1
|
Girard B, Couesnon A, Girard E, Molgó J. Stable Convergent Polyneuronal Innervation and Altered Synapse Elimination in Orbicularis oculi Muscles from Patients with Blepharospasm Responding Poorly to Recurrent Botulinum Type-A Neurotoxin Injections. Toxins (Basel) 2024; 16:506. [PMID: 39728764 PMCID: PMC11728458 DOI: 10.3390/toxins16120506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024] Open
Abstract
Botulinum neurotoxin type-A (BoNT/A), which blocks quantal acetylcholine (ACh) release at the neuromuscular junction (NMJ), has demonstrated its efficacy in the symptomatic treatment of blepharospasm. In 3.89% of patients treated for blepharospasm at Tenon Hospital, BoNT/A was no longer effective in relieving the patient's symptoms, and a partial upper myectomy of the Orbicularis oculi muscle was performed. We used surgical waste samples from 14 patients treated with repeated injections of either abobotulinumtoxinA (Dysport®) or incobotulinumtoxinA (Xeomin®). These muscle fragments were compared to others from 4 normal subjects, naïve of BoNT/A. The morphological study was performed blinded to the BoNT/A treatment and between treated and control samples. Neuromuscular specimens analyzed by confocal laser scanning microscopy, using fluorescent staining and immune-labeling of presynaptic proteins, revealed that the pattern of innervation (e.g., polyneuronal and convergent innervation), the muscle nicotinic ACh receptors (nAChRs), and the NMJs exhibited marked differences in BoNT/A-treated muscles (regardless of the toxin clinically used), with respect to controls. BoNT/A-treated junctions exhibited profuse polyneuronal innervation in which 2-6 axons innervated 74.84% of single muscle fibers, while 99.47% of control junctions were mono-innervated. Another new finding was the stable convergent innervation, in which several motor axons end onto the same endplate. Morphological signs of synapse elimination included the presence of retraction bulbs in axons and nerve terminals and a reduced extension of postsynaptic nAChRs. These outcomes suggest that synapse elimination is altered and raise questions on the origin and factors contributing to the plasticity changes observed and the functioning of NMJs.
Collapse
Affiliation(s)
- Brigitte Girard
- Service d’Ophtalmologie, Hôpital Tenon, Sorbonne Université, Université Pierre et Marie Curie, 4 rue de la Chine, 75020 Paris, France;
- Hôpital Privé Armand Brillard, 3. Avenue Watteau, 94130 Nogent sur Marne, France
| | - Aurélie Couesnon
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS/Université Paris-Sud, 91198 Gif-sur-Yvette, Cedex, France
| | - Emmanuelle Girard
- Institut NeuroMyoGene—Physiopathology & Genetic of Neuron and Muscle, CNRS UMR5261, INSERM U1315, Université Lyon1, 8 Avenue Rockefeller, 69008 Lyon, France;
- Plateforme Aniphy, SFR Santé Lyon-Est, CNRS UAR3453, INSERM US7, Université Lyon1, 8 Avenue Rockefeller, 69008 Lyon, France
| | - Jordi Molgó
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS/Université Paris-Sud, 91198 Gif-sur-Yvette, Cedex, France
- Service d’Ingénierie Moléculaire pour la Santé (SIMoS), EMR CNRS 9004, Département Médicaments et Technologies pour la Santé (DMTS), Institut des Sciences du Vivant Frédéric Joliot, Commissariat à l’énergie Atomique et aux Énergies Alternatives (CEA), Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| |
Collapse
|
2
|
Gupta S, Pellett S. Recent Developments in Vaccine Design: From Live Vaccines to Recombinant Toxin Vaccines. Toxins (Basel) 2023; 15:563. [PMID: 37755989 PMCID: PMC10536331 DOI: 10.3390/toxins15090563] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023] Open
Abstract
Vaccines are one of the most effective strategies to prevent pathogen-induced illness in humans. The earliest vaccines were based on live inoculations with low doses of live or related pathogens, which carried a relatively high risk of developing the disease they were meant to prevent. The introduction of attenuated and killed pathogens as vaccines dramatically reduced these risks; however, attenuated live vaccines still carry a risk of reversion to a pathogenic strain capable of causing disease. This risk is completely eliminated with recombinant protein or subunit vaccines, which are atoxic and non-infectious. However, these vaccines require adjuvants and often significant optimization to induce robust T-cell responses and long-lasting immune memory. Some pathogens produce protein toxins that cause or contribute to disease. To protect against the effects of such toxins, chemically inactivated toxoid vaccines have been found to be effective. Toxoid vaccines are successfully used today at a global scale to protect against tetanus and diphtheria. Recent developments for toxoid vaccines are investigating the possibilities of utilizing recombinant protein toxins mutated to eliminate biologic activity instead of chemically inactivated toxins. Finally, one of the most contemporary approaches toward vaccine design utilizes messenger RNA (mRNA) as a vaccine candidate. This approach was used globally to protect against coronavirus disease during the COVID-19 pandemic that began in 2019, due to its advantages of quick production and scale-up, and effectiveness in eliciting a neutralizing antibody response. Nonetheless, mRNA vaccines require specialized storage and transport conditions, posing challenges for low- and middle-income countries. Among multiple available technologies for vaccine design and formulation, which technology is most appropriate? This review focuses on the considerable developments that have been made in utilizing diverse vaccine technologies with a focus on vaccines targeting bacterial toxins. We describe how advancements in vaccine technology, combined with a deeper understanding of pathogen-host interactions, offer exciting and promising avenues for the development of new and improved vaccines.
Collapse
Affiliation(s)
| | - Sabine Pellett
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA;
| |
Collapse
|
3
|
Roe JM, Seely K, Bussard CJ, Eischen Martin E, Mouw EG, Bayles KW, Hollingsworth MA, Brooks AE, Dailey KM. Hacking the Immune Response to Solid Tumors: Harnessing the Anti-Cancer Capacities of Oncolytic Bacteria. Pharmaceutics 2023; 15:2004. [PMID: 37514190 PMCID: PMC10384176 DOI: 10.3390/pharmaceutics15072004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Oncolytic bacteria are a classification of bacteria with a natural ability to specifically target solid tumors and, in the process, stimulate a potent immune response. Currently, these include species of Klebsiella, Listeria, Mycobacteria, Streptococcus/Serratia (Coley's Toxin), Proteus, Salmonella, and Clostridium. Advancements in techniques and methodology, including genetic engineering, create opportunities to "hijack" typical host-pathogen interactions and subsequently harness oncolytic capacities. Engineering, sometimes termed "domestication", of oncolytic bacterial species is especially beneficial when solid tumors are inaccessible or metastasize early in development. This review examines reported oncolytic bacteria-host immune interactions and details the known mechanisms of these interactions to the protein level. A synopsis of the presented membrane surface molecules that elicit particularly promising oncolytic capacities is paired with the stimulated localized and systemic immunogenic effects. In addition, oncolytic bacterial progression toward clinical translation through engineering efforts are discussed, with thorough attention given to strains that have accomplished Phase III clinical trial initiation. In addition to therapeutic mitigation after the tumor has formed, some bacterial species, referred to as "prophylactic", may even be able to prevent or "derail" tumor formation through anti-inflammatory capabilities. These promising species and their particularly favorable characteristics are summarized as well. A complete understanding of the bacteria-host interaction will likely be necessary to assess anti-cancer capacities and unlock the full cancer therapeutic potential of oncolytic bacteria.
Collapse
Affiliation(s)
- Jason M Roe
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA
| | - Kevin Seely
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA
| | - Caleb J Bussard
- College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80130, USA
| | | | - Elizabeth G Mouw
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA
| | - Kenneth W Bayles
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Michael A Hollingsworth
- Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Amanda E Brooks
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA
- College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80130, USA
- Office of Research & Scholarly Activity, Rocky Vista University, Ivins, UT 84738, USA
| | - Kaitlin M Dailey
- Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
4
|
Knockin mouse models demonstrate differential contributions of synaptotagmin-1 and -2 as receptors for botulinum neurotoxins. PLoS Pathog 2021; 17:e1009994. [PMID: 34662366 PMCID: PMC8553082 DOI: 10.1371/journal.ppat.1009994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/28/2021] [Accepted: 09/30/2021] [Indexed: 12/11/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are the most potent toxins known and are also utilized to treat a wide range of disorders including muscle spasm, overactive bladder, and pain. BoNTs' ability to target neurons determines their specificity, potency, and therapeutic efficacy. Homologous synaptic vesicle membrane proteins synaptotagmin-1 (Syt1) and synaptotagmin-2 (Syt2) have been identified as receptors for BoNT family members including BoNT/B, DC, and G, but their contributions at physiologically relevant toxin concentrations in vivo have yet to be validated and established. Here we generated two knockin mutant mouse models containing three designed point-mutations that specifically disrupt BoNT binding in endogenous Syt1 or Syt2, respectively. Utilizing digit abduction score assay by injecting toxins into the leg muscle, we found that Syt1 mutant mice showed similar sensitivity as the wild type mice, whereas Syt2 mutant mice showed reduced sensitivity to BoNT/B, DC, and G, demonstrating that Syt2 is the dominant receptor at skeletal neuromuscular junctions. We further developed an in vivo bladder injection assay for analyzing BoNT action on bladder tissues and demonstrated that Syt1 is the dominant toxin receptor in autonomic nerves controlling bladder tissues. These findings establish the critical role of protein receptors for the potency and specificity of BoNTs in vivo and demonstrate the differential contributions of Syt1 and Syt2 in two sets of clinically relevant target tissues.
Collapse
|
5
|
Miyashita SI, Zhang J, Zhang S, Shoemaker CB, Dong M. Delivery of single-domain antibodies into neurons using a chimeric toxin-based platform is therapeutic in mouse models of botulism. Sci Transl Med 2021; 13:eaaz4197. [PMID: 33408184 DOI: 10.1126/scitranslmed.aaz4197] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 05/01/2020] [Indexed: 12/15/2022]
Abstract
Efficient penetration of cell membranes and specific targeting of a cell type represent major challenges for developing therapeutics toward intracellular targets. One example facing these hurdles is to develop post-exposure treatment for botulinum neurotoxins (BoNTs), a group of bacterial toxins (BoNT/A to BoNT/G) that are major potential bioterrorism agents. BoNTs enter motor neurons, block neurotransmitter release, and cause a paralytic disease botulism. Members of BoNTs such as BoNT/A exhibit extremely long half-life within neurons, resulting in persistent paralysis for months, yet there are no therapeutics that can inhibit BoNTs once they enter neurons. Here, we developed a chimeric toxin-based delivery platform by fusing the receptor-binding domain of a BoNT, which targets neurons, with the membrane translocation domain and inactivated protease domain of the recently discovered BoNT-like toxin BoNT/X, which can deliver cargoes across endosomal membranes into the cytosol. A therapeutic protein was then created by fusing a single-domain antibody (nanobody) against BoNT/A with the delivery platform. In vitro characterization demonstrated that nanobodies were delivered into cultured neurons and neutralized BoNT/A in neurons. Administration of this protein in mice shortened duration of local muscle paralysis, restoring muscle function within hours, and rescued mice from systemic toxicity of lethal doses of BoNT/A. Fusion of two nanobodies, one against BoNT/A and the other against BoNT/B, created a multivalent therapeutic protein able to neutralize both BoNT/A and BoNT/B in mice. These studies provide an effective post-exposure treatment for botulism and establish a platform for intracellular delivery of therapeutics targeting cytosolic proteins and processes.
Collapse
Affiliation(s)
- Shin-Ichiro Miyashita
- Department of Urology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Surgery and Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jie Zhang
- Department of Urology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Surgery and Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Sicai Zhang
- Department of Urology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Surgery and Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Charles B Shoemaker
- Department of Infectious Diseases and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA 01536, USA
| | - Min Dong
- Department of Urology, Boston Children's Hospital, Boston, MA 02115, USA.
