1
|
Morita H, Hoshiga M. Fibroblast Growth Factors in Cardiovascular Disease. J Atheroscler Thromb 2024; 31:1496-1511. [PMID: 39168622 PMCID: PMC11537794 DOI: 10.5551/jat.rv22025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 08/23/2024] Open
Abstract
Despite advancements in managing traditional cardiovascular risk factors, many cardiovascular diseases (CVDs) persist. Fibroblast growth factors (FGFs) have emerged as potential diagnostic markers and therapeutic targets for CVDs. FGF1, FGF2, and FGF4 are primarily used for therapeutic angiogenesis. Clinical applications are being explored based on animal studies using approaches such as recombinant protein administration and adenovirus-mediated gene delivery, targeting patients with coronary artery disease and lower extremity arterial disease. Although promising results have been observed in animal models and early-stage clinical trials, further studies are required to assess their therapeutic potential. The FGF19 subfamily, consisting of FGF19, FGF21, and FGF23, act via endocrine signaling in various organs. FGF19, primarily expressed in the small intestine, plays important roles in glucose, lipid, and bile acid metabolism and has therapeutic potential for metabolic disorders. FGF21, found in various tissues, improves glucose metabolism and insulin sensitivity, suggesting potential for treating obesity and diabetes. FGF23, primarily secreted by osteocytes, regulates vitamin D and phosphate metabolism and serves as an important biomarker for chronic kidney disease and CVDs. Thus, FGFs holds promise for both therapeutic and diagnostic applications in metabolic and cardiovascular diseases. Understanding the mechanisms of FGF may pave the way for novel strategies to prevent and manage CVDs, potentially addressing the limitations of current treatments. This review explores the roles of FGF1, FGF2, FGF4, and the FGF19 subfamily in maintaining cardiovascular health. Further research and clinical trials are crucial to fully understand the therapeutic potential of FGFs in managing cardiovascular health.
Collapse
Affiliation(s)
- Hideaki Morita
- Department of Cardiology, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Masaaki Hoshiga
- Department of Cardiology, Osaka Medical and Pharmaceutical University, Osaka, Japan
| |
Collapse
|
2
|
Oberholzer Z, Loubser C, Nikitina NV. Fgf17: A regulator of the mid/hind brain boundary in mammals. Differentiation 2024:100813. [PMID: 39327214 DOI: 10.1016/j.diff.2024.100813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024]
Abstract
The Fibroblast growth factor (FGFs) family consists of at least 22 members that exert their function by binding and activating fibroblast growth factor receptors (FGFRs). The Fgf8/FgfD subfamily member, Fgf17, is located on human chromosome 8p21.3 and mouse chromosome 14 D2. In humans, FGF17 can be alternatively spliced to produce two isoforms (FGF17a and b) whereas three isoforms are present in mice (Fgf17a, b, and c), however, only Fgf17a and Fgf17b produce functional proteins. Fgf17 is a secreted protein with a cleavable N-terminal signal peptide and contains two binding domains, namely a conserved core region and a heparin binding site. Fgf17 mRNA is expressed in a wide range of different tissues during development, including the rostral patterning centre, midbrain-hindbrain boundary, tailbud mesoderm, olfactory placode, mammary glands, and smooth muscle precursors of major arteries. Given its broad expression pattern during development, it is surprising that adult Fgf17-/- mice displayed a rather mild phenotype; such that mutants only exhibited morphological changes in the frontal cortex and mid/hind brain boundary and changes in certain social behaviours. In humans, FGF17 mutations are implicated in several diseases, including Congenital Hypogonadotropic Hypogonadism and Kallmann Syndrome. FGF17 mutations contribute to CHH/KS in 1.1% of affected individuals, often presenting in conjunction with mutations in other FGF pathway genes like FGFR1 and FLRT3. FGF17 mutations were also identified in patients diagnosed with Dandy-Walker malformation and Pituitary Stalk Interruption Syndrome, however, it remains unclear how FGF17 is implicated in these diseases. Altered FGF17 expression has been observed in several cancers, including prostate cancer, hematopoietic cancers (acute myeloid leukemia and acute lymphoblastic leukemia), glioblastomas, perineural invasion in cervical cancer, and renal cell carcinomas. Furthermore, FGF17 has demonstrated neuroprotective effects, particularly during ischemic stroke, and has been shown to improve cognitive function in ageing mice.
Collapse
Affiliation(s)
- Zane Oberholzer
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Wits, 2050, Johannesburg, South Africa.
| | - Chiron Loubser
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Wits, 2050, Johannesburg, South Africa.
| | - Natalya V Nikitina
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Wits, 2050, Johannesburg, South Africa.
| |
Collapse
|
3
|
Baddenhausen S, Lutz B, Hofmann C. Cannabinoid type-1 receptor signaling in dopaminergic Engrailed-1 expressing neurons modulates motivation and depressive-like behavior. Front Mol Neurosci 2024; 17:1379889. [PMID: 38660383 PMCID: PMC11042029 DOI: 10.3389/fnmol.2024.1379889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024] Open
Abstract
The endocannabinoid system comprises highly versatile signaling functions within the nervous system. It is reported to modulate the release of several neurotransmitters, consequently affecting the activity of neuronal circuits. Investigations have highlighted its roles in numerous processes, including appetite-stimulating characteristics, particularly for palatable food. Moreover, endocannabinoids are shown to fine-tune dopamine-signaled processes governing motivated behavior. Specifically, it has been demonstrated that excitatory and inhibitory inputs controlled by the cannabinoid type 1 receptor (CB1) regulate dopaminergic neurons in the mesocorticolimbic pathway. In the present study, we show that mesencephalic dopaminergic (mesDA) neurons in the ventral tegmental area (VTA) express CB1, and we investigated the consequences of specific deletion of CB1 in cells expressing the transcription factor Engrailed-1 (En1). To this end, we validated a new genetic mouse line EN1-CB1-KO, which displays a CB1 knockout in mesDA neurons beginning from their differentiation, as a tool to elucidate the functional contribution of CB1 in mesDA neurons. We revealed that EN1-CB1-KO mice display a significantly increased immobility time and shortened latency to the first immobility in the forced swim test of adult mice. Moreover, the maximal effort exerted to obtain access to chocolate-flavored pellets was significantly reduced under a progressive ratio schedule. In contrast, these mice do not differ in motor skills, anhedonia- or anxiety-like behavior compared to wild-type littermates. Taken together, these findings suggest a depressive-like or despair behavior in an inevitable situation and a lack of motivation to seek palatable food in EN1-CB1-KO mice, leading us to propose that CB1 plays an important role in the physiological functions of mesDA neurons. In particular, our data suggest that CB1 directly modifies the mesocorticolimbic pathway implicated in depressive-like/despair behavior and motivation. In contrast, the nigrostriatal pathway controlling voluntary movement seems to be unaffected.
Collapse
Affiliation(s)
- Sarah Baddenhausen
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
| | - Clementine Hofmann
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Focus Program Translational Neuroscience, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
4
|
Senovilla-Ganzo R, García-Moreno F. The Phylotypic Brain of Vertebrates, from Neural Tube Closure to Brain Diversification. BRAIN, BEHAVIOR AND EVOLUTION 2024; 99:45-68. [PMID: 38342091 DOI: 10.1159/000537748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/04/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND The phylotypic or intermediate stages are thought to be the most evolutionary conserved stages throughout embryonic development. The contrast with divergent early and later stages derived from the concept of the evo-devo hourglass model. Nonetheless, this developmental constraint has been studied as a whole embryo process, not at organ level. In this review, we explore brain development to assess the existence of an equivalent brain developmental hourglass. In the specific case of vertebrates, we propose to split the brain developmental stages into: (1) Early: Neurulation, when the neural tube arises after gastrulation. (2) Intermediate: Brain patterning and segmentation, when the neuromere identities are established. (3) Late: Neurogenesis and maturation, the stages when the neurons acquire their functionality. Moreover, we extend this analysis to other chordates brain development to unravel the evolutionary origin of this evo-devo constraint. SUMMARY Based on the existing literature, we hypothesise that a major conservation of the phylotypic brain might be due to the pleiotropy of the inductive regulatory networks, which are predominantly expressed at this stage. In turn, earlier stages such as neurulation are rather mechanical processes, whose regulatory networks seem to adapt to environment or maternal geometries. The later stages are also controlled by inductive regulatory networks, but their effector genes are mostly tissue-specific and functional, allowing diverse developmental programs to generate current brain diversity. Nonetheless, all stages of the hourglass are highly interconnected: divergent neurulation must have a vertebrate shared end product to reproduce the vertebrate phylotypic brain, and the boundaries and transcription factor code established during the highly conserved patterning will set the bauplan for the specialised and diversified adult brain. KEY MESSAGES The vertebrate brain is conserved at phylotypic stages, but the highly conserved mechanisms that occur during these brain mid-development stages (Inducing Regulatory Networks) are also present during other stages. Oppositely, other processes as cell interactions and functional neuronal genes are more diverse and majoritarian in early and late stages of development, respectively. These phenomena create an hourglass of transcriptomic diversity during embryonic development and evolution, with a really conserved bottleneck that set the bauplan for the adult brain around the phylotypic stage.
