX-211 and ABCG2. In summary, our findings indicate that MTX-211 acts as a substrate for ABCG2, underscoring the involvement of ABCG2 in the emergence of resistance to MTX-211. This finding carries clinical implications and merits further exploration.
Collapse
Affiliation(s)
- Chung-Pu Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan (J.-S.Y.)
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan
| | - Cheng-Yu Hung
- Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Megumi Murakami
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (M.M.); (S.V.A.)
| | - Yu-Shan Wu
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan;
| | - Yi-Hsuan Chu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan (J.-S.Y.)
| | - Yang-Hui Huang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan (J.-S.Y.)
| | - Jau-Song Yu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan (J.-S.Y.)
- Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan 33302, Taiwan
| | - Suresh V. Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (M.M.); (S.V.A.)
| |
Collapse
|
30
|
Park JE, Kim DH. Advanced Immunomodulatory Biomaterials for Therapeutic Applications. Adv Healthc Mater 2024:e2304496. [PMID: 38716543 DOI: 10.1002/adhm.202304496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/15/2024] [Indexed: 05/22/2024]
Abstract
The multifaceted biological defense system modulating complex immune responses against pathogens and foreign materials plays a critical role in tissue homeostasis and disease progression. Recently developed biomaterials that can specifically regulate immune responses, nanoparticles, graphene, and functional hydrogels have contributed to the advancement of tissue engineering as well as disease treatment. The interaction between innate and adaptive immunity, collectively determining immune responses, can be regulated by mechanobiological recognition and adaptation of immune cells to the extracellular microenvironment. Therefore, applying immunomodulation to tissue regeneration and cancer therapy involves manipulating the properties of biomaterials by tailoring their composition in the context of the immune system. This review provides a comprehensive overview of how the physicochemical attributes of biomaterials determine immune responses, focusing on the physical properties that influence innate and adaptive immunity. This review also underscores the critical aspect of biomaterial-based immune engineering for the development of novel therapeutics and emphasizes the importance of understanding the biomaterials-mediated immunological mechanisms and their role in modulating the immune system.
Collapse
Affiliation(s)
- Ji-Eun Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
- Department of Integrative Energy Engineering, College of Engineering, Korea University, Seoul, 02841, Republic of Korea
- Biomedical Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| |
Collapse
|
31
|
Su L, Yang R, Sheng Y, Ullah S, Zhao Y, Shunjiayi H, Zhao Z, Wang Q. Insights into the oral microbiota in human systemic cancers. Front Microbiol 2024; 15:1369834. [PMID: 38756728 PMCID: PMC11098135 DOI: 10.3389/fmicb.2024.1369834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/11/2024] [Indexed: 05/18/2024] Open
Abstract
The oral cavity stands as one of the pivotal interfaces facilitating the intricate interaction between the human body and the external environment. The impact of diverse oral microorganisms on the emergence and progression of various systemic cancers, typified by oral cancer, has garnered increasing attention. The potential pathogenicity of oral bacteria, notably the anaerobic Porphyromonas gingivalis and Fusobacterium nucleatum, has been extensively studied and exhibits obvious correlation with different carcinoma types. Furthermore, oral fungi and viruses are closely linked to oropharyngeal carcinoma. Multiple potential mechanisms of oral microbiota-induced carcinogenesis have been investigated, including heightened inflammatory responses, suppression of the host immune system, influence on the tumor microenvironment, anti-apoptotic activity, and promotion of malignant transformation. The disturbance of microbial equilibrium and the migration of oral microbiota play a pivotal role in facilitating oncogenic functions. This review aims to comprehensively outline the pathogenic mechanisms by which oral microbiota participate in carcinogenesis. Additionally, this review delves into their potential applications in cancer prevention, screening, and treatment. It proves to be a valuable resource for researchers investigating the intricate connection between oral microbiota and systemic cancers.
Collapse
Affiliation(s)
- Lan Su
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Rui Yang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Yanan Sheng
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Saif Ullah
- Department of Microbiology School of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Yuheng Zhao
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Hu Shunjiayi
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhuo Zhao
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, United States
| | - Qingjing Wang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| |
Collapse
|
32
|
Huang W, Zhang Y, Cao M, Wu Y, Jiao F, Chu Z, Zhou X, Li L, Xu D, Pan X, Guan Y, Huang G, Liu J, Xie F, Wei W. ImmunoPET imaging of Trop2 in patients with solid tumours. EMBO Mol Med 2024; 16:1143-1161. [PMID: 38565806 PMCID: PMC11099157 DOI: 10.1038/s44321-024-00059-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 04/04/2024] Open
Abstract
Accurately predicting and selecting patients who can benefit from targeted or immunotherapy is crucial for precision therapy. Trophoblast cell surface antigen 2 (Trop2) has been extensively investigated as a pan-cancer biomarker expressed in various tumours and plays a crucial role in tumorigenesis through multiple signalling pathways. Our laboratory successfully developed two 68Ga-labelled nanobody tracers that can rapidly and specifically target Trop2. Of the two tracers, [68Ga]Ga-NOTA-T4, demonstrated excellent pharmacokinetics in preclinical mouse models and a beagle dog. Moreover, [68Ga]Ga-NOTA-T4 immuno-positron emission tomography (immunoPET) allowed noninvasive visualisation of Trop2 heterogeneous and differential expression in preclinical solid tumour models and ten patients with solid tumours. [68Ga]Ga-NOTA-T4 immunoPET could facilitate clinical decision-making through patient stratification and response monitoring during Trop2-targeted therapies.
