1
|
Wong ML, Bartlett S, Cleland CE, Demarest H, Cleaves HJ, Prabhu A, Lunine JI, Hazen RM. Reply to Root-Bernstein: Increasing complexity allows for the pervasiveness of low-complexity entities and is not anthropocentric. Proc Natl Acad Sci U S A 2024; 121:e2406598121. [PMID: 39133837 PMCID: PMC11348080 DOI: 10.1073/pnas.2406598121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024] Open
Affiliation(s)
- Michael L. Wong
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC20015
- NASA Hubble Fellowship Program Sagan Fellow, NASA Hubble Fellowship Program, Space Telescope Science Institute, Baltimore, MD21218
| | - Stuart Bartlett
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA91125
| | - Carol E. Cleland
- Department of Philosophy, University of Colorado Boulder, Boulder, CO80309
| | - Heather Demarest
- Department of Philosophy, University of Colorado Boulder, Boulder, CO80309
| | - H. James Cleaves
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC20015
- Department of Chemistry, Howard University, Washington, DC20059
- Blue Marble Space Institute for Science, Seattle, WA98104
| | - Anirudh Prabhu
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC20015
| | - Jonathan I. Lunine
- Department of Astronomy, Cornell University, Ithaca, NY14853
- Cornell Center for Astrophysics and Planetary Science, Carl Sagan Institute, Cornell University, Ithaca, NY14853
| | - Robert M. Hazen
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC20015
| |
Collapse
|
2
|
Seymour JR, Brumley DR, Stocker R, Raina JB. Swimming towards each other: the role of chemotaxis in bacterial interactions. Trends Microbiol 2024; 32:640-649. [PMID: 38212193 DOI: 10.1016/j.tim.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/13/2024]
Abstract
Chemotaxis allows microorganisms to direct movement in response to chemical stimuli. Bacteria use this behaviour to develop spatial associations with animals and plants, and even larger microbes. However, current theory suggests that constraints imposed by the limits of chemotactic sensory systems will prevent sensing of chemical gradients emanating from cells smaller than a few micrometres, precluding the utility of chemotaxis in interactions between individual bacteria. Yet, recent evidence has revealed surprising levels of bacterial chemotactic precision, as well as a role for chemotaxis in metabolite exchange between bacterial cells. If indeed widespread, chemotactic sensing between bacteria could represent an important, but largely overlooked, phenotype within interbacterial interactions, and play a significant role in shaping cooperative and competitive relationships.
Collapse
Affiliation(s)
- Justin R Seymour
- Climate Change Cluster, University of Technology Sydney, Broadway, New South Wales, Australia.
| | - Douglas R Brumley
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria, Australia.
| | - Roman Stocker
- Institute for Environmental Engineering, Department of Civil, Environmental, and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Jean-Baptiste Raina
- Climate Change Cluster, University of Technology Sydney, Broadway, New South Wales, Australia.
| |
Collapse
|
3
|
Ma T, Rothschild J, Halabeya F, Zilman A, Milstein JN. Mechanics limits ecological diversity and promotes heterogeneity in confined bacterial communities. Proc Natl Acad Sci U S A 2024; 121:e2322321121. [PMID: 38728226 PMCID: PMC11098131 DOI: 10.1073/pnas.2322321121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/06/2024] [Indexed: 05/12/2024] Open
Abstract
Multispecies bacterial populations often inhabit confined and densely packed environments where spatial competition determines the ecological diversity of the community. However, the role of mechanical interactions in shaping the ecology is still poorly understood. Here, we study a model system consisting of two populations of nonmotile Escherichia coli bacteria competing within open, monolayer microchannels. The competitive dynamics is observed to be biphasic: After seeding, either one strain rapidly fixates or both strains orient into spatially stratified, stable communities. We find that mechanical interactions with other cells and local spatial constraints influence the resulting community ecology in unexpected ways, severely limiting the overall diversity of the communities while simultaneously allowing for the establishment of stable, heterogeneous populations of bacteria displaying disparate growth rates. Surprisingly, the populations have a high probability of coexisting even when one strain has a significant growth advantage. A more coccus morphology is shown to provide a selective advantage, but agent-based simulations indicate this is due to hydrodynamic and adhesion effects within the microchannel and not from breaking of the nematic ordering. Our observations are qualitatively reproduced by a simple Pólya urn model, which suggests the generality of our findings for confined population dynamics and highlights the importance of early colonization conditions on the resulting diversity and ecology of bacterial communities. These results provide fundamental insights into the determinants of community diversity in dense confined ecosystems where spatial exclusion is central to competition as in organized biofilms or intestinal crypts.
Collapse
Affiliation(s)
- Tianyi Ma
- Department of Physics, University of Toronto, Toronto, ONM5S 3J1, Canada
- Department of Chemical and Physical Sciences, University of Toronto, Mississauga, ONL5L 1C6, Canada
| | - Jeremy Rothschild
- Department of Physics, University of Toronto, Toronto, ONM5S 3J1, Canada
| | - Faisal Halabeya
- Department of Physics, University of Toronto, Toronto, ONM5S 3J1, Canada
- Department of Chemical and Physical Sciences, University of Toronto, Mississauga, ONL5L 1C6, Canada
| | - Anton Zilman
- Department of Physics, University of Toronto, Toronto, ONM5S 3J1, Canada
| | - Joshua N. Milstein
- Department of Physics, University of Toronto, Toronto, ONM5S 3J1, Canada
- Department of Chemical and Physical Sciences, University of Toronto, Mississauga, ONL5L 1C6, Canada
| |
Collapse
|
4
|
Khandoori R, Mondal K, Ghosh P. Resource limitation and population fluctuation drive spatiotemporal order in microbial communities. SOFT MATTER 2024; 20:3823-3835. [PMID: 38647378 DOI: 10.1039/d4sm00066h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Microbial communities display complex spatiotemporal behaviors leading to spatially-structured and ordered organization driven by species interactions and environmental factors. Resource availability plays a pivotal role in shaping the dynamics of bacterial colonies. In this study, we delve into the intricate interplay between resource limitation and the emergent properties of a growing colony of two visually distinct bacterial strains having similar growth and mechanical properties. Employing an agent-based modeling and computer simulations, we analyze the resource-driven effect on segregation and sectoring, cell length regulation and nematic ordering within a growing colony. We introduce a dimensionless parameter referred to as the active layer thickness, derived from nutrient diffusion equations, indicating effective population participation due to local resource availability. Our results reveal that lower values of active layer thickness arising from decreased resource abundance lead to rougher colony fronts, fostering heightened population fluctuations within the colony and faster spatial genetic diversity loss. Our temporal analyses unveil the dynamics of mean cell length and fluctuations, showcasing how initial disturbances evolve as colonies are exposed to nutrients and subsequently settle. Furthermore, examining microscopic details, we find that lower resource levels yield diverse cell lengths and enhanced nematic ordering, driven by the increased prevalence of longer rod-shaped cells. Our investigation sheds light on the multifaceted relationship between resource constraints and bacterial colony dynamics, revealing insights into their spatiotemporal organization.
Collapse
Affiliation(s)
- Rohit Khandoori
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India.
| | - Kaustav Mondal
- Center for High-Performance Computing, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| | - Pushpita Ghosh
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India.
- Center for High-Performance Computing, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
5
|
Zhang Z, Huo J, Velo J, Zhou H, Flaherty A, Saier MH. Comprehensive Characterization of fucAO Operon Activation in Escherichia coli. Int J Mol Sci 2024; 25:3946. [PMID: 38612757 PMCID: PMC11011485 DOI: 10.3390/ijms25073946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Wildtype Escherichia coli cells cannot grow on L-1,2-propanediol, as the fucAO operon within the fucose (fuc) regulon is thought to be silent in the absence of L-fucose. Little information is available concerning the transcriptional regulation of this operon. Here, we first confirm that fucAO operon expression is highly inducible by fucose and is primarily attributable to the upstream operon promoter, while the fucO promoter within the 3'-end of fucA is weak and uninducible. Using 5'RACE, we identify the actual transcriptional start site (TSS) of the main fucAO operon promoter, refuting the originally proposed TSS. Several lines of evidence are provided showing that the fucAO locus is within a transcriptionally repressed region on the chromosome. Operon activation is dependent on FucR and Crp but not SrsR. Two Crp-cAMP binding sites previously found in the regulatory region are validated, where the upstream site plays a more critical role than the downstream site in operon activation. Furthermore, two FucR binding sites are identified, where the downstream site near the first Crp site is more important than the upstream site. Operon transcription relies on Crp-cAMP to a greater degree than on FucR. Our data strongly suggest that FucR mainly functions to facilitate the binding of Crp to its upstream site, which in turn activates the fucAO promoter by efficiently recruiting RNA polymerase.
Collapse
Affiliation(s)
- Zhongge Zhang
- Department of Molecular Biology, School of Biological Sciences, University of California at San Diego, 9500 Gilman Dr, La Jolla, CA 92093-0116, USA; (J.H.); (J.V.); (A.F.)
| | | | | | | | | | - Milton H. Saier
- Department of Molecular Biology, School of Biological Sciences, University of California at San Diego, 9500 Gilman Dr, La Jolla, CA 92093-0116, USA; (J.H.); (J.V.); (A.F.)
| |
Collapse
|
6
|
Toida K, Kushida W, Yamamoto H, Yamamoto K, Ishii K, Uesaka K, Kanaly RA, Kutsuna S, Ihara K, Fujita Y, Iwasaki H. The GGDEF protein Dgc2 suppresses both motility and biofilm formation in the filamentous cyanobacterium Leptolyngbya boryana. Microbiol Spectr 2023; 11:e0483722. [PMID: 37655901 PMCID: PMC10581220 DOI: 10.1128/spectrum.04837-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 06/30/2023] [Indexed: 09/02/2023] Open
Abstract
Colony pattern formations of bacteria with motility manifest complicated morphological self-organization phenomena. Leptolyngbya boryana is a filamentous cyanobacterium, which has been used as a genetic model organism for studying metabolism including photosynthesis and nitrogen fixation. A widely used type strain [wild type (WT) in this article] of this species has not been reported to show any motile activity. However, we isolated a spontaneous mutant strain that shows active motility (gliding activity) to give rise to complicated colony patterns, including comet-like wandering clusters and disk-like rotating vortices on solid media. Whole-genome resequencing identified multiple mutations in the genome of the mutant strain. We confirmed that inactivation of the candidate gene dgc2 (LBDG_02920) in the WT background was sufficient to give rise to motility and morphologically complex colony patterns. This gene encodes a protein containing the GGDEF motif which is conserved at the catalytic domain of diguanylate cyclase (DGC). Although DGC has been reported to be involved in biofilm formation, the dgc2 mutant significantly facilitated biofilm formation, suggesting a role for the dgc2 gene in suppressing both gliding motility and biofilm formation. Thus, Leptolyngbya is expected to be an excellent genetic model for studying dynamic colony pattern formation and to provide novel insights into the role of DGC family genes in biofilm formation. IMPORTANCE Self-propelled bacteria often exhibit complex collective behaviors, such as formation of dense-moving clusters, which are exemplified by wandering comet-like and rotating disk-like colonies; however, the molecular details of how these structures are formed are scant. We found that a strain of the filamentous cyanobacterium Leptolyngbya deficient in the GGDEF protein gene dgc2 elicits motility and complex and dynamic colony pattern formation, including comet-like and disk-like clusters. Although c-di-GMP has been reported to activate biofilm formation in some bacterial species, disruption of dgc2 unexpectedly enhanced it, suggesting a novel role for this GGDEF protein for inhibiting both colony pattern formation and biofilm formation.