Collapse
Affiliation(s)
- Rodrigo Senovilla-Ganzo
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), Leioa, Spain
- Department of Neuroscience, Faculty of Medicine and Odontology, UPV/EHU, Leioa, Spain
| | - Fernando García-Moreno
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), Leioa, Spain
- Department of Neuroscience, Faculty of Medicine and Odontology, UPV/EHU, Leioa, Spain
- IKERBASQUE Foundation, Bilbao, Spain
| |
Collapse
|
5
|
van Essen MJ, Apsley EJ, Riepsaame J, Xu R, Northcott PA, Cowley SA, Jacob J, Becker EBE. PTCH1-mutant human cerebellar organoids exhibit altered neural development and recapitulate early medulloblastoma tumorigenesis. Dis Model Mech 2024; 17:dmm050323. [PMID: 38411252 PMCID: PMC10924233 DOI: 10.1242/dmm.050323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 02/06/2024] [Indexed: 02/28/2024] Open
Abstract
Patched 1 (PTCH1) is the primary receptor for the sonic hedgehog (SHH) ligand and negatively regulates SHH signalling, an essential pathway in human embryogenesis. Loss-of-function mutations in PTCH1 are associated with altered neuronal development and the malignant brain tumour medulloblastoma. As a result of differences between murine and human development, molecular and cellular perturbations that arise from human PTCH1 mutations remain poorly understood. Here, we used cerebellar organoids differentiated from human induced pluripotent stem cells combined with CRISPR/Cas9 gene editing to investigate the earliest molecular and cellular consequences of PTCH1 mutations on human cerebellar development. Our findings demonstrate that developmental mechanisms in cerebellar organoids reflect in vivo processes of regionalisation and SHH signalling, and offer new insights into early pathophysiological events of medulloblastoma tumorigenesis without the use of animal models.
Collapse
Affiliation(s)
- Max J. van Essen
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
- Kavli Institute of Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | - Elizabeth J. Apsley
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
- Kavli Institute of Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | - Joey Riepsaame
- Genome Engineering Oxford, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE Oxford, UK
| | - Ruijie Xu
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| | - Paul A. Northcott
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| | - Sally A. Cowley
- James and Lillian Martin Centre for Stem Cell Research, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE, UK
| | - John Jacob
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Esther B. E. Becker
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
- Kavli Institute of Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| |
Collapse
|
6
|
Emborg ME, Gambardella JC, Zhang A, Federoff HJ. Autologous vs heterologous cell replacement strategies for Parkinson disease and other neurologic diseases. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:41-56. [PMID: 39341662 DOI: 10.1016/b978-0-323-90120-8.00010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Successful cell replacement strategies for brain repair depend on graft integration into the neural network, which is affected by the immune response to the grafted cells. Using Parkinson disease as an example, in this chapter, we consider the immune system interaction and its role in autologous vs heterologous graft survival and integration, as well as past and emerging strategies to overcome the immunologic response. We also reflect on the role of nonhuman primate research to assess novel approaches and consider the role of different stakeholders on advancing the most promising new approaches into the clinic.
Collapse
Affiliation(s)
- Marina E Emborg
- Preclinical Parkinson's Research Program, Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States; Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI, United States; Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States.
| | - Julia C Gambardella
- Preclinical Parkinson's Research Program, Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States; Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Ai Zhang
- Aspen Neuroscience, San Diego, CA, United States
| | - Howard J Federoff
- Kenai Therapeutics, San Diego, CA, United States; Georgetown University Medical Center, Georgetown, Washington, DC, United States
| |
Collapse
|
7
|
Regionalization of the Early Nervous System. Neurogenetics 2023. [DOI: 10.1007/978-3-031-07793-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Kumar A, Rhee M. Transcriptomic networks of gba3 governing specification of the dopaminergic neurons in zebrafish embryos. Genes Genomics 2022; 44:1543-1554. [PMID: 36181626 DOI: 10.1007/s13258-022-01317-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 09/21/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Molecular networks associated with dopaminergic (DA) neurogenesis remain undefined within mammalian models. To address this issue, the transient zebrafish model lmx1al: EGFP was generated, which expresses GFP in the DA precursor cells as well as in the DA neurons of the ventral diencephalon (VD). We found that the novel pseudogene gba3 has not been well studied in zebrafish neurogenesis. OBJECTIVE Crucial networks associated with gba3 transcripts were investigated because the biological functions of these networks have not been reported in DA neurogenesis in zebrafish. METHODS RNA isolation and sequencing were employed with GFP-expressing cells from 20-, 22-, and 24 h post-fertilization (hpf), while subsequent transcriptomic analysis generated differentially expressed genes with DA neurogenesis (DEG-DA) list. Hierarchical cluster analysis provided absolute guidance for the collection of gba3, an essential transcript that is strictly spatiotemporally expressed during DA neurogenesis, which was proven with whole-mount in situ hybridization (WISH) and knockdown and rescue of the gba3 transcripts in zebrafish embryos. RESULTS The gba3 transcripts were restricted to the midbrain at 24 hpf and the midbrain and pectoral fins at 30 hpf in zebrafish embryos. Functional studies with knockdown of gba3 found a diminished state in the midbrain and midbrain-hindbrain boundary (MHB) and an underdeveloped condition in the anteroposterior and dorsolateral axis relative to the wild type (WT) at 24 hpf. However, it was recovered after forced expression of gba3 transcripts at 24 hpf. Molecular markers for the DA precursors and mature neurons lmx1al, nurr1, th, and pitx3 were analyzed in the gba3 MOs. The levels of transcripts lmx1al, nurr1, and th were significantly reduced in the midbrain ventral diencephalon (VD) and hindbrain of gba3 morphants compared to the WT at 24 hpf, while expression patterns of pitx3 transcripts showed no differences in the identical regions between gba3 MOs and the controls. CONCLUSIONS We discuss transcriptional networks in which transcripts of gba3 plausibly govern the specification of dopaminergic neurogenesis in zebrafish embryos.
Collapse
Affiliation(s)
- Ajeet Kumar
- Department of Biological Sciences, Graduate School, BK21 plus program, Chungnam National University, Daejeon, 34134, South Korea. .,Laboratory of Neural Stem Cell Biology, Department of Biological Sciences, KAIST, Daejeon, 34141, South Korea.
| | - Myungchull Rhee
- Department of Biological Sciences, Graduate School, BK21 plus program, Chungnam National University, Daejeon, 34134, South Korea.
| |
Collapse
|
9
|
Alekseenko Z, Dias JM, Adler AF, Kozhevnikova M, van Lunteren JA, Nolbrant S, Jeggari A, Vasylovska S, Yoshitake T, Kehr J, Carlén M, Alexeyenko A, Parmar M, Ericson J. Robust derivation of transplantable dopamine neurons from human pluripotent stem cells by timed retinoic acid delivery. Nat Commun 2022; 13:3046. [PMID: 35650213 PMCID: PMC9160024 DOI: 10.1038/s41467-022-30777-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/11/2022] [Indexed: 12/03/2022] Open
Abstract
Stem cell therapies for Parkinson's disease (PD) have entered first-in-human clinical trials using a set of technically related methods to produce mesencephalic dopamine (mDA) neurons from human pluripotent stem cells (hPSCs). Here, we outline an approach for high-yield derivation of mDA neurons that principally differs from alternative technologies by utilizing retinoic acid (RA) signaling, instead of WNT and FGF8 signaling, to specify mesencephalic fate. Unlike most morphogen signals, where precise concentration determines cell fate, it is the duration of RA exposure that is the key-parameter for mesencephalic specification. This concentration-insensitive patterning approach provides robustness and reduces the need for protocol-adjustments between hPSC-lines. RA-specified progenitors promptly differentiate into functional mDA neurons in vitro, and successfully engraft and relieve motor deficits after transplantation in a rat PD model. Our study provides a potential alternative route for cell therapy and disease modelling that due to its robustness could be particularly expedient when use of autologous- or immunologically matched cells is considered.
Collapse
Affiliation(s)
- Zhanna Alekseenko
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - José M Dias
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Andrew F Adler
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, 221 84, Lund, Sweden
- Lund Stem Cell Center, Lund University, 22184, Lund, Sweden
| | - Mariya Kozhevnikova
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 65, Stockholm, Sweden
| | | | - Sara Nolbrant
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, 221 84, Lund, Sweden
- Lund Stem Cell Center, Lund University, 22184, Lund, Sweden
| | - Ashwini Jeggari
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Svitlana Vasylovska
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Takashi Yoshitake
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Jan Kehr
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 65, Stockholm, Sweden
- Pronexus Analytical AB, Bromma, Sweden
| | - Marie Carlén
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83, Huddinge, Sweden
- Department of Neuroscience, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Andrey Alexeyenko
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65, Stockholm, Sweden
- Science for Life Laboratory, 171 21, Solna, Sweden
| | - Malin Parmar
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, 221 84, Lund, Sweden
- Lund Stem Cell Center, Lund University, 22184, Lund, Sweden
| | - Johan Ericson
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 65, Stockholm, Sweden.
| |
Collapse
|
10
|
Poudel PP, Bhattarai C, Ghosh A, Kalthur SG. Role of engrailed homeobox 2 (EN2) gene in the development of the cerebellum and effects of its altered and ectopic expressions. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00307-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Morphological organization, folial pattern formation and establishment of the neural circuitry within the cerebellum are the important events taking place during the development of the cerebellum. Expression of engrailed homeobox 2 (EN2) gene plays an essential role in taking place of these events in the developing cerebellum.
