1
|
Reid G, Williams M, Cheng YY, Sarun K, Winata P, Kirschner MB, Mugridge N, Weiss J, Molloy M, Brahmbhatt H, MacDiarmid J, van Zandwijk N. Therapeutic potential of synthetic microRNA mimics based on the miR-15/107 consensus sequence. Cancer Gene Ther 2025:10.1038/s41417-025-00885-w. [PMID: 40121357 DOI: 10.1038/s41417-025-00885-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 02/11/2025] [Accepted: 03/06/2025] [Indexed: 03/25/2025]
Abstract
MicroRNA expression is frequently suppressed in cancer, and previously we demonstrated coordinate downregulation of multiple related microRNAs of the miR-15/107 group in malignant pleural mesothelioma (PM). From an alignment of the miR-15 family and the related miR-103/107, we derived a consensus sequence and used this to generate synthetic mimics. The synthetic mimics displayed tumour suppressor activity in PM cells in vitro, which was greater than that of a mimic based on the native miR-16 sequence. These mimics were also growth inhibitory in cells from non-small cell lung (NSCLC), prostate, breast and colorectal cancer, and sensitised all cell lines to the chemotherapeutic drug gemcitabine. The increased activity corresponded to enhanced inhibition of the expression of target genes and was associated with an increase in predicted binding to target sites, and proteomic analysis revealed a strong effect on proteins involved in RNA and DNA processes. Applying the novel consensus mimics to xenograft models of PM and NSCLC in vivo using EGFR-targeted nanocells loaded with mimic led to tumour growth inhibition. These results suggest that mimics based on the consensus sequence of the miR-15/107 group have therapeutic potential in a range of cancer types.
Collapse
Affiliation(s)
- Glen Reid
- Asbestos and Dust Diseases Research Institute (ADDRI), Sydney, NSW, Australia.
- School of Medicine, University of Sydney, Sydney, NSW, Australia.
- Department of Pathology, University of Otago, Dunedin, New Zealand.
| | - Marissa Williams
- Asbestos and Dust Diseases Research Institute (ADDRI), Sydney, NSW, Australia
- School of Medicine, University of Sydney, Sydney, NSW, Australia
| | - Yuen Yee Cheng
- Asbestos and Dust Diseases Research Institute (ADDRI), Sydney, NSW, Australia
- School of Medicine, University of Sydney, Sydney, NSW, Australia
- Institute for Biomedical Materials and Devices (IBMD), University of Technology Sydney, Sydney, Australia
| | - Kadir Sarun
- Asbestos and Dust Diseases Research Institute (ADDRI), Sydney, NSW, Australia
| | - Patrick Winata
- Asbestos and Dust Diseases Research Institute (ADDRI), Sydney, NSW, Australia
| | - Michaela B Kirschner
- Asbestos and Dust Diseases Research Institute (ADDRI), Sydney, NSW, Australia
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | | | | | - Mark Molloy
- The Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
2
|
Tavares NT, Henrique R, Jerónimo C, Lobo J. Current Role of MicroRNAs in the Diagnosis and Clinical Management of Germ Cell Tumors. Surg Pathol Clin 2025; 18:91-100. [PMID: 39890312 DOI: 10.1016/j.path.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Abstract
Germ cell tumors (GCTs) are a rare and heterogeneous group of neoplasms arising from primitive germ cells. MicroRNAs are small noncoding RNAs that have emerged as potential cancer biomarkers in the last decade. In particular, miR-371a-3p has shown good diagnostic performance for germ cell neoplasia in situ-derived testicular GCTs in several well-established cohorts and is expected to enter the clinical arena in the near future. GCTs universally exhibit high expression of miR-371-373 and miR-302/367 clusters and low expression of let-7 family miRNAs. Further studies are needed to assess the potential role of these miRNAs as biomarkers of ovarian and extragonadal GCTs.
Collapse
Affiliation(s)
- Nuno Tiago Tavares
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (P.CCC) & CI-IPOP@RISE (Health Research Network), IPO Porto, Research Center, CI-LAB3, 1st Floor, F Building. Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; Doctoral Programme in Biomedical Sciences, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, Porto 4050-513, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (P.CCC) & CI-IPOP@RISE (Health Research Network), IPO Porto, Research Center, CI-LAB3, 1st Floor, F Building. Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; Department of Pathology and Molecular Immunology, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, Porto 4050-513, Portugal; Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (P.CCC), R. Dr. António Bernardino de Almeida, Porto 4200-072, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (P.CCC) & CI-IPOP@RISE (Health Research Network), IPO Porto, Research Center, CI-LAB3, 1st Floor, F Building. Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; Department of Pathology and Molecular Immunology, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, Porto 4050-513, Portugal
| | - João Lobo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (P.CCC) & CI-IPOP@RISE (Health Research Network), IPO Porto, Research Center, CI-LAB3, 1st Floor, F Building. Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; Department of Pathology and Molecular Immunology, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, Porto 4050-513, Portugal; Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (P.CCC), R. Dr. António Bernardino de Almeida, Porto 4200-072, Portugal.
| |
Collapse
|
3
|
Zeng J, Tong S, Liu J, Liu S, Mungur R, Chen S. MiR-433 inhibits cell invasion of glioblastoma via direct targeting TRPM8 based on bioinformatic analysis and experimental validation. Gene 2025; 936:149121. [PMID: 39581355 DOI: 10.1016/j.gene.2024.149121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 11/13/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Understanding the essential role of miRNA in regulating cell invasion in glioblastoma opens up new avenues for targeted therapeutic interventions in the future. By screening out eligible miRNA expression data sets from the GEO database, the WGCNA package based on the R language is further used to construct a co-expression network model of the chip data set, to identify modules related to disease states and perform pivotal miRNA screening on the related modules. The target relationship between miRNA and TRPM8 was verified by bioinformatics and luciferase gene report, and the effect of miRNA overexpression on TRPM8 protein level was analyzed by Western blot. The result of miR-433 overexpression on the invasion ability of glioblastoma cells in vitro was examined by scratch test and Transwell invasion test. The results of this study indicate that the selected target miR-433 has a strong binding relationship with TRPM8 and can effectively regulate its expression. Furthermore, overexpression of miR-433 was found to inhibit the invasion ability of glioblastoma cells by targeting TRPM8. These data demonstrate that miR-433 can target TRPM8 to inhibit glioblastoma cell invasion.
Collapse
Affiliation(s)
- Jianping Zeng
- Department of Neurosurgery, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University. Nanchang 330006, Jiangxi Province, PR China.
| | - Shoufang Tong
- Department of Transfusion Medicine, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People's Hospital) Hangzhou Medical College, Taizhou, Zhejiang, PR China
| | - Jing Liu
- Department of Pharmacy, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University. Nanchang 330006, Jiangxi Province, PR China
| | - Shuai Liu
- Department of Neurosurgery, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University. Nanchang 330006, Jiangxi Province, PR China
| | - Rajneesh Mungur
- Department of Neurosurgery, The First Affiliated Hospital of Zhejiang University, Hangzhou 310000, Zhejiang Province, PR China
| | - Shangshi Chen
- Department of Neurosurgery, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University. Nanchang 330006, Jiangxi Province, PR China.
| |
Collapse
|
4
|
Shang Z, Ding D, Deng Z, Zhao J, Yang M, Xiao Y, Chu W, Xu S, Zhang Z, Yi X, Lin M, Xia F. Programming the Dynamic Range of Nanochannel Biosensors for MicroRNA Detection Through Allosteric DNA Probes. Angew Chem Int Ed Engl 2025; 64:e202417280. [PMID: 39494980 DOI: 10.1002/anie.202417280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/29/2024] [Accepted: 11/04/2024] [Indexed: 11/05/2024]
Abstract
Solid-state nanochannel biosensors are extensively utilized for microRNA (miRNA) detection owing to their high sensitivity and rapid response. However, conventional nanochannel biosensors face limitations in their fixed dynamic range, restricting their versatility and efficacy. Herein, we introduce tunable triblock DNA probes with varying affinities for target miRNA to engineer solid-state nanochannel biosensors capable of customizable dynamic range adjustment. The triblock DNA architecture comprises a poly-adenine (polyA) block for adjustable surface density anchoring, alongside stem and loop blocks for modulating structural stability. Through systematic manipulation of these blocks, we demonstrate the ability to achieve diverse target binding affinities and detection limits, achieving an initial 81-fold dynamic range. By combining probes with various affinities, we extend this dynamic range significantly to 10,900-fold. Furthermore, by implementing a sequestration mechanism, the effective dynamic range of the nanochannel biosensor is narrowed to only a 3-fold span of target concentrations. The customizable dynamic range of these advanced nanochannel biosensors makes them highly promising for a broad spectrum of biomedical and clinical applications.
Collapse
Affiliation(s)
- Zhiwei Shang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Defang Ding
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Zixuan Deng
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Jing Zhao
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Mengyu Yang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Yuling Xiao
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Wenjing Chu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Shijun Xu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Zhicheng Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Xiaoqing Yi
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, China
| | - Meihua Lin
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
5
|
Saadh MJ, Bishoyi AK, Ballal S, Singh A, Kareem RA, Devi A, Sharma GC, Naidu KS, Sead FF. MicroRNAs as behind-the-scenes molecules in breast cancer metastasis and their therapeutic role through novel microRNA-based delivery strategies. Gene 2025; 944:149272. [PMID: 39894085 DOI: 10.1016/j.gene.2025.149272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 01/20/2025] [Indexed: 02/04/2025]
Abstract
Breast cancer is the primary cause of cancer-related death and the most frequent malignancy among women in Western countries. Although there have been advancements in combination treatments and targeted therapies for the metastatic diseases management, metastatic breast cancer is still the second most common cause of cancer-related deaths among U.S. women. The routes of metastasis encompass invasion, intravasation, circulation, extravasation, infiltration into a remote location to establish a metastatic niche, and the formation of micro-metastases in a new environment. Each of these processes is regulated by changes in gene expression. MicroRNAs (miRNAs) are widely expressed by a variety of organisms and have a key role in cell activities including suppressing or promoting cancer through regulating various pathways. Target gene expression is post-transcriptionally regulated by miRNAs, which contribute to the development, spread, and metastasis of breast cancer. In this study, we comprehensively discussed the role of miRNAs as predictors of breast cancer metastasis, their correlation with the spread of the disease to certain organs, and their potential application as targets for breast cancer treatment. We also provided molecular mechanisms of miRNAs in the progression of breast cancer, as well as current challenges in miRNA-based therapeutic approaches. Furthermore, as one of the primary issues with the treatment of solid malignancies is the efficient delivery of miRNAs, we examined a number of cutting-edge carriers for miRNA-based therapies and CRISPR/Cas9 as a targeted therapy for breast cancer.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan.
| | - Ashok Kumar Bishoyi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot 360003, Gujarat, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Abhayveer Singh
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India
| | | | - Anita Devi
- Department of Chemistry Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307, Punjab, India
| | - Girish Chandra Sharma
- Department of Applied Sciences-Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - K Satyam Naidu
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Fadhil Faez Sead
- Department of Dentistry, College of Dentistry, The Islamic University, Najaf, Iraq; Department of Medical Analysis, Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
| |
Collapse
|
6
|
Singh A, Prabhu J, Vanni S. RNA Order Regulates Its Interactions with Zwitterionic Lipid Bilayers. NANO LETTERS 2025; 25:77-83. [PMID: 39719269 PMCID: PMC11719626 DOI: 10.1021/acs.nanolett.4c04153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/26/2024]
Abstract
RNA-lipid interactions directly influence RNA activity, which plays a crucial role in the development of new applications in medicine and biotechnology. However, while specific preferential behaviors between RNA and lipid bilayers have been identified experimentally, their molecular origin remains unexplored. Here we use molecular dynamics simulations to investigate the interaction between RNA and membranes composed of zwitterionic lipids at the atomistic level. Our data reproduce and rationalize previous experimental observations, including that short-chain RNAs rich in guanine have a higher affinity for gel-phase membranes compared to RNA sequences rich in other nucleotides and that RNA prefers gel-phase membranes to fluid bilayers. Our simulations reveal that RNA order is a key molecular determinant of RNA-zwitterionic phospholipid interactions. Our data provide a wealth of information at the atomic level that will help accelerate research on RNA-lipid assemblies for task-specific applications such as designing lipid-based nanocarriers for RNA delivery.
Collapse
Affiliation(s)
- Akhil
Pratap Singh
- Department
of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | - Janak Prabhu
- Department
of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | - Stefano Vanni
- Department
of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
- Swiss
National Center for Competence in Research (NCCR) Bio-inspired Materials, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| |
Collapse
|
7
|
Zhu J, Xiao H, Li C, Li X, Zheng J, Yao X, Wang S, Zhu X. PDLIM1, a novel miR-3940-5p target, regulates the malignant progression of diffuse large B-cell lymphoma. Cancer Biol Ther 2024; 25:2429175. [PMID: 39564935 PMCID: PMC11581179 DOI: 10.1080/15384047.2024.2429175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 09/24/2024] [Accepted: 11/10/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND PDZ And LIM domain protein 1 (PDLIM1), a protein-coding gene, has been widely reported to exhibit differential expression patterns across various human cancers, including hematological malignancies. This study aimed to investigate PDLIM1 expression pattern and its functional role in diffuse large B-cell lymphoma (DLBCL) both in vitro and in vivo. METHODS PDLIM1 expression patterns were reanalyzed using data from the Gene Expression Omnibus, and the results were subsequently validated in patient tissue samples and a panel of four DLBCL cell lines. MicroRNA-3940-5p (miR-3940-5p) was identified as an upstream regulator of PDLIM1. The interaction between PDLIM1 and miR-3940-5p and its effects on DLBCL cellular activities and cancer development were further explored using a DLBCL mouse model. RESULTS Elevated PDLIM1 expression was observed in DLBCL cells and tissues. Reduced cell proliferation and increased DLBCL cell apoptosis were observed following the knockdown of this gene. Furthermore, short hairpin RNA (shRNA)-mediated PDLIM1 knockdown diminished tumorigenesis of DLBCL cells in nude mice. miR-3940-5p was identified as an upstream regulator of PDLIM1. PDLIM1 expression and function were negatively modulated by the upregulation of miR-3940-5p, consequently affecting the malignant phenotype of DLBCL cells. CONCLUSION These findings suggest that the miR-3940-5p/PDLIM1 axis may play a crucial role in DLBCL pathogenesis and could potentially be exploited for therapeutic interventions.
Collapse
Affiliation(s)
- Jinfeng Zhu
- Department of Oncology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Huifang Xiao
- Department of Hematology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian Province, China
| | - Chuntuan Li
- Department of Hematology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian Province, China
| | - Xiaofeng Li
- Department of Oncology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Jinyang Zheng
- Department of Pathology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian Province, China
| | - Xihu Yao
- Department of Pathology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian Province, China
| | - Shaoxiong Wang
- Department of Hematology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian Province, China
| | - Xiongpeng Zhu
- Department of Hematology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian Province, China
| |
Collapse
|
8
|
Gao K, Zhou T, Yin Y, Sun X, Jiang H, Li T. Atorvastatin inhibits glioma glycolysis and immune escape by modulating the miR-125a-5p/TXLNA axis. Hereditas 2024; 161:54. [PMID: 39726023 DOI: 10.1186/s41065-024-00349-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/12/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Conventional treatments, including surgery, radiotherapy and chemotherapy, have many limitations in the prognosis of glioma patients. Atorvastatin (ATOR) has a significant inhibitory effect on glioma malignancy. Thus, ATOR may play a key role in the search for new drugs for the effective treatment of gliomas. METHODS U87 cells were treated with different doses of ATOR and transfected. Viability was assessed using MTT, proliferative ability was determined using the colony formation test, Bax and Bcl-2 were identified using Western blot, apoptosis was identified using flow cytometry, and U87 cell migration and invasion were detected using the Transwell assay. Glucose uptake, lactate secretion, and ATP production in U87 cell culture medium were quantified. The positive rates of IFN-γ and TNF-α in CD8T were measured through flow cytometry. Subcutaneous injection of U87 cells was carried out to construct an in vivo mouse model of gliom, followed by HE staining to assess the effects of ATOR and miR-125a-5p on tumor development. RESULTS ATOR blocked the viability, proliferation, migration, and invasion of U87 cells through the miR-125a-5p/TXLNA axis, and suppressed glycolysis and immune escape of glioma cells. Furthermore, overexpressing miR-125a-5p enhanced the anti-tumor effect of ATOR in vivo. CONCLUSION ATOR blocks glioma progression by modulating the miR-125a-5p/TXLNA axis, further demonstrating that ATOR provides an effective therapeutic target for the treatment of glioma.