Collapse
Affiliation(s)
- Wei Huang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China
| | - You Zhang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China
| | - Min Cao
- Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200217, China
| | - Yanfei Wu
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Feng Jiao
- Department of Oncology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Zhaohui Chu
- Department of Oncology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xinyuan Zhou
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China
| | - Lianghua Li
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China
| | - Dongsheng Xu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China
| | - Xinbing Pan
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China
| | - Yihui Guan
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Gang Huang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China.
| | - Fang Xie
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China.
| |
Collapse
|
33
|
He M, Zhao W, Wang P, Li W, Chen H, Yuan Z, Pan G, Gao H, Sun L, Chu J, Li L, Hu Y. Efficacy and safety of Trastuzumab Emtansine in treating human epidermal growth factor receptor 2-positive metastatic breast cancer in Chinese population: a real-world multicenter study. Front Med (Lausanne) 2024; 11:1383279. [PMID: 38741766 PMCID: PMC11089149 DOI: 10.3389/fmed.2024.1383279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/04/2024] [Indexed: 05/16/2024] Open
Abstract
Background Trastuzumab emtansine (T-DM1) has been approved worldwide for treating metastatic breast cancer (mBC) in patients who have received first-line therapy, shown disease progression, and are human epidermal growth factor receptor 2 (HER2)-positive. T-DM1 received approval in China to treat early-stage breast cancer (BC) in 2020 and for mBC in 2021. In March 2023, T-DM1 was included in medical insurance coverage, significantly expanding the eligible population. Materials and methods This post-marketing observational study aimed to assess the safety and effectiveness of T-DM1 in real-world clinical practice in China. This study enrolled 31 individuals with HER2-positive early-stage BC and 70 individuals with HER2-positive advanced BC from 8 study centers in Shandong Province, China. The T-DM1 dosage was 3.6 mg/kg injected intravenously every 3 weeks until the disease advanced or the drug toxicity became uncontrollable, whichever occurred earlier. Additionally, efficacy and safety information on T-DM1 were collected. Results During the 7-month follow-up period, no recurrence or metastases were observed in patients who had early-stage BC. The disease control rate was 31.43% (22/70) in patients with advanced BC. The most common adverse effect of T-DM1 was thrombocytopenia, with an incidence of 69.31% (70/101), and the probability of Grade ≥ 3 thrombocytopenia was 11.88% (12/101). Conclusion This real-world study demonstrated that T-DM1 had good efficacy and was well tolerated by both HER2-positive early-stage BC and mBC patients.
Collapse
Affiliation(s)
- Miao He
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
- Department of Medical Oncology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Wen Zhao
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Peng Wang
- Department of Medical Oncology, Qingdao Shibei Changqing Hospital, Qingdao, Shandong Province, China
| | - Wenhuan Li
- Department of Chemotherapy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| | - Hanhan Chen
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zonghuai Yuan
- Department of General Surgery, People’s Hospital of Rizhao, Rizhao, Shandong Province, China
| | - Guangye Pan
- Department of General Surgery, People’s Hospital of Rizhao, Rizhao, Shandong Province, China
| | - Hong Gao
- Department of Breast and Thyroid Surgery, Rizhao Traditional Chinese Medical Hospital, Rizhao, Shandong Province, China
| | - Lijun Sun
- Department of Breast and Thyroid Surgery, People’s Hospital of Juxian, Rizhao, Shandong Province, China
| | - Jiahui Chu
- Department of Pharmacy, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Li Li
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Yu Hu
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
34
|
Chen L, Hu M, Chen L, Peng Y, Zhang C, Wang X, Li X, Yao Y, Song Q, Li J, Pei H. Targeting O-GlcNAcylation in cancer therapeutic resistance: The sugar Saga continues. Cancer Lett 2024; 588:216742. [PMID: 38401884 DOI: 10.1016/j.canlet.2024.216742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/03/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
O-linked-N-acetylglucosaminylation (O-GlcNAcylation), a dynamic post-translational modification (PTM), holds profound implications in controlling various cellular processes such as cell signaling, metabolism, and epigenetic regulation that influence cancer progression and therapeutic resistance. From the therapeutic perspective, O-GlcNAc modulates drug efflux, targeting and metabolism. By integrating signals from glucose, lipid, amino acid, and nucleotide metabolic pathways, O-GlcNAc acts as a nutrient sensor and transmits signals to exerts its function on genome stability, epithelial-mesenchymal transition (EMT), cell stemness, cell apoptosis, autophagy, cell cycle. O-GlcNAc also attends to tumor microenvironment (TME) and the immune response. At present, several strategies aiming at targeting O-GlcNAcylation are under mostly preclinical evaluation, where the newly developed O-GlcNAcylation inhibitors markedly enhance therapeutic efficacy. Here we systematically outline the mechanisms through which O-GlcNAcylation influences therapy resistance and deliberate on the prospects and challenges associated with targeting O-GlcNAcylation in future cancer treatments.