Collapse
Affiliation(s)
- Kazuma Toida
- Department of Electrical Engineering and Bioscience, Graduate School of Sciences and Engineering, TWIns, Waseda University, Tokyo, Japan
| | - Wakana Kushida
- Department of Electrical Engineering and Bioscience, Graduate School of Sciences and Engineering, TWIns, Waseda University, Tokyo, Japan
| | - Hiroki Yamamoto
- Department of Electrical Engineering and Bioscience, Graduate School of Sciences and Engineering, TWIns, Waseda University, Tokyo, Japan
| | - Kyoka Yamamoto
- Department of Electrical Engineering and Bioscience, Graduate School of Sciences and Engineering, TWIns, Waseda University, Tokyo, Japan
| | - Kaichi Ishii
- Department of Electrical Engineering and Bioscience, Graduate School of Sciences and Engineering, TWIns, Waseda University, Tokyo, Japan
| | - Kazuma Uesaka
- Center for Gene Research, Nagoya University, Nagoya, Japan
| | - Robert A. Kanaly
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
| | - Shinsuke Kutsuna
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
| | - Kunio Ihara
- Center for Gene Research, Nagoya University, Nagoya, Japan
| | - Yuichi Fujita
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Hideo Iwasaki
- Department of Electrical Engineering and Bioscience, Graduate School of Sciences and Engineering, TWIns, Waseda University, Tokyo, Japan
- metaPhorest, Bioaesthetics Platform, Waseda University, Tokyo, Japan
| |
Collapse
|
7
|
Wang J, Wu J, Li J, Kong R, Li X, Wang X. Simulation of various biofilm fractal morphologies by agent-based model. Colloids Surf B Biointerfaces 2023; 227:113352. [PMID: 37196464 DOI: 10.1016/j.colsurfb.2023.113352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 05/19/2023]
Abstract
Biofilms are clusters of bacteria wrapped in extracellular matrix and polymers. The study of biofilm morphological transformation has been around for a long time and has attracted widespread attention. In this paper, we present a model for biofilm growth based on the interaction force, in which bacteria are treated as tiny particles and locations of particles are updated by calculating the repulsive forces among particles. We adapt a continuity equation to indicate nutrient concentration variation in the substrate. Based on the above, we study the morphological transformation of biofilms. We find that nutrient concentration and nutrient diffusion rate dominate different biofilm morphological transition processes, in which biofilms would grow into fractal morphology under the conditions of low nutrient concentration and nutrient diffusivity. At the same time, we expand our model by introducing a second particle to mimic extracellular polymeric substances (EPS) in biofilms. We find that the interaction between different particles can lead to phase separation patterns between cells and EPSs, and the adhesion effect of EPS can attenuate this phenomenon. In contrast to single particle system models, branches are inhibited due to EPS filling in dual particle system models, and this invalidation is boosted by the enhancement of the depletion effect.
Collapse
Affiliation(s)
- Jiankun Wang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jin Wu
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jin Li
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Rui Kong
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xianyong Li
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaoling Wang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China; School of Engineering and Applied Sciences, Harvard University, 02138 Cambridge, MA, USA.
| |
Collapse
|
8
|
Hefetz I, Israeli O, Bilinsky G, Plaschkes I, Hazkani-Covo E, Hayouka Z, Lampert A, Helman Y. A reversible mutation in a genomic hotspot saves bacterial swarms from extinction. iScience 2023; 26:106043. [PMID: 36824284 PMCID: PMC9941203 DOI: 10.1016/j.isci.2023.106043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/10/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Microbial adaptation to changing environmental conditions is frequently mediated by hypermutable sequences. Here we demonstrate that such a hypermutable hotspot within a gene encoding a flagellar unit of Paenibacillus glucanolyticus generated spontaneous non-swarming mutants with increased stress resistance. These mutants, which survived conditions that eliminated wild-type cultures, could be carried by their swarming siblings when the colony spread, consequently increasing their numbers at the spreading edge. Of interest, the hypermutable nature of the aforementioned sequence enabled the non-swarming mutants to serve as "seeds" for a new generation of wild-type cells through reversion of the mutation. Using a mathematical model, we examined the survival dynamics of P. glucanolyticus colonies under fluctuating environments. Our experimental and theoretical results suggest that the non-swarming, stress-resistant mutants can save the colony from extinction. Notably, we identified this hypermutable sequence in flagellar genes of additional Paenibacillus species, suggesting that this phenomenon could be wide-spread and ecologically important.
Collapse
Affiliation(s)
- Idan Hefetz
- Department of Biotechnology, Institute for Biological Research, Ness-Ziona, Israel,Department of Plant Pathology and Microbiology, IES, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ofir Israeli
- Department of Biochemistry and Molecular Biology, Institute for Biological Research, Ness-Ziona, Israel
| | - Gal Bilinsky
- Department of Biochemistry and Molecular Biology, Institute for Biological Research, Ness-Ziona, Israel
| | - Inbar Plaschkes
- Info-CORE, Bioinformatics Unit of the I-CORE at the Hebrew University of Jerusalem, Jerusalem, Israel
| | - Einat Hazkani-Covo
- Department of Natural and Life Sciences, The Open University of Israel, Ra’anana, Israel
| | - Zvi Hayouka
- Department of Biochemistry, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Adam Lampert
- Institute of Environmental Sciences (IES), Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel,Corresponding author
| | - Yael Helman
- Department of Plant Pathology and Microbiology, IES, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel,Corresponding author
| |
Collapse
|
9
|
Bhunia AK, Singh AK, Parker K, Applegate BM. Petri-plate, bacteria, and laser optical scattering sensor. Front Cell Infect Microbiol 2022; 12:1087074. [PMID: 36619754 PMCID: PMC9813400 DOI: 10.3389/fcimb.2022.1087074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Classical microbiology has paved the path forward for the development of modern biotechnology and microbial biosensing platforms. Microbial culturing and isolation using the Petri plate revolutionized the field of microbiology. In 1887, Julius Richard Petri invented possibly the most important tool in microbiology, the Petri plate, which continues to have a profound impact not only on reliably isolating, identifying, and studying microorganisms but also manipulating a microbe to study gene expression, virulence properties, antibiotic resistance, and production of drugs, enzymes, and foods. Before the recent advances in gene sequencing, microbial identification for diagnosis relied upon the hierarchal testing of a pure culture isolate. Direct detection and identification of isolated bacterial colonies on a Petri plate with a sensing device has the potential for revolutionizing further development in microbiology including gene sequencing, pathogenicity study, antibiotic susceptibility testing , and for characterizing industrially beneficial traits. An optical scattering sensor designated BARDOT (bacterial rapid detection using optical scattering technology) that uses a red-diode laser, developed at the beginning of the 21st century at Purdue University, some 220 years after the Petri-plate discovery can identify and study bacteria directly on the plate as a diagnostic tool akin to Raman scattering and hyperspectral imaging systems for application in clinical and food microbiology laboratories.
Collapse
Affiliation(s)
- Arun K. Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, United States,Purdue University, Purdue University Interdisciplinary Life Science Program (PULSe), West Lafayette, IN, United States,Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, United States,Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States,*Correspondence: Arun K. Bhunia,
| | - Atul K. Singh
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, United States,Clear Labs, San Carlos, CA, United States
| | - Kyle Parker
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Bruce M. Applegate
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, United States,Purdue University, Purdue University Interdisciplinary Life Science Program (PULSe), West Lafayette, IN, United States,Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, United States,Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
10
|
Biomimetic Self-Assembled Chiral Inorganic Nanomaterials: A New Strategy for Solving Medical Problems. Biomimetics (Basel) 2022; 7:biomimetics7040165. [PMID: 36278722 PMCID: PMC9624310 DOI: 10.3390/biomimetics7040165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 12/02/2022] Open
Abstract
The rapid expansion of the study of chiral inorganic structures has led to the extension of the functional boundaries of inorganic materials. Nature-inspired self-assembled chiral inorganic structures exhibit diverse morphologies due to their high assembly efficiency and controlled assembly process, and they exhibit superior inherent properties such as mechanical properties, chiral optical activity, and chiral fluorescence. Although chiral self-assembled inorganic structures are becoming more mature in chiral catalysis and chiral optical regulation, biomedical research is still in its infancy. In this paper, various forms of chiral self-assembled inorganic structures are summarized, which provides a structural starting point for various applications of chiral self-assembly inorganic structures in biomedical fields. Based on the few existing research statuses and mechanism discussions on the chiral self-assembled materials-mediated regulation of cell behavior, molecular probes, and tumor therapy, this paper provides guidance for future chiral self-assembled structures to solve the same or similar medical problems. In the field of chiral photonics, chiral self-assembled structures exhibit a chirality-induced selection effect, while selectivity is exhibited by chiral isomers in the medical field. It is worth considering whether there is some correspondence or juxtaposition between these phenomena. Future chiral self-assembled structures in medicine will focus on the precise treatment of tumors, induction of soft and hard tissue regeneration, explanation of the biochemical mechanisms and processes of its medical effects, and improvement of related theories.