Collapse
Affiliation(s)
- Kang Gao
- Department of Neurosurgery, Central Hospital of Zibo, Zibo City, Shandong Province, 255000, China
| | - Tao Zhou
- Department of Neurosurgery, Central Hospital of Zibo, Zibo City, Shandong Province, 255000, China
| | - YingChun Yin
- Department of Pathology, Central Hospital of Zibo, No.54, Communist Youth League West Road, Zhangdian District, Zibo City, Shandong Province, 255000, China
| | - XiaoJie Sun
- Department of Pathology, Central Hospital of Zibo, No.54, Communist Youth League West Road, Zhangdian District, Zibo City, Shandong Province, 255000, China
| | - HePing Jiang
- Department of Neurosurgery, Central Hospital of Zibo, Zibo City, Shandong Province, 255000, China
| | - TangYue Li
- Department of Pathology, Central Hospital of Zibo, No.54, Communist Youth League West Road, Zhangdian District, Zibo City, Shandong Province, 255000, China.
| |
Collapse
|
9
|
Yin R, Zhao H, Li L, Yang Q, Zeng M, Yang C, Bian J, Xie M. Gra-CRC-miRTar: The pre-trained nucleotide-to-graph neural networks to identify potential miRNA targets in colorectal cancer. Comput Struct Biotechnol J 2024; 23:3020-3029. [PMID: 39171252 PMCID: PMC11338065 DOI: 10.1016/j.csbj.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/13/2024] [Accepted: 07/13/2024] [Indexed: 08/23/2024] Open
Abstract
Colorectal cancer (CRC) is the third most diagnosed cancer and the second deadliest cancer worldwide representing a major public health problem. In recent years, increasing evidence has shown that microRNA (miRNA) can control the expression of targeted human messenger RNA (mRNA) by reducing their abundance or translation, acting as oncogenes or tumor suppressors in various cancers, including CRC. Due to the significant up-regulation of oncogenic miRNAs in CRC, elucidating the underlying mechanism and identifying dysregulated miRNA targets may provide a basis for improving current therapeutic interventions. In this paper, we proposed Gra-CRC-miRTar, a pre-trained nucleotide-to-graph neural network framework, for identifying potential miRNA targets in CRC. Different from previous studies, we constructed two pre-trained models to encode RNA sequences and transformed them into de Bruijn graphs. We employed different graph neural networks to learn the latent representations. The embeddings generated from de Bruijn graphs were then fed into a Multilayer Perceptron (MLP) to perform the prediction tasks. Our extensive experiments show that Gra-CRC-miRTar achieves better performance than other deep learning algorithms and existing predictors. In addition, our analyses also successfully revealed 172 out of 201 functional interactions through experimentally validated miRNA-mRNA pairs in CRC. Collectively, our effort provides an accurate and efficient framework to identify potential miRNA targets in CRC, which can also be used to reveal miRNA target interactions in other malignancies, facilitating the development of novel therapeutics. The Gra-CRC-miRTar web server can be found at: http://gra-crc-mirtar.com/.
Collapse
Affiliation(s)
- Rui Yin
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, USA
| | - Hongru Zhao
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, USA
| | - Lu Li
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| | - Qiang Yang
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, USA
| | - Min Zeng
- School of Computer Science and Engineering, Central South University, Changsha, Hunan, China
| | - Carl Yang
- Department of Computer Science, Emory University, Atlanta, GA, USA
| | - Jiang Bian
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, USA
| | - Mingyi Xie
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
10
|
Koumpis E, Georgoulis V, Papathanasiou K, Papoudou-Bai A, Kanavaros P, Kolettas E, Hatzimichael E. The Role of microRNA-155 as a Biomarker in Diffuse Large B-Cell Lymphoma. Biomedicines 2024; 12:2658. [PMID: 39767565 PMCID: PMC11673977 DOI: 10.3390/biomedicines12122658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
Diffuse Large B-cell Lymphoma (DLBCL) is the most common aggressive non-Hodgkin lymphoma (NHL). Despite the use of newer agents, such as polatuzumab vedotin, more than one-third of patients have ultimately relapsed or experienced refractory disease. MiRNAs are single-stranded, ~22-nucleotide-long RNAs that interact with their target RNA. They are significant regulators of post-transcriptional gene expression. One significant miRNA, miR-155, is involved in the pathophysiology of DLBCL and it is a critical modulator of hematopoiesis, inflammation, and immune responses. Targets of miR-155, such as histone deacetylase 4 (HDAC4), suppressor of cytokine signaling-1 (SOCS1) and immune cells, play a crucial role in DLBCL pathogenesis, since miR-155 regulates key pathways, transcription factors and cytokine expression and shapes the tumor microenvironment in DLBCL. In this review, we examine the role of miR-155 in DLBCL and its potential as a future diagnostic, prognostic, or predictive biomarker.
Collapse
Affiliation(s)
- Epameinondas Koumpis
- Department of Hematology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45500 Ioannina, Greece; (E.K.); (V.G.); (K.P.)
| | - Vasileios Georgoulis
- Department of Hematology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45500 Ioannina, Greece; (E.K.); (V.G.); (K.P.)
| | - Konstantina Papathanasiou
- Department of Hematology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45500 Ioannina, Greece; (E.K.); (V.G.); (K.P.)
| | - Alexandra Papoudou-Bai
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45500 Ioannina, Greece;
| | - Panagiotis Kanavaros
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| | - Evangelos Kolettas
- Laboratory of Biology, Faculty of Medicine, School of Health Sciences, Institute of Biosciences, University Centre for Research and Innovation, University of Ioannina, 45110 Ioannina, Greece;
- Biomedical Research Institute, Foundation for Research and Technology, 45110 Ioannina, Greece
| | - Eleftheria Hatzimichael
- Department of Hematology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45500 Ioannina, Greece; (E.K.); (V.G.); (K.P.)
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
11
|
Shah Hosseini R, Nouri SM, Bansal P, Hjazi A, Kaur H, Hussein Kareem A, Kumar A, Al Zuhairi RAH, Al-Shaheri NA, Mahdavi P. The p53/miRNA Axis in Breast Cancer. DNA Cell Biol 2024; 43:549-558. [PMID: 39423159 DOI: 10.1089/dna.2024.0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024] Open
Abstract
One of the main health issues in the modern world is cancer, with breast cancer (BC) as one of the most common types of malignancies. Different environmental and genetic risk factors are involved in the development of BC. One of the primary genes implicated in cancer development is the p53 gene, which is also known as the "gatekeeper" gene. p53 is involved in cancer development by interacting with numerous pathways and signaling factors, including microRNAs (miRNAs). miRNAs are small noncoding RNA molecules that regulate gene expression by binding to the 3' untranslated region of target mRNAs, resulting in their translational inhibition or degradation. If the p53 gene is mutated or degraded, it can contribute to the risk of BC by disrupting the expression of miRNAs. Similarly, the disruption of miRNAs causes the negative regulation of p53. Therefore, the p53/miRNA axis is a crucial pathway in the progression or prevention of BC, and understanding the regulation and function of this pathway may contribute to the development of new therapeutic strategies to help treat BC.
Collapse
Affiliation(s)
| | | | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, India
| | | | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named after the First President of Russia Boris Yeltsin, Ekaterinburg, Russia
| | | | | | - Parya Mahdavi
- Department of Obstetrics and Gynecology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
12
|
Di Brina ALP, Palmieri O, Cannarozzi AL, Tavano F, Guerra M, Bossa F, Gentile M, Merla A, Biscaglia G, Cuttitta A, Perri F, Latiano A. Focus on Achalasia in the Omics Era. Int J Mol Sci 2024; 25:10148. [PMID: 39337632 PMCID: PMC11431880 DOI: 10.3390/ijms251810148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Achalasia is a rare and complex esophageal disease of unknown etiology characterized by difficulty in swallowing due to the lack of opening of the lower esophageal sphincter and the absence of esophageal peristalsis. Recent advancements in technology for analyzing DNA, RNA and biomolecules in high-throughput techniques are offering new opportunities to better understand the etiology and the pathogenetic mechanisms underlying achalasia. Through this narrative review of the scientific literature, we aim to provide a comprehensive assessment of the state-of-the-art knowledge on omics of achalasia, with particular attention to those considered relevant to the pathogenesis of the disease. The notion and importance of the multi-omics approach, its limitations and future directions are also introduced, and it is highlighted how the integration of single omics data will lead to new insights into the development of achalasia and offer clinical tools which will allow early diagnosis and better patient management.
Collapse
Affiliation(s)
- Anna Laura Pia Di Brina
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (A.L.P.D.B.); (O.P.); (A.L.C.); (F.T.); (M.G.); (F.B.); (M.G.); (A.M.); (G.B.); (F.P.)
| | - Orazio Palmieri
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (A.L.P.D.B.); (O.P.); (A.L.C.); (F.T.); (M.G.); (F.B.); (M.G.); (A.M.); (G.B.); (F.P.)
| | - Anna Lucia Cannarozzi
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (A.L.P.D.B.); (O.P.); (A.L.C.); (F.T.); (M.G.); (F.B.); (M.G.); (A.M.); (G.B.); (F.P.)
| | - Francesca Tavano
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (A.L.P.D.B.); (O.P.); (A.L.C.); (F.T.); (M.G.); (F.B.); (M.G.); (A.M.); (G.B.); (F.P.)
| | - Maria Guerra
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (A.L.P.D.B.); (O.P.); (A.L.C.); (F.T.); (M.G.); (F.B.); (M.G.); (A.M.); (G.B.); (F.P.)
| | - Fabrizio Bossa
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (A.L.P.D.B.); (O.P.); (A.L.C.); (F.T.); (M.G.); (F.B.); (M.G.); (A.M.); (G.B.); (F.P.)
| | - Marco Gentile
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (A.L.P.D.B.); (O.P.); (A.L.C.); (F.T.); (M.G.); (F.B.); (M.G.); (A.M.); (G.B.); (F.P.)
| | - Antonio Merla
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (A.L.P.D.B.); (O.P.); (A.L.C.); (F.T.); (M.G.); (F.B.); (M.G.); (A.M.); (G.B.); (F.P.)
| | - Giuseppe Biscaglia
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (A.L.P.D.B.); (O.P.); (A.L.C.); (F.T.); (M.G.); (F.B.); (M.G.); (A.M.); (G.B.); (F.P.)
| | - Antonello Cuttitta
- Unit of Thoracic Surgery, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy;
| | - Francesco Perri
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (A.L.P.D.B.); (O.P.); (A.L.C.); (F.T.); (M.G.); (F.B.); (M.G.); (A.M.); (G.B.); (F.P.)
| | - Anna Latiano
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (A.L.P.D.B.); (O.P.); (A.L.C.); (F.T.); (M.G.); (F.B.); (M.G.); (A.M.); (G.B.); (F.P.)
| |
Collapse
|
13
|
Li M, Li J, Zheng H, Liu M, Zhou H, Zhang L, Zhang H, Shen Q. Dark-field imaging and fluorescence dual-mode detection of microRNA-21 in living cells by core-satellite plasmonic nanoprobes. Talanta 2024; 273:125936. [PMID: 38503126 DOI: 10.1016/j.talanta.2024.125936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
The in situ precise quantification and simultaneous imaging of low abundance microRNAs (miRNAs) within living cells is critical for cancer diagnosis, yet it remains a significant challenge. Leveraging the excellent sensitivity and spatiotemporal resolution of dark-field microscopy (DFM) and fluorescence imaging, we have successfully devised a novel detection approach using dual-signal reporter probes (DSRPs). These probes allow for highly sensitive detection of miRNA-21 in living cells via toehold-mediated strand displacement cascades. The DSRPs were constructed by Au nanoparticles and Ag nanoclusters core-satellite nanostructures. After the recognition of miRNA-21, the strand displacement cascades were triggered, inducing the disassembly of the Au/Ag core-satellite nanostructure with apparent scattering intensity decrease and peak wavelength shifts. Additionally, the fluorescence of Ag clusters could be recovered and further enhanced when in close proximity to specific guanine-rich strands. The dual-signal response capability enables the accurate detection of miRNA-21 from 1 fM to 1 nM, with a limit of detection reached 0.75 fM. DFM and fluorescent imaging of living cells efficiently confirms the applicable detection of miRNA-21 in complex detection media. The biosensor based on DSRPs represents a promising nanoplatform for visual monitoring and imaging of biomolecules in living cells, even at the single particle level.
Collapse
Affiliation(s)
- Meixing Li
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing, 210023, China.
| | - Jiaxin Li
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Haitao Zheng
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Mengwei Liu
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Huiyu Zhou
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Lei Zhang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Hui Zhang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Qingming Shen
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing, 210023, China.
| |
Collapse
|
14
|
Kadry MO, Abdel-Megeed RM. CRISPR-Cas9 genome and long non-coding RNAs as a novel diagnostic index for prostate cancer therapy via liposomal-coated compounds. PLoS One 2024; 19:e0302264. [PMID: 38723038 PMCID: PMC11081254 DOI: 10.1371/journal.pone.0302264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/31/2024] [Indexed: 05/13/2024] Open
Abstract
CRISPR/Cas9 is a recently discovered genomic editing technique that altered scientist's sight in studying genes function. Cas9 is controlled via guide (g) RNAs, which match the DNA targeted in cleavage to modify the respective gene. The development in prostate cancer (PC) modeling directed not only to novel resources for recognizing the signaling pathways overriding prostate cell carcinoma, but it has also created a vast reservoir for complementary tools to examine therapies counteracting this type of cancer. Various cultured somatic rat models for prostate cancer have been developed that nearly mimic human prostate cancer. Nano-medicine can passively target cancer cells via increasing bioavailability and conjugation via specific legend, contributing to reduced systemic side-effects and increased efficacy. This article highlights liposomal loaded Nano-medicine as a potential treatment for prostate cancer and clarifies the CRISPR/Cas9 variation accompanied with prostate cancer. PC is induced experimentally in western rat model via ethinyl estradiol for 4 weeks and SC. dose of 3, 2'- dimethyl-4-aminobiphenyl estradiol (DAE) (50mg/kg) followed by treatment via targeted liposomal-coated compounds such as liposomal dexamethasone (DXM), liposomal doxorubicin (DOX) and liposomal Turmeric (TUR) (3mg/kg IP) for four weeks in a comparative study to their non-targeted analogue dexamethasone, doxorubicin and Turmeric. 3, 2'- dimethyl-4-aminobiphenylestradiol elicit prostate cancer in western rats within 5 months. Simultaneous supplementations with these liposomal compounds influence on prostate cancer; tumor markers were investigated via prostate-specific antigen (PSA), Nitric oxide (NOX) and CRISPR/Cas9 gene editing. Several long non-coding RNAs were reported to be deregulated in prostate cell carcinoma, including MALAT1. On the other hand, gene expression of apoptotic biomarkers focal adhesion kinase (AKT-1), phosphatidylinistol kinase (PI3K) and glycogen synthase kinase-3 (GSK-3) was also investigated and further confirming these results via histopathological examination. Liposomal loaded dexamethasone; doxorubicin and Turmeric can be considered as promising therapeutic agents for prostate cancer via modulating CRISPR/Cas9 gene editing and long non coding gene MALAT1.