- Department of Surgery and Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
6
|
McLean T, Norbury L, Conduit R, Shepherd N, Coloe P, Sasse A, Smooker P. Inactivated tetanus as an immunological smokescreen: A major step towards harnessing tetanus-based therapeutics. Mol Immunol 2020; 127:164-174. [PMID: 33002728 DOI: 10.1016/j.molimm.2020.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/01/2020] [Accepted: 09/08/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND PURPOSE Tetanus neurotoxin has many potential therapeutic applications, due to its ability to increase localised muscle tone when injected directly into a muscle. It is a closely related molecule to botulinum neurotoxin (most commonly known as Botox), which has been widely used to release muscle tension for therapeutic and cosmetic applications. However, tetanus toxin has been relegated to the "maybe pile" for protein therapeutics - as most of the population is vaccinated, leading to highly effective antibody-mediated protection against the toxin. The potential for tetanus-based therapeutics remains substantial if the problem of pre-existing immunity can be resolved. EXPERIMENTAL APPROACH A well-established murine model of localised muscular contraction was utilised. We administered functional tetanus toxin combined with an immunogenic, but functionally inactive, decoy molecule. KEY RESULTS Incorporation of the decoy molecule greatly reduces the dose of active toxin required to induce a localised increase in muscle tone in mice vaccinated with the human toxoid vaccine. CONCLUSION AND IMPLICATIONS Our results clearly demonstrate that the barriers to developing a tetanus toxin therapeutic are not insurmountable and the technology presented here is the first major step towards realising the therapeutic potential of this powerful neurotoxin. Opening the therapeutic potential of tetanus toxin will have huge implications for the wide range of diseases caused by low-tone muscle.
Collapse
Affiliation(s)
- Thomas McLean
- Bioscience and Food Technology, School of Science, Plenty Road, Building 223 Bundoora West campus, RMIT University, Bundoora, VIC 3083, Australia.
| | - Luke Norbury
- Bioscience and Food Technology, School of Science, Plenty Road, Building 223 Bundoora West campus, RMIT University, Bundoora, VIC 3083, Australia.
| | - Russell Conduit
- School of Health and Biomedical Sciences, College of Science, Engineering and Health, RMIT University, Bundoora, VIC 3083, Australia.
| | - Natalie Shepherd
- Bioscience and Food Technology, School of Science, Plenty Road, Building 223 Bundoora West campus, RMIT University, Bundoora, VIC 3083, Australia
| | - Peter Coloe
- Bioscience and Food Technology, School of Science, Plenty Road, Building 223 Bundoora West campus, RMIT University, Bundoora, VIC 3083, Australia.
| | - Anthony Sasse
- Bioscience and Food Technology, School of Science, Plenty Road, Building 223 Bundoora West campus, RMIT University, Bundoora, VIC 3083, Australia; Latrobe Regional Hospital, Gippsland, Australia.
| | - Peter Smooker
- Bioscience and Food Technology, School of Science, Plenty Road, Building 223 Bundoora West campus, RMIT University, Bundoora, VIC 3083, Australia.
| |
Collapse
|
7
|
Shi X, Gao C, Wang L, Chu X, Shi Q, Yang H, Li T. Botulinum toxin type A ameliorates adjuvant-arthritis pain by inhibiting microglial activation-mediated neuroinflammation and intracellular molecular signaling. Toxicon 2020; 178:33-40. [PMID: 32250746 DOI: 10.1016/j.toxicon.2019.12.153] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/17/2019] [Accepted: 12/19/2019] [Indexed: 11/25/2022]
Abstract
Chronic inflammatory pain is a serious clinical problem caused by inflammation of the joints and degenerative diseases and greatly affects patients' quality of life. Persistent pain states are thought to result from the central sensitization of nociceptive pathways in the spinal dorsal horn. Spinal microglia-mediated neuroinflammation plays a pivotal role in the development and maintenance of the central sensitization of chronic inflammatory pain. Botulinum toxin type A (BoNT/A) was recently reported to have analgesic and anti-inflammatory effects. However, the precise mechanism underlying its analgesic effect remains unclear. Although several studies have reported that BoNT/A could regulate neuroflammation, the reduction of neuroinflammation regulated by BoNT/A in chronic inflammatory pain in experimentally induced arthritis has not been reported. The aim of this study was to investigate whether BoNT/A could alleviate adjuvant-arthritis pain via modulating microglia-mediated neuroinflammation and intracellular molecular pathway. The pain behavioral tests were performed before and after CFA immunization as well as after BoNT/A injection. Western blotting and immunofluorescence staining were used to assess the changes of microglial activation markers (ionized calcium binding adaptor molecule 1, IBA-1) and phosphorylation of P38MAPK (P-p38MAPK) in the lumbar spinal cord. TNF-αand P2X4R gene expression were studied by real-time reverse transcriptase-polymerase chain reaction (RT-PCR). The results showed that (1) the activation of spinal microglia can be continued till 21 days after CFA injection, which suggested its role in the development and maintenance of chronic inflammatory pain. (2) The intra-articular administration of a single effective dose of BoNT/A (5U/10 U) on day 21 after CFA injection significantly reduced nociceptive behaviors and decreased protein overexpression and immunoreactivity for IBA-1 and P-p38MAPK in CFA induced rat. Simultaneously, BoNT/A (5 U) also inhibited the increase in TNF-α mRNA and P2X4R mRNA expression induced by CFA injection. These results suggested that BoNT/A is a potential therapeutic agent for relieving the neuroinflammation that occurs in chronic inflammatory pain by inhibiting the activation of microglial cells and the release of microglia-derived TNF-α. This effect is likely mediated by inhibiting the activation of the P2X4R-P38MAPK signaling pathways in spinal microglial cells.
Collapse
Affiliation(s)
- Xiaojuan Shi
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, Province, China
| | - Chengfei Gao
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, Province, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Lin Wang
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, Province, China
| | - Xiao Chu
- Department of Pharmacy of Qingdao Municipal Hospital, Qingdao, Shandong Province, PR China
| | - Qilin Shi
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, Province, China
| | - Hui Yang
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, Province, China
| | - Tieshan Li
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, Province, China.
| |
Collapse
|
8
|
Genotyping of Clostridium perfringens Isolates from Domestic Livestock in Saudi Arabia. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9035341. [PMID: 32280706 PMCID: PMC7128066 DOI: 10.1155/2020/9035341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/19/2020] [Accepted: 03/07/2020] [Indexed: 11/18/2022]
Abstract
The present study was undertaken to confirm the genetic identity of Clostridium perfringens isolates from domestic livestock in Saudi Arabia and to characterize the genes encoding to alpha, beta, epsilon, and iota (α-, β-, ε-, and ι-) toxins. C. perfringens were confirmed in 104 out of 136 isolates on multiplex polymerase chain reaction using specific primers amplifying genes related to toxins produced by C. perfringens. Genes encoding α-toxins were detected in 104 samples. Of the isolates, 80.8% were diagnosed as type A, 15.4% as type D, 2.9% as type C, and 0.96% as type B. None of the isolates has genes encoding iota (ι-) toxin. All isolates investigated yielded enterotoxin (cpe) products and none yielded β2 (cpb2-toxin) or NetB products. PLC gene sequences encoding α-toxin showed >96.7% similarity. Isolates which had α-toxins as well as enterotoxin (cpe) are regarded as type F. Phylogenetic analysis using maximum likelihood analysis yielded two clades, and the majority of the isolates were in one group while only two isolates clustered on the second clade. Within the Kingdom of Saudi Arabia strains, 54 variable positions and 23 polymorphic amino acids were noticed. Isolates with ε- and β-toxins were variable and were found to be close to those published for C. perfringens. ETX gene sequences encoding ε-toxins were found to be related to CPE sequences.
Collapse
|
9
|
Martínez-Carranza M, Blasco P, Gustafsson R, Dong M, Berntsson RPA, Widmalm G, Stenmark P. Synaptotagmin Binding to Botulinum Neurotoxins. Biochemistry 2019; 59:491-498. [PMID: 31809018 DOI: 10.1021/acs.biochem.9b00554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Botulinum neurotoxins (BoNTs) are exceptionally toxic proteins that cause paralysis but are also extensively used as treatment for various medical conditions. Most BoNTs bind two receptors on neuronal cells, namely, a ganglioside and a protein receptor. Differences in the sequence between the protein receptors from different species can impact the binding affinity and toxicity of the BoNTs. Here we have investigated how BoNT/B, /DC, and /G, all three toxins that utilize synaptotagmin I and II (Syt-I and Syt-II, respectively) as their protein receptors, bind to Syt-I and -II of mouse/rat, bovine, and human origin by isothermal titration calorimetry analysis. BoNT/G had the highest affinity for human Syt-I, and BoNT/DC had the highest affinity for bovine Syt-II. As expected, BoNT/B, /DC, and /G showed very low levels of binding to human Syt-II. Furthermore, we carried out saturation transfer difference (STD) and STD-TOCSY NMR experiments that revealed the region of the Syt peptide in direct contact with BoNT/G, which demonstrate that BoNT/G recognizes the Syt peptide in a model similar to that in the established BoNT/B-Syt-II complex. Our analyses also revealed that regions outside the Syt peptide's toxin-binding region are important for the helicity of the peptide and, therefore, the binding affinity.
Collapse
Affiliation(s)
| | - Pilar Blasco
- Department of Organic Chemistry , Stockholm University , SE-106 91 Stockholm , Sweden
| | - Robert Gustafsson
- Department of Biochemistry and Biophysics , Stockholm University , SE-106 91 Stockholm , Sweden
| | - Min Dong
- Department of Urology, Boston's Children Hospital, and Department of Microbiology and Immunology and Department of Surgery , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Ronnie Per-Arne Berntsson
- Department of Medical Biochemistry and Biophysics , Umeå University , SE-90187 Umeå , Sweden.,Wallenberg Centre for Molecular Medicine , Umeå University , SE-90187 Umeå , Sweden
| | - Göran Widmalm
- Department of Organic Chemistry , Stockholm University , SE-106 91 Stockholm , Sweden
| | - Pål Stenmark
- Department of Biochemistry and Biophysics , Stockholm University , SE-106 91 Stockholm , Sweden.,Department of Experimental Medical Science , Lund University , SE-221 00 Lund , Sweden
| |
Collapse
|
10
|
Hu Y, Zou L, Qi X, Lu Y, Zhou X, Mao Z, Chen X, Liu K, Yang Y, Wu Z, Hu Y, Ma S. Subcutaneous botulinum toxin-A injection for treating postherpetic neuralgia. Dermatol Ther 2019; 33:e13181. [PMID: 31769900 DOI: 10.1111/dth.13181] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/18/2019] [Accepted: 11/23/2019] [Indexed: 11/28/2022]
Abstract
Postherpetic neuralgia (PHN) is a debilitating disease characterized by continuous, intense pain following an outbreak of herpes zoster. The pain associated with PHN can severely affect a patient's quality of life, quality of sleep, and ability to participate in activities of daily living. The aim of this study was to explore the clinical efficacy of the subcutaneous injection of botulinum toxin-A (BTX-A) for the treatment of PHN. Thirteen patients with PHN were enrolled in this study and treated once with BTX-A. The effects of BTX-A on pain were measured with the visual analogue scale (VAS) 1, 2, 4, 8, 12, and 16 weeks after administration. Compared with pretreatment scores, VAS pain scores decreased at 2 weeks post-treatment in all patients. All patients felt varying degrees of pain relief but remained comfortable. Compared with oral analgesic drugs, VAS scores were significantly different at 2, 4, 8, 12, and 16 weeks post-treatment (p < .05). These results demonstrated that subcutaneous administration of BTX-A can decrease pain in patients with PHN.