Collapse
|
11
|
Wang J, Li X, Kong R, Wu J, Wang X. Fractal morphology facilitates Bacillus subtilis biofilm growth. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:56168-56177. [PMID: 35325386 DOI: 10.1007/s11356-022-19817-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
In the late stage of Bacillus subtilis biofilm growth, to adapt the extremely nutrient-lacking environment, the biofilm edge grows into a complex branching structure, which allows the biofilm to expand outward at a faster speed, comparing to the expansion speed of the biofilm edge without branching structure. The fractal analysis shows that the fractal dimension (Fd) decreases along the radius in the biofilm branching structure, as shown in Figs. 1d and 3a. The variation of Fd along the radius is not monotonic, which is because of the texture evolution induced by the bacterial clusters' movement. By using the wide field stereomicroscope and image analysis, we find that the ridges in the mature branching structure are composed of inactive substances, and most of the bacterial clusters move through the valleys. Further analysis shows that bacterial clusters move to the area with the high Succolarity (Suc) value.
Collapse
Affiliation(s)
- Jiankun Wang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xianyong Li
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Rui Kong
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jin Wu
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiaoling Wang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
12
|
Amchin DB, Ott JA, Bhattacharjee T, Datta SS. Influence of confinement on the spreading of bacterial populations. PLoS Comput Biol 2022; 18:e1010063. [PMID: 35533196 PMCID: PMC9119553 DOI: 10.1371/journal.pcbi.1010063] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 05/19/2022] [Accepted: 03/28/2022] [Indexed: 11/25/2022] Open
Abstract
The spreading of bacterial populations is central to processes in agriculture, the environment, and medicine. However, existing models of spreading typically focus on cells in unconfined settings—despite the fact that many bacteria inhabit complex and crowded environments, such as soils, sediments, and biological tissues/gels, in which solid obstacles confine the cells and thereby strongly regulate population spreading. Here, we develop an extended version of the classic Keller-Segel model of bacterial spreading via motility that also incorporates cellular growth and division, and explicitly considers the influence of confinement in promoting both cell-solid and cell-cell collisions. Numerical simulations of this extended model demonstrate how confinement fundamentally alters the dynamics and morphology of spreading bacterial populations, in good agreement with recent experimental results. In particular, with increasing confinement, we find that cell-cell collisions increasingly hinder the initial formation and the long-time propagation speed of chemotactic pulses. Moreover, also with increasing confinement, we find that cellular growth and division plays an increasingly dominant role in driving population spreading—eventually leading to a transition from chemotactic spreading to growth-driven spreading via a slower, jammed front. This work thus provides a theoretical foundation for further investigations of the influence of confinement on bacterial spreading. More broadly, these results help to provide a framework to predict and control the dynamics of bacterial populations in complex and crowded environments. The spreading of bacteria through their environments critically impacts our everyday lives; it can be harmful, underlying the progression of infections and spoilage of foods, or can be beneficial, enabling the delivery of therapeutics, sustaining plant growth, and remediating polluted terrain. In all these cases, bacteria typically inhabit crowded environments, such as soils, sediments, and biological tissues/gels, in which solid obstacles confine the cells and regulate their spreading. However, existing models of spreading typically focus on cells in unconfined settings, and thus are frequently not applicable to cells in more complex environments. Here, we address this gap in knowledge by extending the classic Keller-Segel model of bacterial spreading via motility to also incorporate cellular growth and division, and explicitly consider the influence of confinement. Through numerical simulations of this extended model, we show how confinement fundamentally alters the dynamics and morphology of spreading bacterial populations—in particular, driving a transition from chemotactic spreading of motile cells to growth-driven spreading via a slower, jammed front. These results provide a foundation for further investigations of the influence of confinement on bacterial spreading, both by yielding testable predictions for future experiments, and by providing guidelines to predict and control the dynamics of bacterial populations in complex and crowded environments.
Collapse
Affiliation(s)
- Daniel B. Amchin
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, United States of America
| | - Jenna A. Ott
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, United States of America
| | - Tapomoy Bhattacharjee
- Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey, United States of America
| | - Sujit S. Datta
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
13
|
|
14
|
Sunilkumar CR, Stephen-Victor E, Naripogu KB, Samanth Kumar J, Nuthan BR, Marulasiddaswamy KM, Kini KR, Geetha N. Differential Multi-cellularity Is Required for the Adaptation for Bacillus licheniformis to Withstand Heavy Metals Toxicity. Indian J Microbiol 2021; 61:524-529. [PMID: 34744208 DOI: 10.1007/s12088-021-00958-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/14/2021] [Indexed: 12/28/2022] Open
Abstract
Bacillus licheniformis is a multi-metal tolerant bacteria, isolated from the paddy rhizospheric soil sample. Upon the multiple metal toxicity, B. licheniformis altered their phenotypic/morphogenesis. Here we examined the effects of cadmium (Cd2+), chromium (Cr2+), and mercury (Hg2+) on the morphogenesis of B. licheniformis in comparison to control. We found that the ability of bacteria to grow effectively in presence of cadmium and chromium comes at a cost of acquiring cell density-driven mobility and reformation of filamentous to donut shape respectively. In particular, when bacteria grown on mercury it showed the bacteriostatic strategy to resist mercury. Furthermore, the findings suggest a large variation in the production of exo-polysaccharides (EPS) and suggest the possible role of EPS in gaining resistance to cadmium and chromium. Together this study identifies previously unknown characteristics of B. licheniformis to participate in bioremediation and provides the first evidence on positive effects of bacterial morphogenesis and the involvement of EPS in bacteria to resisting metal toxicity.
Collapse
Affiliation(s)
- Channarayapatna-Ramesh Sunilkumar
- Global Association of Scientific Young Minds (GASYM), Mysuru, India.,Research Institute for Interdisciplinary Sciences, Okayama University, Tsushima-naka, Kita-ku, Okayama 700-8530 Japan.,Laboratory of Microbial Metabolism and Stress Response, Department of Biotechnology, SDM and MMK College for Women, Mysuru, India
| | - Emmanuel Stephen-Victor
- Global Association of Scientific Young Minds (GASYM), Mysuru, India.,Department of Pediatrics, Harvard Medical School, Boston, USA
| | - Kishore Babu Naripogu
- Global Association of Scientific Young Minds (GASYM), Mysuru, India.,Research Institute for Interdisciplinary Sciences, Okayama University, Tsushima-naka, Kita-ku, Okayama 700-8530 Japan
| | - J Samanth Kumar
- Department of Studies in Biotechnology, Manasagangotri, University of Mysore, Mysuru, India
| | - Bettadapura Rameshgowda Nuthan
- Global Association of Scientific Young Minds (GASYM), Mysuru, India.,Department of Studies in Microbiology, Manasagangotri, University of Mysore, Mysuru, India
| | - K M Marulasiddaswamy
- Global Association of Scientific Young Minds (GASYM), Mysuru, India.,Department of Studies in Biotechnology, Manasagangotri, University of Mysore, Mysuru, India
| | | | - Nagaraja Geetha
- Global Association of Scientific Young Minds (GASYM), Mysuru, India.,Department of Studies in Biotechnology, Manasagangotri, University of Mysore, Mysuru, India
| |
Collapse
|
15
|
Yamamoto H, Fukasawa Y, Shoji Y, Hisamoto S, Kikuchi T, Takamatsu A, Iwasaki H. Scattered migrating colony formation in the filamentous cyanobacterium, Pseudanabaena sp. NIES-4403. BMC Microbiol 2021; 21:227. [PMID: 34399691 PMCID: PMC8365994 DOI: 10.1186/s12866-021-02183-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
Background Bacteria have been reported to exhibit complicated morphological colony patterns on solid media, depending on intracellular, and extracellular factors such as motility, cell propagation, and cell-cell interaction. We isolated the filamentous cyanobacterium, Pseudanabaena sp. NIES-4403 (Pseudanabaena, hereafter), that forms scattered (discrete) migrating colonies on solid media. While the scattered colony pattern has been observed in some bacterial species, the mechanism underlying such a pattern still remains obscure. Results We studied the morphology of Pseudanabaena migrating collectively and found that this species forms randomly scattered clusters varying in size and further consists of a mixture of comet-like wandering clusters and disk-like rotating clusters. Quantitative analysis of the formation of these wandering and rotating clusters showed that bacterial filaments tend to follow trajectories of previously migrating filaments at velocities that are dependent on filament length. Collisions between filaments occurred without crossing paths, which enhanced their nematic alignments, giving rise to bundle-like colonies. As cells increased and bundles aggregated, comet-like wandering clusters developed. The direction and velocity of the movement of cells in comet-like wandering clusters were highly coordinated. When the wandering clusters entered into a circular orbit, they turned into rotating clusters, maintaining a more stable location. Disk-like rotating clusters may rotate for days, and the speed of cells within a rotating cluster increases from the center to the outmost part of the cluster. Using a mathematical modeling with simplified assumption we reproduced some features of the scattered pattern including migrating clusters. Conclusion Based on these observations, we propose that Pseudanabaena forms scattered migrating colonies that undergo a series of transitions involving several morphological patterns. A simplified model is able to reproduce some features of the observed migrating clusters. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02183-5.