Collapse
Affiliation(s)
- Mai O. Kadry
- Therapeutic Chemistry Department, National Research Center, Al Bhoouth Street, Cairo, Egypt
| | - Rehab M. Abdel-Megeed
- Therapeutic Chemistry Department, National Research Center, Al Bhoouth Street, Cairo, Egypt
| |
Collapse
|
15
|
Yin R, Zhao H, Li L, Yang Q, Zeng M, Yang C, Bian J, Xie M. Gra-CRC-miRTar: The pre-trained nucleotide-to-graph neural networks to identify potential miRNA targets in colorectal cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589599. [PMID: 38659732 PMCID: PMC11042274 DOI: 10.1101/2024.04.15.589599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Colorectal cancer (CRC) is the third most diagnosed cancer and the second deadliest cancer worldwide representing a major public health problem. In recent years, increasing evidence has shown that microRNA (miRNA) can control the expression of targeted human messenger RNA (mRNA) by reducing their abundance or translation, acting as oncogenes or tumor suppressors in various cancers, including CRC. Due to the significant up-regulation of oncogenic miRNAs in CRC, elucidating the underlying mechanism and identifying dysregulated miRNA targets may provide a basis for improving current therapeutic interventions. In this paper, we proposed Gra-CRC-miRTar, a pre-trained nucleotide-to-graph neural network framework, for identifying potential miRNA targets in CRC. Different from previous studies, we constructed two pre-trained models to encode RNA sequences and transformed them into de Bruijn graphs. We employed different graph neural networks to learn the latent representations. The embeddings generated from de Bruijn graphs were then fed into a Multilayer Perceptron (MLP) to perform the prediction tasks. Our extensive experiments show that Gra-CRC-miRTar achieves better performance than other deep learning algorithms and existing predictors. In addition, our analyses also successfully revealed 172 out of 201 functional interactions through experimentally validated miRNA-mRNA pairs in CRC. Collectively, our effort provides an accurate and efficient framework to identify potential miRNA targets in CRC, which can also be used to reveal miRNA target interactions in other malignancies, facilitating the development of novel therapeutics.
Collapse
Affiliation(s)
- Rui Yin
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, USA
- These authors contributed equally
| | - Hongru Zhao
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, USA
- These authors contributed equally
| | - Lu Li
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| | - Qiang Yang
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, USA
| | - Min Zeng
- School of Computer Science and Engineering, Central South University, Changsha, Hunan, China
| | - Carl Yang
- Department of Computer Science, Emory University, Atlanta, GA, USA
| | - Jiang Bian
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, USA
| | - Mingyi Xie
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
16
|
Alden NA, Yeingst TJ, Pfeiffer HM, Celik N, Arrizabalaga JH, Helton AM, Liu Y, Stairs DB, Glick AB, Goyal N, Hayes DJ. Near-Infrared Induced miR-34a Delivery from Nanoparticles in Esophageal Cancer Treatment. Adv Healthc Mater 2024; 13:e2303593. [PMID: 38215360 PMCID: PMC11032112 DOI: 10.1002/adhm.202303593] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/21/2023] [Indexed: 01/14/2024]
Abstract
Current nucleic acid delivery methods have not achieved efficient, non-toxic delivery of miRNAs with tumor-specific selectivity. In this study, a new delivery system based on light-inducible gold-silver-gold, core-shell-shell (CSS) nanoparticles is presented. This system delivers small nucleic acid therapeutics with precise spatiotemporal control, demonstrating the potential for achieving tumor-specific selectivity and efficient delivery of miRNA mimics. The light-inducible particles leverage the photothermal heating of metal nanoparticles due to the local surface plasmonic resonance for controlled chemical cleavage and release of the miRNA mimic payload. The CSS morphology and composition result in a plasmonic resonance within the near-infrared (NIR) region of the light spectrum. Through this method, exogenous miR-34a-5p mimics are effectively delivered to human squamous cell carcinoma TE10 cells, leading to apoptosis induction without adverse effects on untransformed keratinocytes in vitro. The CSS nanoparticle delivery system is tested in vivo in Foxn1nu athymic nude mice with bilateral human esophageal TE10 cancer cells xenografts. These experiments reveal that this CSS nanoparticle conjugates, when systemically administered, followed by 850 nm light emitting diode irradiation at the tumor site, 6 h post-injection, produce a significant and sustained reduction in tumor volume, exceeding 87% in less than 72 h.
Collapse
Affiliation(s)
- Nick A. Alden
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Tyus J. Yeingst
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Hanna M. Pfeiffer
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Nazmiye Celik
- The Huck Institute of the Life SciencesMillennium Science ComplexThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Department of Engineering Science and MechanicsPenn State University212 Earth‐Engineering Sciences Bldg.University ParkPA16802USA
| | - Julien H. Arrizabalaga
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Angelica M. Helton
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Yiming Liu
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Douglas B. Stairs
- Department of PathologyCollege of MedicineThe Pennsylvania State UniversityHersheyPA17033USA
- Penn State Cancer InstituteCollege of MedicineThe Pennsylvania State UniversityHersheyPA17033USA
| | - Adam B. Glick
- The Huck Institute of the Life SciencesMillennium Science ComplexThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Department of Veterinary and Biomedical SciencesThe Pennsylvania State UniversityUniversity ParkPA16802USA
- The Center for Molecular Toxicology and CarcinogenesisThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Neerav Goyal
- Department of Otolaryngology—Head and Neck SurgeryCollege of MedicineThe Pennsylvania State UniversityHersheyPA17033USA
| | - Daniel J. Hayes
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
- The Huck Institute of the Life SciencesMillennium Science ComplexThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Materials Research InstituteMillennium Science ComplexThe Pennsylvania State UniversityUniversity ParkPA16802USA
| |
Collapse
|
17
|
Yang X, Tao Y, Xu Y, Cai W, Shao Q. SLC35A2 expression drives breast cancer progression via ERK pathway activation. FEBS J 2024; 291:1483-1505. [PMID: 38143314 DOI: 10.1111/febs.17044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 10/21/2023] [Accepted: 12/22/2023] [Indexed: 12/26/2023]
Abstract
Alterations in glycosylation are associated with breast tumor formation and progression. Nevertheless, the specific functions and mechanisms of the human major UDP-galactose transporter-encoding gene solute carrier family 35 member A2 (SLC35A2) in breast invasive carcinoma (BRCA) have not been fully determined. Here, we report that SLC35A2 promotes BRCA progression by activating extracellular signal regulated kinase (ERK). SLC35A2 expression and prognosis-predictive significance in pan-cancer were evaluated using public databases. The upstream non-coding RNAs (ncRNAs) of SLC35A2 were analyzed, and their expression and regulations were validated in breast tissues and cell lines by a quantitative PCR and dual-luciferase assays. We used bioinformatic tools to assess the link between SLC35A2 expression and immune infiltration and performed immunohistochemistry for validation. Cell Counting Kit-8, 5-ethynyl-2'-deoxyuridine, transwell, flow cytometer and western blotting were used to assess the proliferation, motility, cell cycle and apoptosis of BRCA cells in vitro. The xenograft models were constructed to assess the effect of SLC35A2 on BRCA tumor growth in vivo. The results indicated that SLC35A2 expression was upregulated and linked to an unfavorable prognosis in BRCA. The most likely upstream ncRNA-associated pathway of SLC35A2 in BRCA was the AC074117.1/hsa-let-7b-5p axis. SLC35A2 expression had positive correlations with the presence of Th2 cells, regulatory T cells and immune checkpoints. Knockdown of SLC35A2 could reduce BRCA cell proliferation, motility, and cause G2/M arrest and cell apoptosis via ERK signaling. Moreover, ERK activation can rescue the inhibitory effects of knockdown SLC35A2 in BRCA. In conclusion, AC074117.1/hsa-let-7b-5p axis-mediated high expression of SLC35A2 acts as a tumor promoter in BRCA via ERK signaling, which provides a potential target for BRCA treatment.
Collapse
Affiliation(s)
- Xiaochen Yang
- Department of Thyroid and Breast Surgery, Affiliated Kunshan Hospital of Jiangsu University, China
| | - Yukai Tao
- Clinical Research & Lab Center, Affiliated Kunshan Hospital of Jiangsu University, China
| | - Yan Xu
- Department of Thyroid and Breast Surgery, Affiliated Kunshan Hospital of Jiangsu University, China
| | - Weili Cai
- Institute of Medical Genetics and Reproductive Immunity, The Digestive and Reproductive System Cancers Precise Prevention Engineering Research Center of Jiangsu Province, Jiangsu College of Nursing, Huai'an, China
| | - Qixiang Shao
- Clinical Research & Lab Center, Affiliated Kunshan Hospital of Jiangsu University, China
- Institute of Medical Genetics and Reproductive Immunity, The Digestive and Reproductive System Cancers Precise Prevention Engineering Research Center of Jiangsu Province, Jiangsu College of Nursing, Huai'an, China
| |
Collapse
|
18
|
Joshi R, Sharma A, Kulshreshtha R. Noncoding RNA landscape and their emerging roles as biomarkers and therapeutic targets in meningioma. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200782. [PMID: 38596289 PMCID: PMC10951709 DOI: 10.1016/j.omton.2024.200782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Meningiomas are among the most prevalent primary CNS tumors in adults, accounting for nearly 38% of all brain neoplasms. The World Health Organization (WHO) grade assigned to meningiomas guides medical care in patients and is primarily based on tumor histology and malignancy potential. Although often considered benign, meningiomas with complicated histology, limited accessibility for surgical resection, and/or higher malignancy potential (WHO grade 2 and WHO grade 3) are harder to combat, resulting in significant morbidity. With limited treatment options and no systemic therapies, it is imperative to understand meningioma tumorigenesis at the molecular level and identify novel therapeutic targets. The last decade witnessed considerable progress in understanding the noncoding RNA landscape of meningioma, with microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) emerging as molecular entities of interest. This review aims to highlight the commonly dysregulated miRNAs and lncRNAs in meningioma and their correlation with meningioma progression, malignancy, recurrence, and radioresistance. The role of "key" miRNAs as biomarkers and their therapeutic potential has also been reviewed in detail. Furthermore, current and emerging therapeutic modalities for meningioma have been discussed, with emphasis on the need to identify and subsequently employ clinically relevant miRNAs and lncRNAs as novel therapeutic targets and biomarkers.
Collapse
Affiliation(s)
- Ritanksha Joshi
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Anuja Sharma
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
19
|
Travagliante G, Gaeta M, Gangemi CMA, Alaimo S, Ferro A, Purrello R, D'Urso A. Interactions between achiral porphyrins and a mature miRNA. NANOSCALE 2024; 16:5137-5148. [PMID: 38305723 DOI: 10.1039/d3nr05504c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Recent discoveries have revealed that mature miRNAs could form highly ordered structures similar to aptamers, suggesting diverse functions beyond mRNA recognition and degradation. This study focuses on understanding the secondary structures of human miR-26b-5p (UUCAAGUAAUUCAGGAUAGGU) using circular dichroism (CD) and chiroptical probes; in particular, four achiral porphyrins were utilized to both act as chiroptical probes and influence miRNA thermodynamic stability. Various spectroscopic techniques, including UV-Vis, fluorescence, resonance light scattering (RLS), electronic circular dichroism (ECD), and CD melting, were employed to study their interactions. UV-Vis titration revealed that meso-tetrakis(4-N-methylpyridyl) porphyrin (H2T4) and meso-tetrakis(4-carboxyphenylspermine) porphyrin (H2TCPPSpm4) formed complexes with distinct binding stoichiometries up to 6 : 1 and 3 : 1 ratios, respectively, and these results were supported by RLS and fluorescence, while the zinc(II) derivative porphyrin ZnT4 exhibited a weaker interaction. ZnTCPPSpm4 formed aggregates in PBS with higher organization in the presence of miRNA. CD titrations displayed an induced CD signal in the Soret region for every porphyrin investigated, indicating that they can be used as chiroptical probes for miR-26b-5p. Lastly, CD melting experiments revealed that at a 1 : 1 ratio, porphyrins did not significantly affect miRNA stability, except for H2TCPPSpm4. However, at a 3 : 1 ratio, all porphyrins, except ZnTCPPSpm4, exhibited a strong destabilizing effect on miRNA secondary structures. These findings shed light on the structural versatility of miR-26b-5p and highlight the potential of porphyrins as chiroptical probes and modulators of miRNA stability.
Collapse
Affiliation(s)
- Gabriele Travagliante
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125, Catania, Italy.
| | - Massimiliano Gaeta
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125, Catania, Italy.
| | - Chiara M A Gangemi
- Dipartimento di Scienze chimiche, biologiche, farmaceutiche e ambientali, Università degli Studi di Messina, V.le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Salvatore Alaimo
- Dipartimento di Medicina Clinica e Sperimentale, c/o Dipartimento di Matematica e Informatica, Università degli Studi di Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Alfredo Ferro
- Dipartimento di Medicina Clinica e Sperimentale, c/o Dipartimento di Matematica e Informatica, Università degli Studi di Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Roberto Purrello
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125, Catania, Italy.
| | - Alessandro D'Urso
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125, Catania, Italy.
| |
Collapse
|
20
|
Wang SH, Zhao Y, Wang CC, Chu F, Miao LY, Zhang L, Zhuo L, Chen X. RFEM: A framework for essential microRNA identification in mice based on rotation forest and multiple feature fusion. Comput Biol Med 2024; 171:108177. [PMID: 38422957 DOI: 10.1016/j.compbiomed.2024.108177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/21/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024]
Abstract
With the increasing number of microRNAs (miRNAs), identifying essential miRNAs has become an important task that needs to be solved urgently. However, there are few computational methods for essential miRNA identification. Here, we proposed a novel framework called Rotation Forest for Essential MicroRNA identification (RFEM) to predict the essentiality of miRNAs in mice. We first constructed 1,264 miRNA features of all miRNA samples by fusing 38 miRNA features obtained from the PESM paper and 1,226 miRNA functional features calculated based on miRNA-target gene interactions. Then, we employed 182 training samples with 1,264 features to train the rotation forest model, which was applied to compute the essentiality scores of the candidate samples. The main innovations of RFEM were as follows: 1) miRNA functional features were introduced to enrich the diversity of miRNA features; 2) the rotation forest model used decision tree as the base classifier and could increase the difference among base classifiers through feature transformation to achieve better ensemble results. Experimental results show that RFEM significantly outperformed two previous models with the AUC (AUPR) of 0.942 (0.944) in three comparison experiments under 5-fold cross validation, which proved the model's reliable performance. Moreover, ablation study was further conducted to demonstrate the effectiveness of the novel miRNA functional features. Additionally, in the case studies of assessing the essentiality of unlabeled miRNAs, experimental literature confirmed that 7 of the top 10 predicted miRNAs have crucial biological functions in mice. Therefore, RFEM would be a reliable tool for identifying essential miRNAs.