Collapse
Affiliation(s)
- Yanqing Hu
- Department of Dermatology and Venereology, The 3rd Affiliated Hospital of Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Liping Zou
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China.,Department of Rehabilitation, The 3rd Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Xinyu Qi
- Department of Dermatology and Venereology, The 3rd Affiliated Hospital of Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Yan Lu
- Department of Dermatology and Venereology, The 3rd Affiliated Hospital of Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Xianyi Zhou
- Department of Dermatology and Venereology, The 3rd Affiliated Hospital of Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Zuhao Mao
- Department of Dermatology and Venereology, The 3rd Affiliated Hospital of Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Xuyang Chen
- Department of Dermatology and Venereology, The 3rd Affiliated Hospital of Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Kangxing Liu
- Department of Dermatology and Venereology, The 3rd Affiliated Hospital of Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Yemei Yang
- Department of Dermatology and Venereology, The 3rd Affiliated Hospital of Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Zhong Wu
- Department of Dermatology and Venereology, The 3rd Affiliated Hospital of Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Yongxuan Hu
- Department of Dermatology and Venereology, The 3rd Affiliated Hospital of Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Shanling Ma
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China.,Department of Clinical Laboratory, The 3rd Affiliated Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
11
|
Poulain B, Popoff MR. Why Are Botulinum Neurotoxin-Producing Bacteria So Diverse and Botulinum Neurotoxins So Toxic? Toxins (Basel) 2019; 11:toxins11010034. [PMID: 30641949 PMCID: PMC6357194 DOI: 10.3390/toxins11010034] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/03/2019] [Accepted: 01/09/2019] [Indexed: 12/15/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are the most lethal toxins among all bacterial, animal, plant and chemical poisonous compounds. Although a great effort has been made to understand their mode of action, some questions are still open. Why, and for what benefit, have environmental bacteria that accidentally interact with their host engineered so diverse and so specific toxins targeting one of the most specialized physiological processes, the neuroexocytosis of higher organisms? The extreme potency of BoNT does not result from only one hyperactive step, but in contrast to other potent lethal toxins, from multi-step activity. The cumulative effects of the different steps, each having a limited effect, make BoNTs the most potent lethal toxins. This is a unique mode of evolution of a toxic compound, the high potency of which results from multiple steps driven by unknown selection pressure, targeting one of the most critical physiological process of higher organisms.
Collapse
Affiliation(s)
- Bernard Poulain
- Institut des Neurosciences Cellulaires et Intégratives, (INCI)-CNRS, UPR 3212 Strasbourg, France.
| | | |
Collapse
|
12
|
Abstract
Botulinum neurotoxins (BoNTs) are a family of bacterial protein toxins produced by various Clostridium species. They are traditionally classified into seven major serotypes (BoNT/A-G). Recent progress in sequencing microbial genomes has led to an ever-growing number of subtypes, chimeric toxins, BoNT-like toxins, and remotely related BoNT homologs, constituting an expanding BoNT superfamily. Recent structural studies of BoNTs, BoNT progenitor toxin complexes, tetanus neurotoxin (TeNT), toxin-receptor complexes, and toxin-substrate complexes have provided mechanistic understandings of toxin functions and the molecular basis for their variations. The growing BoNT superfamily of toxins present a natural repertoire that can be explored to develop novel therapeutic toxins, and the structural understanding of their variations provides a knowledge basis for engineering toxins to improve therapeutic efficacy and expand their clinical applications.
Collapse
Affiliation(s)
- Min Dong
- Department of Urology, Boston Children's Hospital, Boston, MA, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
- Department of Surgery, Harvard Medical School, Boston, MA, USA.
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
| |
Collapse
|
13
|
Abstract
Botulinum neurotoxins (BoNTs) and tetanus neurotoxin (TeNT) are the most potent toxins known and cause botulism and tetanus, respectively. BoNTs are also widely utilized as therapeutic toxins. They contain three functional domains responsible for receptor-binding, membrane translocation, and proteolytic cleavage of host proteins required for synaptic vesicle exocytosis. These toxins also have distinct features: BoNTs exist within a progenitor toxin complex (PTC), which protects the toxin and facilitates its absorption in the gastrointestinal tract, whereas TeNT is uniquely transported retrogradely within motor neurons. Our increasing knowledge of these toxins has allowed the development of engineered toxins for medical uses. The discovery of new BoNTs and BoNT-like proteins provides additional tools to understand the evolution of the toxins and to engineer toxin-based therapeutics. This review summarizes the progress on our understanding of BoNTs and TeNT, focusing on the PTC, receptor recognition, new BoNT-like toxins, and therapeutic toxin engineering.
Collapse
Affiliation(s)
- Min Dong
- Department of Urology, Boston Children's Hospital, Boston, Massachusetts 02115, USA; .,Department of Microbiology and Immunobiology and Department of Surgery, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Geoffrey Masuyer
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden;
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden; .,Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| |
Collapse
|
14
|
Davies JR, Liu SM, Acharya KR. Variations in the Botulinum Neurotoxin Binding Domain and the Potential for Novel Therapeutics. Toxins (Basel) 2018; 10:toxins10100421. [PMID: 30347838 PMCID: PMC6215321 DOI: 10.3390/toxins10100421] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/11/2018] [Accepted: 10/18/2018] [Indexed: 01/23/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) are categorised into immunologically distinct serotypes BoNT/A to /G). Each serotype can also be further divided into subtypes based on differences in amino acid sequence. BoNTs are ~150 kDa proteins comprised of three major functional domains: an N-terminal zinc metalloprotease light chain (LC), a translocation domain (HN), and a binding domain (HC). The HC is responsible for targeting the BoNT to the neuronal cell membrane, and each serotype has evolved to bind via different mechanisms to different target receptors. Most structural characterisations to date have focussed on the first identified subtype within each serotype (e.g., BoNT/A1). Subtype differences within BoNT serotypes can affect intoxication, displaying different botulism symptoms in vivo, and less emphasis has been placed on investigating these variants. This review outlines the receptors for each BoNT serotype and describes the basis for the highly specific targeting of neuronal cell membranes. Understanding receptor binding is of vital importance, not only for the generation of novel therapeutics but also for understanding how best to protect from intoxication.
Collapse
Affiliation(s)
- Jonathan R Davies
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK.
| | - Sai Man Liu
- Ipsen Bioinnovation Limited, Abingdon OX14 4RY, UK.
| | - K Ravi Acharya
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK.
| |
Collapse
|
15
|
Botulinum Toxin Type A-A Modulator of Spinal Neuron-Glia Interactions under Neuropathic Pain Conditions. Toxins (Basel) 2018; 10:toxins10040145. [PMID: 29614835 PMCID: PMC5923311 DOI: 10.3390/toxins10040145] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 03/27/2018] [Accepted: 03/30/2018] [Indexed: 12/29/2022] Open
Abstract
Neuropathic pain represents a significant clinical problem because it is a chronic condition often refractory to available therapy. Therefore, there is still a strong need for new analgesics. Botulinum neurotoxin A (BoNT/A) is used to treat a variety of clinical diseases associated with pain. Glia are in continuous bi-directional communication with neurons to direct the formation and refinement of synaptic connectivity. This review addresses the effects of BoNT/A on the relationship between glia and neurons under neuropathic pain. The inhibitory action of BoNT/A on synaptic vesicle fusion that blocks the release of miscellaneous pain-related neurotransmitters is known. However, increasing evidence suggests that the analgesic effect of BoNT/A is mediated through neurons and glial cells, especially microglia. In vitro studies provide evidence that BoNT/A exerts its anti-inflammatory effect by diminishing NF-κB, p38 and ERK1/2 phosphorylation in microglia and directly interacts with Toll-like receptor 2 (TLR2). Furthermore, BoNT/A appears to have no more than a slight effect on astroglia. The full activation of TLR2 in astroglia appears to require the presence of functional TLR4 in microglia, emphasizing the significant interaction between those cell types. In this review, we discuss whether and how BoNT/A affects the spinal neuron–glia interaction and reduces the development of neuropathy.
Collapse
|
16
|
López de la Paz M, Scheps D, Jurk M, Hofmann F, Frevert J. Rational design of botulinum neurotoxin A1 mutants with improved oxidative stability. Toxicon 2017; 147:54-57. [PMID: 29042311 DOI: 10.1016/j.toxicon.2017.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 07/25/2017] [Accepted: 10/13/2017] [Indexed: 11/19/2022]
Abstract
Botulinum neurotoxins (BoNTs) are the most potent toxic proteins to mankind known but applied in low doses trigger a localized muscle paralysis that is beneficial for the therapy of several neurological disorders and aesthetic treatment. The paralytic effect is generated by the enzymatic activity of the light chain (LC) that cleaves specifically one of the SNARE proteins responsible for neurotransmitter exocytosis. The activity of the LC in a BoNT-containing therapeutic can be compromised by denaturing agents present during manufacturing and/or in the cell. Stabilization of the LC by reducing vulnerability towards denaturants would thus be advantageous for the development of BoNT-based therapeutics. In this work, we focused on increasing the stability of LC of BoNT/A1 (LC/A1) towards oxidative stress. We tackled this task by rational design of mutations at cysteine and methionine LC/A1 sites. Designed mutants showed improved oxidative stability in vitro and equipotency to wildtype toxin in vivo. Our results suggest that suitable modification of the catalytic domain can lead to more stable BoNTs without impairing their therapeutic efficacy.
Collapse
Affiliation(s)
| | - Daniel Scheps
- Merz Pharmaceuticals GmbH Potsdam, Hermannswerder Haus 15, 14473 Potsdam, Germany
| | - Marcel Jurk
- Merz Pharmaceuticals GmbH Potsdam, Hermannswerder Haus 15, 14473 Potsdam, Germany
| | - Fred Hofmann
- Merz Pharmaceuticals GmbH Potsdam, Hermannswerder Haus 15, 14473 Potsdam, Germany
| | - Jürgen Frevert
- Merz Pharmaceuticals GmbH Potsdam, Hermannswerder Haus 15, 14473 Potsdam, Germany.
| |
Collapse
|
17
|
Mascher G, Mertaoja A, Korkeala H, Lindström M. Neurotoxin synthesis is positively regulated by the sporulation transcription factor Spo0A in Clostridium botulinum type E. Environ Microbiol 2017; 19:4287-4300. [PMID: 28809452 DOI: 10.1111/1462-2920.13892] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/08/2017] [Accepted: 08/10/2017] [Indexed: 12/11/2022]
Abstract
Clostridium botulinum produces the most potent natural toxin, the botulinum neurotoxin (BoNT), probably to create anaerobiosis and nutrients by killing the host, and forms endospores that facilitate survival in harsh conditions and transmission. Peak BoNT production coincides with initiation of sporulation in C. botulinum cultures, which suggests common regulation. Here, we show that Spo0A, the master regulator of sporulation, positively regulates BoNT production. Insertional inactivation of spo0A in C. botulinum type E strain Beluga resulted in significantly reduced BoNT production and in abolished or highly reduced sporulation in relation to wild-type controls. Complementation with spo0A restored BoNT production and sporulation. Recombinant DNA-binding domain of Spo0A directly bound to a putative Spo0A-binding box (CTTCGAA) within the BoNT/E operon promoter, demonstrating direct regulation. Spo0A is the first neurotoxin regulator reported in C. botulinum type E. Unlike other C. botulinum strains that are terrestrial and employ the alternative sigma factor BotR in directing BoNT expression, C. botulinum type E strains are adapted to aquatic ecosystems, possess distinct epidemiology and lack BotR. Our results provide fundamental new knowledge on the genetic control of BoNT production and demonstrate common regulation of BoNT production and sporulation, providing a key intervention point for control.