Collapse
Affiliation(s)
- Hiroki Yamamoto
- Department of Electrical Engineering and Bioscience, Waseda University, Shinjuku, Tokyo, 162-8480, Japan
| | - Yuki Fukasawa
- Department of Electrical Engineering and Bioscience, Waseda University, Shinjuku, Tokyo, 162-8480, Japan
| | - Yu Shoji
- Department of Electrical Engineering and Bioscience, Waseda University, Shinjuku, Tokyo, 162-8480, Japan
| | - Shumpei Hisamoto
- Department of Electrical Engineering and Bioscience, Waseda University, Shinjuku, Tokyo, 162-8480, Japan
| | - Tomohiro Kikuchi
- Department of Electrical Engineering and Bioscience, Waseda University, Shinjuku, Tokyo, 162-8480, Japan
| | - Atsuko Takamatsu
- Department of Electrical Engineering and Bioscience, Waseda University, Shinjuku, Tokyo, 162-8480, Japan
| | - Hideo Iwasaki
- Department of Electrical Engineering and Bioscience, Waseda University, Shinjuku, Tokyo, 162-8480, Japan.
| |
Collapse
|
16
|
Ma H, Bell J, Chen W, Mani S, Tang JX. An expanding bacterial colony forms a depletion zone with growing droplets. SOFT MATTER 2021; 17:2315-2326. [PMID: 33480951 PMCID: PMC8608367 DOI: 10.1039/d0sm01348j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Many species of bacteria have developed effective means to spread on solid surfaces. This study focuses on the expansion of Pseudomonas aeruginosa on an agar gel surface under conditions of minimal evaporation. We report the occurrence and spread of a depletion zone within an expanded colony, where the bacteria laden film becomes thinner. The depletion zone is colocalized with a higher concentration of rhamnolipids, the biosurfactants that are produced by the bacteria and accumulate in the older region of the colony. With continued growth in population, dense bacterial droplets occur and coalesce in the depletion zone, displaying remarkable fluid dynamic behavior. Whereas expansion of a central depletion zone requires activities of live bacteria, new zones can be seeded elsewhere by adding rhamnolipids. These depletion zones due to the added surfactants expand quickly, even on plates covered by bacteria that have been killed by ultraviolet light. We explain the observed properties based on considerations of bacterial growth and secretion, osmotic swelling, fluid volume expansion, interfacial fluid dynamics involving Marangoni and capillary flows, and cell-cell cohesion.
Collapse
Affiliation(s)
- Hui Ma
- Physics Department, Brown University, Providence, RI, USA.
| | - Jordan Bell
- Physics Department, Brown University, Providence, RI, USA.
| | - Weijie Chen
- Physics Department, Brown University, Providence, RI, USA. and Department of Medicine, Genetics and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Sridhar Mani
- Department of Medicine, Genetics and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jay X Tang
- Physics Department, Brown University, Providence, RI, USA.
| |
Collapse
|
17
|
Patir A, Hwang GB, Lourenco C, Nair SP, Carmalt CJ, Parkin IP. Crystal Violet-Impregnated Slippery Surface to Prevent Bacterial Contamination of Surfaces. ACS APPLIED MATERIALS & INTERFACES 2021; 13:5478-5485. [PMID: 33492929 DOI: 10.1021/acsami.0c17915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Biofilms which are self-organized communities can contaminate various infrastructural systems. Preventing bacterial adhesion on surfaces is more desirable than cleaning or disinfection of bacteria-contaminated surfaces. In this study, a 24 h bacterial adhesion test showed that "slippery surfaces" had increased resistance to bacterial contamination compared to polydimethylsiloxane and superhydrophobic surfaces. However, it did not completely inhibit bacterial attachment, indicating that it only retards surface contamination by bacteria. Hence, a strategy of killing bacteria with minimal bacterial adhesion was developed. A crystal violet-impregnated slippery (CVIS) surface with bactericidal and slippery features was produced through a simple dipping process. The CVIS surface had a very smooth and lubricated surface that was highly repellent to water and blood contamination. Bactericidal tests against Escherichia coli and Staphylococcus aureus showed that the CVIS surface exhibited bactericidal activity in dark and also showed significantly enhanced bactericidal activity (>3 log reduction in bacteria number) in white light.
Collapse
Affiliation(s)
- Adnan Patir
- Materials Chemistry Research Centre, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K
| | - Gi Byoung Hwang
- Materials Chemistry Research Centre, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K
| | - Claudio Lourenco
- Materials Chemistry Research Centre, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K
| | - Sean P Nair
- Department of Microbial Diseases, UCL Eastman Dental Institute, University College London, Rowland Hill Street, London NW3 2PF, U.K
| | - Claire J Carmalt
- Materials Chemistry Research Centre, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K
| | - Ivan P Parkin
- Materials Chemistry Research Centre, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K
| |
Collapse
|
18
|
Kuan HS, Pönisch W, Jülicher F, Zaburdaev V. Continuum Theory of Active Phase Separation in Cellular Aggregates. PHYSICAL REVIEW LETTERS 2021; 126:018102. [PMID: 33480767 DOI: 10.1103/physrevlett.126.018102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
Dense cellular aggregates are common in biology, ranging from bacterial biofilms to organoids, cell spheroids, and tumors. Their dynamics, driven by intercellular forces, is intrinsically out of equilibrium. Motivated by bacterial colonies as a model system, we present a continuum theory to study dense, active, cellular aggregates. We describe the process of aggregate formation as an active phase separation phenomenon, while the merging of aggregates is rationalized as a coalescence of viscoelastic droplets where the key timescales are linked to the turnover of the active force. Our theory provides a general framework for studying the rheology and nonequilibrium dynamics of dense cellular aggregates.
Collapse
Affiliation(s)
- Hui-Shun Kuan
- Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Max Planck Zentrum für Physik und Medizin, 91058 Erlangen, Germany
| | - Wolfram Pönisch
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- MRC Laboratory for Molecular Cell Biology, University College London, WC1E 6BT London, United Kingdom
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB2 3DY Cambridge, United Kingdom
| | - Frank Jülicher
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, 01307 Dresden, Germany
| | - Vasily Zaburdaev
- Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Max Planck Zentrum für Physik und Medizin, 91058 Erlangen, Germany
| |
Collapse
|
19
|
You Z, Pearce DJG, Giomi L. Confinement-induced self-organization in growing bacterial colonies. SCIENCE ADVANCES 2021; 7:eabc8685. [PMID: 33523940 PMCID: PMC10670964 DOI: 10.1126/sciadv.abc8685] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
We investigate the emergence of global alignment in colonies of dividing rod-shaped cells under confinement. Using molecular dynamics simulations and continuous modeling, we demonstrate that geometrical anisotropies in the confining environment give rise to an imbalance in the normal stresses, which, in turn, drives a collective rearrangement of the cells. This behavior crucially relies on the colony's solid-like mechanical response at short time scales and can be recovered within the framework of active hydrodynamics upon modeling bacterial colonies as growing viscoelastic gels characterized by Maxwell-like stress relaxation.
Collapse
Affiliation(s)
- Zhihong You
- Department of Physics, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
- Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, Netherlands
| | - Daniel J G Pearce
- Department of Theoretical Physics, Université de Genève, 1205 Genève, Switzerland
| | - Luca Giomi
- Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, Netherlands.
| |
Collapse
|
20
|
Hubenova Y, Hubenova E, Mitov M. Electroactivity of the Gram-positive bacterium Paenibacillus dendritiformis MA-72. Bioelectrochemistry 2020; 136:107632. [PMID: 32795939 DOI: 10.1016/j.bioelechem.2020.107632] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 01/23/2023]
Abstract
Whilst most of the microorganisms recognized as exoelectrogens are Gram-negative bacteria, the electrogenicity of Gram-positive bacteria has not been sufficiently explored. In this study, the putative electroactivity of the Gram-positive Paenibacillus dendritiformis MA-72 strain, isolated from the anodic biofilm of long-term operated Sediment Microbial Fuel Cell (SMFC), has been investigated. SEM observations show that under polarization conditions P. dendritiformis forms a dense biofilm on carbon felt electrodes. A current density, reaching 5 mA m-2, has been obtained at a prolonged applied potential of -0.195 V (vs. SHE), which represents 35% of the value achieved with the SMFC. The voltammetric studies confirm that the observed Faradaic current is associated with the electrochemical activity of the bacterial biofilm and not with a soluble redox mediator. The results suggest that a direct electron transfer takes place through the conductive extracellular polymer matrix via pili/nanowires and multiple cytochromes. All these findings demonstrate for the first time that the Gram-positive Paenibacillus dendritiformis MA-72 is a new exoelectrogenic bacterial strain.
Collapse
Affiliation(s)
- Yolina Hubenova
- Department of Electrocatalysis and Electrocrystallization, Institute of Electrochemistry and Energy Systems "Acad. E. Budevski" - Bulgarian Academy of Sciences, Sofia, Bulgaria; Department of Biochemistry and Microbiology, Plovdiv University "Paisii Hilendarski", Plovdiv, Bulgaria.
| | - Eleonora Hubenova
- Medical Faculty of the Rhein Friedrich Wilhelm University of Bonn, Bonn, Germany
| | - Mario Mitov
- Innovative Center for Eco Energy Technologies, South-West University "Neofit Rilski", Blagoevgrad, Bulgaria
| |
Collapse
|
21
|
Karkaria BD, Treloar NJ, Barnes CP, Fedorec AJH. From Microbial Communities to Distributed Computing Systems. Front Bioeng Biotechnol 2020; 8:834. [PMID: 32793576 PMCID: PMC7387671 DOI: 10.3389/fbioe.2020.00834] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/29/2020] [Indexed: 12/15/2022] Open
Abstract
A distributed biological system can be defined as a system whose components are located in different subpopulations, which communicate and coordinate their actions through interpopulation messages and interactions. We see that distributed systems are pervasive in nature, performing computation across all scales, from microbial communities to a flock of birds. We often observe that information processing within communities exhibits a complexity far greater than any single organism. Synthetic biology is an area of research which aims to design and build synthetic biological machines from biological parts to perform a defined function, in a manner similar to the engineering disciplines. However, the field has reached a bottleneck in the complexity of the genetic networks that we can implement using monocultures, facing constraints from metabolic burden and genetic interference. This makes building distributed biological systems an attractive prospect for synthetic biology that would alleviate these constraints and allow us to expand the applications of our systems into areas including complex biosensing and diagnostic tools, bioprocess control and the monitoring of industrial processes. In this review we will discuss the fundamental limitations we face when engineering functionality with a monoculture, and the key areas where distributed systems can provide an advantage. We cite evidence from natural systems that support arguments in favor of distributed systems to overcome the limitations of monocultures. Following this we conduct a comprehensive overview of the synthetic communities that have been built to date, and the components that have been used. The potential computational capabilities of communities are discussed, along with some of the applications that these will be useful for. We discuss some of the challenges with building co-cultures, including the problem of competitive exclusion and maintenance of desired community composition. Finally, we assess computational frameworks currently available to aide in the design of microbial communities and identify areas where we lack the necessary tools.