Collapse
Affiliation(s)
- Shu-Hao Wang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China; Artificial Intelligence Research Institute, China University of Mining and Technology, Xuzhou, 221116, China
| | - Yan Zhao
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China
| | - Chun-Chun Wang
- School of Science, Jiangnan University, Wuxi, 214122, China
| | - Fei Chu
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China; Artificial Intelligence Research Institute, China University of Mining and Technology, Xuzhou, 221116, China
| | - Lian-Ying Miao
- School of Mathematics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Li Zhang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China
| | - Linlin Zhuo
- School of Data Science and Artificial Intelligence, Wenzhou University of Technology, Wenzhou, 325000, China.
| | - Xing Chen
- School of Science, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
21
|
Ali M, Wani SUD, Dey T, Sridhar SB, Qadrie ZL. A common molecular and cellular pathway in developing Alzheimer and cancer. Biochem Biophys Rep 2024; 37:101625. [PMID: 38225990 PMCID: PMC10788207 DOI: 10.1016/j.bbrep.2023.101625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/17/2024] Open
Abstract
Globally cancer and Alzheimer's disease (AD) are two major diseases and still, there is no clearly defined molecular mechanism. There is an opposite relation between cancer and AD which are the proportion of emerging cancer was importantly slower in AD patients, whereas slow emerging AD in patients with cancer. In cancer, regulation of cell mechanisms is interrupted by an increase in cell survival and proliferation, while on the contrary, AD is related to augmented neuronal death, that may be either produced by or associated with amyloid-β (Aβ) and tau deposition. Stated that the probability that disruption of mechanisms takes part in the regulation of cell survival/death and might be implicated in both diseases. The mechanism of actions such as DNA-methylation, genetic polymorphisms, or another mechanism of actions that induce alteration in the action of drugs with significant roles in resolving the finding to repair and live or die might take part in the pathogenesis of these two ailments. The functions of miRNA, p53, Pin1, the Wnt signaling pathway, PI3 KINASE/Akt/mTOR signaling pathway GRK2 signaling pathway, and the pathophysiological role of oxidative stress are presented in this review as potential candidates which hypothetically describe inverse relations between cancer and AD. Innovative materials almost mutual mechanisms in the aetiology of cancer and AD advocates novel treatment approaches. Among these treatment strategies, the most promising use treatment such as tyrosine kinase inhibitor, nilotinib, protein kinase C, and bexarotene.
Collapse
Affiliation(s)
- Mohammad Ali
- Department of Pharmacology, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G Nagar, Nagamagala, Bellur, Karnataka, 571418, India
- Department of Pharmacy Practice, East Point College of Pharmacy, Bangalore, 560049, India
| | - Shahid Ud Din Wani
- Division of Pharmaceutics, Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Srinagar, 190006, India
| | - Tathagata Dey
- Department of Pharmaceutical Chemistry, East Point College of Pharmacy, Bangalore, 560049, India
| | - Sathvik B. Sridhar
- Department of Clinical Pharmacy and Pharmacology, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah, PO Box 11172, United Arab Emirates
| | | |
Collapse
|
22
|
Bruno V, Logoteta A, Chiofalo B, Mancini E, Betti M, Fabrizi L, Piccione E, Vizza E. It is time to implement molecular classification in endometrial cancer. Arch Gynecol Obstet 2024; 309:745-753. [PMID: 37410149 DOI: 10.1007/s00404-023-07128-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/11/2023] [Indexed: 07/07/2023]
Abstract
A huge effort has been done in redefining endometrial cancer (EC) risk classes in the last decade. However, known prognostic factors (FIGO staging and grading, biomolecular classification and ESMO-ESGO-ESTRO risk classes stratification) are not able to predict outcomes and especially recurrences. Biomolecular classification has helped in re-classifying patients for a more appropriate adjuvant treatment and clinical studies suggest that currently used molecular classification improves the risk assessment of women with EC, however, it does not clearly explain differences in recurrence profiles. Furthermore, a lack of evidence appears in EC guidelines. Here, we summarize the main concepts why molecular classification is not enough in the management of endometrial cancer, by highlighting some promising innovative examples in scientific literature studies with a clinical potential significant impact.
Collapse
Affiliation(s)
- Valentina Bruno
- Gynecologic Oncology Unit, Department of Experimental Clinical Oncology, IRCCS "Regina Elena" National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Alessandra Logoteta
- Department of Maternal and Child Health and Urological Sciences, University of Rome "Sapienza", Policlinico "Umberto I", Rome, Italy
| | - Benito Chiofalo
- Gynecologic Oncology Unit, Department of Experimental Clinical Oncology, IRCCS "Regina Elena" National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| | - Emanuela Mancini
- Gynecologic Oncology Unit, Department of Experimental Clinical Oncology, IRCCS "Regina Elena" National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Martina Betti
- Biostatistics, Bioinformatics and Clinical Trial Center, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Luana Fabrizi
- Department of Anesthesiology, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Emilio Piccione
- Department of Surgical Sciences, Catholic University Our Lady of Good Counsel, Tirane, Albania
| | - Enrico Vizza
- Gynecologic Oncology Unit, Department of Experimental Clinical Oncology, IRCCS "Regina Elena" National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| |
Collapse
|
23
|
S M N Mydin RB, Azlan A, Okekpa SI, Gooderham NJ. Regulatory role of miRNAs in nasopharyngeal cancer involving PTEN/PI3K/AKT, TGFβ/SMAD, RAS/MAPK, Wnt/β-catenin and pRB-E2F signaling pathways: A review. Cell Biochem Funct 2024; 42:e3945. [PMID: 38362935 DOI: 10.1002/cbf.3945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/17/2024]
Abstract
MicroRNAs (miRNA) are small and conserved noncoding RNA molecules that regulate gene expression at the posttranscriptional level. These groups of RNAs are crucial in various cellular processes, especially in mediating disease pathogenesis, particularly cancer. The dysregulation of miRNAs was reported in many cancer types, including nasopharyngeal cancer (NPC), which is a malignant tumor of the nasopharynx. In this review, miRNAs involvement in crucial signaling pathways associated with NPC such as PTEN/PI3K/AKT, TGFβ/SMAD, RAS/MAPK, Wnt/β-catenin and pRB-E2F was investigated. miRNAs could function as tumor suppressor-miR or onco-miR in NPC profoundly influenced cell cycle, apoptosis, proliferation, migration, and metastasis. This comprehensive review of current literature provided a thorough profile of miRNAs and their interplay with the aforementioned signaling pathways in NPC. Understanding these molecular interactions could remarkably impact the diagnosis, prognosis, and therapeutic strategies for NPC.
Collapse
Affiliation(s)
- Rabiatul Basria S M N Mydin
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Pulau Pinang, Malaysia
- Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, UK
| | - Adam Azlan
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Pulau Pinang, Malaysia
- School of General and Foundation Studies, Asian Institute of Medicine, Science and Technology (AIMST University), Bedong, Kedah, Malaysia
| | - Simon I Okekpa
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Pulau Pinang, Malaysia
- Department of Medical Laboratory Science, Faculty of Health Sciences, Ebonyi State University, Abakaliki, Nigeria
| | - Nigel J Gooderham
- Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, UK
| |
Collapse
|
24
|
Valcz G, Buzás EI, Gatenby RA, Újvári B, Molnár B. Small extracellular vesicles from surviving cancer cells as multiparametric monitoring tools of measurable residual disease and therapeutic efficiency. Biochim Biophys Acta Rev Cancer 2024; 1879:189088. [PMID: 38387823 DOI: 10.1016/j.bbcan.2024.189088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/13/2023] [Accepted: 02/18/2024] [Indexed: 02/24/2024]
Abstract
Although conventional anti-cancer therapies remove most cells of the tumor mass, small surviving populations may evolve adaptive resistance strategies, which lead to treatment failure. The size of the resistant population initially may not reach the threshold of clinical detection (designated as measurable residual disease/MRD) thus, its investigation requires highly sensitive and specific methods. Here, we discuss that the specific molecular fingerprint of tumor-derived small extracellular vesicles (sEVs) is suitable for longitudinal monitoring of MRD. Furthermore, we present a concept that exploiting the multiparametric nature of sEVs may help early detection of recurrence and the design of dynamic, evolution-adjusted treatments.
Collapse
Affiliation(s)
- Gábor Valcz
- HUN-REN-SU Translational Extracellular Vesicle Research Group, Budapest, Hungary; Department of Image Analysis, 3DHISTECH Ltd, Budapest, Hungary.
| | - Edit I Buzás
- HUN-REN-SU Translational Extracellular Vesicle Research Group, Budapest, Hungary; Institute of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary; HCEMM-SU Extracellular Vesicles Research Group, Budapest, Hungary
| | - Robert A Gatenby
- Cancer Biology and Evolution Program, Moffitt Cancer Center, Tampa, FL, USA
| | - Beáta Újvári
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| | - Béla Molnár
- Department of Image Analysis, 3DHISTECH Ltd, Budapest, Hungary; Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
25
|
Lin TY, Jia JS, Luo WR, Lin XL, Xiao SJ, Yang J, Xia JW, Zhou C, Zhou ZH, Lin SJ, Li QW, Yang ZZ, Lei Y, Yang WQ, Shen HF, Huang SH, Wang SC, Chen LB, Yang YL, Xue SW, Li YL, Dai GQ, Zhou Y, Li YC, Wei F, Rong XX, Luo XJ, Zhao BX, Huang WH, Xiao D, Sun Y. ThermomiR-377-3p-induced suppression of Cirbp expression is required for effective elimination of cancer cells and cancer stem-like cells by hyperthermia. J Exp Clin Cancer Res 2024; 43:62. [PMID: 38419081 PMCID: PMC10903011 DOI: 10.1186/s13046-024-02983-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND In recent years, the development of adjunctive therapeutic hyperthermia for cancer therapy has received considerable attention. However, the mechanisms underlying hyperthermia resistance are still poorly understood. In this study, we investigated the roles of cold‑inducible RNA binding protein (Cirbp) in regulating hyperthermia resistance and underlying mechanisms in nasopharyngeal carcinoma (NPC). METHODS CCK-8 assay, colony formation assay, tumor sphere formation assay, qRT-PCR, Western blot were employed to examine the effects of hyperthermia (HT), HT + oridonin(Ori) or HT + radiotherapy (RT) on the proliferation and stemness of NPC cells. RNA sequencing was applied to gain differentially expressed genes upon hyperthermia. Gain-of-function and loss-of-function experiments were used to evaluate the effects of RNAi-mediated Cirbp silencing or Cirbp overexpression on the sensitivity or resistance of NPC cells and cancer stem-like cells to hyperthermia by CCK-8 assay, colony formation assay, tumorsphere formation assay and apoptosis assay, and in subcutaneous xenograft animal model. miRNA transient transfection and luciferase reporter assay were used to demonstrate that Cirbp is a direct target of miR-377-3p. The phosphorylation levels of key members in ATM-Chk2 and ATR-Chk1 pathways were detected by Western blot. RESULTS Our results firstly revealed that hyperthermia significantly attenuated the stemness of NPC cells, while combination treatment of hyperthermia and oridonin dramatically increased the killing effect on NPC cells and cancer stem cell (CSC)‑like population. Moreover, hyperthermia substantially improved the sensitivity of radiation‑resistant NPC cells and CSC‑like cells to radiotherapy. Hyperthermia noticeably suppressed Cirbp expression in NPC cells and xenograft tumor tissues. Furthermore, Cirbp inhibition remarkably boosted anti‑tumor‑killing activity of hyperthermia against NPC cells and CSC‑like cells, whereas ectopic expression of Cirbp compromised tumor‑killing effect of hyperthermia on these cells, indicating that Cirbp overexpression induces hyperthermia resistance. ThermomiR-377-3p improved the sensitivity of NPC cells and CSC‑like cells to hyperthermia in vitro by directly suppressing Cirbp expression. More importantly, our results displayed the significantly boosted sensitization of tumor xenografts to hyperthermia by Cirbp silencing in vivo, but ectopic expression of Cirbp almost completely counteracted hyperthermia-mediated tumor cell-killing effect against tumor xenografts in vivo. Mechanistically, Cirbp silencing-induced inhibition of DNA damage repair by inactivating ATM-Chk2 and ATR-Chk1 pathways, decrease in stemness and increase in cell death contributed to hyperthermic sensitization; conversely, Cirbp overexpression-induced promotion of DNA damage repair, increase in stemness and decrease in cell apoptosis contributed to hyperthermia resistance. CONCLUSION Taken together, these findings reveal a previously unrecognized role for Cirbp in positively regulating hyperthermia resistance and suggest that thermomiR-377-3p and its target gene Cirbp represent promising targets for therapeutic hyperthermia.
Collapse
Affiliation(s)
- Tao-Yan Lin
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jun-Shuang Jia
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Wei-Ren Luo
- Cancer Research Institute, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen Third People's Hospital, Shenzhen, 518112, China
| | - Xiao-Lin Lin
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Sheng-Jun Xiao
- Department of Pathology, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Jie Yang
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Imaging, Central Hospital of Shaoyang, Shaoyang, 422000, China
| | - Jia-Wei Xia
- The Third People's Hospital of Kunming (The Sixth Affiliated Hospital of Dali University), Kunming, 650041, China
| | - Chen Zhou
- Department of Pathology, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Zhi-Hao Zhou
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shu-Jun Lin
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qi-Wen Li
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhi-Zhi Yang
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ye Lei
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wen-Qing Yang
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Hong-Fen Shen
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shi-Hao Huang
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Sheng-Chun Wang
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Pathology, School of Basic Medicine, Guangdong Medical University, Dongguan, 523808, China
| | - Lin-Bei Chen
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Yu-Lin Yang
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Shu-Wen Xue
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yong-Long Li
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Guan-Qi Dai
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ying Zhou
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ying-Chun Li
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Fang Wei
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiao-Xiang Rong
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guang‑zhou, 510515, China
| | - Xiao-Jun Luo
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Bing-Xia Zhao
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Wen-Hua Huang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Guangdong Medical Innovation Platform for Translation of 3D Printing Application, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510000, China.
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, 524001, China.
| | - Dong Xiao
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
- Guangzhou Southern Medical Laboratory Animal Sci.&Tech. Co.,Ltd, Guangzhou, 510515, China.
- National Demonstration Center for Experimental Education of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Department of Stomatology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| | - Yan Sun
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| |
Collapse
|
26
|
Shekhar R, Kumari S, Vergish S, Tripathi P. The crosstalk between miRNAs and signaling pathways in human cancers: Potential therapeutic implications. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 386:133-165. [PMID: 38782498 DOI: 10.1016/bs.ircmb.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
MicroRNAs (miRNAs) are increasingly recognized as central players in the regulation of eukaryotic physiological processes. These small double stranded RNA molecules have emerged as pivotal regulators in the intricate network of cellular signaling pathways, playing significant roles in the development and progression of human cancers. The central theme in miRNA-mediated regulation of signaling pathways involves their ability to target and modulate the expression of pathway components. Aberrant expression of miRNAs can either promote or suppress key signaling events, influencing critical cellular processes such as proliferation, apoptosis, angiogenesis, and metastasis. For example, oncogenic miRNAs often promote cancer progression by targeting tumor suppressors or negative regulators of signaling pathways, thereby enhancing pathway activity. Conversely, tumor-suppressive miRNAs frequently inhibit oncogenic signaling by targeting key components within these pathways. This complex regulatory crosstalk underscores the significance of miRNAs as central players in shaping the signaling landscape of cancer cells. Furthermore, the therapeutic implications of targeting miRNAs in cancer are substantial. miRNAs can be manipulated to restore normal signaling pathway activity, offering a potential avenue for precision medicine. The development of miRNA-based therapeutics, including synthetic miRNA mimics and miRNA inhibitors, has shown promise in preclinical and clinical studies. These strategies aim to either enhance the activity of tumor-suppressive miRNAs or inhibit the function of oncogenic miRNAs, thereby restoring balanced signaling and impeding cancer progression. In conclusion, the crosstalk between miRNAs and signaling pathways in human cancers is a dynamic and influential aspect of cancer biology. Understanding this interplay provides valuable insights into cancer development and progression. Harnessing the therapeutic potential of miRNAs as regulators of signaling pathways opens up exciting opportunities for the development of innovative cancer treatments with the potential to improve patient outcomes. In this chapter, we provide an overview of the crosstalk between miRNAs and signaling pathways in the context of cancer and highlight the potential therapeutic implications of targeting this regulatory interplay.