Collapse
Affiliation(s)
- Gerald Mascher
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Anna Mertaoja
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Hannu Korkeala
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Miia Lindström
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
18
|
Identification and characterization of a novel botulinum neurotoxin. Nat Commun 2017; 8:14130. [PMID: 28770820 PMCID: PMC5543303 DOI: 10.1038/ncomms14130] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 12/02/2016] [Indexed: 12/19/2022] Open
Abstract
Botulinum neurotoxins are known to have seven serotypes (BoNT/A-G). Here we report a new BoNT serotype, tentatively named BoNT/X, which has the lowest sequence identity with other BoNTs and is not recognized by antisera against known BoNTs. Similar to BoNT/B/D/F/G, BoNT/X cleaves vesicle-associated membrane proteins (VAMP) 1, 2 and 3, but at a novel site (Arg66-Ala67 in VAMP2). Remarkably, BoNT/X is the only toxin that also cleaves non-canonical substrates VAMP4, VAMP5 and Ykt6. To validate its activity, a small amount of full-length BoNT/X was assembled by linking two non-toxic fragments using a transpeptidase (sortase). Assembled BoNT/X cleaves VAMP2 and VAMP4 in cultured neurons and causes flaccid paralysis in mice. Thus, BoNT/X is a novel BoNT with a unique substrate profile. Its discovery posts a challenge to develop effective countermeasures, provides a novel tool for studying intracellular membrane trafficking, and presents a new potential therapeutic toxin for modulating secretions in cells.
Collapse
|
19
|
Tao L, Peng L, Berntsson RPA, Liu SM, Park S, Yu F, Boone C, Palan S, Beard M, Chabrier PE, Stenmark P, Krupp J, Dong M. Engineered botulinum neurotoxin B with improved efficacy for targeting human receptors. Nat Commun 2017; 8:53. [PMID: 28674381 PMCID: PMC5495808 DOI: 10.1038/s41467-017-00064-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/26/2017] [Indexed: 11/25/2022] Open
Abstract
Botulinum neurotoxin B is a Food and Drug Administration-approved therapeutic toxin. However, it has lower binding affinity toward the human version of its major receptor, synaptotagmin II (h-Syt II), compared to mouse Syt II, because of a residue difference. Increasing the binding affinity to h-Syt II may improve botulinum neurotoxin B’s therapeutic efficacy and reduce adverse effects. Here we utilized the bacterial adenylate cyclase two-hybrid method and carried out a saturation mutagenesis screen in the Syt II-binding pocket of botulinum neurotoxin B. The screen identifies E1191 as a key residue: replacing it with M/C/V/Q enhances botulinum neurotoxin B binding to human synaptotagmin II. Adding S1199Y/W or W1178Q as a secondary mutation further increases binding affinity. Mutant botulinum neurotoxin B containing E1191M/S1199Y exhibits ~11-fold higher efficacy in blocking neurotransmission than wild-type botulinum neurotoxin B in neurons expressing human synaptotagmin II, demonstrating that enhancing receptor binding increases the overall efficacy at functional levels. The engineered botulinum neurotoxin B provides a platform to develop therapeutic toxins with improved efficacy. Humans are less sensitive to the therapeutic effects of botulinum neurotoxin B (BoNT/B) than the animal models it is tested on due to differences between the human and the mouse receptors. Here, the authors engineer BoNT/B to improve its affinity to human receptors and enhance its therapeutic efficacy.
Collapse
Affiliation(s)
- Liang Tao
- Department of Urology, Boston Children's Hospital, Department of Microbiology and Immunobiology, Department of Surgery, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts, 02115, USA
| | - Lisheng Peng
- Department of Urology, Boston Children's Hospital, Department of Microbiology and Immunobiology, Department of Surgery, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts, 02115, USA.,Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, Guangdong, 510630, China
| | - Ronnie P-A Berntsson
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, SE-106 91, Sweden.,Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, SE-901 87, Sweden
| | | | - SunHyun Park
- Department of Urology, Boston Children's Hospital, Department of Microbiology and Immunobiology, Department of Surgery, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts, 02115, USA.,Division of Predictive Toxicological Research, Predictive model Research Center, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, South Korea
| | - Feifan Yu
- Department of Urology, Boston Children's Hospital, Department of Microbiology and Immunobiology, Department of Surgery, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts, 02115, USA
| | - Christopher Boone
- Department of Urology, Boston Children's Hospital, Department of Microbiology and Immunobiology, Department of Surgery, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts, 02115, USA
| | | | | | | | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, SE-106 91, Sweden.
| | - Johannes Krupp
- IPSEN Bioinnovation, Abingdon, OX14 4RY, UK. .,IPSEN Innovation, Les Ulis, 91940, France.
| | - Min Dong
- Department of Urology, Boston Children's Hospital, Department of Microbiology and Immunobiology, Department of Surgery, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts, 02115, USA.
| |
Collapse
|
20
|
Burns JR, Lambert GS, Baldwin MR. Insights into the Mechanisms by Which Clostridial Neurotoxins Discriminate between Gangliosides. Biochemistry 2017; 56:2571-2583. [DOI: 10.1021/acs.biochem.6b01246] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Joshua R. Burns
- Department of Molecular Microbiology
and Immunology, University of Missouri School of Medicine, Columbia, Missouri 65212, United States
| | - Gregory S. Lambert
- Department of Molecular Microbiology
and Immunology, University of Missouri School of Medicine, Columbia, Missouri 65212, United States
| | - Michael R. Baldwin
- Department of Molecular Microbiology
and Immunology, University of Missouri School of Medicine, Columbia, Missouri 65212, United States
| |
Collapse
|
21
|
Pahle J, Menzel L, Niesler N, Kobelt D, Aumann J, Rivera M, Walther W. Rapid eradication of colon carcinoma by Clostridium perfringens Enterotoxin suicidal gene therapy. BMC Cancer 2017; 17:129. [PMID: 28193196 PMCID: PMC5307849 DOI: 10.1186/s12885-017-3123-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 02/08/2017] [Indexed: 12/23/2022] Open
Abstract
Background Bacterial toxins have evolved to an effective therapeutic option for cancer therapy. The Clostridium perfringens enterotoxin (CPE) is a pore-forming toxin with selective cytotoxicity. The transmembrane tight junction proteins claudin-3 and -4 are known high affinity CPE receptors. Their expression is highly upregulated in human cancers, including breast, ovarian and colon carcinoma. CPE binding to claudins triggers membrane pore complex formation, which leads to rapid cell death. Previous studies demonstrated the anti-tumoral effect of treatment with recombinant CPE-protein. Our approach aimed at evaluation of a selective and targeted cancer gene therapy of claudin-3- and/or claudin-4- expressing colon carcinoma in vitro and in vivo by using translation optimized CPE expressing vector. Methods In this study the recombinant CPE and a translation optimized CPE expressing vector (optCPE) was used for targeted gene therapy of claudin-3 and/or -4 overexpressing colon cancer cell lines. All experiments were performed in the human SW480, SW620, HCT116, CaCo-2 and HT-29 colon cancer and the isogenic Sk-Mel5 and Sk-Mel5 Cldn-3-YFP melanoma cell lines. Claudin expression analysis was done at protein and mRNA level, which was confirmed by immunohistochemistry. The CPE induced cytotoxicity was analyzed by the MTT cytotoxicity assay. In addition patient derived colon carcinoma xenografts (PDX) were characterized and used for the intratumoral in vivo gene transfer of the optCPE expressing vector in PDX bearing nude mice. Results Claudin-3 and -4 overexpressing colon carcinoma lines showed high sensitivity towards both recCPE application and optCPE gene transfer. The positive correlation between CPE cytotoxicity and level of claudin expression was demonstrated. Transfection of optCPE led to targeted, rapid cytotoxic effects such as membrane disruption and necrosis in claudin overexpressing cells. The intratumoral optCPE in vivo gene transfer led to tumor growth inhibition in colon carcinoma PDX bearing mice in association with massive necrosis due to the intratumoral optCPE expression. Conclusions This novel approach demonstrates that optCPE gene transfer represents a promising and efficient therapeutic option for a targeted suicide gene therapy of claudin-3 and/or claudin-4 overexpressing colon carcinomas, leading to rapid and effective tumor cell killing in vitro and in vivo. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3123-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jessica Pahle
- Experimental and Clinical Research Center, Charité University Medicine, Lindenberger Weg 80, 13125, Berlin, Germany
| | - Lutz Menzel
- Max-Delbrück-Center for Molecular Medicine, Rober-Rössle-Str.10, 13125, Berlin, Germany
| | - Nicole Niesler
- Max-Delbrück-Center for Molecular Medicine, Rober-Rössle-Str.10, 13125, Berlin, Germany
| | - Dennis Kobelt
- Max-Delbrück-Center for Molecular Medicine, Rober-Rössle-Str.10, 13125, Berlin, Germany
| | - Jutta Aumann
- Experimental and Clinical Research Center, Charité University Medicine, Lindenberger Weg 80, 13125, Berlin, Germany
| | - Maria Rivera
- Experimental Pharmacology & Oncology (EPO) GmbH Berlin, Rober-Rössle-Str. 10, 13125, Berlin, Germany
| | - Wolfgang Walther
- Experimental and Clinical Research Center, Charité University Medicine, Lindenberger Weg 80, 13125, Berlin, Germany. .,Max-Delbrück-Center for Molecular Medicine, Rober-Rössle-Str.10, 13125, Berlin, Germany.
| |
Collapse
|
22
|
Hamark C, Berntsson RPA, Masuyer G, Henriksson LM, Gustafsson R, Stenmark P, Widmalm G. Glycans Confer Specificity to the Recognition of Ganglioside Receptors by Botulinum Neurotoxin A. J Am Chem Soc 2016; 139:218-230. [PMID: 27958736 DOI: 10.1021/jacs.6b09534] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The highly poisonous botulinum neurotoxins, produced by the bacterium Clostridium botulinum, act on their hosts by a high-affinity association to two receptors on neuronal cell surfaces as the first step of invasion. The glycan motifs of gangliosides serve as initial coreceptors for these protein complexes, whereby a membrane protein receptor is bound. Herein we set out to characterize the carbohydrate minimal binding epitope of the botulinum neurotoxin serotype A. By means of ligand-based NMR spectroscopy, X-ray crystallography, computer simulations, and isothermal titration calorimetry, a screening of ganglioside analogues together with a detailed characterization of various carbohydrate ligand complexes with the toxin were accomplished. We show that the representation of the glycan epitope to the protein affects the details of binding. Notably, both branches of the oligosaccharide GD1a can associate to botulinum neurotoxin serotype A when expressed as individual trisaccharides. It is, however, the terminal branch of GD1a as well as this trisaccharide motif alone, corresponding to the sialyl-Thomsen-Friedenreich antigen, that represents the active ligand epitope, and these compounds bind to the neurotoxin with a high degree of predisposition but with low affinities. This finding does not correlate with the oligosaccharide moieties having a strong contribution to the total affinity, which was expected to be the case. We here propose that the glycan part of the ganglioside receptors mainly provides abundance and specificity, whereas the interaction with the membrane itself and protein receptor brings about the strong total binding of the toxin to the neuronal membrane.