Collapse
Affiliation(s)
- Lulu Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057, USA.
| | - Mengxue Hu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Luojun Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yihan Peng
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Cai Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xin Wang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiangpan Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yi Yao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jing Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, 100048, China.
| | - Huadong Pei
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057, USA.
| |
Collapse
|
35
|
Devi LS, Casadidio C, Gigliobianco MR, Di Martino P, Censi R. Multifunctionality of cyclodextrin-based polymeric nanoparticulate delivery systems for chemotherapeutics, combination therapy, and theranostics. Int J Pharm 2024; 654:123976. [PMID: 38452831 DOI: 10.1016/j.ijpharm.2024.123976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
As cancer being the most difficult disease to treat, different kinds of medications and therapeutic approaches have been prominently developed by scientists. For certain families of drugs, such as immuno-therapeutics or antibody-drug conjugates, efficient delivery systems are required during administration to protect the drugs from chemical degradation or biological inactivation. Delivery systems with the ability to carry different therapeutics or diagnostic agents or both, hold promising potential to tackle the abnormalities behind cancer. In this context, this review provides updated insights on how cyclodextrin-based polymeric nanosystems have become an effective treatment approach against cancer. Cyclodextrins (CDs) are natural oligosaccharides that are famously exploited in pharmaceutical research due to their exceptional quality of entrapping water-insoluble molecules inside their hydrophobic core and providing enhanced solubility with the help of their hydrophilic exterior. Combining the properties of CDs with polymeric nanoparticles (PNPs) brings out excellent versatile and tunable profiles, thanks to the submicron-sized PNPs. By introducing the significance of CD as a delivery system, a collective discussion on different binding approaches and release mechanisms of CD-drug complexation, followed by their characterization studies has been done in this review. Further, in light of recent studies, the article majorly focuses on conveying how promoting CD to a polymeric and nanoscale elevates the multifunctional advantages against cancer that can be successfully applied in combination therapy and theranostics. Moreover, CD-based delivery systems including CALAA-01, CRLX101, and CRLX301, have demonstrated improved tumor targeting, reduced side effects, and prolonged drug release in preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Lakshmi Sathi Devi
- School of Pharmacy, Drug Delivery Division, University of Camerino, ChIP Research Center, Via Madonna delle Carceri, 62032 Camerino, (MC), Italy
| | - Cristina Casadidio
- School of Pharmacy, Drug Delivery Division, University of Camerino, ChIP Research Center, Via Madonna delle Carceri, 62032 Camerino, (MC), Italy; Department of Pharmaceutical Sciences, Division of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University 99, 3508 TB Utrecht, the Netherlands.
| | - Maria Rosa Gigliobianco
- School of Pharmacy, Drug Delivery Division, University of Camerino, ChIP Research Center, Via Madonna delle Carceri, 62032 Camerino, (MC), Italy.
| | - Piera Di Martino
- Department of Pharmacy, Università "G. d'Annunzio" di Chieti e Pescara, Via dei Vestini 1, 66100 Chieti, (CH), Italy
| | - Roberta Censi
- School of Pharmacy, Drug Delivery Division, University of Camerino, ChIP Research Center, Via Madonna delle Carceri, 62032 Camerino, (MC), Italy
| |
Collapse
|
36
|
Jin Y, Fan Z. New insights into the interaction between m6A modification and lncRNA in cancer drug resistance. Cell Prolif 2024; 57:e13578. [PMID: 37961996 PMCID: PMC10984110 DOI: 10.1111/cpr.13578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
Drug resistance is perhaps the greatest obstacle in improving outcomes for cancer patients, leading to recurrence, progression and metastasis of various cancers. Exploring the underlying mechanism worth further study. N6-methyladenosine (m6A) is the most common RNA modification found in eukaryotes, playing a vital role in RNA translation, transportation, stability, degradation, splicing and processing. Long noncoding RNA (lncRNA) refers to a group of transcripts that are longer than 200 nucleotides (nt) and typically lack the ability to code for proteins. LncRNA has been identified to play a significant role in regulating multiple aspects of tumour development and progression, including proliferation, metastasis, metabolism, and resistance to treatment. In recent years, a growing body of evidence has emerged, highlighting the crucial role of the interplay between m6A modification and lncRNA in determining the sensitivity of cancer cells to chemotherapeutic agents. In this review, we focus on the recent advancements in the interaction between m6A modification and lncRNA in the modulation of cancer drug resistance. Additionally, we aim to explore the underlying mechanisms involved in this process. The objective of this review is to provide valuable insights and suggest potential future directions for the reversal of chemoresistance in cancer.
Collapse
Affiliation(s)
- Yizhou Jin
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of StomatologyCapital Medical UniversityBeijingChina
| | - Zhipeng Fan
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of StomatologyCapital Medical UniversityBeijingChina
- Beijing Laboratory of Oral HealthCapital Medical UniversityBeijingChina
- Research Unit of Tooth Development and RegenerationChinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
37
|
Weng WH, Wang CY, Yan ZY, Lee HT, Kao CY, Chang CW. Isolation and characterizations of multidrug-resistant human cancer cells by a biodegradable nano-sensor. Biosens Bioelectron 2024; 249:115985. [PMID: 38219465 DOI: 10.1016/j.bios.2023.115985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/14/2023] [Accepted: 12/27/2023] [Indexed: 01/16/2024]
Abstract
Multidrug resistance (MDR) remains a significant challenge in cancer therapy, with inherent and acquired resistance distinct. While conventional drug selection processes enable the isolation of cancer cells with acquired multidrug resistance, identifying cancer cells with inherent drug resistance remains challenging. Herein, we proposed a molecular beacon (MB)-based strategy to identify and isolate the inherent MDR cancer cells. A lipid/PLGA core-shell nanoparticulate system (DNCP) was designed to deliver MB for intracellular MDR1 mRNA imaging. DNCP-MB - possess a surface potential of -8 mV and a size of 150 nm - demonstrated effective delivery of MB, remarkable selectivity towards the selected intracellular mRNA targets, and low cytotoxicity. Following DNCP transfection, fluorescence-activated cell sorting (FACS) was employed to differentiate MCF-7 cells into two distinct sub-populations: the Top 10 cells with a high level of MDR gene expression and the Bottom 10 cells with a low level of MDR gene expression, which represent inherent drug-resistant and non-drug-resistant cells, respectively. Intriguingly, we observed a positive correlation between elevated MDR1 mRNA expression and increased migration, enhanced proliferation rate, and tighter spheroid formation. Moreover, we conducted RNA sequencing analysis on the Top 10, Bottom 10, and MCF-7/ADR cells. The findings revealed a notable disparity in the gene ontology enrichment analysis of differentially expressed genes between the Top 10 and Bottom 10 cells when compared to the Bottom 10 and MCF-7/ADR cells. This novel approach provides a promising avenue for isolating inherent drug-resistant cells and holds significant potential in unraveling the mechanisms underlying inherent drug resistance.