Collapse
Affiliation(s)
- Ritu Shekhar
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA.
| | - Sujata Kumari
- Department of Zoology, Magadh Mahila College, Patna University, Patna, India
| | - Satyam Vergish
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| | - Prajna Tripathi
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, USA
| |
Collapse
|
27
|
Su YF, Lin CS, Shen PC, Chuang SE, Dai YH, Huang TW, Lin CY, Hung YJ, Shieh YS. MiR-34a functions as a tumor suppressor in oral cancer through the inhibition of the Axl/Akt/GSK-3β pathway. J Dent Sci 2024; 19:428-437. [PMID: 38303867 PMCID: PMC10829669 DOI: 10.1016/j.jds.2023.08.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/14/2023] [Indexed: 02/03/2024] Open
Abstract
Background/purpose Oral cancer is a prevalent malignancy affecting men globally. This study aimed to investigate the regulatory role of miR-34a in oral cancer cells through the Axl/Akt/glycogen synthase kinase-3β (GSK-3β) pathway and its impact on cellular malignancy. Materials and methods We examined the effects of miR-34a overexpression on the malignancy of oral cancer cells. Multiple oral cancer cell lines were assessed to determine the correlation between endogenous miR-34a and Axl levels. Transfection experiments with miR-34a were conducted to analyze its influence on Axl mRNA and protein expression. Luciferase reporter assays were performed to investigate miR-34a's modulation of Axl gene transcription. Manipulation of miR-34a expression was utilized to demonstrate its regulatory effects on oral cancer cells through the Axl/Akt/GSK-3β pathway. Results Overexpression of miR-34a significantly suppressed the malignancy of oral cancer cells. We observed an inverse correlation between endogenous miR-34a and Axl levels across multiple oral cancer cell lines. Transfection of miR-34a resulted in decreased Axl mRNA and protein expression, and luciferase reporter assays confirmed miR-34a-mediated modulation of Axl gene transcription. The study revealed regulatory effects of miR-34a on oral cancer cells through the Axl/Akt/GSK-3β pathway, leading to alterations in downstream target genes involved in cellular proliferation and tumorigenesis. Conclusion Our findings highlight the significance of the miR-34a/Axl/Akt/GSK-3β signaling axis in modulating the malignancy of oral cancer cells. Targeting miR-34a may hold therapeutic potential in oral cancer treatment, as manipulating its expression can attenuate the aggressive behavior of oral cancer cells via the Axl/Akt/GSK-3β pathway.
Collapse
Affiliation(s)
- Yu-Fu Su
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chun-Shu Lin
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Po-Chien Shen
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shuang-En Chuang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Yang-Hong Dai
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Tsai-Wang Huang
- Division of Thoracic Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Che-Yi Lin
- Department of Oral and Maxillofacial Surgery, Chi Mei Medical Center, Tainan, Taiwan
| | - Yi-Jen Hung
- Division of Endocrinology and Metabolism, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Shing Shieh
- Department of Dentistry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Department and Graduate Institute of Biochemistry, National Defense Medical Center, Taipei, Taiwan
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
28
|
Liao Z, Zhang Q, Yang L, Li H, Mo W, Song Z, Huang X, Wen S, Cheng X, He M. Increased hsa-miR-100-5p Expression Improves Hepatocellular Carcinoma Prognosis in the Asian Population with PLK1 Variant rs27770A>G. Cancers (Basel) 2023; 16:129. [PMID: 38201556 PMCID: PMC10778516 DOI: 10.3390/cancers16010129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Hepatocellular carcinoma (HCC) has the highest incidence and mortality in the Asian population, and race is an independent risk factor affecting survival time in liver cancer. Micro RNAs (miRNAs) are remarkably dysregulated in HCC and closely associated with HCC prognosis. Recent studies show that genetic variability between ethnic groups may result in differences in the specificity of HCC miRNA biomarkers. Here, we reveal a high expression level of hsa-miR-100-5p, an HCC prognosis-related miRNA, which improves HCC prognosis in the Asian Population with Polo-like kinase 1 (PLK1) variant rs27770A>G. In this study, we discovered that hsa-miR-100-5p was downregulated in various HCC cell lines. While mimics transient transfection and mouse liver cancer model confirmed the interaction between hsa-miR-100-5p and PLK1, a stratified analysis based on the Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC) data suggest both low hsa-miR-100-5p expression level and high PLK1 expression level associated with poor HCC prognosis, especially in the Asian population. According to the 1000 Genomes Project database, the SNP rs27770 located in 3'UTR of PLK1 had a significantly higher G allele frequency in the East Asian population. Bioinformatics analysis suggested that rs27770 A>G affects PLK1 mRNA secondary structure and alters the hsa-miR-100-5p/PLK1 interaction by forming an additional seedless binding site. This racial variation caused PLK1 to be more vulnerable to hsa-miR-100-5p inhibition, resulting in hsa-miR-100-5p being more favorable for HCC prognosis in the Asian population.
Collapse
Affiliation(s)
- Zhouxiang Liao
- School of Public Health, Guangxi Medical University, Nanning 530021, China; (Z.L.); (H.L.); (W.M.); (Z.S.); (X.C.)
| | - Qi Zhang
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China; (Q.Z.); (L.Y.); (X.H.)
| | - Lichao Yang
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China; (Q.Z.); (L.Y.); (X.H.)
| | - Hui Li
- School of Public Health, Guangxi Medical University, Nanning 530021, China; (Z.L.); (H.L.); (W.M.); (Z.S.); (X.C.)
| | - Wanling Mo
- School of Public Health, Guangxi Medical University, Nanning 530021, China; (Z.L.); (H.L.); (W.M.); (Z.S.); (X.C.)
| | - Zhenyu Song
- School of Public Health, Guangxi Medical University, Nanning 530021, China; (Z.L.); (H.L.); (W.M.); (Z.S.); (X.C.)
| | - Xuejing Huang
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China; (Q.Z.); (L.Y.); (X.H.)
| | - Sha Wen
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China; (Q.Z.); (L.Y.); (X.H.)
| | - Xiaojing Cheng
- School of Public Health, Guangxi Medical University, Nanning 530021, China; (Z.L.); (H.L.); (W.M.); (Z.S.); (X.C.)
- Life Sciences Institute, Guangxi Medical University, Nanning 530021, China
| | - Min He
- School of Public Health, Guangxi Medical University, Nanning 530021, China; (Z.L.); (H.L.); (W.M.); (Z.S.); (X.C.)
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China; (Q.Z.); (L.Y.); (X.H.)
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning 530021, China
| |
Collapse
|
29
|
Besharat ZM, Trocchianesi S, Verrienti A, Ciampi R, Cantara S, Romei C, Sabato C, Noviello TMR, Po A, Citarella A, Caruso FP, Panariello I, Gianno F, Carpino G, Gaudio E, Chiacchiarini M, Masuelli L, Sponziello M, Pecce V, Ramone T, Maino F, Dotta F, Ceccarelli M, Pezzullo L, Durante C, Castagna MG, Elisei R, Ferretti E. Circulating miR-26b-5p and miR-451a as diagnostic biomarkers in medullary thyroid carcinoma patients. J Endocrinol Invest 2023; 46:2583-2599. [PMID: 37286863 PMCID: PMC10632281 DOI: 10.1007/s40618-023-02115-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/15/2023] [Indexed: 06/09/2023]
Abstract
PURPOSE/METHODS The determination of tumour biomarkers is paramount to advancing personalized medicine, more so in rare tumours like medullary thyroid carcinoma (MTC), whose diagnosis is still challenging. The aim of this study was to identify non-invasive circulating biomarkers in MTC. To achieve this goal, paired MTC tissue and plasma extracellular vesicle samples were collected from multiple centres and microRNA (miRNA) expression levels were evaluated. RESULTS The samples from a discovery cohort of 23 MTC patients were analysed using miRNA arrays. Lasso logistic regression analysis resulted in the identification of a set of circulating miRNAs as diagnostic biomarkers. Among them, miR-26b-5p and miR-451a, were highly expressed and their expression decreased during follow-up in disease-free patients in the discovery cohort. Circulating miR-26b-5p and miR-451a were validated using droplet digital PCR in a second independent cohort of 12 MTC patients. CONCLUSION This study allowed the identification and validation of a signature of two circulating miRNAs, miR-26b-5p and miR-451a, in two independent cohorts reporting a significant diagnostic performance for MTC. The results of this study offer advancements in molecular diagnosis of MTC proposing a novel non-invasive tool to use in precision medicine.
Collapse
Affiliation(s)
- Z M Besharat
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - S Trocchianesi
- Department of Molecular Medicine, Sapienza University of Rome, 00161, Rome, Italy
| | - A Verrienti
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00161, Rome, Italy
| | - R Ciampi
- Endocrine Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126, Pisa, Italy
| | - S Cantara
- Department of Medical, Surgical and Neurological Sciences, University of Siena, 53100, Siena, Italy
| | - C Romei
- Endocrine Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126, Pisa, Italy
| | - C Sabato
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - T M R Noviello
- Biogem Scarl, Istituto di Ricerche Genetiche "Gaetano Salvatore", 83031, Ariano Irpino, Italy
- Department of Electrical Engineering and Information Technology, University of Naples Federico II, 80138, Naples, Italy
| | - A Po
- Department of Molecular Medicine, Sapienza University of Rome, 00161, Rome, Italy
| | - A Citarella
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - F P Caruso
- Biogem Scarl, Istituto di Ricerche Genetiche "Gaetano Salvatore", 83031, Ariano Irpino, Italy
- Department of Electrical Engineering and Information Technology, University of Naples Federico II, 80138, Naples, Italy
| | - I Panariello
- Thyroid Surgical Unit, IRCCS Fondazione G.Pascale, 80131, Naples, Italy
| | - F Gianno
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, 00161, Rome, Italy
| | - G Carpino
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - E Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - M Chiacchiarini
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - L Masuelli
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - M Sponziello
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00161, Rome, Italy
| | - V Pecce
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00161, Rome, Italy
| | - T Ramone
- Endocrine Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126, Pisa, Italy
| | - F Maino
- Department of Medical, Surgical and Neurological Sciences, University of Siena, 53100, Siena, Italy
| | - F Dotta
- Department of Medical, Surgical and Neurological Sciences, University of Siena, 53100, Siena, Italy
- Tuscany Centre for Precision Medicine (CReMeP), 53100, Siena, Italy
| | - M Ceccarelli
- Biogem Scarl, Istituto di Ricerche Genetiche "Gaetano Salvatore", 83031, Ariano Irpino, Italy
- Department of Electrical Engineering and Information Technology, University of Naples Federico II, 80138, Naples, Italy
| | - L Pezzullo
- Thyroid Surgical Unit, IRCCS Fondazione G.Pascale, 80131, Naples, Italy
| | - C Durante
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00161, Rome, Italy.
| | - M G Castagna
- Department of Medical, Surgical and Neurological Sciences, University of Siena, 53100, Siena, Italy
| | - R Elisei
- Endocrine Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126, Pisa, Italy
| | - E Ferretti
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.
| |
Collapse
|
30
|
Wen J, Liu J, Wan L, Jiang H, Xin L, Sun Y, Fang Y, Wang X, Wang J. m 6A-mediated lncRNA MAPKAPK5-AS1 induces apoptosis and suppresses inflammation via regulating miR-146a-3p/SIRT1/NF-κB axis in rheumatoid arthritis. Cell Cycle 2023; 22:2602-2621. [PMID: 38225924 PMCID: PMC10936687 DOI: 10.1080/15384101.2024.2302281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/28/2023] [Accepted: 01/03/2024] [Indexed: 01/17/2024] Open
Abstract
To investigate the role of m6A-mediated lncRNA MAPKAPK5-AS1 (MK5-AS1) in rheumatoid arthritis fibroblast-like synoviocytes (RA-FLSs) and its underlying molecular mechanism. RT-qPCR, western blot, flow cytometry (FCM), and enzyme-linked immunosorbent assay (ELISA) were utilized for evaluating inflammation and apoptosis. Next, RIP, RNA pull-down, dual-luciferase reporter gene assay, and a series of rescue experiments were performed to explore the regulatory mechanisms of MK5-AS1 and its sponge-like action in RA-FLSs. The regulatory relationships between MK5-AS1 and WTAP were explored using the MeRIP-qPCR assay and RT-qPCR. Finally, the critical RNAs in the ceRNA axis were verified in the clinical cohort. MK5-AS1 was poorly expressed and miR-146a-3p was overexpressed in co-cultured RA-FLSs. MK5-AS1 overexpression could inhibit inflammatory responses and promote cell apoptosis in the co-cultured RA-FLSs. MK5-AS1 bound to miR-146a-3p to target SIRT1, thereby affecting inflammatory responses and cell apoptosis in the co-cultured RA-FLSs. SIRT1 knockdown or miR-146a-3p overexpression reversed the impacts of MK5-AS1 overexpression on co-cultured RA-FLSs inflammation and apoptosis. Moreover, WTAP was downregulated, and induced the inhibition of MK5-AS1 by promoting its RNA transcript stability. Clinically, MK5-AS1 was downregulated in RA-PBMCS and correlated with the clinical characteristics of RA. Our study elucidated that m6A-mediated MK5-AS1 sequestered miR-146a-3p to suppress SIRT1 expression in co-cultured RA-FLSs, thus providing a new insight into the treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Jianting Wen
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, China
- Institute of Rheumatology, Anhui Academy of Chinese Medicine, Hefei, Anhui Province, China
- Key Laboratory of Xin’an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, P. R. China
| | - Jian Liu
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, China
- Institute of Rheumatology, Anhui Academy of Chinese Medicine, Hefei, Anhui Province, China
- Department of Internal Medicine Application Foundation Research and Development, Anhui Province Key Laboratory of Modern Chinese Medicine, Hefei, Anhui, China
| | - Lei Wan
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, China
- Institute of Rheumatology, Anhui Academy of Chinese Medicine, Hefei, Anhui Province, China
- Department of Internal Medicine Application Foundation Research and Development, Anhui Province Key Laboratory of Modern Chinese Medicine, Hefei, Anhui, China
| | - Hui Jiang
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, China
- Department of Internal Medicine Application Foundation Research and Development, Anhui Province Key Laboratory of Modern Chinese Medicine, Hefei, Anhui, China
| | - Ling Xin
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, China
- Department of Internal Medicine Application Foundation Research and Development, Anhui Province Key Laboratory of Modern Chinese Medicine, Hefei, Anhui, China
| | - Yue Sun
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, China
- Department of Internal Medicine Application Foundation Research and Development, Anhui Province Key Laboratory of Modern Chinese Medicine, Hefei, Anhui, China
| | - Yanyan Fang
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, China
- Department of Internal Medicine Application Foundation Research and Development, Anhui Province Key Laboratory of Modern Chinese Medicine, Hefei, Anhui, China
| | - Xin Wang
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, China
- Department of Internal Medicine Application Foundation Research and Development, Anhui Province Key Laboratory of Modern Chinese Medicine, Hefei, Anhui, China
| | - Jie Wang
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, China
- Department of Internal Medicine Application Foundation Research and Development, Anhui Province Key Laboratory of Modern Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
31
|
Karpa V, Kalinderi K, Fidani L, Tragiannidis A. Association of microRNA Polymorphisms with Toxicities Induced by Methotrexate in Children with Acute Lymphoblastic Leukemia. Hematol Rep 2023; 15:634-650. [PMID: 37987321 PMCID: PMC10660515 DOI: 10.3390/hematolrep15040065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/04/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023] Open
Abstract
Methotrexate (MTX), a structurally related substance to folic acid, is an important chemotherapeutic agent used for decades in the treatment of pediatric acute lymphoblastic leukemia (ALL) and other types of cancer as non-Hodgkin lymphomas and osteosarcomas. Despite the successful outcomes observed, the primary drawback is the variability in the pharmacokinetics and pharmacodynamics between patients. The main adverse events related to its use are nephrotoxicity, mucositis, and myelosuppression, especially when used in high doses. The potential adverse reactions and toxicities associated with MTX are a cause for concern and may lead to dose reduction or treatment interruption. Genetic variants in MTX transport genes have been linked to toxicity. Pharmacogenetic studies conducted in the past focused on single nucleotide polymorphisms (SNPs) in the coding and 5'-regulatory regions of genes. Recent studies have demonstrated a significant role of microRNAs (miRNAs) in the transport and metabolism of drugs and in the regulation of target genes. In the last few years, the number of annotated miRNAs has continually risen, in addition to the studies of miRNA polymorphisms and MTX toxicity. Therefore, the objective of the present study is to investigate the role of miRNA variants related to MTX adverse effects.