Collapse
Affiliation(s)
- Christoffer Hamark
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University , S-106 91 Stockholm, Sweden
| | - Ronnie P-A Berntsson
- Department of Biochemistry and Biophysics, Arrhenius Laboratory, Stockholm University , S-106 91 Stockholm, Sweden
| | - Geoffrey Masuyer
- Department of Biochemistry and Biophysics, Arrhenius Laboratory, Stockholm University , S-106 91 Stockholm, Sweden
| | - Linda M Henriksson
- Department of Biochemistry and Biophysics, Arrhenius Laboratory, Stockholm University , S-106 91 Stockholm, Sweden
| | - Robert Gustafsson
- Department of Biochemistry and Biophysics, Arrhenius Laboratory, Stockholm University , S-106 91 Stockholm, Sweden
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Arrhenius Laboratory, Stockholm University , S-106 91 Stockholm, Sweden
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University , S-106 91 Stockholm, Sweden
| |
Collapse
|
23
|
Zychowska M, Rojewska E, Makuch W, Luvisetto S, Pavone F, Marinelli S, Przewlocka B, Mika J. Participation of pro- and anti-nociceptive interleukins in botulinum toxin A-induced analgesia in a rat model of neuropathic pain. Eur J Pharmacol 2016; 791:377-388. [DOI: 10.1016/j.ejphar.2016.09.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/08/2016] [Accepted: 09/08/2016] [Indexed: 12/28/2022]
|
24
|
Abstract
For suicide gene therapy, initially prodrug-converting enzymes (gene-directed enzyme-producing therapy, GDEPT) were employed to intracellularly metabolize non-toxic prodrugs into toxic compounds, leading to the effective suicidal killing of the transfected tumor cells. In this regard, the suicide gene therapy has demonstrated its potential for efficient tumor eradication. Numerous suicide genes of viral or bacterial origin were isolated, characterized, and extensively tested in vitro and in vivo, demonstrating their therapeutic potential even in clinical trials to treat cancers of different entities. Apart from this, growing efforts are made to generate more targeted and more effective suicide gene systems for cancer gene therapy. In this regard, bacterial toxins are an alternative to the classical GDEPT strategy, which add to the broad spectrum of different suicide approaches. In this context, lytic bacterial toxins, such as streptolysin O (SLO) or the claudin-targeted Clostridium perfringens enterotoxin (CPE) represent attractive new types of suicide oncoleaking genes. They permit as pore-forming proteins rapid and also selective toxicity toward a broad range of cancers. In this chapter, we describe the generation and use of SLO as well as of CPE-based gene therapies for the effective tumor cell eradication as promising, novel suicide gene approach particularly for treatment of therapy refractory tumors.
Collapse
|
25
|
Pahle J, Aumann J, Kobelt D, Walther W. Oncoleaking: Use of the Pore-Forming Clostridium perfringens Enterotoxin (CPE) for Suicide Gene Therapy. Methods Mol Biol 2015; 1317:69-85. [PMID: 26072402 DOI: 10.1007/978-1-4939-2727-2_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Suicide gene therapy has been shown to be very efficient in tumor eradication. Numerous suicide genes were tested in vitro and in vivo demonstrating their therapeutic potential in clinical trials. Apart from this, still growing efforts are made to generate more targeted and more effective suicide gene systems for cancer gene therapy. In this regard bacterial toxins are an alternative, which add to the broad spectrum of different suicide strategies. In this context, the claudin-targeted bacterial Clostridium perfringens enterotoxin (CPE) is an attractive new type of suicide oncoleaking gene, which as pore-forming protein exerts specific and rapid toxicity towards claudin-3- and -4-overexpressing cancers. In this chapter we describe the generation and use of CPE-expressing vectors for the effective tumor cell killing as novel suicide gene approach particularly for treatment of therapy refractory tumors.
Collapse
Affiliation(s)
- Jessica Pahle
- Experimental and Clinical Research Center (ECRC), Charité University Medicine Berlin, Berlin, Germany
| | | | | | | |
Collapse
|
26
|
Positive regulation of botulinum neurotoxin gene expression by CodY in Clostridium botulinum ATCC 3502. Appl Environ Microbiol 2014; 80:7651-8. [PMID: 25281376 DOI: 10.1128/aem.02838-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Botulinum neurotoxin, produced mainly by the spore-forming bacterium Clostridium botulinum, is the most poisonous biological substance known. Here, we show that CodY, a global regulator conserved in low-G+C Gram-positive bacteria, positively regulates the botulinum neurotoxin gene expression. Inactivation of codY resulted in decreased expression of botA, encoding the neurotoxin, as well as in reduced neurotoxin synthesis. Complementation of the codY mutation in trans rescued neurotoxin synthesis, and overexpression of codY in trans caused elevated neurotoxin production. Recombinant CodY was found to bind to a 30-bp region containing the botA transcription start site, suggesting regulation of the neurotoxin gene transcription through direct interaction. GTP enhanced the binding affinity of CodY to the botA promoter, suggesting that CodY-dependent neurotoxin regulation is associated with nutritional status.
Collapse
|
27
|
Brunt J, Plowman J, Gaskin DJH, Itchner M, Carter AT, Peck MW. Functional characterisation of germinant receptors in Clostridium botulinum and Clostridium sporogenes presents novel insights into spore germination systems. PLoS Pathog 2014; 10:e1004382. [PMID: 25210747 PMCID: PMC4161481 DOI: 10.1371/journal.ppat.1004382] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 08/04/2014] [Indexed: 01/05/2023] Open
Abstract
Clostridium botulinum is a dangerous pathogen that forms the highly potent botulinum toxin, which when ingested causes a deadly neuroparalytic disease. The closely related Clostridium sporogenes is occasionally pathogenic, frequently associated with food spoilage and regarded as the non-toxigenic equivalent of Group I C. botulinum. Both species form highly resistant spores that are ubiquitous in the environment and which, under favourable growth conditions germinate to produce vegetative cells. To improve the control of botulinum neurotoxin-forming clostridia, it is imperative to comprehend the mechanisms by which spores germinate. Germination is initiated following the recognition of small molecules (germinants) by a specific germinant receptor (GR) located in the spore inner membrane. The present study precisely defines clostridial GRs, germinants and co-germinants. Group I C. botulinum ATCC3502 contains two tricistronic and one pentacistronic GR operons, while C. sporogenes ATCC15579 has three tricistronic and one tetracistronic GR operons. Insertional knockout mutants, allied with characterisation of recombinant GRs shows for the first time that amino acid stimulated germination in C. botulinum requires two tri-cistronic encoded GRs which act in synergy and cannot function individually. Spore germination in C. sporogenes requires one tri-cistronic GR. Two other GRs form part of a complex involved in controlling the rate of amino-acid stimulated germination. The suitability of using C. sporogenes as a substitute for C. botulinum in germination studies and food challenge tests is discussed. Clostridium botulinum is a dangerous pathogen that forms the deadly botulinum neurotoxin. Strains of C. botulinum are present in the environment as spores. Under suitable conditions, the dormancy of the bacterial spore is broken, and germination occurs. Germination is initiated following the recognition of small molecules by a specific germinant receptor (GR) located within spores. Currently, the identification and characterisation of these GRs remains unknown, but is critical if strategies are to be developed to either prevent spore germination altogether, or to germinate all the spores and then inactivate the emergent sensitive vegetative cells. The present study has characterised two functionally active GRs in C. botulinum which act in synergy and cannot function individually, and a related functionally active GR in C. sporogenes. These GRs respond to amino acids. Other GRs appear to form part of a complex involved in controlling the speed of germination, or are not functionally active. This study provides new insights into the mechanisms involved in germination and will allow us to develop new strategies to control this deadly pathogen.
Collapse
Affiliation(s)
- Jason Brunt
- Gut Health and Food Safety, Institute of Food Research (IFR), Norwich Research Park, Colney, Norwich, Norfolk, United Kingdom
- * E-mail:
| | - June Plowman
- Gut Health and Food Safety, Institute of Food Research (IFR), Norwich Research Park, Colney, Norwich, Norfolk, United Kingdom
| | - Duncan J. H. Gaskin
- Gut Health and Food Safety, Institute of Food Research (IFR), Norwich Research Park, Colney, Norwich, Norfolk, United Kingdom
| | - Manoa Itchner
- Gut Health and Food Safety, Institute of Food Research (IFR), Norwich Research Park, Colney, Norwich, Norfolk, United Kingdom
| | - Andrew T. Carter
- Gut Health and Food Safety, Institute of Food Research (IFR), Norwich Research Park, Colney, Norwich, Norfolk, United Kingdom
| | - Michael W. Peck
- Gut Health and Food Safety, Institute of Food Research (IFR), Norwich Research Park, Colney, Norwich, Norfolk, United Kingdom
| |
Collapse
|
28
|
Yeh CT, Liang CC, Yang CM, Wey JJ, Tsui PY, Wu HL, Yu CP, Shyu RH. Comparison of immunostrips with mouse bioassay and bacterial culture in detecting botulinum toxins in bottles from suspected Taiwan high-speed rail bomber. Forensic Toxicol 2014. [DOI: 10.1007/s11419-014-0235-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
29
|
Burns JR, Baldwin MR. Tetanus neurotoxin utilizes two sequential membrane interactions for channel formation. J Biol Chem 2014; 289:22450-8. [PMID: 24973217 DOI: 10.1074/jbc.m114.559302] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tetanus neurotoxin (TeNT) causes neuroparalytic disease by entering the neuronal soma to block the release of neurotransmitters. However, the mechanism by which TeNT translocates its enzymatic domain (light chain) across endosomal membranes remains unclear. We found that TeNT and a truncated protein devoid of the receptor binding domain (TeNT-LHN) associated with membranes enriched in acidic phospholipids in a pH-dependent manner. Thus, in contrast to diphtheria toxin, the formation of a membrane-competent state of TeNT requires the membrane interface and is modulated by the bilayer composition. Channel formation is further enhanced by tethering of TeNT to the membrane through ganglioside co-receptors prior to acidification. Thus, TeNT channel formation can be resolved into two sequential steps: 1) interaction of the receptor binding domain (heavy chain receptor binding domain) with ganglioside co-receptors orients the translocation domain (heavy chain translocation domain) as the lumen of the endosome is acidified and 2) low pH, in conjunction with acidic lipids within the membrane drives the conformational changes in TeNT necessary for channel formation.
Collapse
Affiliation(s)
- Joshua R Burns
- From the Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri 65212
| | - Michael R Baldwin
- From the Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri 65212
| |
Collapse
|
30
|
Kim DW, Lee SK, Ahnn J. Phenotypic effect of botulinum toxin A onCaenorhabditis elegans. Anim Cells Syst (Seoul) 2014. [DOI: 10.1080/19768354.2014.915883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
31
|
Pantano S, Montecucco C. The blockade of the neurotransmitter release apparatus by botulinum neurotoxins. Cell Mol Life Sci 2014; 71:793-811. [PMID: 23749048 PMCID: PMC11113401 DOI: 10.1007/s00018-013-1380-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/15/2013] [Accepted: 05/16/2013] [Indexed: 12/22/2022]
Abstract
The high toxicity of the seven serotypes of botulinum neurotoxins (BoNT/A to G), together with their specificity and reversibility, includes them in the list A of potential bioterrorism weapons and, at the same time, among the therapeutics of choice for a variety of human syndromes. They invade nerve terminals and cleave specifically the three proteins which form the heterotrimeric SNAP REceptors (SNARE) complex that mediates neurotransmitter release. The BoNT-induced cleavage of the SNARE proteins explains by itself the paralysing activity of the BoNTs because the truncated proteins cannot form the SNARE complex. However, in the case of BoNT/A, the most widely used toxin in therapy, additional factors come into play as it only removes a few residues from the synaptosomal associate protein of 25 kDa C-terminus and this results in a long duration of action. To explain these facts and other experimental data, we present here a model for the assembly of the neuroexocytosis apparatus in which Synaptotagmin and Complexin first assist the zippering of the SNARE complex, and then stabilize and clamp an octameric radial assembly of the SNARE complexes.