Collapse
Affiliation(s)
- Wei-Han Weng
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan, ROC
| | - Chu-Yun Wang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan, ROC
| | - Zi-Yu Yan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan, ROC
| | - Hsiang-Tzu Lee
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan, ROC
| | - Cheng-Yuan Kao
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan, ROC
| | - Chien-Wen Chang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan, ROC.
| |
Collapse
|
38
|
Gangathade N. Total Synthesis of Macrocyclolipopeptide Dysoxylactam A. J Org Chem 2024; 89:3954-3961. [PMID: 38426216 DOI: 10.1021/acs.joc.3c02780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
A highly stereoselective total synthesis of potent multidrug-resistant reverser dysoxylactum A has been accomplished in the longest linear sequences of 20 steps with an overall 10.2% yield. The key steps of this synthesis included Brown's crotylation, Evans alkylation, the Carreira protocol to generate the stereogenic center, and Yamaguchi macrolactonization.
Collapse
Affiliation(s)
- Namdeo Gangathade
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
39
|
Angulo-Elizari E, Henriquez-Figuereo A, Morán-Serradilla C, Plano D, Sanmartín C. Unlocking the potential of 1,4-naphthoquinones: A comprehensive review of their anticancer properties. Eur J Med Chem 2024; 268:116249. [PMID: 38458106 DOI: 10.1016/j.ejmech.2024.116249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/10/2024]
Abstract
Cancer encompasses a group of pathologies with common characteristics, high incidence, and prevalence in all countries. Although there are treatments available for this disease, they are not always effective or safe, often failing to achieve the desired results. This is why it is necessary to continue the search for new therapies. One of the strategies for obtaining new antitumor drugs is the use of 1,4-naphthoquinone as a scaffold in synthetic or natural products with antitumor activity. This review focuses on compiling studies related to the antitumor activity of 1,4-naphthoquinone and its natural and synthetic derivatives over the last 10 years. The work describes the main natural naphthoquinones with antitumor activity and classifies the synthetic naphthoquinones based on the structural modifications made to the scaffold. Additionally, the formation of metal complexes using naphthoquinones as a ligand is considered. After a thorough review, 197 synthetic compounds with potent biological activity against cancer have been classified according to their chemical structures and their mechanisms of action have been described.
Collapse
Affiliation(s)
- Eduardo Angulo-Elizari
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain
| | - Andreina Henriquez-Figuereo
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain
| | - Cristina Morán-Serradilla
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain
| | - Daniel Plano
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain; Navarra Institute for Health Research (IdisNA), 31008, Pamplona, Spain.
| | - Carmen Sanmartín
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain; Navarra Institute for Health Research (IdisNA), 31008, Pamplona, Spain.
| |
Collapse
|
40
|
Sherpa DD, Sahu AK, Jadav T, Rajput N, Vaidya GN, Kumar D, Sengupta P. Ultra-high-performance liquid chromatography-quadrupole time of flight tandem mass spectrometry based in vitro metabolite profiling of DK-GV-04P, a novel anticancer molecule under drug discovery. Biomed Chromatogr 2024; 38:e5806. [PMID: 38087453 DOI: 10.1002/bmc.5806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 02/24/2024]
Abstract
DK-GV-04P, chemically identified as 3-cinnamyl-2-(4-methoxyphenyl) quinazolin-4(3H)-one, is an investigational molecule synthesized at the Chemical Biology Laboratory of the National Institute of Pharmaceutical Education and Research-Ahmedabad. The compound has shown potential anticancer activity against squamous CAL27 cell lines. Metabolite identification and characterization are critical in drug discovery, providing key insights into a compound's pharmacokinetics, pharmacodynamics safety, and metabolic fate. The primary aim of the study was to identify and characterize the in vitro metabolites of DK-GV-04P. In silico identification of the site of metabolism was also carried out using xenosite online software. The molecule was incubated with human liver microsomes and human S9 liver fraction to generate in vitro metabolites, which were further identified and characterized using ultra-high-performance liquid chromatography-quadrupole time of flight tandem mass spectrometry. A total of nine metabolites (four phase I and five phase II) were identified and characterized through tandem mass spectrometry. The major biotransformation pathways involved in metabolism of DK-GV-04P were hydroxylation, O-demethylation and glucuronidation. In addition to this, a detailed biotransformation pathway of DK-GV-04P has been established in this study.