Collapse
Affiliation(s)
- Vasiliki Karpa
- Laboratory of Medical Biology-Genetics, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.K.); (L.F.)
| | - Kallirhoe Kalinderi
- Laboratory of Medical Biology-Genetics, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.K.); (L.F.)
| | - Liana Fidani
- Laboratory of Medical Biology-Genetics, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.K.); (L.F.)
| | - Athanasios Tragiannidis
- Pediatric & Adolescent Hematology-Oncology Unit, 2nd Pediatric Department, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA Hospital, S. Kiriakidi 1, 54636 Thessaloniki, Greece;
| |
Collapse
|
32
|
Zhou F. Prognostic value of CASC15 and LINC01600 as competitive endogenous RNAs in lung adenocarcinoma: An observational study. Medicine (Baltimore) 2023; 102:e36026. [PMID: 37960753 PMCID: PMC10637420 DOI: 10.1097/md.0000000000036026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) can directly or indirectly regulate gene expression through interacting with microRNAs (miRNAs). Competitive endogenous RNAs render the roles of lncRNAs more complicated in the process of tumor occurrence and progression. However, the prognostic value of lncRNAs as potential biomarkers and their functional roles as competitive endogenous RNAs have not been clearly described for lung adenocarcinoma (LUAD). In the present study, the aberrant expression profiles of lncRNAs and miRNAs were analyzed at cBioPortal by interrogating LUAD dataset from The Cancer Genome Atlas (TCGA) database with 517 tissue samples. A total of 92 lncRNAs and 125 miRNAs with highly genetic alterations were identified. Further bioinformatics analysis was performed to construct a LUAD-related lncRNA-miRNA-mRNA ceRNA network, which included 24 highly altered lncRNAs, 21 miRNAs and 142 mRNAs. Some key lncRNAs in this network were subsequently identified as LUAD prognosis-related, and of those, CASC15 and LINC01600 both performed the potential prognostic characteristics with LUAD regarding OS and recurrence. Comprehensive analysis indicated that the expression of LINC01600 was significantly associated with KRAS mutation and lymph node metastasis, and CASC15 and LINC01600 were significantly tended towards co-occurrence, which may be due to the similarity of genes co-expressed by these 2 lncRNAs. Our findings provided novel insight into better understanding of ceRNA regulatory mechanisms in the pathogenesis of LUAD and facilitated the identification of potential biomarkers for prognosis.
Collapse
Affiliation(s)
- Fangbin Zhou
- Department of Tropical Diseases, Naval Medical University, Shanghai, China
| |
Collapse
|
33
|
Wang Y, Chen SY, Ta M, Senz J, Tao LV, Thornton S, Tamvada N, Yang W, Moscovitz Y, Li E, Guo J, Shen C, Douglas JM, Ei-Naggar AM, Kommoss FKF, Underhill TM, Singh N, Gilks CB, Morin GB, Huntsman DG. Biallelic Dicer1 Mutations in the Gynecologic Tract of Mice Drive Lineage-Specific Development of DICER1 Syndrome-Associated Cancer. Cancer Res 2023; 83:3517-3528. [PMID: 37494476 DOI: 10.1158/0008-5472.can-22-3620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 05/16/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
DICER1 is an RNase III enzyme essential for miRNA biogenesis through cleaving precursor-miRNA hairpins. Germline loss-of-function DICER1 mutations underline the development of DICER1 syndrome, a rare genetic disorder that predisposes children to cancer development in organs such as lung, gynecologic tract, kidney, and brain. Unlike classical tumor suppressors, the somatic "second hit" in DICER1 syndrome-associated cancers does not fully inactivate DICER1 but impairs its RNase IIIb activity only, suggesting a noncanonical two-hit hypothesis. Here, we developed a genetically engineered conditional compound heterozygous Dicer1 mutant mouse strain that fully recapitulates the biallelic DICER1 mutations in DICER1 syndrome-associated human cancers. Crossing this tool strain with tissue-specific Cre strains that activate Dicer1 mutations in gynecologic tract cells at two distinct developmental stages revealed that embryonic biallelic Dicer1 mutations caused infertility in females by disrupting oviduct and endometrium development and ultimately drove cancer development. These multicystic tubal and intrauterine tumors histologically resembled a subset of DICER1 syndrome-associated human cancers. Molecular analysis uncovered accumulation of additional oncogenic events (e.g., aberrant p53 expression, Kras mutation, and Myc activation) in murine Dicer1 mutant tumors and validated miRNA biogenesis defects in 5P miRNA strand production, of which, loss of let-7 family miRNAs was identified as a putative key player in transcriptomic rewiring and tumor development. Thus, this DICER1 syndrome-associated cancer model recapitulates the biology of human cancer and provides a unique tool for future investigation and therapeutic development. SIGNIFICANCE Generation of a Dicer1 mutant mouse model establishes the oncogenicity of missense mutations in the DICER1 RNase IIIb domain and provides a faithful model of DICER1 syndrome-associated cancer for further investigation.
Collapse
Affiliation(s)
- Yemin Wang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Molecular Oncology, British Columbia Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Shary Yuting Chen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Molecular Oncology, British Columbia Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Monica Ta
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Janine Senz
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Molecular Oncology, British Columbia Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Lan Valerie Tao
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shelby Thornton
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nirupama Tamvada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Molecular Oncology, British Columbia Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Winnie Yang
- Department of Molecular Oncology, British Columbia Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Yana Moscovitz
- Department of Molecular Oncology, British Columbia Cancer Research Institute, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eunice Li
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jingjie Guo
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Cindy Shen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Molecular Oncology, British Columbia Cancer Research Institute, Vancouver, British Columbia, Canada
| | - J Maxwell Douglas
- Department of Molecular Oncology, British Columbia Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Amal M Ei-Naggar
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Molecular Oncology, British Columbia Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Felix K F Kommoss
- Department of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - T Michael Underhill
- Department of Cellular and Physiological Sciences and Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Naveena Singh
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - C Blake Gilks
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gregg B Morin
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Genome Science Centre, British Columbia Cancer Research Institute, Vancouver, British Columbia, Canada
| | - David G Huntsman
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Molecular Oncology, British Columbia Cancer Research Institute, Vancouver, British Columbia, Canada
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
34
|
Mohammadzade H, Hashemi-Moghaddam H, Beikzadeh L, Ahmadieh-Yazdi A, Madanchi H, Fallah P. Molecular imprinting of miR-559 on a peptide-immobilized poly L-DOPA/silica core-shell and in vitro investigating its effects on HER2-positive breast cancer cells. Drug Deliv Transl Res 2023; 13:2487-2502. [PMID: 36988874 DOI: 10.1007/s13346-023-01330-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2023] [Indexed: 03/30/2023]
Abstract
In a significant percentage of breast cancers, increased expression of the HER2 receptor is seen and is associated with the spread and worsening of the disease. This research aims to investigate the effect of miR-559 (which targets HER2 mRNA) on SKBR3 breast cancer cells and the possibility of their effective delivery with polymeric nanoparticles and tumor-targeting peptides. L-DOPA monomers were polymerized on the surface of silica nanoparticles in the presence of miR-559 (as a molecular template for molecular imprinting) then an anti-HER2 peptide coupled to the surface of these polymeric nanocomposites (miR-NC-NL2), and the effects of this construct against a HER2-positive breast cancer cells (SKBR3 cells) investigated in vitro conditions. The results showed that miR-NC-NL2 is selective for HER2-positive cells and delivers the miR-559 to them in a targeted manner. miR-NC-NL2 decreased the proliferation of SKBR3 cells and reduced the expression and production of HER2 protein in these cells. Effective and targeted delivery of miR-559 to HER2-positive cancer cells by the miR-NC-NL2 promises the therapeutic potential of this nascent structure based on its inhibitory effect on cancer growth and progression. Of course, animal experiments require a better understanding of this structure's anti-tumor effects.
Collapse
Affiliation(s)
- Hadi Mohammadzade
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Leila Beikzadeh
- Department of Medical Laboratory Sciences, Faculty of Para-Medicine, Alborz University of Medical Sciences, Alborz, Iran
| | | | - Hamid Madanchi
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
- Drug Design and Bioinformatics Unit, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Parviz Fallah
- Department of Medical Laboratory Sciences, Faculty of Para-Medicine, Alborz University of Medical Sciences, Alborz, Iran.
- Checkup clinical and specialty laboratory, Alborz, Iran.
| |
Collapse
|
35
|
Yuan Q, Zhang Y, Li J, Zhang D, Yang W. Circ_TEX2 Functions as a Tumor Suppressor in Hepatoma via miR-96-5p/SPRED1 Axis. Mol Biotechnol 2023; 65:1679-1692. [PMID: 36745282 DOI: 10.1007/s12033-023-00669-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/14/2023] [Indexed: 02/07/2023]
Abstract
Circular RNAs (circRNAs) have been shown to have a vital effect on hepatoma progression. The purpose of this study was to explore the function and mechanism of circRNA testis expressed 2 (circ_TEX2, circ_0004913) in hepatoma pathogenesis. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect circ_TEX2, miR-96-5p, and sprouty-related EVH1 domain containing 1 (SPRED1) expression. Western blot analyzed the proliferating cell nuclear antigen (PCNA), SPRED1, and the apoptosis-related protein levels. 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT), 5-ethynyl-2'-deoxyuridine (EdU), and colony formation assays were used to test cell proliferation. Cell migration and invasion were analyzed by transwell assay, and cell apoptosis was detected by flow cytometry. Dual-luciferase reporter assay was done to analyze the target relationship between miR-96-5p and circ_TEX2 or SPRED1. The effects of circ_TEX2 on tumor growth in vivo were verified by xenograft model experiment and immunohistochemistry assay. The levels of circ_TEX2 and SPRED1 were down-regulated in hepatoma tissues and cells, and miR-96-5p expression was up-regulated. Overexpression of circ_TEX2 could inhibit the proliferation, migration, and invasion and boost cell apoptosis of hepatoma cells. Circ_TEX2 affected SPRED1 expression by sponging miR-96-5p. The overexpression of miR-96-5p could overturn the influence of circ_TEX2 up-regulation on malignant behaviors of hepatoma cells, and reduced SPRED1 expression could reverse the function of miR-96-5p knockdown on hepatoma cell malignant behaviors. Circ_TEX2 could suppress the growth of xenograft tumors in vivo. Our study demonstrates the tumor-suppressive role of circ_TEX2 in hepatoma through miR-96-5p/SPRED1 axis, suggesting that strategies directed toward restoring the production of circ_TEX2 might have a therapeutic value for hepatoma treatment.
Collapse
Affiliation(s)
- Qinggong Yuan
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, Xiwu Road, Xincheng District, Xi'an, 710004, Shaanxi, China
| | - Yan Zhang
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, Xiwu Road, Xincheng District, Xi'an, 710004, Shaanxi, China
| | - Junhui Li
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, Xiwu Road, Xincheng District, Xi'an, 710004, Shaanxi, China
| | - Di Zhang
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, Xiwu Road, Xincheng District, Xi'an, 710004, Shaanxi, China
| | - Wenbin Yang
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, Xiwu Road, Xincheng District, Xi'an, 710004, Shaanxi, China.
| |
Collapse
|
36
|
Al-Rawaf HA, Gabr SA, Iqbal A, Alghadir AH. MicroRNAs as potential biopredictors for premenopausal osteoporosis: a biochemical and molecular study. BMC Womens Health 2023; 23:481. [PMID: 37689658 PMCID: PMC10493018 DOI: 10.1186/s12905-023-02626-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/29/2023] [Indexed: 09/11/2023] Open
Abstract
BACKGROUND Circulating micro-RNAs have been proposed as a new type of biomarker in several diseases, particularly those related to bone health. They have shown great potential due to their feasibility and simplicity of measurement in all body fluids, especially urine, plasma, and serum. AIM This study aimed to evaluate the expression of a set of mRNAs, namely miR-21, miR-24, mir-100, miR-24a, miR-103-3p, and miR-142-3p. Their proposed roles in the progression of osteoporosis were identified using a real-time polymerase chain reaction (RT-PCR) analysis in premenopausal women. In addition, their correlations with osteocalcin (OC), bone-specific alkaline phosphatase (BAP), and deoxypyridinoline (DPD) bone markers were explored. METHODS A total of 85 healthy premenopausal women aged 25-50 years old were included in this study. Based on a DXA scan (Z-score) analysis and calcaneus broadband ultrasound attenuation scores (c-BUAs), measured via quantitative ultrasound (QUS), the subjects were classified into three groups: normal group (n = 25), osteopenia (n = 30), and osteoporosis (n = 30). Real-time-PCR and immunoassay analyses were performed to determine miRNA expression levels and serum OC, s-BAP, and DPD, respectively, as biomarkers of bone health. RESULTS Among the identified miRNAs, only miR-21, miR-24, and mir-100 were significantly upregulated and increased in the serum of patients with osteopenia and osteoporosis, and miR-24a, miR-103-3p, and miR-142-3p were downregulated and significantly decreased in osteoporosis. Both upregulated and downregulated miRNAs were significantly correlated with BMD, c-BUA, OC, s-BAP, and DPD. CONCLUSION A group of circulating miRNAs was shown to be closely correlated with the parameters BMD, c-BUA, OC, s-BAP, and DPD, which are traditionally used for bone-health measurements. They could be identified as non-invasive biomarkers in premenopausal patients with osteoporosis. More studies with large sample sizes are recommended to estimate the mechanistic role of miRNAs in osteoporosis pathogenesis and to provide evidence for the use of these miRNAs as a non-invasive method of diagnosing clinical osteoporosis, especially in premenopausal patients.