Collapse
Affiliation(s)
- Behzad D. Karkaria
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Neythen J. Treloar
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Chris P. Barnes
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
- UCL Genetics Institute, University College London, London, United Kingdom
| | - Alex J. H. Fedorec
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| |
Collapse
|
22
|
Espeso DR, Algar E, Martínez-García E, de Lorenzo V. Exploiting geometric similarity for statistical quantification of fluorescence spatial patterns in bacterial colonies. BMC Bioinformatics 2020; 21:224. [PMID: 32493227 PMCID: PMC7268344 DOI: 10.1186/s12859-020-3490-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 04/13/2020] [Indexed: 11/10/2022] Open
Abstract
Background Currently the combination of molecular tools, imaging techniques and analysis software offer the possibility of studying gene activity through the use of fluorescent reporters and infer its distribution within complex biological three-dimensional structures. For example, the use of Confocal Scanning Laser Microscopy (CSLM) is a regularly-used approach to visually inspect the spatial distribution of a fluorescent signal. Although a plethora of generalist imaging software is available to analyze experimental pictures, the development of tailor-made software for every specific problem is still the most straightforward approach to perform the best possible image analysis. In this manuscript, we focused on developing a simple methodology to satisfy one particular need: automated processing and analysis of CSLM image stacks to generate 3D fluorescence profiles showing the average distribution detected in bacterial colonies grown in different experimental conditions for comparison purposes. Results The presented method processes batches of CSLM stacks containing three-dimensional images of an arbitrary number of colonies. Quasi-circular colonies are identified, filtered and projected onto a normalized orthogonal coordinate system, where a numerical interpolation is performed to obtain fluorescence values within a spatially fixed grid. A statistically representative three-dimensional fluorescent pattern is then generated from this data, allowing for standardized fluorescence analysis regardless of variability in colony size. The proposed methodology was evaluated by analyzing fluorescence from GFP expression subject to regulation by a stress-inducible promoter. Conclusions This method provides a statistically reliable spatial distribution profile of fluorescence detected in analyzed samples, helping the researcher to establish general correlations between gene expression and spatial allocation under differential experimental regimes. The described methodology was coded into a MATLAB script and shared under an open source license to make it accessible to the whole community.
Collapse
Affiliation(s)
- David R Espeso
- Systems Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049, Madrid, Spain
| | - Elena Algar
- Systems Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049, Madrid, Spain
| | - Esteban Martínez-García
- Systems Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049, Madrid, Spain
| | - Víctor de Lorenzo
- Systems Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
23
|
Nunn AVW, Guy GW, Botchway SW, Bell JD. From sunscreens to medicines: Can a dissipation hypothesis explain the beneficial aspects of many plant compounds? Phytother Res 2020; 34:1868-1888. [PMID: 32166791 PMCID: PMC7496984 DOI: 10.1002/ptr.6654] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 01/16/2020] [Accepted: 02/16/2020] [Indexed: 12/17/2022]
Abstract
Medicine has utilised plant‐based treatments for millennia, but precisely how they work is unclear. One approach is to use a thermodynamic viewpoint that life arose by dissipating geothermal and/or solar potential. Hence, the ability to dissipate energy to maintain homeostasis is a fundamental principle in all life, which can be viewed as an accretion system where layers of complexity have built upon core abiotic molecules. Many of these compounds are chromophoric and are now involved in multiple pathways. Plants have further evolved a plethora of chromophoric compounds that can not only act as sunscreens and redox modifiers, but also have now become integrated into a generalised stress adaptive system. This could be an extension of the dissipative process. In animals, many of these compounds are hormetic, modulating mitochondria and calcium signalling. They can also display anti‐pathogen effects. They could therefore modulate bioenergetics across all life due to the conserved electron transport chain and proton gradient. In this review paper, we focus on well‐described medicinal compounds, such as salicylic acid and cannabidiol and suggest, at least in animals, their activity reflects their evolved function in plants in relation to stress adaptation, which itself evolved to maintain dissipative homeostasis.
Collapse
Affiliation(s)
- Alistair V W Nunn
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London, UK
| | | | - Stanley W Botchway
- STFC, UKRI & Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Jimmy D Bell
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London, UK
| |
Collapse
|
24
|
Paul R, Ghosh T, Tang T, Kumar A. Rivalry in Bacillus subtilis colonies: enemy or family? SOFT MATTER 2019; 15:5400-5411. [PMID: 31172158 DOI: 10.1039/c9sm00794f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Two colonies of Bacillus subtilis of identical strains growing adjacent to each other on an agar plate exhibit two distinct types of interactions: they either merge as they grow or demarcation occurs leading to formation of a line of demarcation at the colony fronts. The nature of this interaction depends on the agar concentration in the growth medium and the initial separation between the colonies. When the agar concentration was 0.67% or lower, the two sibling colonies were found to always merge. At 1% or higher concentrations, the colonies formed a demarcation line only when their initial separation was 20 mm or higher. Interactions of a colony with solid structures and liquid drops have indicated that biochemical factors rather than the presence of physical obstacles are responsible for the demarcation line formation. A reaction diffusion model has been formulated to predict if two sibling colonies will form a demarcation line under given agar concentration and initial separation. The model prediction agrees well with experimental findings and generates a dimensionless phase diagram containing merging and demarcation regimes. The phase diagram is in terms of a dimensionless initial separation, d[combining macron], and a dimensionless diffusion coefficient, D[combining macron], of the colonies. The phase boundary between the two interaction regimes can be described by a power law relation between d[combining macron] and D[combining macron].
Collapse
Affiliation(s)
- Rajorshi Paul
- Department of Mechanical Engineering, University of Alberta, Edmonton, Canada
| | - Tanushree Ghosh
- Department of Mechanical Engineering, University of Alberta, Edmonton, Canada
| | - Tian Tang
- Department of Mechanical Engineering, University of Alberta, Edmonton, Canada
| | - Aloke Kumar
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
25
|
Luzzatto-Knaan T, Melnik AV, Dorrestein PC. Mass Spectrometry Uncovers the Role of Surfactin as an Interspecies Recruitment Factor. ACS Chem Biol 2019; 14:459-467. [PMID: 30763059 DOI: 10.1021/acschembio.8b01120] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Microbes use metabolic exchange to sense and respond to their changing environment. Surfactins, produced by Bacillus subtilis, have been extensively studied for their role in biofilm formation, biosurfactant properties, and antimicrobial activity, affecting the surrounding microbial consortia. Using mass spectrometry, we reveal that Paenibacillus dendritiformis, originally isolated with B. subtilis, is not antagonized by the presence of surfactins and is actually attracted to them. We demonstrate here for the first time that P. dendritiformis is also actively degrading surfactins produced by B. subtilis and accumulating the degradation products that serve as territorial markers. This new attribute as an attractant of selected microbes and the conversion into a deterrent highlight the diverse role natural products have in shaping the environment and establishing mixed communities.
Collapse
Affiliation(s)
- Tal Luzzatto-Knaan
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Alexey V. Melnik
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Pieter C. Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
26
|
Fujisawa R, Ichinose G, Dobata S. Regulatory mechanism predates the evolution of self-organizing capacity in simulated ant-like robots. Commun Biol 2019; 2:25. [PMID: 30675523 PMCID: PMC6338667 DOI: 10.1038/s42003-018-0276-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 12/19/2018] [Indexed: 11/12/2022] Open
Abstract
The evolution of complexity is one of the prime features of life on Earth. Although well accepted as the product of adaptation, the dynamics underlying the evolutionary build-up of complex adaptive systems remains poorly resolved. Using simulated robot swarms that exhibit ant-like group foraging with trail pheromones, we show that their self-organizing capacity paradoxically involves regulatory behavior that arises in advance. We focus on a traffic rule on their foraging trail as a regulatory trait. We allow the simulated robot swarms to evolve pheromone responsiveness and traffic rules simultaneously. In most cases, the traffic rule, initially arising as selectively neutral component behaviors, assists the group foraging system to bypass a fitness valley caused by overcrowding on the trail. Our study reveals a hitherto underappreciated role of regulatory mechanisms in the origin of complex adaptive systems, as well as highlights the importance of embodiment in the study of their evolution.
Collapse
Affiliation(s)
- Ryusuke Fujisawa
- Department of Systems Design and Informatics, Kyushu Institute of Technology, Iizuka, Fukuoka, 820-8502 Japan
| | - Genki Ichinose
- Department of Mathematical and Systems Engineering, Shizuoka University, Hamamatsu, Shizuoka, 432-8561 Japan
| | - Shigeto Dobata
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502 Japan
| |
Collapse
|
27
|
Allen RJ, Waclaw B. Bacterial growth: a statistical physicist's guide. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2019; 82:016601. [PMID: 30270850 PMCID: PMC6330087 DOI: 10.1088/1361-6633/aae546] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Bacterial growth presents many beautiful phenomena that pose new theoretical challenges to statistical physicists, and are also amenable to laboratory experimentation. This review provides some of the essential biological background, discusses recent applications of statistical physics in this field, and highlights the potential for future research.
Collapse
Affiliation(s)
- Rosalind J Allen
- School of Physics and Astronomy, The University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | | |
Collapse
|
28
|
Patteson AE, Gopinath A, Arratia PE. The propagation of active-passive interfaces in bacterial swarms. Nat Commun 2018; 9:5373. [PMID: 30560867 PMCID: PMC6299137 DOI: 10.1038/s41467-018-07781-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 11/20/2018] [Indexed: 11/08/2022] Open
Abstract
Propagating interfaces are ubiquitous in nature, underlying instabilities and pattern formation in biology and material science. Physical principles governing interface growth are well understood in passive settings; however, our understanding of interfaces in active systems is still in its infancy. Here, we study the evolution of an active-passive interface using a model active matter system, bacterial swarms. We use ultra-violet light exposure to create compact domains of passive bacteria within Serratia marcescens swarms, thereby creating interfaces separating motile and immotile cells. Post-exposure, the boundary re-shapes and erodes due to self-emergent collective flows. We demonstrate that the active-passive boundary acts as a diffuse interface with mechanical properties set by the flow. Intriguingly, interfacial velocity couples to local swarm speed and interface curvature, raising the possibility that an active analogue to classic Gibbs-Thomson-Stefan conditions may control this boundary propagation.