Main body
A search was performed by following the PRISMA guidelines to review the role of the EN2 gene in the development of the cerebellum. Human and animal in vivo and in vitro studies showed that expression of the EN2 gene maintains the normal development of the cerebellum, morphological organization, cerebellar foliation, fissure formation, establishment of the afferent topography, molecular pattern formation and patterned gene expression in the developing cerebellum. Altered expression of the EN2 gene changes the morphology and folial pattern of the cerebellum, whereas its activation rescues these defects. EN2 gene polymorphism is reported as a susceptible cause for autism spectrum disorder (ASD). Ectopic expression of EN2 gene may result cancer and it also may play anti-oncogenic role depending on the organ of its expression.
Conclusion
Expression of the EN2 gene is essential for the normal development of the cerebellum. Its altered expression results deformed cerebellum, polymorphysm is associated with autism and ectopic expression may results cancer.
Collapse
|
11
|
Kim TW, Piao J, Koo SY, Kriks S, Chung SY, Betel D, Socci ND, Choi SJ, Zabierowski S, Dubose BN, Hill EJ, Mosharov EV, Irion S, Tomishima MJ, Tabar V, Studer L. Biphasic Activation of WNT Signaling Facilitates the Derivation of Midbrain Dopamine Neurons from hESCs for Translational Use. Cell Stem Cell 2021; 28:343-355.e5. [PMID: 33545081 DOI: 10.1016/j.stem.2021.01.005] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/04/2020] [Accepted: 01/08/2021] [Indexed: 02/07/2023]
Abstract
Human pluripotent stem cells show considerable promise for applications in regenerative medicine, including the development of cell replacement paradigms for the treatment of Parkinson's disease. Protocols have been developed to generate authentic midbrain dopamine (mDA) neurons capable of reversing dopamine-related deficits in animal models of Parkinson's disease. However, the generation of mDA neurons at clinical scale suitable for human application remains an important challenge. Here, we present an mDA neuron derivation protocol based on a two-step WNT signaling activation strategy that improves expression of midbrain markers, such as Engrailed-1 (EN1), while minimizing expression of contaminating posterior (hindbrain) and anterior (diencephalic) lineage markers. The resulting neurons exhibit molecular, biochemical, and electrophysiological properties of mDA neurons. Cryopreserved mDA neuron precursors can be successfully transplanted into 6-hydroxydopamine (6OHDA) lesioned rats to induce recovery of amphetamine-induced rotation behavior. The protocol presented here is the basis for clinical-grade mDA neuron production and preclinical safety and efficacy studies.
Collapse
Affiliation(s)
- Tae Wan Kim
- Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jinghua Piao
- Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Neurosurgery and Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - So Yeon Koo
- Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Neuroscience Graduate Program of Weill Cornell Graduate School of Biomedical Sciences, Weill Cornell Medical College, New York, NY, USA
| | - Sonja Kriks
- Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sun Young Chung
- Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Doron Betel
- Institute for Computational Biomedicine, Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Nicholas D Socci
- Bioinformatics Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Se Joon Choi
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Susan Zabierowski
- Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; SKI Stem Cell Research Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brittany N Dubose
- Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; SKI Stem Cell Research Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ellen J Hill
- Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; SKI Stem Cell Research Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eugene V Mosharov
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Stefan Irion
- Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mark J Tomishima
- Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; SKI Stem Cell Research Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Viviane Tabar
- Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Neurosurgery and Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Lorenz Studer
- Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
12
|
Stratilov VA, Tyulkova EI, Vetrovoy OV. Prenatal Stress as a Factor of the
Development of Addictive States. J EVOL BIOCHEM PHYS+ 2020. [DOI: 10.1134/s0022093020060010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Macrì S, Di-Poï N. Heterochronic Developmental Shifts Underlying Squamate Cerebellar Diversity Unveil the Key Features of Amniote Cerebellogenesis. Front Cell Dev Biol 2020; 8:593377. [PMID: 33195265 PMCID: PMC7642464 DOI: 10.3389/fcell.2020.593377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/25/2020] [Indexed: 11/13/2022] Open
Abstract
Despite a remarkable conservation of architecture and function, the cerebellum of vertebrates shows extensive variation in morphology, size, and foliation pattern. These features make this brain subdivision a powerful model to investigate the evolutionary developmental mechanisms underlying neuroanatomical complexity both within and between anamniote and amniote species. Here, we fill a major evolutionary gap by characterizing the developing cerebellum in two non-avian reptile species-bearded dragon lizard and African house snake-representative of extreme cerebellar morphologies and neuronal arrangement patterns found in squamates. Our data suggest that developmental strategies regarded as exclusive hallmark of birds and mammals, including transit amplification in an external granule layer (EGL) and Sonic hedgehog expression by underlying Purkinje cells (PCs), contribute to squamate cerebellogenesis independently from foliation pattern. Furthermore, direct comparison of our models suggests the key importance of spatiotemporal patterning and dynamic interaction between granule cells and PCs in defining cortical organization. Especially, the observed heterochronic shifts in early cerebellogenesis events, including upper rhombic lip progenitor activity and EGL maintenance, are strongly expected to affect the dynamics of molecular interaction between neuronal cell types in snakes. Altogether, these findings help clarifying some of the morphogenetic and molecular underpinnings of amniote cerebellar corticogenesis, but also suggest new potential molecular mechanisms underlying cerebellar complexity in squamates. Furthermore, squamate models analyzed here are revealed as key animal models to further understand mechanisms of brain organization.
Collapse
Affiliation(s)
- Simone Macrì
- Program in Developmental Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Nicolas Di-Poï
- Program in Developmental Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
14
|
Liu B, Satou Y. The genetic program to specify ectodermal cells in ascidian embryos. Dev Growth Differ 2020; 62:301-310. [PMID: 32130723 DOI: 10.1111/dgd.12660] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/11/2020] [Accepted: 02/21/2020] [Indexed: 12/18/2022]
Abstract
The ascidian belongs to the sister group of vertebrates and shares many features with them. The gene regulatory network (GRN) controlling gene expression in ascidian embryonic development leading to the tadpole larva has revealed evolutionarily conserved gene circuits between ascidians and vertebrates. These conserved mechanisms are indeed useful to infer the original developmental programs of the ancestral chordates. Simultaneously, these studies have revealed which gene circuits are missing in the ascidian GRN; these gene circuits may have been acquired in the vertebrate lineage. In particular, the GRN responsible for gene expression in ectodermal cells of ascidian embryos has revealed the genetic programs that regulate the regionalization of the brain, formation of palps derived from placode-like cells, and differentiation of sensory neurons derived from neural crest-like cells. We here discuss how these studies have given insights into the evolution of these traits.
Collapse
Affiliation(s)
- Boqi Liu
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
15
|
KAGEYAMA R, OCHI S, SUEDA R, SHIMOJO H. The significance of gene expression dynamics in neural stem cell regulation. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2020; 96:351-363. [PMID: 33041269 PMCID: PMC7581957 DOI: 10.2183/pjab.96.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
Neural stem cells (NSCs) actively proliferate and generate neurons and glial cells (active state) in the embryonic brain, whereas they are mostly dormant (quiescent state) in the adult brain. The expression dynamics of Hes1 are different between active and quiescent NSCs. In active NSCs, Hes1 expression oscillates and periodically represses the expression of proneural genes such as Ascl1, thereby driving their oscillations. By contrast, in quiescent NSCs, Hes1 oscillations maintain expression at higher levels even at trough phases (thus continuous), thereby continuously suppressing proneural gene expression. High levels of Hes1 expression and the resultant suppression of Ascl1 promote the quiescent state of NSCs, whereas oscillatory Hes1 expression and the resultant oscillatory Ascl1 expression regulate their active state. Furthermore, in other developmental contexts, high, continuous Hes1 expression induces astrocyte differentiation or the formation of boundaries, which function as signaling centers. Thus, the expression dynamics of Hes1 are a key regulatory mechanism generating and maintaining various cell types in the nervous system.
Collapse
Affiliation(s)
- Ryoichiro KAGEYAMA
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Kyoto University Graduate School of Medicine, Kyoto, Japan
- Kyoto University Graduate School of Biostudies, Kyoto, Japan
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan
| | - Shohei OCHI
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Kyoto University Graduate School of Medicine, Kyoto, Japan
- United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Risa SUEDA
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Kyoto University Graduate School of Biostudies, Kyoto, Japan
| | - Hiromi SHIMOJO
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
16
|
Foxg specifies sensory neurons in the anterior neural plate border of the ascidian embryo. Nat Commun 2019; 10:4911. [PMID: 31664020 PMCID: PMC6820760 DOI: 10.1038/s41467-019-12839-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 10/02/2019] [Indexed: 12/12/2022] Open
Abstract
Foxg constitutes a regulatory loop with Fgf8 and plays an important role in the development of anterior placodes and the telencephalon in vertebrate embryos. Ascidians, which belong to Tunicata, the sister group of vertebrates, develop a primitive placode-like structure at the anterior boundary of the neural plate, but lack a clear counterpart of the telencephalon. In this animal, Foxg is expressed in larval palps, which are adhesive organs with sensory neurons. Here, we show that Foxg begins to be expressed in two separate rows of cells within the neural plate boundary region under the control of the MAPK pathway to pattern this region. However, Foxg is not expressed in the brain, and we find no evidence that knockdown of Foxg affects brain formation. Our data suggest that recruitment of Fgf to the downstream of Foxg might have been a critical evolutionary event for the telencephalon in the vertebrate lineage. Vertebrate telencephalon formation requires Foxg-Fgf8 cross-regulation, but while ascidians express Foxg in the neural plate, they lack a telencephalon. Here the authors show that Foxg loss does not affect ascidian brain formation, indicating that telencephalon evolution required recruitment of Fgf downstream of Foxg.