Collapse
Affiliation(s)
- Deeki Doma Sherpa
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad, an Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| | - Amit Kumar Sahu
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad, an Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| | - Tarang Jadav
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad, an Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| | - Niraj Rajput
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad, an Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| | - Gargi Nikhil Vaidya
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad, an Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| | - Dinesh Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad, an Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| | - Pinaki Sengupta
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad, an Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| |
Collapse
|
41
|
Kadhum WR, Majeed AA, Saleh RO, Ali E, Alhajlah S, Alwaily ER, Mustafa YF, Ghildiyal P, Alawadi A, Alsalamy A. Overcoming drug resistance with specific nano scales to targeted therapy: Focused on metastatic cancers. Pathol Res Pract 2024; 255:155137. [PMID: 38324962 DOI: 10.1016/j.prp.2024.155137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/09/2024]
Abstract
Metastatic cancer, which accounts for the majority of cancer fatalities, is a difficult illness to treat. Currently used cancer treatments include radiation therapy, chemotherapy, surgery, and targeted treatment (immune, gene, and hormonal). The disadvantages of these treatments include a high risk of tumor recurrence and surgical complications that may result in permanent deformities. On the other hand, most chemotherapy drugs are small molecules, which usually have unfavorable side effects, low absorption, poor selectivity, and multi-drug resistance. Anticancer drugs can be delivered precisely to the cancer spot by encapsulating them to reduce side effects. Stimuli-responsive nanocarriers can be used for drug release at cancer sites and provide target-specific delivery. As previously stated, metastasis is the primary cause of cancer-related mortality. We have evaluated the usage of nano-medications in the treatment of some metastatic tumors.
Collapse
Affiliation(s)
- Wesam R Kadhum
- Department of Pharmacy, Kut University College, Kut 52001, Wasit, Iraq; Advanced research center, Kut University College, Kut 52001, Wasit, Iraq.
| | - Ali A Majeed
- Department of Pathological Analyses, Faculty of Science, University of Kufa, Najaf, Iraq
| | - Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | - Eyhab Ali
- Pharmacy Department, Al-Zahraa University for Women, Karbala, Iraq
| | - Sharif Alhajlah
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia.
| | - Enas R Alwaily
- Microbiology Research Group, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ahmed Alawadi
- College of technical engineering, the Islamic University, Najaf, Iraq; College of technical engineering, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; College of technical engineering, the Islamic University of Babylon, Babylon, Iraq
| | - Ali Alsalamy
- College of technical engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| |
Collapse
|
42
|
Sazonova EV, Yapryntseva MA, Pervushin NV, Tsvetcov RI, Zhivotovsky B, Kopeina GS. Cancer Drug Resistance: Targeting Proliferation or Programmed Cell Death. Cells 2024; 13:388. [PMID: 38474352 DOI: 10.3390/cells13050388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
The development of resistance to chemotherapy is one of the main problems for effective cancer treatment. Drug resistance may result from disturbances in two important physiological processes-cell proliferation and cell death. Importantly, both processes characterize alterations in cell metabolism, the level of which is often measured using MTT/MTS assays. To examine resistance to chemotherapy, different cancer cell lines are usually used for the in vitro modulation of developing resistance. However, after the creation of resistant cell lines, researchers often have difficulty in starting investigations of the mechanisms of insensitivity. In the first stage, researchers should address the question of whether the drug resistance results from a depression of cell proliferation or an inhibition of cell death. To simplify the choice of research strategy, we have suggested a combination of different approaches which reveal the actual mechanism. This combination includes rapid and high-throughput methods such as the MTS test, the LIVE/DEAD assay, real-time cell metabolic analysis, and Western blotting. To create chemoresistant tumor cells, we used four different cancer cell lines of various origins and utilized the most clinically relevant pulse-selection approach. Applying a set of methodological approaches, we demonstrated that three of them were more capable of modulating proliferation to avoid the cytostatic effects of anti-cancer drugs. At the same time, one of the studied cell lines developed resistance to cell death, overcoming the cytotoxic action.
Collapse
Affiliation(s)
- Elena V Sazonova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Maria A Yapryntseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Nikolay V Pervushin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Roman I Tsvetcov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Boris Zhivotovsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institute, P.O. Box 210, 17177 Stockholm, Sweden
| | - Gelina S Kopeina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
43
|
Mondal P, Alyateem G, Mitchell AV, Gottesman MM. A whole-genome CRISPR screen identifies the spindle accessory checkpoint as a locus of nab-paclitaxel resistance in pancreatic cancer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.15.580539. [PMID: 38410481 PMCID: PMC10896345 DOI: 10.1101/2024.02.15.580539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Pancreatic adenocarcinoma is one of the most aggressive and lethal forms of cancer. Chemotherapy is the primary treatment for pancreatic cancer, but resistance to the drugs used remains a major challenge. A genome-wide CRISPR interference and knockout screen in the PANC-1 cell line with the drug nab-paclitaxel has identified a group of spindle assembly checkpoint (SAC) genes that enhance survival in nab-paclitaxel. Knockdown of these SAC genes (BUB1B, BUB3, and TTK) attenuates paclitaxel-induced cell death. Cells treated with the small molecule inhibitors BAY 1217389 or MPI 0479605, targeting the threonine tyrosine kinase (TTK), also enhance survival in paclitaxel. Overexpression of these SAC genes does not affect sensitivity to paclitaxel. These discoveries have helped to elucidate the mechanisms behind paclitaxel cytotoxicity. The outcomes of this investigation may pave the way for a deeper comprehension of the diverse responses of pancreatic cancer to therapies including paclitaxel. Additionally, they could facilitate the formulation of novel treatment approaches for pancreatic cancer.