Collapse
Affiliation(s)
- Sergio Pantano
- Institut Pasteur de Montevideo, Calle Mataojo 2020, CP 11400 Montevideo, Uruguay
| | - Cesare Montecucco
- Department of Biomedical Sciences, University of Padova, Padua, Italy
- Institute of Neuroscience, National Research Council, Viale G. Colombo 3, 35121 Padua, Italy
| |
Collapse
|
32
|
Wangroongsarb P, Kohda T, Jittaprasartsin C, Suthivarakom K, Kamthalang T, Umeda K, Sawanpanyalert P, Kozaki S, Ikuta K. Molecular characterization of Clostridium botulinum isolates from foodborne outbreaks in Thailand, 2010. PLoS One 2014; 9:e77792. [PMID: 24475015 PMCID: PMC3903786 DOI: 10.1371/journal.pone.0077792] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 09/04/2013] [Indexed: 12/18/2022] Open
Abstract
Background Thailand has had several foodborne outbreaks of botulism, one of the biggest being in 2006 when laboratory investigations identified the etiologic agent as Clostridium botulinum type A. Identification of the etiologic agent from outbreak samples is laborious using conventional microbiological methods and the neurotoxin mouse bioassay. Advances in molecular techniques have added enormous information regarding the etiology of outbreaks and characterization of isolates. We applied these methods in three outbreaks of botulism in Thailand in 2010. Methodology/Principal Findings A total of 19 cases were involved (seven each in Lampang and Saraburi and five in Maehongson provinces). The first outbreak in Lampang province in April 2010 was associated with C. botulinum type F, which was detected by conventional methods. Outbreaks in Saraburi and Maehongson provinces occurred in May and December were due to C. botulinum type A1(B) and B that were identified by conventional methods and molecular techniques, respectively. The result of phylogenetic sequence analysis showed that C. botulinum type A1(B) strain Saraburi 2010 was close to strain Iwate 2007. Molecular analysis of the third outbreak in Maehongson province showed C. botulinum type B8, which was different from B1–B7 subtype. The nontoxic component genes of strain Maehongson 2010 revealed that ha33, ha17 and botR genes were close to strain Okra (B1) while ha70 and ntnh genes were close to strain 111 (B2). Conclusion/Significance This study demonstrates the utility of molecular genotyping of C. botulinum and how it contributes to our understanding the epidemiology and variation of boNT gene. Thus, the recent botulism outbreaks in Thailand were induced by various C. botulinum types.
Collapse
Affiliation(s)
- Piyada Wangroongsarb
- Department of Medical Sciences, National Institute of Health, Nonthaburi, Thailand
| | - Tomoko Kohda
- Department of Veterinary Science, Osaka Prefecture University, Osaka, Japan
| | | | - Karun Suthivarakom
- Department of Medical Sciences, National Institute of Health, Nonthaburi, Thailand
| | - Thanitchi Kamthalang
- Department of Medical Sciences, National Institute of Health, Nonthaburi, Thailand
| | - Kaoru Umeda
- Department of Microbiology, Osaka City Institute of Public Health and Environmental Sciences, Osaka, Japan
| | | | - Shunji Kozaki
- Department of Veterinary Science, Osaka Prefecture University, Osaka, Japan
| | - Kazuyoshi Ikuta
- Department of Virology, Osaka University, Osaka, Japan
- * E-mail:
| |
Collapse
|
33
|
Vazquez-Cintron EJ, Vakulenko M, Band PA, Stanker LH, Johnson EA, Ichtchenko K. Atoxic derivative of botulinum neurotoxin A as a prototype molecular vehicle for targeted delivery to the neuronal cytoplasm. PLoS One 2014; 9:e85517. [PMID: 24465585 PMCID: PMC3899041 DOI: 10.1371/journal.pone.0085517] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 11/27/2013] [Indexed: 12/31/2022] Open
Abstract
We have previously described genetic constructs and expression systems that enable facile production of recombinant derivatives of botulinum neurotoxins (BoNTs) that retain the structural and trafficking properties of wt BoNTs. In this report we describe the properties of one such derivative, BoNT/A ad, which was rendered atoxic by introducing two amino acid mutations to the light chain (LC) of wt BoNT/A, and which is being developed as a molecular vehicle for delivering drugs to the neuronal cytoplasm. The neuronal binding, internalization, and intracellular trafficking of BoNT/A ad in primary hippocampal cultures was evaluated using three complimentary techniques: flow cytometry, immunohistochemistry, and Western blotting. Neuronal binding of BoNT ad was significantly increased when neurons were incubated in depolarizing medium. Flow cytometry demonstrated that BoNT/A ad internalized into neurons but not glia. After 24 hours, the majority of the neuron-bound BoNT/A ad became internalized, as determined by its resistance to pronase E-induced proteolytic degradation of proteins associated with the plasma membrane of intact cells. Significant amounts of the atoxic LC accumulated in a Triton X-100-extractable fraction of the neurons, and persisted as such for at least 11 days with no evidence of degradation. Immunocytochemical analysis demonstrated that the LC of BoNT/A ad was translocated to the neuronal cytoplasm after uptake and was specifically targeted to SNARE proteins. The atoxic LC consistently co-localized with synaptic markers SNAP-25 and VAMP-2, but was rarely co-localized with markers for early or late endosomes. These data demonstrate that BoNT/A ad mimics the trafficking properties of wt BoNT/A, confirming that our platform for designing and expressing BoNT derivatives provides an accessible system for elucidating the molecular details of BoNT trafficking, and can potentially be used to address multiple medical and biodefense needs.
Collapse
Affiliation(s)
- Edwin J. Vazquez-Cintron
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, United States of America
| | - Maksim Vakulenko
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, United States of America
| | - Philip A. Band
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, United States of America
- Department of Orthopaedic Surgery, New York University Hospital for Joint Diseases, New York, New York, United States of America
| | - Larry H. Stanker
- USDA, Agriculture Research Service, Albany, California, United States of America
| | - Eric A. Johnson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Konstantin Ichtchenko
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
34
|
Structure of dual receptor binding to botulinum neurotoxin B. Nat Commun 2013; 4:2058. [PMID: 23807078 PMCID: PMC3752466 DOI: 10.1038/ncomms3058] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 05/23/2013] [Indexed: 11/08/2022] Open
Abstract
Botulinum neurotoxins are highly toxic, and bind two receptors to achieve their high affinity and specificity for neurons. Here we present the first structure of a botulinum neurotoxin bound to both its receptors. We determine the 2.3-Å structure of a ternary complex of botulinum neurotoxin type B bound to both its protein receptor synaptotagmin II and its ganglioside receptor GD1a. We show that there is no direct contact between the two receptors, and that the binding affinity towards synaptotagmin II is not influenced by the presence of GD1a. The interactions of botulinum neurotoxin type B with the sialic acid 5 moiety of GD1a are important for the ganglioside selectivity. The structure demonstrates that the protein receptor and the ganglioside receptor occupy nearby but separate binding sites, thus providing two independent anchoring points.
Collapse
|
35
|
Bröer S, Zolkowska D, Gernert M, Rogawski MA. Proconvulsant actions of intrahippocampal botulinum neurotoxin B in the rat. Neuroscience 2013; 252:253-61. [PMID: 23906638 PMCID: PMC4530632 DOI: 10.1016/j.neuroscience.2013.07.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 07/22/2013] [Accepted: 07/22/2013] [Indexed: 01/21/2023]
Abstract
Botulinum neurotoxins (BoNTs) may affect the excitability of brain circuits by inhibiting neurotransmitter release at central synapses. There is evidence that local delivery of BoNT serotypes A and E, which target SNAP-25, a component of the release machinery specific to excitatory synapses, can inhibit seizure generation. BoNT serotype B (BoNT/B) targets VAMP2, which is expressed in both excitatory and inhibitory terminals. Here we assessed the effects of unilateral intrahippocampal infusion of BoNT/B in the rat on intravenous pentylenetetrazol (PTZ) seizure thresholds, and on the expression of spontaneous behavioral and electrographic seizures. Infusion of BoNT/B (500 and 1,000 unit) by convection-enhanced delivery caused a reduction in myoclonic twitch and clonic seizure thresholds in response to intravenous PTZ beginning about 6 days after the infusion. Handling-evoked and spontaneous convulsive seizures were observed in many BoNT/B-treated animals but not in vehicle-treated controls. Spontaneous electrographic seizure discharges were recorded in the dentate gyrus of animals that received local BoNT/B infusion. In addition, there was an increased frequency of interictal epileptiform spikes and sharp waves at the same recording site. BoNT/B-treated animals also exhibited tactile hyperresponsivity in comparison with vehicle-treated controls. This is the first demonstration that BoNT/B causes a delayed proconvulsant action when infused into the hippocampus. Local infusion of BoNT/B could be useful as a focal epilepsy model.
Collapse
Affiliation(s)
- Sonja Bröer
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, California, USA
| | - Dorota Zolkowska
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, California, USA
| | - Manuela Gernert
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover and Center for Systems Neuroscience, Hannover, Germany
| | - Michael A. Rogawski
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, California, USA
| |
Collapse
|
36
|
Berntsson RPA, Peng L, Svensson LM, Dong M, Stenmark P. Crystal structures of botulinum neurotoxin DC in complex with its protein receptors synaptotagmin I and II. Structure 2013; 21:1602-11. [PMID: 23932591 DOI: 10.1016/j.str.2013.06.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 06/28/2013] [Accepted: 06/30/2013] [Indexed: 02/05/2023]
Abstract
Botulinum neurotoxins (BoNTs) can cause paralysis at exceptionally low concentrations and include seven serotypes (BoNT/A-G). The chimeric BoNT/DC toxin has a receptor binding domain similar to the same region in BoNT/C. However, BoNT/DC does not share protein receptor with BoNT/C. Instead, it shares synaptotagmin (Syt) I and II as receptors with BoNT/B, despite their low sequence similarity. Here, we present the crystal structures of the binding domain of BoNT/DC in complex with the recognition domains of its protein receptors, Syt-I and Syt-II. The structures reveal that BoNT/DC possesses a Syt binding site, distinct from the established Syt-II binding site in BoNT/B. Structure-based mutagenesis further shows that hydrophobic interactions play a key role in Syt binding. The structures suggest that the BoNT/DC ganglioside binding sites are independent of the protein receptor binding site. Our results reveal the remarkable versatility in the receptor recognition of the BoNTs.
Collapse
|
37
|
Abstract
The need for a vaccine against botulism has increased since the discontinuation of the pentavalent (ABCDE) botulinum toxoid vaccine by the Centers for Disease Control and Prevention. The botulinum toxins (BoNTs) are the primary virulence factors and vaccine components against botulism. BoNTs comprise three domains which are involved in catalysis (LC), translocation (HCT), and host receptor binding (HCR). Recombinant HCR subunits have been used to develop the next generation of BoNT vaccines. Using structural studies and the known entry properties of BoNT/A, an HCR subunit vaccine against BoNT/A that contained the point mutation W1266A within the ganglioside binding pocket was designed. HCR/A(W1266A) did not enter primary neurons, and the crystal structure of HCR/A(W1266A) was virtually identical to that of wild-type HCR/A. Using a mouse model, experiments were performed using a high-dose vaccine and a low-dose vaccine. At a high vaccine dose, HCR/A and HCR/A(W1266A) elicited a protective immune response to BoNT/A challenge. At the low-dose vaccination, HCR/A(W1266A) was a more protective vaccine than HCR/A. α-HCR IgG titers correlated with protection from BoNT challenge, although titers to block HCR/A entry were greater in serum in HCR/A-vaccinated mice than in HCR/A(W1266A)-vaccinated mice. This study shows that removal of receptor binding capacity enhances potency of the subunit HCR vaccine. Vaccines that lack receptor binding capacity have the added property of limited off-target toxicity.
Collapse
|
38
|
Wang Y, Wang M, Xiao XS, Pan P, Li P, Huo J. The anti wrinkle efficacy of synthetic hexapeptide (Argireline) in Chinese Subjects. J COSMET LASER THER 2013:1-24. [PMID: 23607739 DOI: 10.3109/14764172.2012.759234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract Background: This is the first multicenter clinical and experimental study of the anti wrinkle efficacy of Argireline in Chinese subjects. Objective: To evaluate the safety and efficacy of Argireline in the treatment of periorbital lines in Chinese subjects, and to observe the effect of Argireline on microstructural changes of the skin in the aged mice induced by D-galactose. Methods: The study was comprised of two parts: i) Clinical study: A total of 60 subjects received a single treatment in a 3:1 randomization ratio of Argireline: placebo. Argireline or placebo was applied to their periorbital wrinkles twice daily for 4 weeks, evaluations were made for the improvements in wrinkles. ii) Animal study: Argireline was applied to the aged mice twice daily for 6 weeks and the histopathological changes of skin tissue were evaluated. Results: In humans, the total anti wrinkle efficiency in the Argireline group was 48.9%, the depth of the wrinkles was notably reduced(P<0.01). In the aged mice, there was improvements in the morphology of skin tissue, the amount of typeⅠcollagen fibers increased(P<0.01) while type Ⅲ collagen fibers decreased (P<0.05). Conclusions: The studies revealed that Argireline had significant anti wrinkle effects in Chinese subjects.