Collapse
|
17
|
Peterson DJ, Marckini DN, Straight JL, King EM, Johnson W, Sarah SS, Chowdhary PK, DeLano-Taylor MK. The Basic Helix-Loop-Helix Gene Nato3 Drives Expression of Dopaminergic Neuron Transcription Factors in Neural Progenitors. Neuroscience 2019; 421:176-191. [PMID: 31672641 DOI: 10.1016/j.neuroscience.2019.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 08/17/2019] [Accepted: 09/04/2019] [Indexed: 12/17/2022]
Abstract
The floor plate of the developing midbrain gives rise to dopaminergic (DA) neurons, an important class of cells involved in Parkinson's disease (PD). Neural progenitors of the midbrain floor plate utilize key genes in transcriptional networks to drive dopamine neurogenesis. Identifying factors that promote dopaminergic neuron transcriptional networks can provide insight into strategies for therapies in PD. Using the chick embryo, we developed a quantitative PCR (qPCR) based method to assess the potential of a candidate factor to drive DA neuron gene expression, including the basic helix-loop-helix transcription factor Nato3 (Ferd3l). We then showed that overexpression of Nato3 in the developing chick mesencephalon produces a regionally dependent increase in genes associated with the DA neurogenesis, (such as Foxa2, Lmx1b and Shh) as well as DA neuron genes Nurr1 (an immature DA neuron marker) and mRNA expression of tyrosine hydroxylase (TH, a mature DA neuron marker). Interestingly, our data also showed that Nato3 is a potent regulator of Lmx1b by its broad induction of Lmx1b expression in neural progenitors of multiple regions of the CNS, including the midbrain and spinal cord. These data introduce a new, in vivo approach to identifying a gene that can drive DA transcriptional networks and provide the new insight that Nato3 can drive expression of key DA neuron genes, including Lmx1b, in neural progenitors.
Collapse
Affiliation(s)
- Doug J Peterson
- Department of Biomedical Sciences, Grand Valley State University, 1 Campus Drive, Allendale MI 49401, USA; Department of Cell and Molecular Biology, Grand Valley State University, 1 Campus Drive, Allendale MI 49401, USA
| | - Darcy N Marckini
- Department of Cell and Molecular Biology, Grand Valley State University, 1 Campus Drive, Allendale MI 49401, USA
| | - Jordan L Straight
- Department of Cell and Molecular Biology, Grand Valley State University, 1 Campus Drive, Allendale MI 49401, USA
| | - Elizabeth M King
- Department of Biomedical Sciences, Grand Valley State University, 1 Campus Drive, Allendale MI 49401, USA
| | - William Johnson
- Department of Cell and Molecular Biology, Grand Valley State University, 1 Campus Drive, Allendale MI 49401, USA
| | - Sarala S Sarah
- Department of Biomedical Sciences, Grand Valley State University, 1 Campus Drive, Allendale MI 49401, USA
| | - Puneet K Chowdhary
- Department of Biomedical Sciences, Grand Valley State University, 1 Campus Drive, Allendale MI 49401, USA; Center for Neurodegenerative Science, Van Andel Research Institute, 333 Bostwick Ave., Grand Rapids MI 49506, USA
| | - Merritt K DeLano-Taylor
- Department of Biomedical Sciences, Grand Valley State University, 1 Campus Drive, Allendale MI 49401, USA; Department of Cell and Molecular Biology, Grand Valley State University, 1 Campus Drive, Allendale MI 49401, USA; Center for Neurodegenerative Science, Van Andel Research Institute, 333 Bostwick Ave., Grand Rapids MI 49506, USA.
| |
Collapse
|
18
|
Kim JY, Lee JS, Hwang HS, Lee DR, Park CY, Jung SJ, You YR, Kim DS, Kim DW. Wnt signal activation induces midbrain specification through direct binding of the beta-catenin/TCF4 complex to the EN1 promoter in human pluripotent stem cells. Exp Mol Med 2018; 50:1-13. [PMID: 29650976 PMCID: PMC5938028 DOI: 10.1038/s12276-018-0044-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/30/2017] [Accepted: 12/19/2017] [Indexed: 12/12/2022] Open
Abstract
The canonical Wnt signal pathway plays a pivotal role in anteroposterior patterning and midbrain specification during early neurogenesis. Activating Wnt signal has been a strategy for differentiating human pluripotent stem cells (PSCs) into midbrain dopaminergic (DA) neurons; however, the underlying molecular mechanism(s) of how the Wnt signal drives posterior fate remained unclear. In this study, we found that activating the canonical Wnt signal significantly upregulated the expression of EN1, a midbrain-specific marker, in a fibroblast growth factor signal-dependent manner in human PSC-derived neural precursor cells (NPCs). The EN1 promoter region contains a putative TCF4-binding site that directly interacts with the β-catenin/TCF complex upon Wnt signal activation. Once differentiated, NPCs treated with a Wnt signal agonist gave rise to functional midbrain neurons including glutamatergic, GABAergic, and DA neurons. Our results provide a potential molecular mechanism that underlies midbrain specification of human PSC-derived NPCs by Wnt activation, as well as a differentiation paradigm for generating human midbrain neurons that may serve as a cellular platform for studying the ontogenesis of midbrain neurons and neurological diseases relevant to the midbrain.
Collapse
Affiliation(s)
- Ji Young Kim
- Department of Physiology, Yonsei University College of Medicine, 50-1 Yonsei-ro Seodaemun-gu, Seoul, 03722, Korea.,Brain Korea 21 PLUS Program for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Jae Souk Lee
- Department of Physiology, Yonsei University College of Medicine, 50-1 Yonsei-ro Seodaemun-gu, Seoul, 03722, Korea.,Brain Korea 21 PLUS Program for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Hyun Sub Hwang
- Department of Physiology, Yonsei University College of Medicine, 50-1 Yonsei-ro Seodaemun-gu, Seoul, 03722, Korea
| | - Dongjin R Lee
- Department of Physiology, Yonsei University College of Medicine, 50-1 Yonsei-ro Seodaemun-gu, Seoul, 03722, Korea
| | - Chul-Yong Park
- Department of Physiology, Yonsei University College of Medicine, 50-1 Yonsei-ro Seodaemun-gu, Seoul, 03722, Korea
| | - Sung Jun Jung
- Department of Physiology, College of Medicine, Hanyang University, 222 Wangsimni-ro, Seoul, 04763, Korea
| | - Young Rang You
- Department of Biotechnology, Brain Korea 21 PLUS program for Biotechnology, College of Life Science & Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Korea
| | - Dae-Sung Kim
- Department of Biotechnology, Brain Korea 21 PLUS program for Biotechnology, College of Life Science & Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Korea.
| | - Dong-Wook Kim
- Department of Physiology, Yonsei University College of Medicine, 50-1 Yonsei-ro Seodaemun-gu, Seoul, 03722, Korea. .,Brain Korea 21 PLUS Program for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea.