Collapse
Affiliation(s)
- Priya Mondal
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892
| | - George Alyateem
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Allison V. Mitchell
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Michael M. Gottesman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892
| |
Collapse
|
44
|
Miwa S, Takikawa H, Takeuchi R, Mizunuma R, Matsuoka K, Ogawa H, Kato H, Takasu K. Structure-ATPase Activity Relationship of Rhodamine Derivatives as Potent Inhibitors of P-Glycoprotein CmABCB1. ACS Med Chem Lett 2024; 15:287-293. [PMID: 38352840 PMCID: PMC10860176 DOI: 10.1021/acsmedchemlett.3c00526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/05/2024] [Accepted: 01/13/2024] [Indexed: 02/16/2024] Open
Abstract
Understanding the transport and inhibition mechanisms of substrates by P-glycoprotein (P-gp) is one of the important approaches in addressing multidrug resistance (MDR). In this study, we evaluated a variety of rhodamine derivatives as potential P-gp inhibitors targeting CmABCB1, a P-gp homologue, with a focus on their ATPase activity. Notably, a Q-rhodamine derivative with an o,o'-dimethoxybenzyl ester moiety (RhQ-DMB) demonstrated superior affinity and inhibitory activity, which was further confirmed by a drug susceptibility assay in yeast strains expressing CmABCB1. Results from a tryptophan fluorescence quenching experiment using a CmABCB1 mutant suggested that RhQ-DMB effectively enters and binds to the inner chamber of CmABCB1. These findings underscore the promising potential of RhQ-DMB as a tool for future studies aimed at elucidating the substrate-bound state of CmABCB1.
Collapse
Affiliation(s)
- Sorachi Miwa
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroshi Takikawa
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Rina Takeuchi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Ryo Mizunuma
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Keita Matsuoka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Haruo Ogawa
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroaki Kato
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
- RIKEN Harima Institute at SPring-8, Hyogo 679-5148 Japan
| | - Kiyosei Takasu
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
45
|
Kook E, Chun KS, Kim DH. Emerging Roles of YES1 in Cancer: The Putative Target in Drug Resistance. Int J Mol Sci 2024; 25:1450. [PMID: 38338729 PMCID: PMC10855972 DOI: 10.3390/ijms25031450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Src family kinases (SFKs) are non-receptor tyrosine kinases that are recognized as proto-oncogenic products. Among SFKs, YES1 is frequently amplified and overexpressed in a variety of human tumors, including lung, breast, ovarian, and skin cancers. YES1 plays a pivotal role in promoting cell proliferation, survival, and invasiveness during tumor development. Recent findings indicate that YES1 expression and activation are associated with resistance to chemotherapeutic drugs and tyrosine kinase inhibitors in human malignancies. YES1 undergoes post-translational modifications, such as lipidation and nitrosylation, which can modulate its catalytic activity, subcellular localization, and binding affinity for substrate proteins. Therefore, we investigated the diverse mechanisms governing YES1 activation and its impact on critical intracellular signal transduction pathways. We emphasized the function of YES1 as a potential mechanism contributing to the anticancer drug resistance emergence.
Collapse
Affiliation(s)
- Eunjin Kook
- Department of Chemistry, Kyonggi University, Suwon 16227, Republic of Korea;
| | - Kyung-Soo Chun
- College of Pharmacy, Keimyung University, Daegu 42691, Republic of Korea;
| | - Do-Hee Kim
- Department of Chemistry, Kyonggi University, Suwon 16227, Republic of Korea;
| |
Collapse
|
46
|
Manzoor HB, Asare-Werehene M, Pereira SD, Satyamoorthy K, Tsang BK. The regulation of plasma gelsolin by DNA methylation in ovarian cancer chemo-resistance. J Ovarian Res 2024; 17:15. [PMID: 38216951 PMCID: PMC10785480 DOI: 10.1186/s13048-023-01332-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/22/2023] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND Ovarian cancer (OVCA) is the most lethal gynecologic cancer and chemoresistance remains a major hurdle to successful therapy and survival of OVCA patients. Plasma gelsolin (pGSN) is highly expressed in chemoresistant OVCA compared with their chemosensitive counterparts, although the mechanism underlying the differential expression is not known. Also, its overexpression significantly correlates with shortened survival of OVCA patients. In this study, we investigated the methylation role of Ten eleven translocation isoform-1 (TET1) in the regulation of differential pGSN expression and chemosensitivity in OVCA cells. METHODS Chemosensitive and resistant OVCA cell lines of different histological subtypes were used in this study to measure pGSN and TET1 mRNA abundance (qPCR) as well as protein contents (Western blotting). To investigate the role of DNA methylation specifically in pGSN regulation and pGSN-induced chemoresistance, DNMTs and TETs were pharmacologically inhibited in sensitive and resistant OVCA cells using specific inhibitors. DNA methylation was quantified using EpiTYPER MassARRAY system. Gain-and-loss-of-function assays were used to investigate the relationship between TET1 and pGSN in OVCA chemoresponsiveness. RESULTS We observed differential protein and mRNA expressions of pGSN and TET1 between sensitive and resistant OVCA cells and cisplatin reduced their expression in sensitive but not in resistant cells. We observed hypomethylation at pGSN promoter upstream region in resistant cells compared to sensitive cells. Pharmacological inhibition of DNMTs increased pGSN protein levels in sensitive OVCA cells and decreased their responsiveness to cisplatin, however we did not observe any difference in methylation level at pGSN promoter region. TETs inhibition resulted in hypermethylation at multiple CpG sites and decreased pGSN protein level in resistant OVCA cells which was also associated with enhanced response to cisplatin, findings that suggested the methylation role of TETs in the regulation of pGSN expression in OVCA cells. Further, we found that TET1 is inversely related to pGSN but positively related to chemoresponsiveness of OVCA cells. CONCLUSION Our findings broaden our knowledge about the epigenetic regulation of pGSN in OVCA chemoresistance and reveal a novel potential target to re-sensitize resistant OVCA cells. This may provide a future therapeutic strategy to improve the overall OVCA patient survival.