Collapse
Affiliation(s)
- Alison E Patteson
- Department of Mechanical Engineering & Applied Mechanics, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Physics Department, Syracuse University, Syracuse, NY, 13244, USA.
| | - Arvind Gopinath
- Department of Bioengineering, University of California, Merced, CA, 95340, USA
- Health Sciences Research Institute, University of California, Merced, CA, 95340, USA
| | - Paulo E Arratia
- Department of Mechanical Engineering & Applied Mechanics, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
29
|
Wolfsberg E, Long CP, Antoniewicz MR. Metabolism in dense microbial colonies: 13C metabolic flux analysis of E. coli grown on agar identifies two distinct cell populations with acetate cross-feeding. Metab Eng 2018; 49:242-247. [PMID: 30179665 DOI: 10.1016/j.ymben.2018.08.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/27/2018] [Accepted: 08/31/2018] [Indexed: 11/25/2022]
Abstract
In this study, we have investigated for the first time the metabolism of E. coli grown on agar using 13C metabolic flux analysis (13C-MFA). To date, all 13C-MFA studies on microbes have been performed with cells grown in liquid culture. Here, we extend the scope of 13C-MFA to biological systems where cells are grown in dense microbial colonies. First, we identified new optimal 13C tracers to quantify fluxes in systems where the acetate yield cannot be easily measured. We determined that three parallel labeling experiments with the tracers [1,2-13C]glucose, [1,6-13C]glucose, and [4,5,6-13C]glucose permit precise estimation of not only intracellular fluxes, but also of the amount of acetate produced from glucose. Parallel labeling experiments were then performed with wild-type E. coli and E. coli ΔackA grown in liquid culture and on agar plates. Initial attempts to fit the labeling data from wild-type E. coli grown on agar did not produce a statistically acceptable fit. To resolve this issue, we employed the recently developed co-culture 13C-MFA approach, where two E. coli subpopulations were defined in the model that engaged in metabolite cross-feeding. The flux results identified two distinct E. coli cell populations, a dominant cell population (92% of cells) that metabolized glucose via conventional metabolic pathways and secreted a large amount of acetate (~40% of maximum theoretical yield), and a second smaller cell population (8% of cells) that consumed the secreted acetate without any glucose influx. These experimental results are in good agreement with recent theoretical simulations. Importantly, this study provides a solid foundation for future investigations of a wide range of problems involving microbial biofilms that are of great interest in biotechnology, ecology and medicine, where metabolite cross-feeding between cell populations is a core feature of the communities.
Collapse
Affiliation(s)
- Eric Wolfsberg
- Department of Chemical and Biomolecular Engineering, Metabolic Engineering and Systems Biology Laboratory, University of Delaware, Newark DE 19716, USA
| | - Christopher P Long
- Department of Chemical and Biomolecular Engineering, Metabolic Engineering and Systems Biology Laboratory, University of Delaware, Newark DE 19716, USA
| | - Maciek R Antoniewicz
- Department of Chemical and Biomolecular Engineering, Metabolic Engineering and Systems Biology Laboratory, University of Delaware, Newark DE 19716, USA.
| |
Collapse
|
30
|
Santalla SN, Rodríguez-Laguna J, Abad JP, Marín I, Espinosa MDM, Muñoz-García J, Vázquez L, Cuerno R. Nonuniversality of front fluctuations for compact colonies of nonmotile bacteria. Phys Rev E 2018; 98:012407. [PMID: 30110795 DOI: 10.1103/physreve.98.012407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Indexed: 12/20/2022]
Abstract
The front of a compact bacterial colony growing on a Petri dish is a paradigmatic instance of non-equilibrium fluctuations in the celebrated Eden, or Kardar-Parisi-Zhang (KPZ), universality class. While in many experiments the scaling exponents crucially differ from the expected KPZ values, the source of this disagreement has remained poorly understood. We have performed growth experiments with B. subtilis 168 and E. coli ATCC 25922 under conditions leading to compact colonies in the classically alleged Eden regime, where individual motility is suppressed. Non-KPZ scaling is indeed observed for all accessible times, KPZ asymptotics being ruled out for our experiments due to the monotonic increase of front branching with time. Simulations of an effective model suggest the occurrence of transient nonuniversal scaling due to diffusive morphological instabilities, agreeing with expectations from detailed models of the relevant biological reaction-diffusion processes.
Collapse
Affiliation(s)
- Silvia N Santalla
- Departamento de Física and Grupo Interdisciplinar de Sistemas Complejos (GISC), Universidad Carlos III de Madrid, Leganés, Spain
| | - Javier Rodríguez-Laguna
- Departamento de Física Fundamental, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - José P Abad
- Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), Cantoblanco, Madrid, Spain
| | - Irma Marín
- Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), Cantoblanco, Madrid, Spain
| | | | - Javier Muñoz-García
- Departamento de Matemáticas & GISC, Universidad Carlos III de Madrid, Leganés, Spain
| | - Luis Vázquez
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Cientficas (CSIC), Madrid, Spain
| | - Rodolfo Cuerno
- Departamento de Matemáticas & GISC, Universidad Carlos III de Madrid, Leganés, Spain
| |
Collapse
|
31
|
Hynes WF, Chacón J, Segrè D, Marx CJ, Cady NC, Harcombe WR. Bioprinting microbial communities to examine interspecies interactions in time and space. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aad544] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
32
|
Budek A, Kwiatkowski K, Szymczak P. Effect of mobility ratio on interaction between the fingers in unstable growth processes. Phys Rev E 2018; 96:042218. [PMID: 29347480 DOI: 10.1103/physreve.96.042218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Indexed: 11/07/2022]
Abstract
We investigate interactions between thin fingers formed as a result of an instability of an advancing front in growth processes. We show that the fingers can both attract and repel each other, depending on their lengths and the mobility ratio between the invading and displaced phase. To understand the origin of these interactions we introduce a simple resistor model of the fingers. The predictions of the model are then compared to the numerical simulations of two unstable growth processes: dissolution of partially cemented rock fracture and viscous fingering in a regular network of channels.
Collapse
Affiliation(s)
- Agnieszka Budek
- Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland.,Institute of Geophysics, Polish Academy of Science, Ksiecia Janusza 64, 00-681 Warsaw, Poland
| | - Kamil Kwiatkowski
- Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland.,Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Prosta 69, 00-838 Warsaw, Poland
| | - Piotr Szymczak
- Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| |
Collapse
|
33
|
Rana N, Ghosh P, Perlekar P. Spreading of nonmotile bacteria on a hard agar plate: Comparison between agent-based and stochastic simulations. Phys Rev E 2017; 96:052403. [PMID: 29347735 DOI: 10.1103/physreve.96.052403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Indexed: 06/07/2023]
Abstract
We study spreading of a nonmotile bacteria colony on a hard agar plate by using agent-based and continuum models. We show that the spreading dynamics depends on the initial nutrient concentration, the motility, and the inherent demographic noise. Population fluctuations are inherent in an agent-based model, whereas for the continuum model we model them by using a stochastic Langevin equation. We show that the intrinsic population fluctuations coupled with nonlinear diffusivity lead to a transition from a diffusion limited aggregation type of morphology to an Eden-like morphology on decreasing the initial nutrient concentration.
Collapse
Affiliation(s)
- Navdeep Rana
- Tata Institute of Fundamental Research, Centre for Interdisciplinary Sciences, Hyderabad 500107, India
| | - Pushpita Ghosh
- Tata Institute of Fundamental Research, Centre for Interdisciplinary Sciences, Hyderabad 500107, India
| | - Prasad Perlekar
- Tata Institute of Fundamental Research, Centre for Interdisciplinary Sciences, Hyderabad 500107, India
| |
Collapse
|
34
|
Pecelerowicz M, Szymczak P. Stabilizing effect of tip splitting on the interface motion. Phys Rev E 2017; 94:062801. [PMID: 28085347 DOI: 10.1103/physreve.94.062801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Indexed: 11/07/2022]
Abstract
Pattern-forming processes, such as electrodeposition, dielectric breakdown, or viscous fingering, are often driven by instabilities. Accordingly, the resulting growth patterns are usually highly branched fractal structures. However, in some of the unstable growth processes the envelope of the structure grows in a highly regular manner, with the perturbations smoothed out over the course of time. In this paper we show that the regularity of the envelope growth can be connected to small-scale instabilities leading to the tip splitting of the fingers at the advancing front of the structure. Whenever the growth velocity becomes too large, the finger splits into two branches. In this way it can absorb an increased flux and thus damp the instability. Hence, somewhat counterintuitively, the instability at a small scale results in a stability at a larger scale. The quantitative analysis of these effects is provided by means of the Loewner equation, which one can use to reduce the problem of the interface motion to that of the evolution of the conformal mapping onto the complex plane. This allows an effective analysis of the multifingered growth in a variety of different geometries. We show how the geometry impacts the shape of the envelope of the growing pattern and compare the results with those observed in natural systems.
Collapse
Affiliation(s)
- Michal Pecelerowicz
- Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Piotr Szymczak
- Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| |
Collapse
|
35
|
Gerlee P, Basanta D, Anderson ARA. The Influence of Cellular Characteristics on the Evolution of Shape Homeostasis. ARTIFICIAL LIFE 2017; 23:424-448. [PMID: 28786729 DOI: 10.1162/artl_a_00240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The importance of individual cells in a developing multicellular organism is well known, but precisely how the individual cellular characteristics of those cells collectively drive the emergence of robust, homeostatic structures is less well understood. For example, cell communication via a diffusible factor allows for information to travel across large distances within the population, and cell polarization makes it possible to form structures with a particular orientation, but how do these processes interact to produce a more robust and regulated structure? In this study we investigate the ability of cells with different cellular characteristics to grow and maintain homeostatic structures. We do this in the context of an individual-based model where cell behavior is driven by an intracellular network that determines the cell phenotype. More precisely, we investigated evolution with 96 different permutations of our model, where cell motility, cell death, long-range growth factor (LGF), short-range growth factor (SGF), and cell polarization were either present or absent. The results show that LGF has the largest positive influence on the fitness of the evolved solutions. SGF and polarization also contribute, but all other capabilities essentially increase the search space, effectively making it more difficult to achieve a solution. By perturbing the evolved solutions, we found that they are highly robust to both mutations and wounding. In addition, we observed that by evolving solutions in more unstable environments they produce structures that were more robust and adaptive. In conclusion, our results suggest that robust collective behavior is most likely to evolve when cells are endowed with long-range communication, cell polarisation, and selection pressure from an unstable environment.