| |
Collapse
|
19
|
Alwin Prem Anand A, Huber C, Asnet Mary J, Gallus N, Leucht C, Klafke R, Hirt B, Wizenmann A. Expression and function of microRNA-9 in the mid-hindbrain area of embryonic chick. BMC DEVELOPMENTAL BIOLOGY 2018; 18:3. [PMID: 29471810 PMCID: PMC5824543 DOI: 10.1186/s12861-017-0159-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 11/27/2017] [Indexed: 12/21/2022]
Abstract
Background MiR-9 is a small non-coding RNA that is highly conserved between species and primarily expressed in the central nervous system (CNS). It is known to influence proliferation and neuronal differentiation in the brain and spinal cord of different vertebrates. Different studies have pointed to regional and species-specific differences in the response of neural progenitors to miR-9. Methods In ovo and ex ovo electroporation was used to overexpress or reduce miR-9 followed by mRNA in situ hybridisation and immunofluorescent stainings to evaluate miR- expression and the effect of changed miR-9 expression. Results We have investigated the expression and function of miR-9 during early development of the mid-hindbrain region (MH) in chick. Our analysis reveals a closer relationship of chick miR-9 to mammalian miR-9 than to fish and a dynamic expression pattern in the chick neural tube. Early in development, miR-9 is diffusely expressed in the entire brain, bar the forebrain, and it becomes more restricted to specific areas of the CNS at later stages. MiR-9 overexpression at HH9–10 results in a reduction of FGF8 expression and premature neuronal differentiation in the mid-hindbrain boundary (MHB). Within the midbrain miR-9 does not cause premature neuronal differentiation it rather reduces proliferation in the midbrain. Conclusion Our findings indicate that miR-9 has regional specific effects in the developing mid-hindbrain region with a divergence of response of regional progenitors. Electronic supplementary material The online version of this article (10.1186/s12861-017-0159-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- A Alwin Prem Anand
- Institute of Clinical Anatomy and Cell Analysis, University of Tuebingen, Oesterbergstrasse 3, D-72074, Tuebingen, Germany
| | - Carola Huber
- Institute of Clinical Anatomy and Cell Analysis, University of Tuebingen, Oesterbergstrasse 3, D-72074, Tuebingen, Germany.,Robert-Bosch-Krankenhaus, Auerbachstraße 110, 70376, Stuttgart, Germany
| | - John Asnet Mary
- Department of Zoology, Fatima College, Madurai, Tamilnadu, 625018, India
| | - Nancy Gallus
- Institute of Clinical Anatomy and Cell Analysis, University of Tuebingen, Oesterbergstrasse 3, D-72074, Tuebingen, Germany.,Department of Neurobiology, McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Christoph Leucht
- Institute of Developmental Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Ruth Klafke
- Institute of Developmental Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Bernhard Hirt
- Institute of Clinical Anatomy and Cell Analysis, University of Tuebingen, Oesterbergstrasse 3, D-72074, Tuebingen, Germany
| | - Andrea Wizenmann
- Institute of Clinical Anatomy and Cell Analysis, University of Tuebingen, Oesterbergstrasse 3, D-72074, Tuebingen, Germany.
| |
Collapse
|
20
|
Hagan N, Guarente J, Ellisor D, Zervas M. The Temporal Contribution of the Gbx2 Lineage to Cerebellar Neurons. Front Neuroanat 2017; 11:50. [PMID: 28785208 PMCID: PMC5519623 DOI: 10.3389/fnana.2017.00050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 06/16/2017] [Indexed: 11/13/2022] Open
Abstract
The cerebellum (Cb) is an exquisite structure that controls elaborate motor behaviors and is essential for sensory-motor learning. During development, the Cb is derived from rhombomere 1 (r1). Within this embryonic compartment, precursors in r1 are patterned by signaling cues originating from the isthmus organizer (IsO) and subsequently undergo complex morphogenic movements to establish their final position in the mature Cb. The transcription factor Gbx2 is expressed in the developing Cb and is intimately involved in organizing and patterning the Cb. Nevertheless, how precursors expressing Gbx2 at specific embryonic time points contribute to distinct cell types in the adult Cb is unresolved. In this study, we used Genetic Inducible Fate Mapping (GIFM) to mark Gbx2-expressing precursors with fine temporal resolution and to subsequently track this lineage through embryogenesis. We then determined the terminal neuronal fate of the Gbx2 lineage in the adult Cb. Our analysis demonstrates that the Gbx2 lineage contributes to the Cb with marking over the course of five stages: Embryonic day 7.5 (E7.5) through E11.5. The Gbx2 lineage gives rise to Purkinje cells, granule neurons, and deep cerebellar neurons across these marking stages. Notably, the contribution of the Gbx2 lineage shifts as development proceeds with each marking stage producing a distinct profile of mature neurons in the adult Cb. These findings demonstrate the relationship between the temporal expression of Gbx2 and the terminal cell fate of neurons in the Cb. Based on these results, Gbx2 is critical to Cb development, not only for its well-defined role in positioning and maintaining the IsO, but also for guiding the development of Cb precursors and determining the identity of Cb neurons.
Collapse
Affiliation(s)
- Nellwyn Hagan
- Division of Biology and Medicine, Department of Neuroscience, Brown UniversityProvidence, RI, United States
| | - Juliana Guarente
- Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Brown UniversityProvidence, RI, United States
| | - Debra Ellisor
- Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Brown UniversityProvidence, RI, United States
| | - Mark Zervas
- Division of Biology and Medicine, Department of Neuroscience, Brown UniversityProvidence, RI, United States.,Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Brown UniversityProvidence, RI, United States.,Department of Neuroscience, AmgenCambridge, MA, United States
| |
Collapse
|
21
|
Lipovsek M, Ledderose J, Butts T, Lafont T, Kiecker C, Wizenmann A, Graham A. The emergence of mesencephalic trigeminal neurons. Neural Dev 2017. [PMID: 28637511 PMCID: PMC5480199 DOI: 10.1186/s13064-017-0088-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Background The cells of the mesencephalic trigeminal nucleus (MTN) are the proprioceptive sensory neurons that innervate the jaw closing muscles. These cells differentiate close to the two key signalling centres that influence the dorsal midbrain, the isthmus, which mediates its effects via FGF and WNT signalling and the roof plate, which is a major source of BMP signalling as well as WNT signalling. Methods In this study, we have set out to analyse the importance of FGF, WNT and BMP signalling for the development of the MTN. We have employed pharmacological inhibitors of these pathways in explant cultures as well as utilising the electroporation of inhibitory constructs in vivo in the chick embryo. Results We find that interfering with either FGF or WNT signalling has pronounced effects on MTN development whilst abrogation of BMP signalling has no effect. We show that treatment of explants with either FGF or WNT antagonists results in the generation of fewer MTN neurons and affects MTN axon extension and that inhibition of both these pathways has an additive effect. To complement these studies, we have used in vivo electroporation to inhibit BMP, FGF and WNT signalling within dorsal midbrain cells prior to, and during, their differentiation as MTN neurons. Again, we find that inhibition of BMP signalling has no effect on the development of MTN neurons. We additionally find that cells electroporated with inhibitory constructs for either FGF or WNT signalling can differentiate as MTN neurons suggesting that these pathways are not required cell intrinsically for the emergence of these neurons. Indeed, we also show that explants of dorsal mesencephalon lacking both the isthmus and roof plate can generate MTN neurons. However, we did find that inhibiting FGF or WNT signalling had consequences for MTN differentiation. Conclusions Our results suggest that the emergence of MTN neurons is an intrinsic property of the dorsal mesencephalon of gnathostomes, and that this population undergoes expansion, and maturation, along with the rest of the dorsal midbrain under the influence of FGF and WNT signalling.
Collapse
Affiliation(s)
- Marcela Lipovsek
- Centre for Developmental Neurobiology, Kings College London, London, SE1 1UL, UK
| | - Julia Ledderose
- Institute of Clinical Anatomy and Cell Analysis, Department of Anatomy, University of Tübingen, Oesterbergstrasse 3, 72074, Tuebingen, Germany.,Universitätsmedizin Berlin, NeuroCure - Institute of Biochemistry, ChariteCrossOver, Virchowweg, 610117, Berlin, Germany
| | - Thomas Butts
- Centre for Developmental Neurobiology, Kings College London, London, SE1 1UL, UK.,School of Life Sciences, University of Liverpool, Liverpool, L69 3BX, UK
| | - Tanguy Lafont
- Centre for Developmental Neurobiology, Kings College London, London, SE1 1UL, UK
| | - Clemens Kiecker
- Centre for Developmental Neurobiology, Kings College London, London, SE1 1UL, UK
| | - Andrea Wizenmann
- Institute of Clinical Anatomy and Cell Analysis, Department of Anatomy, University of Tübingen, Oesterbergstrasse 3, 72074, Tuebingen, Germany
| | - Anthony Graham
- Centre for Developmental Neurobiology, Kings College London, London, SE1 1UL, UK.
| |
Collapse
|
22
|
Peretz Y, Eren N, Kohl A, Hen G, Yaniv K, Weisinger K, Cinnamon Y, Sela-Donenfeld D. A new role of hindbrain boundaries as pools of neural stem/progenitor cells regulated by Sox2. BMC Biol 2016; 14:57. [PMID: 27392568 PMCID: PMC4938926 DOI: 10.1186/s12915-016-0277-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/21/2016] [Indexed: 01/28/2023] Open
Abstract
Background Compartment boundaries are an essential developmental mechanism throughout evolution, designated to act as organizing centers and to regulate and localize differently fated cells. The hindbrain serves as a fascinating example for this phenomenon as its early development is devoted to the formation of repetitive rhombomeres and their well-defined boundaries in all vertebrates. Yet, the actual role of hindbrain boundaries remains unresolved, especially in amniotes. Results Here, we report that hindbrain boundaries in the chick embryo consist of a subset of cells expressing the key neural stem cell (NSC) gene Sox2. These cells co-express other neural progenitor markers such as Transitin (the avian Nestin), GFAP, Pax6 and chondroitin sulfate proteoglycan. The majority of the Sox2+ cells that reside within the boundary core are slow-dividing, whereas nearer to and within rhombomeres Sox2+ cells are largely proliferating. In vivo analyses and cell tracing experiments revealed the contribution of boundary Sox2+ cells to neurons in a ventricular-to-mantle manner within the boundaries, as well as their lateral contribution to proliferating Sox2+ cells in rhombomeres. The generation of boundary-derived neurospheres from hindbrain cultures confirmed the typical NSC behavior of boundary cells as a multipotent and self-renewing Sox2+ cell population. Inhibition of Sox2 in boundaries led to enhanced and aberrant neural differentiation together with inhibition in cell-proliferation, whereas Sox2 mis-expression attenuated neurogenesis, confirming its significant function in hindbrain neuronal organization. Conclusions Data obtained in this study deciphers a novel role of hindbrain boundaries as repetitive pools of neural stem/progenitor cells, which provide proliferating progenitors and differentiating neurons in a Sox2-dependent regulation. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0277-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuval Peretz
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Noa Eren
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Ayelet Kohl
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Gideon Hen
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Karina Yaniv
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Karen Weisinger
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Yuval Cinnamon
- Institute of Animal Sciences, Department of Poultry and Aquaculture Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | - Dalit Sela-Donenfeld
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel.