Collapse
Affiliation(s)
- Hadeel A. Al-Rawaf
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 11433 Saudi Arabia
| | - Sami A. Gabr
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 11433 Saudi Arabia
| | - Amir Iqbal
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 11433 Saudi Arabia
| | - Ahmad H. Alghadir
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 11433 Saudi Arabia
| |
Collapse
|
37
|
Anoushirvani AA, Jafarian Yazdi A, Amirabadi S, Asouri SA, Shafabakhsh R, Sheida A, Hosseini Khabr MS, Jafari A, Tamehri Zadeh SS, Hamblin MR, Kalantari L, Talaei Zavareh SA, Mirzaei H. Role of non-coding RNAs in neuroblastoma. Cancer Gene Ther 2023; 30:1190-1208. [PMID: 37217790 DOI: 10.1038/s41417-023-00623-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/25/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023]
Abstract
Neuroblastoma is known as the most prevalent extracranial malignancy in childhood with a neural crest origin. It has been widely accepted that non-coding RNAs (ncRNAs) play important roles in many types of cancer, including glioma and gastrointestinal cancers. They may regulate the cancer gene network. According to recent sequencing and profiling studies, ncRNAs genes are deregulated in human cancers via deletion, amplification, abnormal epigenetic, or transcriptional regulation. Disturbances in the expression of ncRNAs may act either as oncogenes or as anti-tumor suppressor genes, and can lead to the induction of cancer hallmarks. ncRNAs can be secreted from tumor cells inside exosomes, where they can be transferred to other cells to affect their function. However, these topics still need more study to clarify their exact roles, so the present review addresses different roles and functions of ncRNAs in neuroblastoma.
Collapse
Affiliation(s)
- Ali Arash Anoushirvani
- Department of Internal Medicine, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Sanaz Amirabadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sahar Ahmadi Asouri
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University, Kashan, Iran
| | - Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University, Kashan, Iran
| | - Amirhossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Sadat Hosseini Khabr
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Ameneh Jafari
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, P.O. BOX: 15179/64311, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Leila Kalantari
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| | | | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University, Kashan, Iran.
| |
Collapse
|
38
|
Nakashiro KI, Tokuzen N, Saika M, Shirai H, Kuribayashi N, Goda H, Uchida D. MicroRNA-1289 Functions as a Novel Tumor Suppressor in Oral Squamous Cell Carcinoma. Cancers (Basel) 2023; 15:4138. [PMID: 37627167 PMCID: PMC10452613 DOI: 10.3390/cancers15164138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/01/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Recently, numerous tumor-suppressive microRNAs (TS-miRs) have been identified in human malignancies. Here, we attempted to identify novel TS-miRs in oral squamous cell carcinoma (OSCC). First, we transfected human OSCC cells individually with 968 synthetic miRs mimicking human mature miRs individually, and the growth of these cells was evaluated using the WST-8 assay. Five miR mimics significantly reduced the cell growth rate by less than 30%, and the miR-1289 mimic had the most potent growth inhibitory effect among these miRs. Subsequently, we assessed the in vivo growth-inhibitory effects of miR-1289 using a mouse model. The administration of the miR-1289 mimic-atelocollagen complex significantly reduced the size of subcutaneously xenografted human OSCC tumors. Next, we investigated the expression of miR-1289 in OSCC tissues using reverse transcription-quantitative PCR. The expression level of miR-1289 was significantly lower in OSCC tissues than in the adjacent normal oral mucosa. Furthermore, 15 genes were identified as target genes of miR-1289 via microarray and Ingenuity Pathway Analysis (IPA) microRNA target filtering. Among these genes, the knockdown of magnesium transporter 1 (MAGT1) resulted in the most remarkable cell growth inhibition in human OSCC cells. These results suggested that miR-1289 functions as a novel TS-miR in OSCC and may be a useful therapeutic tool for patients with OSCC.
Collapse
Affiliation(s)
- Koh-ichi Nakashiro
- Department of Oral and Maxillofacial Surgery, Ehime University Graduate School of Medicine, Toon 791-0295, Japan; (N.T.); (M.S.); (H.S.); (N.K.); (H.G.); (D.U.)
| | | | | | | | | | | | | |
Collapse
|
39
|
Geng N, Qi Y, Qin W, Li S, Jin H, Jiang Y, Wang X, Wei S, Wang P. Two microRNAs of plasma-derived small extracellular vesicles as biomarkers for metastatic non-small cell lung cancer. BMC Pulm Med 2023; 23:259. [PMID: 37452310 PMCID: PMC10347730 DOI: 10.1186/s12890-023-02538-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/27/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) of plasma-derived small extracellular vesicles (sEVs) have been proven to be associated with metastasis in several types of cancer. This study aimed to detect miRNAs of plasma-derived sEVs as potential biomarkers for metastatic non-small cell lung cancer (NSCLC). METHODS We assessed the miRNA profiles of plasma-derived sEVs from healthy individuals as the control group (CT group), NSCLC patients without distant organ metastasis as the NM-NSCLC group and patients with distant organ metastasis as the M-NSCLC group. Next-generation sequencing (NGS) was performed on samples, and differentially expressed miRNAs (DEMs) of the three groups were screened. Kyoto Encyclopedia of Genes and Genomes (KEGG) and ClueGO were used to predict potential pathways of DEMs. MiRNA enrichment analysis and annotation tool (miEAA) was used to understand changes in the tumour microenvironment in NSCLC. Quantitative reverse transcription polymerase chain reaction (qRT‒PCR) analysis was used to validate target miRNAs. RESULT NGS was performed on 38 samples of miRNAs of plasma-derived sEVs, and DEMs were screened out between the above three groups. Regarding the distribution of DEMs in the NM-NSCLC and M-NSCLC groups, KEGG pathway analysis showed enrichment in focal adhesion and gap junctions and ClueGO in the Rap1 and Hippo signaling pathways; miEAA found that fibroblasts were over-represented. From our screening, miRNA-200c-3p and miRNA-4429 were found to be predictive DEMs among the CT, NM-NSCLC and M-NSCLC groups, and qRT‒PCR was applied to verify the results. Finally, it was revealed that expression levels of miR-200c-3p and miR-4429 were significantly upregulated in M-NSCLC patients. CONCLUSION This study identified miRNA-200c-3p and miRNA-4429 as potential biomarkers for NSCLC metastasis.
Collapse
Affiliation(s)
- Nan Geng
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Jiankang Road, Shijiazhuang, Hebei, 050011, P.R. China
| | - Yaopu Qi
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Jiankang Road, Shijiazhuang, Hebei, 050011, P.R. China
| | - Wenwen Qin
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Jiankang Road, Shijiazhuang, Hebei, 050011, P.R. China
| | - Si Li
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Jiankang Road, Shijiazhuang, Hebei, 050011, P.R. China
| | - Hao Jin
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Jiankang Road, Shijiazhuang, Hebei, 050011, P.R. China
| | - Yifang Jiang
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Jiankang Road, Shijiazhuang, Hebei, 050011, P.R. China
| | - Xiuhuan Wang
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Jiankang Road, Shijiazhuang, Hebei, 050011, P.R. China
| | - Shanna Wei
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Jiankang Road, Shijiazhuang, Hebei, 050011, P.R. China
| | - Ping Wang
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Jiankang Road, Shijiazhuang, Hebei, 050011, P.R. China.
| |
Collapse
|
40
|
Wu S, Wu Y, Deng S, Lei X, Yang X. Emerging roles of noncoding RNAs in human cancers. Discov Oncol 2023; 14:128. [PMID: 37439905 DOI: 10.1007/s12672-023-00728-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/14/2023] [Indexed: 07/14/2023] Open
Abstract
Studies have found that RNA encoding proteins only account for a small part of the total number, most RNA is non-coding RNA, and non-coding RNA may affect the occurrence and development of human cancers by affecting gene expression, therefore play an important role in human pathology. At present, ncRNAs studied include miRNA, circRNA, lncRNA, piRNA, and snoRNA, etc. After decades of research, the basic role of these ncRNAs in many cancers has been clear. As far as we know, the role of miRNAs in cancer is one of the hottest research directions, however, it is also found that the imbalance of ncRNAs will affect the occurrence of gastric cancer, breast cancer, lung cancer, meanwhile, it may also affect the prognosis of these cancers. Therefore, the study of ncRNAs in cancers may help to find new cancer diagnostic and treatment methods. Here, we reviewed the biosynthesis and characteristics of miRNA, cricRNA, and lncRNA etc., their roles in human cancers, as well as the mechanism through which these ncRNAs affect human cancers.
Collapse
Affiliation(s)
- Shijie Wu
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China
| | - Yiwen Wu
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China
| | - Sijun Deng
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China
| | - Xiaoyong Lei
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China
| | - Xiaoyan Yang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China.
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China.
| |
Collapse
|
41
|
Li J, Peng S, Zou X, Geng X, Wang T, Zhu W, Xia T. Value of negatively correlated miR-205-5p/ HMGB3 and miR-96-5p/ FOXO1 on the diagnosis of breast cancer and benign breast diseases. CANCER PATHOGENESIS AND THERAPY 2023; 1:159-167. [PMID: 38327836 PMCID: PMC10846318 DOI: 10.1016/j.cpt.2023.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/01/2023] [Accepted: 04/20/2023] [Indexed: 02/09/2024]
Abstract
Background MicroRNA (miRNA) and mRNA levels in matching specimens were used to identify miRNA-mRNA interactions. We aimed to integrate transcriptome, immunophenotype, methylation, mutation, and survival data analyses to examine the profiles of miRNAs and target mRNAs and their associations with breast cancer (BC) diagnosis. Methods Based on the Gene Expression Omnibus (GEO) database and The Cancer Genome Atlas (TCGA), differentially expressed miRNAs and targeted mRNAs were screened from experimentally verified miRNA-target interaction databases using Pearson's correlation analysis. We used real-time quantitative reverse transcription polymerase chain reaction to verify BC and benign disease samples, and logistic regression analysis was used to establish a diagnostic model based on miRNAs and target mRNAs. Receiver operating characteristic curve analysis was performed to test the ability to recognize the miRNA-mRNA pairs. Next, we investigated the complex interactions between miRNA-mRNA regulatory pairs and phenotypic hallmarks. Results We identified 27 and 359 dysregulated miRNAs and mRNAs, respectively, based on the GEO and TCGA databases. Using Pearson's correlation analysis, 10 negative miRNA-mRNA regulatory pairs were identified after screening both databases, and the related miRNA and target mRNA levels were assessed in 40 BC tissues and 40 benign breast disease tissues. Two key regulatory pairs (miR-205-5p/High mobility group box 3 (HMGB3) and miR-96-5p/Forkhead Box O1 (FOXO1)) were selected to establish the diagnostic model. They also had utility in survival and clinical analyses. Conclusions A diagnostic model including two miRNAs and their respective target mRNAs was established to distinguish between BC and benign breast diseases. These markers play essential roles in BC pathogenesis.
Collapse
Affiliation(s)
- Jiaying Li
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China
| | - Shuang Peng
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xuan Zou
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032 China
| | - Xiangnan Geng
- Department of Clinical Engineering, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Tongshan Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Wei Zhu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Tiansong Xia
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
42
|
Gujrati H, Ha S, Wang BD. Deregulated microRNAs Involved in Prostate Cancer Aggressiveness and Treatment Resistance Mechanisms. Cancers (Basel) 2023; 15:3140. [PMID: 37370750 PMCID: PMC10296615 DOI: 10.3390/cancers15123140] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Prostate cancer (PCa) is the most frequently diagnosed cancer and the second leading cause of cancer deaths among American men. Complex genetic and epigenetic mechanisms are involved in the development and progression of PCa. MicroRNAs (miRNAs) are short noncoding RNAs that regulate protein expression at the post-transcriptional level by targeting mRNAs for degradation or inhibiting protein translation. In the past two decades, the field of miRNA research has rapidly expanded, and emerging evidence has revealed miRNA dysfunction to be an important epigenetic mechanism underlying a wide range of diseases, including cancers. This review article focuses on understanding the functional roles and molecular mechanisms of deregulated miRNAs in PCa aggressiveness and drug resistance based on the existing literature. Specifically, the miRNAs differentially expressed (upregulated or downregulated) in PCa vs. normal tissues, advanced vs. low-grade PCa, and treatment-responsive vs. non-responsive PCa are discussed. In particular, the oncogenic and tumor-suppressive miRNAs involved in the regulation of (1) the synthesis of the androgen receptor (AR) and its AR-V7 splice variant, (2) PTEN expression and PTEN-mediated signaling, (3) RNA splicing mechanisms, (4) chemo- and hormone-therapy resistance, and (5) racial disparities in PCa are discussed and summarized. We further provide an overview of the current advances and challenges of miRNA-based biomarkers and therapeutics in clinical practice for PCa diagnosis/prognosis and treatment.
Collapse
Affiliation(s)
- Himali Gujrati
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore School of Pharmacy, Princess Anne, MD 21853, USA
| | - Siyoung Ha
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore School of Pharmacy, Princess Anne, MD 21853, USA
| | - Bi-Dar Wang
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore School of Pharmacy, Princess Anne, MD 21853, USA
- Hormone Related Cancers Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| |
Collapse
|
43
|
Arnesen S, Polaski J, Blanchard Z, Osborne K, Welm A, O’Connell R, Gertz J. Estrogen receptor alpha mutations regulate gene expression and cell growth in breast cancer through microRNAs. NAR Cancer 2023; 5:zcad027. [PMID: 37275275 PMCID: PMC10233889 DOI: 10.1093/narcan/zcad027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/18/2023] [Accepted: 05/18/2023] [Indexed: 06/07/2023] Open
Abstract
Estrogen receptor α (ER) mutations occur in up to 30% of metastatic ER-positive breast cancers. Recent data has shown that ER mutations impact the expression of thousands of genes not typically regulated by wildtype ER. While the majority of these altered genes can be explained by constant activity of mutant ER or genomic changes such as altered ER binding and chromatin accessibility, as much as 33% remain unexplained, indicating the potential for post-transcriptional effects. Here, we explored the role of microRNAs in mutant ER-driven gene regulation and identified several microRNAs that are dysregulated in ER mutant cells. These differentially regulated microRNAs target a significant portion of mutant-specific genes involved in key cellular processes. When the activity of microRNAs is altered using mimics or inhibitors, significant changes are observed in gene expression and cellular proliferation related to mutant ER. An in-depth evaluation of miR-301b led us to discover an important role for PRKD3 in the proliferation of ER mutant cells. Our findings show that microRNAs contribute to mutant ER gene regulation and cellular effects in breast cancer cells.
Collapse
Affiliation(s)
- Spencer Arnesen
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Jacob T Polaski
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Zannel Blanchard
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Kyle S Osborne
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Alana L Welm
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Ryan M O’Connell
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Jason Gertz
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
44
|
Yoshida K, Yokoi A, Kitagawa M, Sugiyama M, Yamamoto T, Nakayama J, Yoshida H, Kato T, Kajiyama H, Yamamoto Y. Downregulation of miR‑10b‑5p facilitates the proliferation of uterine leiomyosarcoma cells: A microRNA sequencing‑based approach. Oncol Rep 2023; 49:86. [PMID: 36929268 PMCID: PMC10073409 DOI: 10.3892/or.2023.8523] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/02/2023] [Indexed: 03/15/2023] Open
Abstract
Uterine leiomyosarcoma (ULMS) is one of the most aggressive gynecological malignancies. In addition, the molecular background of ULMS has not been fully elucidated due to its low incidence. Therefore, no effective treatment strategies have been established based on its molecular background. The present study aimed to investigate the roles of microRNAs (miRNAs/miRs) in the development of ULMS. Comprehensive miRNA sequencing was performed using six ULMS and three myoma samples, and revealed 53 and 11 significantly upregulated and downregulated miRNAs, respectively. One of the most abundant miRNAs in myoma samples was miR‑10b‑5p. The mean normalized read count of miR‑10b‑5p was 93,650 reads in myoma, but only 27,903 reads in ULMS. Subsequently, to investigate the roles of miR‑10b‑5p, gain‑of‑function analysis was performed using SK‑UT‑1 and SK‑LMS‑1 cell lines. The overexpression of miR‑10b‑5p suppressed cell proliferation and reduced the number of colonies. Moreover, miR‑10b‑5p increased the number of cells in the G1 phase. In conclusion, tumor‑suppressive miR‑10b‑5p was significantly downregulated in ULMS compared with in myoma; thus, miR‑10b‑5p may serve a specific role in sarcoma progression.