Collapse
Affiliation(s)
- Hafiza Bushra Manzoor
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Meshach Asare-Werehene
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
- Department of Obstetrics & Gynecology, & The Centre for Infection, Immunity and Inflammation (CI3), Faculty of Medicine & Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, K1H 8L1, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Satyajit Dey Pereira
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Kapaettu Satyamoorthy
- Shri Dharmasthala Manjunatheshwara University, Manjushree Block, Manjushree Nagar Sattur, Dharwad, Karnataka, 580 009, India
| | - Benjamin K Tsang
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada.
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
- Department of Obstetrics & Gynecology, & The Centre for Infection, Immunity and Inflammation (CI3), Faculty of Medicine & Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, K1H 8L1, Canada.
| |
Collapse
|
47
|
Lima EN, Lamichhane S, KC P, Ferreira ES, Koul S, Koul HK. Tetrandrine for Targeting Therapy Resistance in Cancer. Curr Top Med Chem 2024; 24:1035-1049. [PMID: 38445699 PMCID: PMC11259026 DOI: 10.2174/0115680266282360240222062032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 03/07/2024]
Abstract
During the last five decades, there has been tremendous development in our understanding of cancer biology and the development of new and novel therapeutics to target cancer. However, despite these advances, cancer remains the second leading cause of death across the globe. Most cancer deaths are attributed to the development of resistance to current therapies. There is an urgent and unmet need to address cancer therapy resistance. Tetrandrine, a bis-benzyl iso-quinoline, has shown a promising role as an anti-cancer agent. Recent work from our laboratory and others suggests that tetrandrine and its derivatives could be an excellent adjuvant to the current arsenal of anti-cancer drugs. Herein, we provide an overview of resistance mechanisms to current therapeutics and review the existing literature on the anti-cancer effects of tetrandrine and its potential use for overcoming therapy resistance in cancer.
Collapse
Affiliation(s)
- Ellen Nogueira Lima
- Department of Interdisciplinary Oncology, LSUHSC-New Orleans
- Southeast Louisiana Veterans Health Care System, New Orleans – LA
- LSU-LCMC Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Santosh Lamichhane
- Department of Interdisciplinary Oncology, LSUHSC-New Orleans
- Southeast Louisiana Veterans Health Care System, New Orleans – LA
- LSU-LCMC Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Pramod KC
- Department of Interdisciplinary Oncology, LSUHSC-New Orleans
- LSU-LCMC Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Elisa Silva Ferreira
- Brazilian Nanotechnology National Laboratory (LNNano) Brazilian Center for Research in Energy and Materials (CNPEM) Campinas, SP, Brazil
| | - Sweaty Koul
- Department of Interdisciplinary Oncology, LSUHSC-New Orleans
- Department of Urology, LSUHSC-New Orleans
- LSU-LCMC Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Hari K Koul
- Department of Interdisciplinary Oncology, LSUHSC-New Orleans
- Department of Biochemistry & Molecular Biology, LSUHSC-New Orleans
- Department of Urology, LSUHSC-New Orleans
- Southeast Louisiana Veterans Health Care System, New Orleans – LA
- LSU-LCMC Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
48
|
Fanale D, Corsini LR, Bono M, Randazzo U, Barraco N, Brando C, Cancelliere D, Contino S, Giurintano A, Magrin L, Pedone E, Perez A, Piraino P, Pivetti A, Giovanni ED, Russo TDB, Prestifilippo O, Gennusa V, Pantuso G, Russo A, Bazan V. Clinical relevance of exosome-derived microRNAs in Ovarian Cancer: Looking for new tumor biological fingerprints. Crit Rev Oncol Hematol 2024; 193:104220. [PMID: 38036154 DOI: 10.1016/j.critrevonc.2023.104220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023] Open
Abstract
Specific tumor-derived extracellular vesicles, called exosomes, are considered as potential key players in cross-talk between immune system and tumor microenvironment in several solid tumors. Different studies highlighted the clinical relevance of exosomes in ovarian cancer (OC) for their role in early diagnosis, prognosis, chemoresistance, targeted therapy. The exosomes are nanosize vesicles carrying lipids, proteins, and nucleic acids. In particular, exosomes shuttle a wide spectrum of microRNAs (miRNAs) able to induce phenotypic reprogramming of target cells, contributing to tumor progression. In this review, we will discuss the promising role of miRNAs shuttled by exosomes, called exosomal miRNAs (exo-miRNAs), as potential biomarkers for early detection, tumour progression and metastasis, prognosis, and response to therapy in OC women, in order to search for new potential biological fingerprints able to better characterize the evolution of this malignancy and provide a clinically relevant non-invasive approach useful for adopting, in future, personalized therapeutic strategies.