| |
Collapse
|
23
|
Zhou S, Ochalek A, Szczesna K, Avci HX, Kobolák J, Varga E, Rasmussen M, Holst B, Cirera S, Hyttel P, Freude KK, Dinnyés A. The positional identity of iPSC-derived neural progenitor cells along the anterior-posterior axis is controlled in a dosage-dependent manner by bFGF and EGF. Differentiation 2016; 92:183-194. [PMID: 27321088 DOI: 10.1016/j.diff.2016.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 05/30/2016] [Accepted: 06/09/2016] [Indexed: 12/27/2022]
Abstract
Neural rosettes derived from human induced pluripotent stem cells (iPSCs) have been claimed to be a highly robust in vitro cellular model for biomedical application. They are able to propagate in vitro in the presence of mitogens, including basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF). However, these two mitogens are also involved in anterior-posterior patterning in a gradient dependent manner along the neural tube axis. Here, we compared the regional identity of neural rosette cells and specific neural subtypes of their progeny propagated with low and high concentrations of bFGF and EGF. We observed that low concentrations of bFGF and EGF in the culturing system were able to induce forebrain identity of the neural rosettes and promote subsequent cortical neuronal differentiation. On the contrary, high concentrations of these mitogens stimulate a mid-hindbrain fate of the neural rosettes, resulting in subsequent cholinergic neuron differentiation. Thus, our results indicate that different concentrations of bFGF and EGF supplemented during propagation of neural rosettes are involved in altering the identity of the resultant neural cells.
Collapse
Affiliation(s)
- Shuling Zhou
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Anna Ochalek
- BioTalentum Ltd., Gödöllő, Hungary; Molecular Animal Biotechnology Laboratory, Szent Istvan University, Gödöllő, Hungary.
| | | | - Hasan X Avci
- BioTalentum Ltd., Gödöllő, Hungary; Department of Medical Chemistry, University of Szeged, Dóm tér 8, 6720 Szeged, Hungary.
| | | | - Eszter Varga
- BioTalentum Ltd., Gödöllő, Hungary; Molecular Animal Biotechnology Laboratory, Szent Istvan University, Gödöllő, Hungary.
| | | | | | - Susanna Cirera
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Poul Hyttel
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Kristine K Freude
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - András Dinnyés
- BioTalentum Ltd., Gödöllő, Hungary; Molecular Animal Biotechnology Laboratory, Szent Istvan University, Gödöllő, Hungary; Departments of Equine Sciences and Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.
| |
Collapse
|
24
|
Regulation of FGF signaling: Recent insights from studying positive and negative modulators. Semin Cell Dev Biol 2016; 53:101-14. [DOI: 10.1016/j.semcdb.2016.01.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 01/19/2016] [Indexed: 11/19/2022]
|
25
|
Increased innervation of forebrain targets by midbrain dopaminergic neurons in the absence of FGF-2. Neuroscience 2016; 314:134-44. [DOI: 10.1016/j.neuroscience.2015.11.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 11/23/2015] [Accepted: 11/24/2015] [Indexed: 11/21/2022]
|
26
|
LSD1 co-repressor Rcor2 orchestrates neurogenesis in the developing mouse brain. Nat Commun 2016; 7:10481. [PMID: 26795843 PMCID: PMC4736047 DOI: 10.1038/ncomms10481] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/04/2015] [Indexed: 12/12/2022] Open
Abstract
Epigenetic regulatory complexes play key roles in the modulation of transcriptional regulation underlying neural stem cell (NSC) proliferation and progeny specification. How specific cofactors guide histone demethylase LSD1/KDM1A complex to regulate distinct NSC-related gene activation and repression in cortical neurogenesis remains unclear. Here we demonstrate that Rcor2, a co-repressor of LSD1, is mainly expressed in the central nervous system (CNS) and plays a key role in epigenetic regulation of cortical development. Depletion of Rcor2 results in reduced NPC proliferation, neuron population, neocortex thickness and brain size. We find that Rcor2 directly targets Dlx2 and Shh, and represses their expressions in developing neocortex. In addition, inhibition of Shh signals rescues the neurogenesis defects caused by Rcor2 depletion both in vivo and in vitro. Hence, our findings suggest that co-repressor Rcor2 is critical for cortical development by repressing Shh signalling pathway in dorsal telencephalon. Epigenetic regulation plays a key role in cortical development. Here the authors show that Rcor2, a co-repressor of the histone demethylase LSD1/KDM1A complex, regulates neural progenitor cell proliferation and cortical neurogenesis by repressing sonic hedgehog signaling.
Collapse
|
27
|
Bissonette GB, Roesch MR. Development and function of the midbrain dopamine system: what we know and what we need to. GENES BRAIN AND BEHAVIOR 2015; 15:62-73. [PMID: 26548362 DOI: 10.1111/gbb.12257] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/11/2015] [Accepted: 10/01/2015] [Indexed: 01/29/2023]
Abstract
The past two decades have seen an explosion in our understanding of the origin and development of the midbrain dopamine system. Much of this work has been focused on the aspects of dopamine neuron development related to the onset of movement disorders such as Parkinson's disease, with the intent of hopefully delaying, preventing or fixing symptoms. While midbrain dopamine degeneration is a major focus for treatment and research, many other human disorders are impacted by abnormal dopamine, including drug addiction, autism and schizophrenia. Understanding dopamine neuron ontogeny and how dopamine connections and circuitry develops may provide us with key insights into potentially important avenues of research for other dopamine-related disorders. This review will provide a brief overview of the major molecular and genetic players throughout the development of midbrain dopamine neurons and what we know about the behavioral- and disease-related implications associated with perturbations to midbrain dopamine neuron development. We intend to combine the knowledge of two broad fields of neuroscience, both developmental and behavioral, with the intent on fostering greater discussion between branches of neuroscience in the service of addressing complex cognitive questions from a developmental perspective and identifying important gaps in our knowledge for future study.
Collapse
Affiliation(s)
- G B Bissonette
- Department of Psychology, University of Maryland, College Park, MD, USA.,Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| | - M R Roesch
- Department of Psychology, University of Maryland, College Park, MD, USA.,Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| |
Collapse
|
28
|
Adutwum-Ofosu KK, Magnani D, Theil T, Price DJ, Fotaki V. The molecular and cellular signatures of the mouse eminentia thalami support its role as a signalling centre in the developing forebrain. Brain Struct Funct 2015; 221:3709-27. [PMID: 26459142 PMCID: PMC5009181 DOI: 10.1007/s00429-015-1127-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/30/2015] [Indexed: 12/20/2022]
Abstract
The mammalian eminentia thalami (EmT) (or thalamic eminence) is an embryonic forebrain structure of unknown function. Here, we examined the molecular and cellular properties of the mouse EmT. We first studied mRNA expression of signalling molecules and found that the EmT is a structure, rich in expression of secreted factors, with Wnts being the most abundantly detected. We then examined whether EmT tissue could induce cell fate changes when grafted ectopically. For this, we transplanted EmT tissue from a tau-GFP mouse to the ventral telencephalon of a wild type host, a telencephalic region where Wnt signalling is not normally active but which we showed in culture experiments is competent to respond to Wnts. We observed that the EmT was able to induce in adjacent ventral telencephalic cells ectopic expression of Lef1, a transcriptional activator and a target gene of the Wnt/β-catenin pathway. These Lef1-positive;GFP-negative cells expressed the telencephalic marker Foxg1 but not Ascl1, which is normally expressed by ventral telencephalic cells. These results suggest that the EmT has the capacity to activate Wnt/β-catenin signalling in the ventral telencephalon and to suppress ventral telencephalic gene expression. Altogether, our data support a role of the EmT as a signalling centre in the developing mouse forebrain.
Collapse
Affiliation(s)
- Kevin Kofi Adutwum-Ofosu
- The University of Edinburgh, Centre for Integrative Physiology, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.,Department of Anatomy, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Dario Magnani
- The University of Edinburgh, Centre for Integrative Physiology, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.,MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Thomas Theil
- The University of Edinburgh, Centre for Integrative Physiology, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - David J Price
- The University of Edinburgh, Centre for Integrative Physiology, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - Vassiliki Fotaki
- The University of Edinburgh, Centre for Integrative Physiology, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.
| |
Collapse
|
29
|
Niederkofler V, Asher TE, Dymecki SM. Functional Interplay between Dopaminergic and Serotonergic Neuronal Systems during Development and Adulthood. ACS Chem Neurosci 2015; 6:1055-1070. [PMID: 25747116 DOI: 10.1021/acschemneuro.5b00021] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The complex integration of neurotransmitter signals in the nervous system contributes to the shaping of behavioral and emotional constitutions throughout development. Imbalance among these signals may result in pathological behaviors and psychiatric illnesses. Therefore, a better understanding of the interplay between neurotransmitter systems holds potential to facilitate therapeutic development. Of particular clinical interest are the dopaminergic and serotonergic systems, as both modulate a broad array of behaviors and emotions and have been implicated in a wide range of affective disorders. Here we review evidence speaking to an interaction between the dopaminergic and serotonergic neuronal systems across development. We highlight data stemming from developmental, functional, and clinical studies, reflecting the importance of this transmonoaminergic interplay.