Collapse
|
39
|
Wang Y, Wang M, Xiao S, Pan P, Li P, Huo J. The anti-wrinkle efficacy of argireline, a synthetic hexapeptide, in Chinese subjects: a randomized, placebo-controlled study. Am J Clin Dermatol 2013; 14:147-53. [PMID: 23417317 DOI: 10.1007/s40257-013-0009-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Argireline is a synthetic peptide that is patterned from the N-terminal end of the protein SNAP-25 and has been shown to reduce the degree of facial wrinkles. It is reported to inhibit vesicle docking by preventing formation of the ternary SNARE complex and by interfering in catecholamine release. The anti-wrinkle efficacy of argireline has not been studied in Chinese subjects. OBJECTIVE The objective of the study was to evaluate the safety and efficacy of argireline in the treatment of peri-orbital wrinkles in Chinese subjects. METHODS A total of 60 subjects received a randomized treatment of argireline or placebo in a ratio of 3:1. Argireline or placebo was applied to their peri-orbital wrinkles twice daily for 4 weeks, and then evaluations were made for the improvements in wrinkles. In the subjective evaluation, Daniell's classification and Seeman's standard were applied to make a global assessment of changes in the appearance of peri-orbital lines. In the objective evaluation, silicone replicas of the skin at the application area were made before and after the treatment, which were analyzed by a wrinkle-analysis apparatus. RESULTS In the subjective evaluation, the total anti-wrinkle efficacy in the argireline group was 48.9 %, compared with 0 % in the placebo group. In the objective evaluation, the parameters of roughness were all decreased in the argireline group (p < 0.01), while no decrease was obvious in the placebo group (p > 0.05). CONCLUSIONS This study showed that argireline had a significant anti-wrinkle effect in Chinese subjects.
Collapse
Affiliation(s)
- Yuan Wang
- The Second Hospital of Xi'an Jiaotong University, No. 157 of Xi Wu Road, Xi'an, China
| | | | | | | | | | | |
Collapse
|
40
|
Zhang Z, Korkeala H, Dahlsten E, Sahala E, Heap JT, Minton NP, Lindström M. Two-component signal transduction system CBO0787/CBO0786 represses transcription from botulinum neurotoxin promoters in Clostridium botulinum ATCC 3502. PLoS Pathog 2013; 9:e1003252. [PMID: 23555260 PMCID: PMC3610760 DOI: 10.1371/journal.ppat.1003252] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 02/04/2013] [Indexed: 12/19/2022] Open
Abstract
Blocking neurotransmission, botulinum neurotoxin is the most poisonous biological substance known to mankind. Despite its infamy as the scourge of the food industry, the neurotoxin is increasingly used as a pharmaceutical to treat an expanding range of muscle disorders. Whilst neurotoxin expression by the spore-forming bacterium Clostridium botulinum appears tightly regulated, to date only positive regulatory elements, such as the alternative sigma factor BotR, have been implicated in this control. The identification of negative regulators has proven to be elusive. Here, we show that the two-component signal transduction system CBO0787/CBO0786 negatively regulates botulinum neurotoxin expression. Single insertional inactivation of cbo0787 encoding a sensor histidine kinase, or of cbo0786 encoding a response regulator, resulted in significantly elevated neurotoxin gene expression levels and increased neurotoxin production. Recombinant CBO0786 regulator was shown to bind to the conserved −10 site of the core promoters of the ha and ntnh-botA operons, which encode the toxin structural and accessory proteins. Increasing concentration of CBO0786 inhibited BotR-directed transcription from the ha and ntnh-botA promoters, demonstrating direct transcriptional repression of the ha and ntnh-botA operons by CBO0786. Thus, we propose that CBO0786 represses neurotoxin gene expression by blocking BotR-directed transcription from the neurotoxin promoters. This is the first evidence of a negative regulator controlling botulinum neurotoxin production. Understanding the neurotoxin regulatory mechanisms is a major target of the food and pharmaceutical industries alike. Botulinum neurotoxin produced by the spore-forming bacterium Clostridium botulinum is the most poisonous biological substance known to mankind. By blocking neurotransmission, the neurotoxin causes a flaccid paralysis called botulism which may to lead to death upon respiratory muscle collapse. Despite its infamy as the scourge of the food industry, the neurotoxin is attracting increasing interest as a pharmaceutical to treat an expanding range of muscle disorders. Whilst neurotoxin production by C. botulinum appears tightly regulated, to date only positive regulatory elements, thus enhancing the neurotoxin production, have been implicated in this control. The identification of negative regulators, responsible for down-tuning the neurotoxin synthesis, has proven to be elusive, but would offer novel approaches both for the production of safe foods and for the development of therapeutic neurotoxins. Here, we report a two-component signal transduction system that negatively regulates botulinum neurotoxin production. Understanding the neurotoxin regulatory mechanisms is a major target of the food and pharmaceutical industries alike.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Hannu Korkeala
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Elias Dahlsten
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Elina Sahala
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - John T. Heap
- Clostridia Research Group, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Nigel P. Minton
- Clostridia Research Group, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Miia Lindström
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
41
|
Ouimet T, Duquesnoy S, Poras H, Fournié-Zaluski MC, Roques BP. Comparison of Fluorigenic Peptide Substrates PL50, SNAPtide, and BoTest A/E for BoNT/A Detection and Quantification. ACTA ACUST UNITED AC 2013; 18:726-35. [DOI: 10.1177/1087057113476089] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Detection and quantification of low doses of botulinum toxin serotype A (BoNT/A) in medicinal preparations require precise and sensitive methods. With mounting pressure from governmental authorities to replace the mouse LD50 assay, interest in alternative methods such as the endopeptidase assay, quantifying the toxin active moiety, is growing. Using internal collision-induced fluorescence quenching, Pharmaleads produced peptides encompassing the SNAP-25 cleavage site: a 17-mer (PL63) and a 48-mer (PL50) reaching the previously identified α-exosite, with PL50 showing higher apparent affinity for BoNT/A. Peptide mapping experiments revealed that this increased affinity is mainly due to a connecting peptide sequence between the N-terminus of PL63 and the α-exosite, identifying a new cooperative exosite on BoNT/A. Other endopeptidase substrates available, including SNAPTide and BoTest A/E, are both based on fluorescent resonance energy transfer (FRET) technology. To compare these assays, their limits of detection and quantification were determined using light chain or 150-kDa BoNT/A. Detection limits of PL50 and BoTest were over 100 times better than those using SNAPtide in standard conditions. Although the BoTest possessed a detection limit around 0.2 pM for either BoNT/A form, its quantification limit (9.7 pM) using purified BoNT/A was 12 times inferior to PL50, estimated at 0.8 pM, suitable for medicinal preparation quantification.
Collapse
|
42
|
Field MJ, Ellinger LK, Boat TF. IOM Review of FDA--approved biologics labeled or studied for pediatric use. Pediatrics 2013; 131:328-35. [PMID: 23319521 DOI: 10.1542/peds.2012-2412] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Studies have examined the extent to which public policies such as the Best Pharmaceuticals for Children Act have increased pediatric information in drug labeling. Little attention has focused on pediatric labeling of biologics. This analysis examines the extent to which biologics are labeled for pediatric use or have been studied in children. METHODS The analysis covers the 96 biologics (excluding vaccines) that were first licensed by the Food and Drug Administration between 1997 and 2010 and were still marketed as of 2010. Product labeling was consulted for information on approved pediatric uses, pediatric studies, or pediatric safety warnings based on analyses of adverse events. The online database ClinicalTrials.gov was searched for registered pediatric studies of these biologics. A separate analysis examined labeling and studies for 55 vaccines. RESULTS For ∼60% of the 96 biologics, labeling shows approved pediatric use or pediatric study information or both. Approximately 85% of the biologics have ≥1 registered pediatric trial completed, underway, or planned. Overall, ∼90% are labeled for pediatric use, have pediatric information in the label, have a registered pediatric study, or have some combination of these characteristics. For the 55 analyzed vaccines, the corresponding figure is 95%. CONCLUSIONS A majority of biologics approved in the past 15 years include some pediatric information in their labeling, and pediatric trials have been registered for a substantial majority of these products.
Collapse
Affiliation(s)
- Marilyn J Field
- Senior Program Officer, Institute of Medicine, 500 Fifth St NW, Washington, DC 20001, USA.
| | | | | |
Collapse
|
43
|
Restani L, Giribaldi F, Manich M, Bercsenyi K, Menendez G, Rossetto O, Caleo M, Schiavo G. Botulinum neurotoxins A and E undergo retrograde axonal transport in primary motor neurons. PLoS Pathog 2012; 8:e1003087. [PMID: 23300443 PMCID: PMC3531519 DOI: 10.1371/journal.ppat.1003087] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 11/02/2012] [Indexed: 11/18/2022] Open
Abstract
The striking differences between the clinical symptoms of tetanus and botulism have been ascribed to the different fate of the parental neurotoxins once internalised in motor neurons. Tetanus toxin (TeNT) is known to undergo transcytosis into inhibitory interneurons and block the release of inhibitory neurotransmitters in the spinal cord, causing a spastic paralysis. In contrast, botulinum neurotoxins (BoNTs) block acetylcholine release at the neuromuscular junction, therefore inducing a flaccid paralysis. Whilst overt experimental evidence supports the sorting of TeNT to the axonal retrograde transport pathway, recent findings challenge the established view that BoNT trafficking is restricted to the neuromuscular junction by highlighting central effects caused by these neurotoxins. These results suggest a more complex scenario whereby BoNTs also engage long-range trafficking mechanisms. However, the intracellular pathways underlying this process remain unclear. We sought to fill this gap by using primary motor neurons either in mass culture or differentiated in microfluidic devices to directly monitor the endocytosis and axonal transport of full length BoNT/A and BoNT/E and their recombinant binding fragments. We show that BoNT/A and BoNT/E are internalised by spinal cord motor neurons and undergo fast axonal retrograde transport. BoNT/A and BoNT/E are internalised in non-acidic axonal carriers that partially overlap with those containing TeNT, following a process that is largely independent of stimulated synaptic vesicle endo-exocytosis. Following intramuscular injection in vivo, BoNT/A and TeNT displayed central effects with a similar time course. Central actions paralleled the peripheral spastic paralysis for TeNT, but lagged behind the onset of flaccid paralysis for BoNT/A. These results suggest that the fast axonal retrograde transport compartment is composed of multifunctional trafficking organelles orchestrating the simultaneous transfer of diverse cargoes from nerve terminals to the soma, and represents a general gateway for the delivery of virulence factors and pathogens to the central nervous system. Botulinum neurotoxins are the most toxic molecules known to mankind, and as a result, are currently listed among the top bio-threats. However, their ability to bind specifically to neurons and their inhibitory effects on regulated secretion prompted their clinical use in pathologies characterised by increased muscular tone, such as dystonia and various forms of spasticity, or abnormal secretion, such as drooling and excessive sweating, to cite a few. As a consequence, botulinum neurotoxin A, which is the serotype most commonly used in human therapy, has become the treatment of choice for an ever-expanding number of pathological and non-pathological (e.g. cosmetic) conditions. All current indications show that the systemic effects and toxicity of botulinum neurotoxin A are minimised by the specific route of administration (local injection) and the low diffusion of this molecule in tissues. However, recent reports suggest that in contrast to this common belief, botulinum neurotoxin A is able to reach distal sites in the body and may have previously unanticipated effects in the central nervous system. In this study, we demonstrate that botulinum neurotoxin A and E enter alternative endocytic pathway(s) in addition to synaptic vesicle recycling, and undergo long-range transport in a non degradative compartment in spinal cord motor neurons. Our results show that axonal retrograde transport is a common pathway for the dissemination in the central nervous system of pathogens and virulence factors important for human and animal health.