Collapse
Affiliation(s)
- Kosuke Yoshida
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Aichi 466-8550, Japan
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Akira Yokoi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Aichi 466-8550, Japan
| | - Masami Kitagawa
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Mai Sugiyama
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Tomofumi Yamamoto
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Jun Nakayama
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Hiroshi Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Tomoyasu Kato
- Department of Gynecology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Yusuke Yamamoto
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| |
Collapse
|
45
|
Chu X, Wu D, Zhang C, Hu S. Expression pattern of miR-16-2-3p and its prognostic values on pediatric acute lymphoblastic leukemia. Scand J Clin Lab Invest 2023:1-5. [PMID: 37093849 DOI: 10.1080/00365513.2023.2191335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Acute lymphoblastic leukemia (ALL) is a debilitating illness that easily occurs in adolescents. microRNAs (miRNAs) are potential biomarkers for multiple diseases. This paper was to elaborate on the expression of miR-16-2-3p in childhood ALL and its clinical values on ALL diagnosis and prognosis. First, serum miR-16-2-3p expression in ALL children and healthy volunteers was measured using RT-qPCR. Next, diagnostic potential and prognostic values of miR-16-2-3p on ALL were analyzed through receiver operating characteristic (ROC) curve, Kaplan-Meier survival curve, and multivariate Cox regression analysis, respectively. No significant difference was observed in the clinical baseline data between ALL patients and healthy children. ALL patients showed downregulated serum miR-16-2-3p (0.65 ± 0.27) (p < .01), whose area under the ROC curve was 0.837 with a cut-off value of 0.745 (67.92% sensitivity, 96.94% specificity). ALL patients with higher miR-16-2-3p expression had higher survival rates than those with lower miR-16-2-3p expression. Low miR-16-2-3p expression predicted poor prognosis of ALL patients. After adjusting LDH and lymphomyelocyte proportion (p = 0.003, HR = 0.003, 95%CI = 0.000-0.145), miR-16-2-3p was recognized as an independent prognostic factor for ALL patient survival. Briefly, low serum miR-16-2-3p expression in ALL children could aid ALL diagnosis and predict poor prognosis.
Collapse
Affiliation(s)
- Xinran Chu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Dong Wu
- Department of Pediatric, Qiyuan People's Hospital, Zibo, China
| | - Chenyue Zhang
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Shaoyan Hu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
46
|
Dżaman K, Czerwaty K. Extracellular Vesicle-Based Drug Delivery Systems for Head and Neck Squamous Cell Carcinoma: A Systematic Review. Pharmaceutics 2023; 15:pharmaceutics15051327. [PMID: 37242569 DOI: 10.3390/pharmaceutics15051327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/07/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
It is estimated that there are over 890,000 new cases of head and neck squamous cell carcinoma (HNSCC) worldwide each year, accounting for approximately 5% of all cancer cases. Current treatment options for HNSCC often cause significant side effects and functional impairments, thus there is a challenge to discover more acceptable treatment technologies. Extracellular vesicles (EVs) can be utilized for HNSCC treatment in several ways, for example, for drug delivery, immune modulation, as biomarkers for diagnostics, gene therapy, or tumor microenvironment modulation. This systematic review summarizes new knowledge regarding these options. Articles published up to 11 December 2022, were identified by searching the electronic databases PubMed/MEDLINE, Scopus, Web of Science, and Cochrane. Only full-text original research papers written in English were considered eligible for analysis. The quality of studies was assessed using the Office of Health Assessment and Translation (OHAT) Risk of Bias Rating Tool for Human and Animal Studies, modified for the needs of this review. Of 436 identified records, 18 were eligible and included. It is important to note that the use of EVs as a treatment for HNSCC is still in the early stages of research, so we summarized information on challenges such as EV isolation, purification, and standardization of EV-based therapies in HNSCC.
Collapse
Affiliation(s)
- Karolina Dżaman
- Department of Otolaryngology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Katarzyna Czerwaty
- Department of Otolaryngology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| |
Collapse
|
47
|
Park WJ, Kim MJ. A New Wave of Targeting 'Undruggable' Wnt Signaling for Cancer Therapy: Challenges and Opportunities. Cells 2023; 12:cells12081110. [PMID: 37190019 DOI: 10.3390/cells12081110] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Aberrant Wnt signaling activation is frequently observed in many cancers. The mutation acquisition of Wnt signaling leads to tumorigenesis, whereas the inhibition of Wnt signaling robustly suppresses tumor development in various in vivo models. Based on the excellent preclinical effect of targeting Wnt signaling, over the past 40 years, numerous Wnt-targeted therapies have been investigated for cancer treatment. However, Wnt signaling-targeting drugs are still not clinically available. A major obstacle to Wnt targeting is the concomitant side effects during treatment due to the pleiotropic role of Wnt signaling in development, tissue homeostasis, and stem cells. Additionally, the complexity of the Wnt signaling cascades across different cancer contexts hinders the development of optimized targeted therapies. Although the therapeutic targeting of Wnt signaling remains challenging, alternative strategies have been continuously developed alongside technological advances. In this review, we give an overview of current Wnt targeting strategies and discuss recent promising trials that have the potential to be clinically realized based on their mechanism of action. Furthermore, we highlight new waves of Wnt targeting that combine recently developed technologies such as PROTAC/molecular glue, antibody-drug conjugates (ADC), and anti-sense oligonucleotides (ASO), which may provide us with new opportunities to target 'undruggable' Wnt signaling.
Collapse
Affiliation(s)
- Woo-Jung Park
- Department of Life Science, Gachon University, Seongnam 13120, Republic of Korea
| | - Moon Jong Kim
- Department of Life Science, Gachon University, Seongnam 13120, Republic of Korea
- Department of Health Sciences and Technology, GAIHST, Lee Gil Ya Cancer and Diabetes Institute, Incheon 21999, Republic of Korea
| |
Collapse
|
48
|
Gong H, Tao Y, Xiao S, Li X, Fang K, Wen J, He P, Zeng M. LncRNA KIAA0087 suppresses the progression of osteosarcoma by mediating the SOCS1/JAK2/STAT3 signaling pathway. Exp Mol Med 2023; 55:831-843. [PMID: 37009803 PMCID: PMC10167219 DOI: 10.1038/s12276-023-00972-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/16/2022] [Accepted: 01/03/2023] [Indexed: 04/04/2023] Open
Abstract
Long noncoding RNAs (lncRNAs), widely expressed in mammalian cells, play pivotal roles in osteosarcoma (OS) progression. Nevertheless, the detailed molecular mechanisms of lncRNA KIAA0087 in OS remain obscure. Here, the roles of KIAA0087 in OS tumorigenesis were investigated. KIAA0087 and miR-411-3p levels were detected by RT-qPCR. Malignant properties were assessed by CCK-8, colony formation, flow cytometry, wound healing, and transwell assays. SOCS1, EMT, and JAK2/STAT3 pathway-related protein levels were measured by western blotting. Direct binding between miR-411-3p and KIAA0087/SOCS1 was validated by a dual-luciferase reporter, RIP, and FISH assays. In vivo growth and lung metastasis were evaluated in nude mice. The expression levels of SOCS1, Ki-67, E-cadherin, and N-cadherin in tumor tissues were measured by immunohistochemical staining. Downregulation of KIAA0087 and SOCS1 and upregulation of miR-411-3p were found in OS tissues and cells. Low expression of KIAA0087 was associated with a poor survival rate. Forced expression of KIAA0087 or miR-411-3p inhibition repressed the growth, migration, invasion, EMT, and activation of the JAK2/STAT3 pathway and triggered apoptosis of OS cells. However, the opposite results were found with KIAA0087 knockdown or miR-411-3p overexpression. Mechanistic experiments indicated that KIAA0087 enhanced SOCS1 expression to inactivate the JAK2/STAT3 pathway by sponging miR-411-3p. Rescue experiments revealed that the antitumor effects of KIAA0087 overexpression or miR-411-3p suppression were counteracted by miR-411-3p mimics or SOCS1 inhibition, respectively. Finally, in vivo tumor growth and lung metastasis were inhibited in KIAA0087-overexpressing or miR-411-3p-inhibited OS cells. In summary, the downregulation of KIAA0087 promotes the growth, metastasis, and EMT of OS by targeting the miR-411-3p-mediated SOCS1/JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Haoli Gong
- Department of Orthopedics, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, Hunan Province, P. R. China
| | - Ye Tao
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan Province, P. R. China
| | - Sheng Xiao
- Department of Orthopedics, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, Hunan Province, P. R. China
| | - Xin Li
- Department of Orthopedics, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, Hunan Province, P. R. China
| | - Ke Fang
- Department of Orthopedics, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, Hunan Province, P. R. China
| | - Jie Wen
- Department of Orthopedics, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, Hunan Province, P. R. China
| | - Pan He
- Department of Orthopedics, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, Hunan Province, P. R. China
| | - Ming Zeng
- Department of Orthopedics, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, Hunan Province, P. R. China.
| |
Collapse
|
49
|
Choi JE, Jeon HS, Wee HJ, Lee JY, Lee WK, Lee SY, Yoo SS, Choi SH, Kim DS, Park JY. Epigenetic and genetic inactivation of tumor suppressor miR-135a in non-small-cell lung cancer. Thorac Cancer 2023; 14:1012-1020. [PMID: 36869643 PMCID: PMC10101835 DOI: 10.1111/1759-7714.14838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND Despite therapeutic advances, lung cancer prognosis remains poor. Loss of heterozygosity (LOH) in the 3p21 region is well documented in lung cancer, but the specific causative genes have not been identified. MATERIALS AND METHODS Here, we aimed to examine the clinical impact of miR-135a, located in the 3p21 region, in lung cancer. miR-135a expression was assessed using quantitative real-time polymerase chain reaction. LOH was analyzed at microsatellite loci D3S1076 and D3S1478, and promoter methylation status was determined by pyrosequencing of resected samples of primary non-small-cell lung cancer (NSCLC). The regulation of telomerase reverse transcriptase (TERT) was evaluated in lung cancer cells H1299 by luciferase report assays after treatment with miR-135a mimics. RESULTS miR-135a was significantly downregulated in squamous cell cancer (SCC) tumor tissues compared to normal tissues (p = 0.001). Low miR-135a expression was more frequent in patients with SCC (p = 2.9 × 10-4 ) and smokers (p = 0.01). LOH and hypermethylation were detected in 27.8% (37/133) and 17.3% (23/133) of the tumors, respectively. Overall, 36.8% (49/133) of the NSCLC cases harbored either miR-135a LOH or promoter hypermethylation. The frequencies of LOH and hypermethylation were significantly associated with SCCs (p = 2 × 10-4 ) and late-stage (p = 0.04), respectively. MiR-135a inhibited the relative luciferase activity of psiCHECK2-TERT-3'UTR. CONCLUSION These results suggest that miR-135a may act as a tumor suppressor to play an important role in lung cancer carcinogenesis, which will provide a new insight into the translational value of miR-135a. Further large-scale studies are required to confirm these findings.
Collapse
Affiliation(s)
- Jin Eun Choi
- Cell and Matrix Research Institute, School of Medicine, Kyungpook National UniversityDaeguSouth Korea
| | - Hyo Sung Jeon
- Cell and Matrix Research Institute, School of Medicine, Kyungpook National UniversityDaeguSouth Korea
| | - Hyun Jung Wee
- Cell and Matrix Research Institute, School of Medicine, Kyungpook National UniversityDaeguSouth Korea
| | - Ji Yun Lee
- Cell and Matrix Research Institute, School of Medicine, Kyungpook National UniversityDaeguSouth Korea
| | - Won Kee Lee
- Biostatistics, Medical Research Collaboration Center in Kyungpook National University Hospital and School of Medicine, Kyungpook National UniversityDaeguSouth Korea
| | - Shin Yup Lee
- Department of Internal MedicineSchool of Medicine, Kyungpook National UniversityDaeguSouth Korea
- Lung Cancer Center, Kyungpook National University Chilgok HospitalDaeguSouth Korea
| | - Seung Soo Yoo
- Department of Internal MedicineSchool of Medicine, Kyungpook National UniversityDaeguSouth Korea
- Lung Cancer Center, Kyungpook National University Chilgok HospitalDaeguSouth Korea
| | - Sun Ha Choi
- Department of Internal MedicineSchool of Medicine, Kyungpook National UniversityDaeguSouth Korea
- Lung Cancer Center, Kyungpook National University Chilgok HospitalDaeguSouth Korea
| | - Dong Sun Kim
- Cell and Matrix Research Institute, School of Medicine, Kyungpook National UniversityDaeguSouth Korea
- Department of AnatomySchool of Medicine, Kyungpook National UniversityDaeguSouth Korea
| | - Jae Yong Park
- Cell and Matrix Research Institute, School of Medicine, Kyungpook National UniversityDaeguSouth Korea
- Department of Internal MedicineSchool of Medicine, Kyungpook National UniversityDaeguSouth Korea
- Lung Cancer Center, Kyungpook National University Chilgok HospitalDaeguSouth Korea
| |
Collapse
|
50
|
Chen H, Zhuang Z, Chen Y, Qiu C, Qin Y, Tan C, Tan Y, Jiang Y. A universal platform for one-pot detection of circulating non-coding RNA combining CRISPR-Cas12a and branched rolling circle amplification. Anal Chim Acta 2023; 1246:340896. [PMID: 36764778 DOI: 10.1016/j.aca.2023.340896] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/02/2023] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
Multiple circulating non-coding RNAs (ncRNAs) in serum may serve as vital biomarkers for use in diagnosing early-stage colorectal cancer (CRC). Herein, a universal platform for one-pot detection of CRC-related ncRNAs was developed based on branched rolling circle amplification and CRISPR-Cas12a (BRCACas). For the implementation of the method, primers incorporating ncRNA sequences of circulating CRC-associated RNAs (piRNA or miRNA) were designed that could specifically hybridize with circular probes to initiate the BRCA process. Thereafter, the generation of dendritic DNA products triggered Cas12a trans-cleavage activity to elicit a fluorescent signal. The proposed method, combining high BRCA reaction efficiency with powerful Cas12a trans-cleavage activity, provided greatly enhanced detection sensitivity, as reflected by limits of detection (LODs) for model piRNA (piR-54265) and model miRNA (miR21) of 0.76 fM and 0.87 fM, respectively. Notably, the proposed BRCACas platform, assaying two different types of CRC-associated ncRNAs in patient samples, produced consistent results with the conventional reverse transcription-quantitative PCR (RT-qPCR) method. Therefore, the one-pot, isothermal, and specific BRCACas platform provided excellent performance, thus demonstrating its promise as a rapid, adaptable, and practical diagnostic/prognostic cancer screening method.
Collapse
Affiliation(s)
- Hui Chen
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; Department of Chemistry, Tsinghua University, Beijing, 100084, PR China
| | - Zhiyuan Zhuang
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Yan Chen
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Cheng Qiu
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Ying Qin
- Department of Gastrointestinal Surgery, Shenzhen Second People's Hospital, Shenzhen, Guangdong, 518055, PR China
| | - Chunyan Tan
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; Department of Chemistry, Tsinghua University, Beijing, 100084, PR China
| | - Ying Tan
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; Department of Chemistry, Tsinghua University, Beijing, 100084, PR China.
| | - Yuyang Jiang
- Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, PR China
| |
Collapse
|