Collapse
Affiliation(s)
- Vera Niederkofler
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Tedi E. Asher
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Susan M. Dymecki
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| |
Collapse
|
30
|
slc7a6os gene plays a critical role in defined areas of the developing CNS in zebrafish. PLoS One 2015; 10:e0119696. [PMID: 25803583 PMCID: PMC4372478 DOI: 10.1371/journal.pone.0119696] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 01/15/2015] [Indexed: 11/19/2022] Open
Abstract
The aim of this study is to shed light on the functional role of slc7a6os, a gene highly conserved in vertebrates. The Danio rerio slc7a6os gene encodes a protein of 326 amino acids with 46% identity to human SLC7A6OS and 14% to Saccharomyces cerevisiae polypeptide Iwr1. Yeast Iwr1 specifically binds RNA pol II, interacts with the basal transcription machinery and regulates the transcription of specific genes. In this study we investigated for the first time the biological role of SLC7A6OS in vertebrates. Zebrafish slc7a6os is a maternal gene that is expressed throughout development, with a prevalent localization in the developing central nervous system (CNS). The gene is also expressed, although at different levels, in various tissues of the adult fish. To determine the functional role of slc7a6os during zebrafish development, we knocked-down the gene by injecting a splice-blocking morpholino. At 24 hpf morphants show morphological defects in the CNS, particularly the interface between hindbrain and midbrain is not well-defined. At 28 hpf the morpholino injected embryos present an altered somite morphology and appear partially or completely immotile. At this stage the midbrain, hindbrain and cerebellum are compromised and not well defined compared with control embryos. The observed alterations persist at later developmental stages. Consistently, the expression pattern of two markers specifically expressed in the developing CNS, pax2a and neurod, is significantly altered in morphants. The co-injection of embryos with synthetic slc7a6os mRNA, rescues the morphant phenotype and restores the wild type expression pattern of pax2a and neurod. Our data suggest that slc7a6os might play a critical role in defined areas of the developing CNS in vertebrates, probably by regulating the expression of key genes.
Collapse
|
31
|
Lineage-specific loss of FGF17 within the avian orders Galliformes and Passeriformes. Gene 2015; 563:180-9. [PMID: 25791492 DOI: 10.1016/j.gene.2015.03.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/10/2015] [Accepted: 03/13/2015] [Indexed: 01/05/2023]
Abstract
The genomic and developmental complexity of vertebrates is commonly attributed to two rounds of whole genome duplications which occurred at the base of the vertebrate radiation. These duplications led to the rise of several, multi-gene families of developmental proteins like the fibroblast growth factors (FGFs); a signaling protein family which functions at various stages of embryonic development. One of the major FGF assemblages arising from these duplications is the FGF8 subfamily, which includes FGF8, FGF17, and FGF18 in tetrapods. While FGF8 and FGF18 are found in all tetrapods and are critical for embryonic survival, genomic analyses suggest putative loss of FGF17 in various lineages ranging from frogs and fish, to the chicken. This study utilizes 27 avian genomes in conjunction with molecular analyses of chicken embryos to confirm the loss of FGF17 in chicken as a true, biological occurrence. FGF17 is also missing in the turkey, black grouse, Japanese quail and northern bobwhite genomes. These species, along with chicken, form a monophyletic clade in the order Galliformes. Four additional species, members of the clade Passeroidea, within the order Passeriformes, are also missing FGF17. Additionally, analysis of intact FGF17 in other avian lineages reveals that it is still under strong purifying selection, despite being seemingly dispensable. Thus, FGF17 likely represents a molecular spandrel arising from a genome duplication event and due to its high connectivity with FGF8/FGF18, and potential for interference with their function, is retained under strong purifying selection, despite itself not having a strong selective advantage.
Collapse
|
32
|
Blaess S, Ang SL. Genetic control of midbrain dopaminergic neuron development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:113-34. [PMID: 25565353 DOI: 10.1002/wdev.169] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 10/31/2014] [Accepted: 11/16/2014] [Indexed: 12/31/2022]
Abstract
UNLABELLED Midbrain dopaminergic neurons are involved in regulating motor control, reward behavior, and cognition. Degeneration or dysfunction of midbrain dopaminergic neurons is implicated in several neuropsychiatric disorders such as Parkinson's disease, substance use disorders, depression, and schizophrenia. Understanding the developmental processes that generate midbrain dopaminergic neurons will facilitate the generation of dopaminergic neurons from stem cells for cell replacement therapies to substitute degenerating cells in Parkinson's disease patients and will forward our understanding on how functional diversity of dopaminergic neurons in the adult brain is established. Midbrain dopaminergic neurons develop in a multistep process. Following the induction of the ventral midbrain, a distinct dopaminergic progenitor domain is specified and dopaminergic progenitors undergo proliferation, neurogenesis, and differentiation. Subsequently, midbrain dopaminergic neurons acquire a mature dopaminergic phenotype, migrate to their final position and establish projections and connections to their forebrain targets. This review will discuss insights gained on the signaling network of secreted molecules, cell surface receptors, and transcription factors that regulate specification and differentiation of midbrain dopaminergic progenitors and neurons, from the induction of the ventral midbrain to the migration of dopaminergic neurons. For further resources related to this article, please visit the WIREs website. CONFLICT OF INTEREST The authors have declared no conflicts of interest for this article.
Collapse
Affiliation(s)
- Sandra Blaess
- Institute of Reconstructive Neurobiology, Life and Brain Center, University of Bonn, Bonn, Germany
| | | |
Collapse
|
33
|
Satou Y, Imai KS. Gene regulatory systems that control gene expression in the Ciona embryo. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2015; 91:33-51. [PMID: 25748582 PMCID: PMC4406867 DOI: 10.2183/pjab.91.33] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 11/05/2014] [Indexed: 06/04/2023]
Abstract
Transcriptional control of gene expression is one of the most important regulatory systems in animal development. Specific gene expression is basically determined by combinatorial regulation mediated by multiple sequence-specific transcription factors. The decoding of animal genomes has provided an opportunity for us to systematically examine gene regulatory networks consisting of successive layers of control of gene expression. It remains to be determined to what extent combinatorial regulation encoded in gene regulatory networks can explain spatial and temporal gene-expression patterns. The ascidian Ciona intestinalis is one of the animals in which the gene regulatory network has been most extensively studied. In this species, most specific gene expression patterns in the embryo can be explained by combinations of upstream regulatory genes encoding transcription factors and signaling molecules. Systematic scrutiny of gene expression patterns and regulatory interactions at the cellular resolution have revealed incomplete parts of the network elucidated so far, and have identified novel regulatory genes and novel regulatory mechanisms.
Collapse
Affiliation(s)
- Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University; CREST, JST, Saitama, Japan.
| | | |
Collapse
|
34
|
Baek S, Choi H, Kim J. Ebf3-miR218 regulation is involved in the development of dopaminergic neurons. Brain Res 2014; 1587:23-32. [DOI: 10.1016/j.brainres.2014.08.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 06/16/2014] [Accepted: 08/19/2014] [Indexed: 10/24/2022]
|
35
|
Maintenance of postmitotic neuronal cell identity. Nat Neurosci 2014; 17:899-907. [PMID: 24929660 DOI: 10.1038/nn.3731] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/28/2014] [Indexed: 02/08/2023]
Abstract
The identity of specific cell types in the nervous system is defined by the expression of neuron type-specific gene batteries. How the expression of such batteries is initiated during nervous system development has been under intensive study over the past few decades. However, comparatively little is known about how gene batteries that define the terminally differentiated state of a neuron type are maintained throughout the life of an animal. Here we provide an overview of studies in invertebrate and vertebrate model systems that have carved out the general and not commonly appreciated principle that neuronal identity is maintained in postmitotic neurons by the sustained, and often autoregulated, expression of the same transcription factors that initiate terminal differentiation in a developing organism. Disruption of postmitotic maintenance mechanisms may result in neuropsychiatric and neurodegenerative conditions.