Collapse
Affiliation(s)
- Laura Restani
- Molecular NeuroPathobiology Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
- CNR, Neuroscience Institute, Pisa, Italy
| | - Francesco Giribaldi
- Molecular NeuroPathobiology Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
| | - Maria Manich
- Molecular NeuroPathobiology Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
- Institut Pasteur, Unité des Bactéries anaérobies et Toxines, Paris, France
| | - Kinga Bercsenyi
- Molecular NeuroPathobiology Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
| | - Guillermo Menendez
- Molecular NeuroPathobiology Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
| | - Ornella Rossetto
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - Giampietro Schiavo
- Molecular NeuroPathobiology Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
- * E-mail:
| |
Collapse
|
44
|
Antinociceptive effects of A1 and A2 type botulinum toxins on carrageenan-induced hyperalgesia in rat. Toxicon 2012; 64:12-9. [PMID: 23270755 DOI: 10.1016/j.toxicon.2012.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 12/12/2012] [Accepted: 12/17/2012] [Indexed: 11/23/2022]
Abstract
We performed a study on the antinociceptive effects of A1 and A2 type (A1LL and A2NTX, respectively) botulinum toxin on carrageenan-induced hyperalgesia in the rat. Both A1LL and A2NTX had antinociceptive effects in the carrageenan-induced inflammatory pain model, reducing the mechanical and thermal hyperalgesia. A2NTX also reduced the increase in c-fos immunoreactivity in L4-L5 spinal segments induced by carrageenan, suggesting that A2NTX inhibits the activation of spinal nociceptive afferent fibers that project to the CNS. Our results indicate that A2NTX may offer a new therapeutic tool to treat inflammatory pain.
Collapse
|
45
|
Siqueira FF, Almeida MO, Barroca TM, Horta CC, Carmo AO, Silva RO, Pires PS, Lobato FC, Kalapothakis E. Characterization of polymorphisms and isoforms of the Clostridium perfringens phospholipase C gene (plc) reveals high genetic diversity. Vet Microbiol 2012; 159:397-405. [DOI: 10.1016/j.vetmic.2012.04.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 04/09/2012] [Accepted: 04/10/2012] [Indexed: 10/28/2022]
|
46
|
Caleo M, Restani L, Vannini E, Siskova Z, Al-Malki H, Morgan R, O'Connor V, Perry VH. The role of activity in synaptic degeneration in a protein misfolding disease, prion disease. PLoS One 2012; 7:e41182. [PMID: 22815961 PMCID: PMC3397974 DOI: 10.1371/journal.pone.0041182] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 06/18/2012] [Indexed: 11/19/2022] Open
Abstract
In chronic neurodegenerative diseases associated with aggregates of misfolded proteins (such as Alzheimer's, Parkinson's and prion disease), there is an early degeneration of presynaptic terminals prior to the loss of the neuronal somata. Identifying the mechanisms that govern synapse degeneration is of paramount importance, as cognitive decline is strongly correlated with loss of presynaptic terminals in these disorders. However, very little is known about the processes that link the presence of a misfolded protein to the degeneration of synapses. It has been suggested that the process follows a simple linear sequence in which terminals that become dysfunctional are targeted for death, but there is also evidence that high levels of activity can speed up degeneration. To dissect the role of activity in synapse degeneration, we infused the synaptic blocker botulinum neurotoxin A (BoNT/A) into the hippocampus of mice with prion disease and assessed synapse loss at the electron microscopy level. We found that injection of BoNT/A in naïve mice caused a significant enlargement of excitatory presynaptic terminals in the hippocampus, indicating transmission impairment. Long-lasting blockade of activity by BoNT/A caused only minimal synaptic pathology and no significant activation of microglia. In mice with prion disease infused with BoNT/A, rates of synaptic degeneration were indistinguishable from those observed in control diseased mice. We conclude that silencing synaptic activity neither prevents nor enhances the degree of synapse degeneration in prion disease. These results challenge the idea that dysfunction of synaptic terminals dictates their elimination during prion-induced neurodegeneration.
Collapse
Affiliation(s)
- Matteo Caleo
- National Research Council Neuroscience Institute, Pisa, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Calvo AC, Oliván S, Manzano R, Zaragoza P, Aguilera J, Osta R. Fragment C of tetanus toxin: new insights into its neuronal signaling pathway. Int J Mol Sci 2012; 13:6883-6901. [PMID: 22837670 PMCID: PMC3397502 DOI: 10.3390/ijms13066883] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 05/08/2012] [Accepted: 05/23/2012] [Indexed: 11/16/2022] Open
Abstract
When Clostridium tetani was discovered and identified as a Gram-positive anaerobic bacterium of the genus Clostridium, the possibility of turning its toxin into a valuable biological carrier to ameliorate neurodegenerative processes was inconceivable. However, the non-toxic carboxy-terminal fragment of the tetanus toxin heavy chain (fragment C) can be retrogradely transported to the central nervous system; therefore, fragment C has been used as a valuable biological carrier of neurotrophic factors to ameliorate neurodegenerative processes. More recently, the neuroprotective properties of fragment C have also been described in vitro and in vivo, involving the activation of Akt kinase and extracellular signal-regulated kinase (ERK) signaling cascades through neurotrophin tyrosine kinase (Trk) receptors. Although the precise mechanism of the molecular internalization of fragment C in neuronal cells remains unknown, fragment C could be internalized and translocated into the neuronal cytosol through a clathrin-mediated pathway dependent on proteins, such as dynamin and AP-2. In this review, the origins, molecular properties and possible signaling pathways of fragment C are reviewed to understand the biochemical characteristics of its intracellular and synaptic transport.
Collapse
Affiliation(s)
- Ana C. Calvo
- LAGENBIO (Laboratory of Genetics and Biochemistry), Faculty of Veterinary-I3A, Aragonese Institute of Health Sciences (IACS), University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain; E-Mails: (A.C.C.); (S.O.); (R.M.); , (P.Z.)
| | - Sara Oliván
- LAGENBIO (Laboratory of Genetics and Biochemistry), Faculty of Veterinary-I3A, Aragonese Institute of Health Sciences (IACS), University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain; E-Mails: (A.C.C.); (S.O.); (R.M.); , (P.Z.)
| | - Raquel Manzano
- LAGENBIO (Laboratory of Genetics and Biochemistry), Faculty of Veterinary-I3A, Aragonese Institute of Health Sciences (IACS), University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain; E-Mails: (A.C.C.); (S.O.); (R.M.); , (P.Z.)
| | - Pilar Zaragoza
- LAGENBIO (Laboratory of Genetics and Biochemistry), Faculty of Veterinary-I3A, Aragonese Institute of Health Sciences (IACS), University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain; E-Mails: (A.C.C.); (S.O.); (R.M.); , (P.Z.)
| | - José Aguilera
- Institute of Neurosciences, Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona (UAB), Center of Biomedical Research Network in Neurodegenerative Diseases (CIBERNET), 08193, Cerdanyola del Vallès, Spain; E-Mail:
| | - Rosario Osta
- LAGENBIO (Laboratory of Genetics and Biochemistry), Faculty of Veterinary-I3A, Aragonese Institute of Health Sciences (IACS), University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain; E-Mails: (A.C.C.); (S.O.); (R.M.); , (P.Z.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +34-976-761621; Fax: +34-976-762949
| |
Collapse
|
48
|
Restani L, Novelli E, Bottari D, Leone P, Barone I, Galli-Resta L, Strettoi E, Caleo M. Botulinum neurotoxin A impairs neurotransmission following retrograde transynaptic transport. Traffic 2012; 13:1083-9. [PMID: 22519601 DOI: 10.1111/j.1600-0854.2012.01369.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 04/17/2012] [Accepted: 04/20/2012] [Indexed: 11/28/2022]
Abstract
The widely used botulinum neurotoxin A (BoNT/A) blocks neurotransmission via cleavage of the synaptic protein SNAP-25 (synaptosomal-associated protein of 25 kDa). Recent evidence demonstrating long-distance propagation of SNAP-25 proteolysis has challenged the idea that BoNT/A remains localized to the injection site. However, the extent to which distant neuronal networks are impacted by BoNT/A retrograde trafficking remains unknown. Importantly, no studies have addressed whether SNAP-25 cleavage translates into structural and functional changes in distant intoxicated synapses. Here we show that the BoNT/A injections into the adult rat optic tectum result in SNAP-25 cleavage in retinal neurons two synapses away from the injection site, such as rod bipolar cells and photoreceptors. Retinal endings displaying cleaved SNAP-25 were enlarged and contained an abnormally high number of synaptic vesicles, indicating impaired exocytosis. Tectal injection of BoNT/A in rat pups resulted in appearance of truncated-SNAP-25 in cholinergic amacrine cells. Functional imaging with calcium indicators showed a clear reduction in cholinergic-driven wave activity, demonstrating impairments in neurotransmission. These data provide the first evidence for functional effects of the retrograde trafficking of BoNT/A, and open the possibility of using BoNT/A fragments as drug delivery vehicles targeting the central nervous system.
Collapse
Affiliation(s)
- Laura Restani
- CNR Neuroscience Institute, via G. Moruzzi 1, Pisa, 56124, Italy
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Shin MC, Nonaka K, Wakita M, Yamaga T, Torii Y, Harakawa T, Ginnaga A, Ito Y, Akaike N. Effects of tetanus toxin on spontaneous and evoked transmitter release at inhibitory and excitatory synapses in the rat SDCN neurons. Toxicon 2012; 59:385-92. [DOI: 10.1016/j.toxicon.2011.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 12/14/2011] [Accepted: 12/15/2011] [Indexed: 10/14/2022]
|
50
|
Purification and characterization of a novel subtype a3 botulinum neurotoxin. Appl Environ Microbiol 2012; 78:3108-13. [PMID: 22367089 DOI: 10.1128/aem.07967-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) produced by Clostridium botulinum are of considerable importance due to their being the cause of human and animal botulism, their potential as bioterrorism agents, and their utility as important pharmaceuticals. Type A is prominent due to its high toxicity and long duration of action. Five subtypes of type A BoNT are currently recognized; BoNT/A1, -/A2, and -/A5 have been purified, and their properties have been studied. BoNT/A3 is intriguing because it is not effectively neutralized by polyclonal anti-BoNT/A1 antibodies, and thus, it may potentially replace BoNT/A1 for patients who have become refractive to treatment with BoNT/A1 due to antibody formation or other modes of resistance. Purification of BoNT/A3 has been challenging because of its low levels of production in culture and the need for innovative purification procedures. In this study, modified Mueller-Miller medium was used in place of traditional toxin production medium (TPM) to culture C. botulinum A3 (CDC strain) and boost toxin production. BoNT/A3 titers were at least 10-fold higher than those produced in TPM. A purification method was developed to obtain greater than 95% pure BoNT/A3. The specific toxicity of BoNT/A3 as determined by mouse bioassay was 5.8 × 10(7) 50% lethal doses (LD(50))/mg. Neutralization of BoNT/A3 toxicity by a polyclonal anti-BoNT/A1 antibody was approximately 10-fold less than the neutralization of BoNT/A1 toxicity. In addition, differences in symptoms were observed between mice that were injected with BoNT/A3 and those that were injected with BoNT/A1. These results indicate that BoNT/A3 has novel biochemical and pharmacological properties compared to those of other subtype A toxins.
Collapse
|