Collapse
Affiliation(s)
- Philip Gerlee
- Chalmers University of Technology and University of Gothenburg
| | | | | |
Collapse
|
36
|
Čepl J, Blahůšková A, Neubauer Z, Markoš A. Variations and heredity in bacterial colonies. Commun Integr Biol 2016; 9:e1261228. [PMID: 28042382 PMCID: PMC5193049 DOI: 10.1080/19420889.2016.1261228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/09/2016] [Accepted: 11/10/2016] [Indexed: 01/24/2023] Open
Abstract
Spontaneous variation in appearance was studied in bacterial colonies of Serratia marcescens F morphotype1: (i) A defined array of non-heritable phenotype variations does appear repeatedly; (ii) The presence of colonies of different bacterial species will narrow the variability toward the typical F appearance, as if such an added environmental factor curtailed the capacity of colony morphospace; (iii) Similarly the morphospace becomes reduced by random mutations leading to new, heritable morphotypes—at the same time opening a new array of variations typical for the mutant but not accessible directly from the original F morphospace. Results are discussed in context with biphasic model of early morphogenesis applicable to all multicellular bodies.
Collapse
Affiliation(s)
- Jaroslav Čepl
- Czech University of Life Sciences, Faculty of Forestry and Wood Sciences , Prague, Czechia
| | - Anna Blahůšková
- Charles University in Prague, Faculty of Sciences , Prague, Czechia
| | - Zdeněk Neubauer
- Charles University in Prague, Faculty of Sciences , Prague, Czechia
| | - Anton Markoš
- Charles University in Prague, Faculty of Sciences , Prague, Czechia
| |
Collapse
|
37
|
Kong W, Blanchard AE, Liao C, Lu T. Engineering robust and tunable spatial structures with synthetic gene circuits. Nucleic Acids Res 2016; 45:1005-1014. [PMID: 27899571 PMCID: PMC5314756 DOI: 10.1093/nar/gkw1045] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/30/2016] [Accepted: 10/20/2016] [Indexed: 12/31/2022] Open
Abstract
Controllable spatial patterning is a major goal for the engineering of biological systems. Recently, synthetic gene circuits have become promising tools to achieve the goal; however, they need to possess both functional robustness and tunability in order to facilitate future applications. Here we show that, by harnessing the dual signaling and antibiotic features of nisin, simple synthetic circuits can direct Lactococcus lactis populations to form programmed spatial band-pass structures that do not require fine-tuning and are robust against environmental and cellular context perturbations. Although robust, the patterns are highly tunable, with their band widths specified by the external nisin gradient and cellular nisin immunity. Additionally, the circuits can direct cells to consistently generate designed patterns, even when the gradient is driven by structured nisin-producing bacteria and the patterning cells are composed of multiple species. A mathematical model successfully reproduces all of the observed patterns. Furthermore, the circuits allow us to establish predictable structures of synthetic communities and controllable arrays of cellular stripes and spots in space. This study offers new synthetic biology tools to program spatial structures. It also demonstrates that a deep mining of natural functionalities of living systems is a valuable route to build circuit robustness and tunability.
Collapse
Affiliation(s)
- Wentao Kong
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Andrew E Blanchard
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chen Liao
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ting Lu
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA .,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
38
|
Unluturk BD, Balasubramaniam S, Akyildiz IF. The Impact of Social Behavior on the Attenuation and Delay of Bacterial Nanonetworks. IEEE Trans Nanobioscience 2016; 15:959-969. [PMID: 27849547 DOI: 10.1109/tnb.2016.2627081] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Molecular communication (MC) is a new paradigm for developing communication systems that exchanges information through the transmission and reception of molecules. One proposed model for MC is using bacteria to carry information encoded into DNA plasmids, and this is termed bacterial nanonetworks. However, a limiting factor in the models that have been studied so far is the environment considered only in ideal conditions with a single population. This is far from realistic in natural environments, where bacteria coexist in multiple populations of same and different species, resulting in a very complex social community. This complex community has social interactions that include cooperation, cheating, as well as competition. In this paper, the effects of these social interactions on the information delivery in bacterial nanonetworks are studied in terms of delay, attenuation and data rate. The numerical results show that the cooperative behavior of bacteria improves the performance of delay and attenuation leading to a higher data rate, and this performance can be degraded once their behavior switches towards cheating. The competitive social behavior shows that the performance can degrade delay as well as attenuation leading to slower data rates, as the population with the encoded DNA plasmids are prevented from reaching the receiver. The analysis of social interactions between the bacteria will pave the way for efficient design of bacterial nanonetworks enabling applications such as intrabody sensing, drug delivery, and environmental control against pollution and biological hazards.
Collapse
|
39
|
Chatterjee R, Joshi AA, Perlekar P. Front structure and dynamics in dense colonies of motile bacteria: Role of active turbulence. Phys Rev E 2016; 94:022406. [PMID: 27627334 DOI: 10.1103/physreve.94.022406] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Indexed: 11/07/2022]
Abstract
We study the spreading of a bacterial colony undergoing turbulentlike collective motion. We present two minimalistic models to investigate the interplay between population growth and coherent structures arising from turbulence. Using direct numerical simulation of the proposed models we find that turbulence has two prominent effects on the spatial growth of the colony: (a) the front speed is enhanced, and (b) the front gets crumpled. Both these effects, which we highlight by using statistical tools, are markedly different in our two models. We also show that the crumpled front structure and the passive scalar fronts in random flows are related in certain regimes.
Collapse
Affiliation(s)
- Rayan Chatterjee
- TIFR Centre for Interdisciplinary Sciences, 21 Brundavan Colony, Narsingi, Hyderabad
| | - Abhijeet A Joshi
- TIFR Centre for Interdisciplinary Sciences, 21 Brundavan Colony, Narsingi, Hyderabad
| | - Prasad Perlekar
- TIFR Centre for Interdisciplinary Sciences, 21 Brundavan Colony, Narsingi, Hyderabad
| |
Collapse
|
40
|
Gloag ES, Turnbull L, Javed MA, Wang H, Gee ML, Wade SA, Whitchurch CB. Stigmergy co-ordinates multicellular collective behaviours during Myxococcus xanthus surface migration. Sci Rep 2016; 6:26005. [PMID: 27225967 PMCID: PMC4881031 DOI: 10.1038/srep26005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/19/2016] [Indexed: 12/29/2022] Open
Abstract
Surface translocation by the soil bacterium Myxococcus xanthus is a complex multicellular phenomenon that entails two motility systems. However, the mechanisms by which the activities of individual cells are coordinated to manifest this collective behaviour are currently unclear. Here we have developed a novel assay that enables detailed microscopic examination of M. xanthus motility at the interstitial interface between solidified nutrient medium and a glass coverslip. Under these conditions, M. xanthus motility is characterised by extensive micro-morphological patterning that is considerably more elaborate than occurs at an air-surface interface. We have found that during motility on solidified nutrient medium, M. xanthus forges an interconnected furrow network that is lined with an extracellular matrix comprised of exopolysaccharides, extracellular lipids, membrane vesicles and an unidentified slime. Our observations have revealed that M. xanthus motility on solidified nutrient medium is a stigmergic phenomenon in which multi-cellular collective behaviours are co-ordinated through trail-following that is guided by physical furrows and extracellular matrix materials.
Collapse
Affiliation(s)
- Erin S Gloag
- The ithree institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Lynne Turnbull
- The ithree institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Muhammad A Javed
- Biotactical Engineering, IRIS, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Huabin Wang
- School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michelle L Gee
- School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
| | - Scott A Wade
- Biotactical Engineering, IRIS, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Cynthia B Whitchurch
- The ithree institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
41
|
Virulence Gene-Associated Mutant Bacterial Colonies Generate Differentiating Two-Dimensional Laser Scatter Fingerprints. Appl Environ Microbiol 2016; 82:3256-3268. [PMID: 26994085 DOI: 10.1128/aem.04129-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 03/16/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED In this study, we investigated whether a laser scatterometer designated BARDOT (bacterial rapid detection using optical scattering technology) could be used to directly screen colonies of Listeria monocytogenes, a model pathogen, with mutations in several known virulence genes, including the genes encoding Listeria adhesion protein (LAP; lap mutant), internalin A (ΔinlA strain), and an accessory secretory protein (ΔsecA2 strain). Here we show that the scatter patterns of lap mutant, ΔinlA, and ΔsecA2 colonies were markedly different from that of the wild type (WT), with >95% positive predictive values (PPVs), whereas for the complemented mutant strains, scatter patterns were restored to that of the WT. The scatter image library successfully distinguished the lap mutant and ΔinlA mutant strains from the WT in mixed-culture experiments, including a coinfection study using the Caco-2 cell line. Among the biophysical parameters examined, the colony height and optical density did not reveal any discernible differences between the mutant and WT strains. We also found that differential LAP expression in L. monocytogenes serotype 4b strains also affected the scatter patterns of the colonies. The results from this study suggest that BARDOT can be used to screen and enumerate mutant strains separately from the WT based on differential colony scatter patterns. IMPORTANCE In studies of microbial pathogenesis, virulence-encoding genes are routinely disrupted by deletion or insertion to create mutant strains. Screening of mutant strains is an arduous process involving plating on selective growth media, replica plating, colony hybridization, DNA isolation, and PCR or immunoassays. We applied a noninvasive laser scatterometer to differentiate mutant bacterial colonies from WT colonies based on forward optical scatter patterns. This study demonstrates that BARDOT can be used as a novel, label-free, real-time tool to aid researchers in screening virulence gene-associated mutant colonies during microbial pathogenesis, coinfection, and genetic manipulation studies.
Collapse
|
42
|
Taylor JD, Taylor G, Hare SA, Matthews SJ. Structures of the DfsB Protein Family Suggest a Cationic, Helical Sibling Lethal Factor Peptide. J Mol Biol 2016; 428:554-560. [PMID: 26804569 PMCID: PMC4773401 DOI: 10.1016/j.jmb.2016.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 01/07/2016] [Accepted: 01/13/2016] [Indexed: 11/05/2022]
Abstract
Bacteria have developed a variety of mechanisms for surviving harsh environmental conditions, nutrient stress and overpopulation. Paenibacillus dendritiformis produces a lethal protein (Slf) that is able to induce cell death in neighbouring colonies and a phenotypic switch in more distant ones. Slf is derived from the secreted precursor protein, DfsB, after proteolytic processing. Here, we present new crystal structures of DfsB homologues from a variety of bacterial species and a surprising version present in the yeast Saccharomyces cerevisiae. Adopting a four-helix bundle decorated with a further three short helices within intervening loops, DfsB belongs to a non-enzymatic class of the DinB fold. The structure suggests that the biologically active Slf fragment may possess a C-terminal helix rich in basic and aromatic residues that suggest a functional mechanism akin to that for cationic antimicrobial peptides.