Collapse
Affiliation(s)
- Daniele Fanale
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Lidia Rita Corsini
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Marco Bono
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Ugo Randazzo
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Nadia Barraco
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Chiara Brando
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Daniela Cancelliere
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Silvia Contino
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Ambra Giurintano
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Luigi Magrin
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Erika Pedone
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Alessandro Perez
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Paola Piraino
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Alessia Pivetti
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Emilia Di Giovanni
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Tancredi Didier Bazan Russo
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Ornella Prestifilippo
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Vincenzo Gennusa
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Gianni Pantuso
- Division of General and Oncological Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Antonio Russo
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy.
| | - Viviana Bazan
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
49
|
Luo Q, Li X, Meng Z, Rong H, Li Y, Zhao G, Zhu H, Cen L, Liao Q. Identification of hypoxia-related gene signatures based on multi-omics analysis in lung adenocarcinoma. J Cell Mol Med 2024; 28:e18032. [PMID: 38013642 PMCID: PMC10826438 DOI: 10.1111/jcmm.18032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/29/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is the most common type of lung cancer and one of the malignancies with the highest incidence rate and mortality worldwide. Hypoxia is a typical feature of tumour microenvironment (TME), which affects the progression of LUAD from multiple molecular levels. However, the underlying molecular mechanisms behind LUAD hypoxia are not fully understood. In this study, we estimated the level of hypoxia by calculating a score based on 15 hypoxia genes. The hypoxia scores were relatively high in LUAD patients with poor prognosis and were bound up with tumour node metastasis (TNM) stage, tumour size, lymph node, age and gender. By comparison of high hypoxia score group and low hypoxia score group, 1820 differentially expressed genes were identified, among which up-regulated genes were mainly about cell division and proliferation while down-regulated genes were primarily involved in cilium-related biological processes. Besides, LUAD patients with high hypoxia scores had higher frequencies of gene mutations, among which TP53, TTN and MUC16 had the highest mutation rates. As for DNA methylation, 1015 differentially methylated probes-related genes were found and may play potential roles in tumour-related neurobiological processes and cell signal transduction. Finally, a prognostic model with 25 multi-omics features was constructed and showed good predictive performance. The area under curve (AUC) values of 1-, 3- and 5-year survival reached 0.863, 0.826 and 0.846, respectively. Above all, our findings are helpful in understanding the impact and molecular mechanisms of hypoxia in LUAD.
Collapse
Affiliation(s)
- Qineng Luo
- School of Public HealthHealth Science CenterNingbo UniversityNingboZhejiangP. R. China
| | - Xing Li
- School of Public HealthHealth Science CenterNingbo UniversityNingboZhejiangP. R. China
| | - Zixing Meng
- School of Public HealthHealth Science CenterNingbo UniversityNingboZhejiangP. R. China
| | - Hao Rong
- School of Public HealthHealth Science CenterNingbo UniversityNingboZhejiangP. R. China
| | - Yanguo Li
- School of Public HealthHealth Science CenterNingbo UniversityNingboZhejiangP. R. China
| | - Guofang Zhao
- Department of Thoracic SurgeryHwa Mei HospitalUniversity of Chinese Academy of SciencesNingboZhejiangP. R. China
| | - Huangkai Zhu
- Department of Thoracic SurgeryHwa Mei HospitalUniversity of Chinese Academy of SciencesNingboZhejiangP. R. China
| | - Lvjun Cen
- The First Affiliated HospitalNingbo UniversityNingboZhejiangP. R. China
| | - Qi Liao
- School of Public HealthHealth Science CenterNingbo UniversityNingboZhejiangP. R. China
- The First Affiliated HospitalNingbo UniversityNingboZhejiangP. R. China
| |
Collapse
|
50
|
Yazdan M, Naghib SM, Mozafari MR. Liposomal Nano-Based Drug Delivery Systems for Breast Cancer Therapy: Recent Advances and Progresses. Anticancer Agents Med Chem 2024; 24:896-915. [PMID: 38529608 DOI: 10.2174/0118715206293653240322041047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/27/2024]
Abstract
Breast cancer is a highly prevalent disease on a global scale, with a 30% incidence rate among women and a 14% mortality rate. Developing countries bear a disproportionate share of the disease burden, while countries with greater technological advancements exhibit a higher incidence. A mere 7% of women under the age of 40 are diagnosed with breast cancer, and the prevalence of this ailment is significantly diminished among those aged 35 and younger. Chemotherapy, radiation therapy, and surgical intervention comprise the treatment protocol. However, the ongoing quest for a definitive cure for breast cancer continues. The propensity for cancer stem cells to metastasize and resistance to treatment constitute their Achilles' heel. The advancement of drug delivery techniques that target cancer cells specifically holds significant promise in terms of facilitating timely detection and effective intervention. Novel approaches to pharmaceutical delivery, including nanostructures and liposomes, may bring about substantial changes in the way breast cancer is managed. These systems offer a multitude of advantages, such as heightened bioavailability, enhanced solubility, targeted tumor destruction, and diminished adverse effects. The application of nano-drug delivery systems to administer anti-breast cancer medications is a significant subject of research. This article delves into the domain of breast cancer, conventional treatment methods, the incorporation of nanotechnology into managerial tactics, and strategic approaches aimed at tackling the disease at its core.
Collapse
Affiliation(s)
- Mostafa Yazdan
- Department of Nanotechnology, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, 1684613114, Iran
| | - Seyed Morteza Naghib
- Department of Nanotechnology, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, 1684613114, Iran
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|