Collapse
Affiliation(s)
- Jonathan D Taylor
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Gabrielle Taylor
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Stephen A Hare
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Steve J Matthews
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom.
| |
Collapse
|
43
|
Giverso C, Verani M, Ciarletta P. Branching instability in expanding bacterial colonies. J R Soc Interface 2015; 12:20141290. [PMID: 25652464 DOI: 10.1098/rsif.2014.1290] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Self-organization in developing living organisms relies on the capability of cells to duplicate and perform a collective motion inside the surrounding environment. Chemical and mechanical interactions coordinate such a cooperative behaviour, driving the dynamical evolution of the macroscopic system. In this work, we perform an analytical and computational analysis to study pattern formation during the spreading of an initially circular bacterial colony on a Petri dish. The continuous mathematical model addresses the growth and the chemotactic migration of the living monolayer, together with the diffusion and consumption of nutrients in the agar. The governing equations contain four dimensionless parameters, accounting for the interplay among the chemotactic response, the bacteria-substrate interaction and the experimental geometry. The spreading colony is found to be always linearly unstable to perturbations of the interface, whereas branching instability arises in finite-element numerical simulations. The typical length scales of such fingers, which align in the radial direction and later undergo further branching, are controlled by the size parameters of the problem, whereas the emergence of branching is favoured if the diffusion is dominant on the chemotaxis. The model is able to predict the experimental morphologies, confirming that compact (resp. branched) patterns arise for fast (resp. slow) expanding colonies. Such results, while providing new insights into pattern selection in bacterial colonies, may finally have important applications for designing controlled patterns.
Collapse
Affiliation(s)
- Chiara Giverso
- MOX, Politecnico di Milano, P.za Leonardo da Vinci, 32, 20133 Milan, Italy Fondazione CEN, P.za Leonardo da Vinci, 32, 20133 Milan, Italy
| | - Marco Verani
- MOX, Politecnico di Milano, P.za Leonardo da Vinci, 32, 20133 Milan, Italy
| | - Pasquale Ciarletta
- Fondazione CEN, P.za Leonardo da Vinci, 32, 20133 Milan, Italy CNRS and Sorbonne Universités, Institut Jean le Rond d'Alembert, UPMC Univ Paris 06, UMR 7190, 4 place Jussieu case 162, 75005 Paris, France
| |
Collapse
|
44
|
Weber CA, Lin YT, Biais N, Zaburdaev V. Formation and dissolution of bacterial colonies. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:032704. [PMID: 26465495 DOI: 10.1103/physreve.92.032704] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Indexed: 06/05/2023]
Abstract
Many organisms form colonies for a transient period of time to withstand environmental pressure. Bacterial biofilms are a prototypical example of such behavior. Despite significant interest across disciplines, physical mechanisms governing the formation and dissolution of bacterial colonies are still poorly understood. Starting from a kinetic description of motile and interacting cells we derive a hydrodynamic equation for their density on a surface, where most of the kinetic coefficients are estimated from experimental data for N. gonorrhoeae bacteria. We use it to describe the formation of multiple colonies with sizes consistent with experimental observations. Finally, we show how the changes in the cell-to-cell interactions lead to the dissolution of the bacterial colonies. The successful application of kinetic theory to a complex far from equilibrium system such as formation and dissolution of living bacterial colonies potentially paves the way for the physical quantification of the initial stages of biofilm formation.
Collapse
Affiliation(s)
- Christoph A Weber
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, Dresden 01187, Germany
| | - Yen Ting Lin
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, Dresden 01187, Germany
| | - Nicolas Biais
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, New York 11210, USA
| | - Vasily Zaburdaev
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, Dresden 01187, Germany
| |
Collapse
|
45
|
Emerging morphologies in round bacterial colonies: comparing volumetric versus chemotactic expansion. Biomech Model Mechanobiol 2015; 15:643-61. [PMID: 26296713 DOI: 10.1007/s10237-015-0714-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/27/2015] [Indexed: 10/23/2022]
Abstract
Biological experiments performed on living bacterial colonies have demonstrated the microbial capability to develop finger-like shapes and highly irregular contours, even starting from an homogeneous inoculum. In this work, we study from the continuum mechanics viewpoint the emergence of such branched morphologies in an initially circular colony expanding on the top of a Petri dish coated with agar. The bacterial colony expansion, based on either a source term, representing volumetric mitotic processes, or a nonconvective mass flux, describing chemotactic expansion, is modeled at the continuum scale. We demonstrate that the front of the colony is always linearly unstable, having similar dispersion curves to the ones characterizing branching instabilities. We also perform finite element simulations, which not only prove the emergence of branching, but also highlight dramatic differences between the two mechanisms of colony expansion in the nonlinear regime. Furthermore, the proposed combination of analytical and numerical analysis allowed studying the influence of different model parameters on the selection of specific patterns. A very good agreement has been found between the resulting simulations and the typical structures observed in biological assays. Finally, this work provides a new interpretation of the emergence of branched patterns in living aggregates, depicted as the results of a complex interplay among chemical, mechanical and size effects.
Collapse
|
46
|
Giverso C, Verani M, Ciarletta P. Mechanically driven branching of bacterial colonies. J Biomech Eng 2015; 137:2212354. [PMID: 25806474 DOI: 10.1115/1.4030176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Indexed: 11/08/2022]
Abstract
A continuum mathematical model with sharp interface is proposed for describing the occurrence of patterns in initially circular and homogeneous bacterial colonies. The mathematical model encapsulates the evolution of the chemical field characterized by a Monod-like uptake term, the chemotactic response of bacteria, the viscous interaction between the colony and the underlying culture medium and the effects of the surface tension at the boundary. The analytical analysis demonstrates that the front of the colony is linearly unstable for a proper choice of the parameters. The simulation of the model in the nonlinear regime confirms the development of fingers with typical wavelength controlled by the size parameters of the problem, whilst the emergence of branches is favored if the diffusion is dominant on the chemotaxis or for high values of the friction parameter. Such results provide new insights on pattern selection in bacterial colonies and may be applied for designing engineered patterns.
Collapse
|
47
|
Sousa AM, Pereira MO, Lourenço A. MorphoCol: An ontology-based knowledgebase for the characterisation of clinically significant bacterial colony morphologies. J Biomed Inform 2015; 55:55-63. [DOI: 10.1016/j.jbi.2015.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 01/24/2015] [Accepted: 03/20/2015] [Indexed: 01/09/2023]
|
48
|
Misevic D, Frénoy A, Lindner AB, Taddei F. Shape matters: lifecycle of cooperative patches promotes cooperation in bulky populations. Evolution 2015; 69:788-802. [PMID: 25639379 PMCID: PMC4409860 DOI: 10.1111/evo.12616] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 01/02/2015] [Indexed: 11/29/2022]
Abstract
Natural cooperative systems take many forms, ranging from one-dimensional cyanobacteria arrays to fractal-like biofilms. We use in silico experimental systems to study a previously overlooked factor in the evolution of cooperation, physical shape of the population. We compare the emergence and maintenance of cooperation in populations of digital organisms that inhabit bulky (100 × 100 cells) or slender (4 × 2500) toroidal grids. Although more isolated subpopulations of secretors in a slender population could be expected to favor cooperation, we find the opposite: secretion evolves to higher levels in bulky populations. We identify the mechanistic explanation for the shape effect by analyzing the lifecycle and dynamics of cooperator patches, from their emergence and growth, to invasion by noncooperators and extinction. Because they are constrained by the population shape, the cooperator patches expand less in slender than in bulky populations, leading to fewer cooperators, less public good secretion, and generally lower cooperation. The patch dynamics and mechanisms of shape effect are robust across several digital cooperation systems and independent of the underlying basis for cooperation (public good secretion or a cooperation game). Our results urge for a greater consideration of population shape in the study of the evolution of cooperation across experimental and modeling systems.
Collapse
Affiliation(s)
- Dusan Misevic
- Center for Research and Interdisciplinarity, INSERM U1001, Medicine Faculty, site Cochin Port-Royal, University Paris Descartes, Sorbonne Paris Cité, 24, rue du Faubourg Saint Jacques, 75014, Paris, France.
| | | | | | | |
Collapse
|
49
|
Singh AK, Sun X, Bai X, Kim H, Abdalhaseib MU, Bae E, Bhunia AK. Label-free, non-invasive light scattering sensor for rapid screening of Bacillus colonies. J Microbiol Methods 2015; 109:56-66. [DOI: 10.1016/j.mimet.2014.12.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/17/2014] [Accepted: 12/18/2014] [Indexed: 11/26/2022]
|
50
|
Gloag ES, Turnbull L, Whitchurch CB. Bacterial stigmergy: an organising principle of multicellular collective behaviours of bacteria. SCIENTIFICA 2015; 2015:387342. [PMID: 25653882 PMCID: PMC4306409 DOI: 10.1155/2015/387342] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 12/17/2014] [Accepted: 12/17/2014] [Indexed: 06/04/2023]
Abstract
The self-organisation of collective behaviours often manifests as dramatic patterns of emergent large-scale order. This is true for relatively "simple" entities such as microbial communities and robot "swarms," through to more complex self-organised systems such as those displayed by social insects, migrating herds, and many human activities. The principle of stigmergy describes those self-organised phenomena that emerge as a consequence of indirect communication between individuals of the group through the generation of persistent cues in the environment. Interestingly, despite numerous examples of multicellular behaviours of bacteria, the principle of stigmergy has yet to become an accepted theoretical framework that describes how bacterial collectives self-organise. Here we review some examples of multicellular bacterial behaviours in the context of stigmergy with the aim of bringing this powerful and elegant self-organisation principle to the attention of the microbial research community.
Collapse
Affiliation(s)
- Erin S. Gloag
- The ithree Institute, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia
| | - Lynne Turnbull
- The ithree Institute, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia
| | - Cynthia B. Whitchurch
- The ithree Institute, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia
| |
Collapse
|