Collapse
|
36
|
Brooks LR, Enix CL, Rich SC, Magno JA, Lowry CA, Tsai PS. Fibroblast growth factor deficiencies impact anxiety-like behavior and the serotonergic system. Behav Brain Res 2014; 264:74-81. [PMID: 24512770 DOI: 10.1016/j.bbr.2014.01.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/07/2014] [Accepted: 01/30/2014] [Indexed: 02/07/2023]
Abstract
Serotonergic neurons in the dorsal raphe nucleus (DR) are organized in anatomically distinct subregions that form connections with specific brain structures to modulate diverse behaviors, including anxiety-like behavior. It is unclear if the functional heterogeneity of these neurons is coupled to their developmental heterogeneity, and if abnormal development of specific DR serotonergic subregions can permanently impact anxiety circuits and behavior. The goal of this study was to examine if deficiencies in different components of fibroblast growth factor (Fgf) signaling could preferentially impact the development of specific populations of DR serotonergic neurons to alter anxiety-like behavior in adulthood. Wild-type and heterozygous male mice globally hypomorphic for Fgf8, Fgfr1, or both (Fgfr1/Fgf8) were tested in an anxiety-related behavioral battery. Both Fgf8- and Fgfr1/Fgf8-deficient mice display increased anxiety-like behavior as measured in the elevated plus-maze and the open-field tests. Immunohistochemical staining of a serotonergic marker, tryptophan hydroxylase (Tph), revealed reductions in specific populations of serotonergic neurons in the ventral, interfascicular, and ventrolateral/ventrolateral periaqueductal gray subregions of the DR in all Fgf-deficient mice, suggesting a neuroanatomical basis for increased anxiety-like behavior. Overall, this study suggests Fgf signaling selectively modulates the development of different serotonergic neuron subpopulations. Further, it suggests anxiety-like behavior may stem from developmental disruption of these neurons, and individuals with inactivating mutations in Fgf signaling genes may be predisposed to anxiety disorders.
Collapse
Affiliation(s)
- Leah R Brooks
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA.
| | - Courtney L Enix
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Samuel C Rich
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Jinno A Magno
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Christopher A Lowry
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Pei-San Tsai
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
37
|
Arenas E. Wnt signaling in midbrain dopaminergic neuron development and regenerative medicine for Parkinson's disease. J Mol Cell Biol 2014; 6:42-53. [DOI: 10.1093/jmcb/mju001] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
38
|
Luz M, Spannl-Müller S, Özhan G, Kagermeier-Schenk B, Rhinn M, Weidinger G, Brand M. Dynamic association with donor cell filopodia and lipid-modification are essential features of Wnt8a during patterning of the zebrafish neuroectoderm. PLoS One 2014; 9:e84922. [PMID: 24427298 PMCID: PMC3888416 DOI: 10.1371/journal.pone.0084922] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 11/20/2013] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Wnt proteins are conserved signaling molecules that regulate pattern formation during animal development. Many Wnt proteins are post-translationally modified by addition of lipid adducts. Wnt8a provides a crucial signal for patterning the anteroposterior axis of the developing neural plate in vertebrates. However, it is not clear how this protein propagates from its source, the blastoderm margin, to the target cells in the prospective neural plate, and how lipid-modifications might influence Wnt8a propagation and activity. RESULTS We have dynamically imaged biologically active, fluorescently tagged Wnt8a in living zebrafish embryos. We find that Wnt8a localizes to membrane-associated, punctate structures in live tissue. In Wnt8a expressing cells, these puncta are found on filopodial cellular processes, from where the protein can be released. In addition, Wnt8a is found colocalized with Frizzled receptor-containing clusters on signal receiving cells. Combining in vitro and in vivo assays, we compare the roles of conserved Wnt8a residues in cell and non-cell-autonomous signaling activity and secretion. Non-signaling Wnt8 variants show these residues can regulate Wnt8a distribution in producing cell membranes and filopodia as well as in the receiving tissue. CONCLUSIONS Together, our results show that Wnt8a forms dynamic clusters found on filopodial donor cell and on signal receiving cell membranes. Moreover, they demonstrate a differential requirement of conserved residues in Wnt8a protein for distribution in producing cells and receiving tissue and signaling activity during neuroectoderm patterning.
Collapse
Affiliation(s)
- Marta Luz
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Stephanie Spannl-Müller
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Günes Özhan
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | | | - Muriel Rhinn
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Gilbert Weidinger
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Michael Brand
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
- * E-mail:
| |
Collapse
|
39
|
Di Giovannantonio LG, Di Salvio M, Omodei D, Prakash N, Wurst W, Pierani A, Acampora D, Simeone A. Otx2 cell-autonomously determines dorsal mesencephalon versus cerebellum fate independently of isthmic organizing activity. Development 2013; 141:377-88. [PMID: 24335253 DOI: 10.1242/dev.102954] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
During embryonic development, the rostral neuroectoderm is regionalized into broad areas that are subsequently subdivided into progenitor compartments with specialized identity and fate. These events are controlled by signals emitted by organizing centers and interpreted by target progenitors, which activate superimposing waves of intrinsic factors restricting their identity and fate. The transcription factor Otx2 plays a crucial role in mesencephalic development by positioning the midbrain-hindbrain boundary (MHB) and its organizing activity. Here, we investigated whether Otx2 is cell-autonomously required to control identity and fate of dorsal mesencephalic progenitors. With this aim, we have inactivated Otx2 in the Pax7(+) dorsal mesencephalic domain, previously named m1, without affecting MHB integrity. We found that the Pax7(+) m1 domain can be further subdivided into a dorsal Zic1(+) m1a and a ventral Zic1(-) m1b sub-domain. Loss of Otx2 in the m1a (Pax7(+) Zic1(+)) sub-domain impairs the identity and fate of progenitors, which undergo a full switch into a coordinated cerebellum differentiation program. By contrast, in the m1b sub-domain (Pax7(+) Zic1(-)) Otx2 is prevalently required for post-mitotic transition of mesencephalic GABAergic precursors. Moreover, genetic cell fate, BrdU cell labeling and Otx2 conditional inactivation experiments indicate that in Otx2 mutants all ectopic cerebellar cell types, including external granule cell layer (EGL) precursors, originate from the m1a progenitor sub-domain and that reprogramming of mesencephalic precursors into EGL or cerebellar GABAergic progenitors depends on temporal sensitivity to Otx2 ablation. Together, these findings indicate that Otx2 intrinsically controls different aspects of dorsal mesencephalic neurogenesis. In this context, Otx2 is cell-autonomously required in the m1a sub-domain to suppress cerebellar fate and promote mesencephalic differentiation independently of the MHB organizing activity.
Collapse
Affiliation(s)
- Luca G Di Giovannantonio
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", CNR, Via P. Castellino 111, 80131 Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Gariano G, Guarienti M, Bresciani R, Borsani G, Carola G, Monti E, Giuliani R, Rezzani R, Bonomini F, Preti A, Schu P, Zizioli D. Analysis of three μ1-AP1 subunits during zebrafish development. Dev Dyn 2013; 243:299-314. [PMID: 24123392 DOI: 10.1002/dvdy.24071] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 09/25/2013] [Accepted: 09/27/2013] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The family of AP-1 complexes mediates protein sorting in the late secretory pathway and it is essential for the development of mammals. The ubiquitously expressed AP-1A complex consists of four adaptins γ1, β1, μ1A, and σ1A. AP-1A mediates protein transport between the trans-Golgi network and early endosomes. The polarized epithelia AP-1B complex contains the μ1B-adaptin. AP-1B mediates specific transport of proteins from basolateral recycling endosomes to the basolateral plasma membrane of polarized epithelial cells. RESULTS Analysis of the zebrafish genome revealed the existence of three μ1-adaptin genes, encoding μ1A, μ1B, and the novel isoform μ1C, which is not found in mammals. μ1C shows 80% sequence identity with μ1A and μ1B. The μ1C expression pattern largely overlaps with that of μ1A, while μ1B is expressed in epithelial cells. By knocking-down the synthesis of μ1A, μ1B and μ1C with antisense morpholino techniques we demonstrate that each of these μ1 adaptins is essential for zebrafish development, with μ1A and μ1C being involved in central nervous system development and μ1B in kidney, gut and liver formation. CONCLUSIONS Zebrafish is unique in expressing three AP-1 complexes: AP-1A, AP-1B, and AP-1C. Our results demonstrate that they are not redundant and that each of them has specific functions, which cannot be fulfilled by one of the other isoforms. Each of the μ1 adaptins appears to mediate specific molecular mechanisms essential for early developmental processes, which depends on specific intracellular vesicular protein sorting pathways.
Collapse
Affiliation(s)
- Giuseppina Gariano
- Unit of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine University of Brescia, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Dyer C, Blanc E, Hanisch A, Roehl H, Otto GW, Yu T, Basson MA, Knight R. A bi-modal function of Wnt signalling directs an FGF activity gradient to spatially regulate neuronal differentiation in the midbrain. Development 2013; 141:63-72. [PMID: 24284206 DOI: 10.1242/dev.099507] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
FGFs and Wnts are important morphogens during midbrain development, but their importance and potential interactions during neurogenesis are poorly understood. We have employed a combination of genetic and pharmacological manipulations in zebrafish to show that during neurogenesis FGF activity occurs as a gradient along the anterior-posterior axis of the dorsal midbrain and directs spatially dynamic expression of the Hairy gene her5. As FGF activity diminishes during development, Her5 is lost and differentiation of neuronal progenitors occurs in an anterior-posterior manner. We generated mathematical models to explain how Wnt and FGFs direct the spatial differentiation of neurons in the midbrain through Wnt regulation of FGF signalling. These models suggested that a negative-feedback loop controlled by Wnt is crucial for regulating FGF activity. We tested Sprouty genes as mediators of this regulatory loop using conditional mouse knockouts and pharmacological manipulations in zebrafish. These reveal that Sprouty genes direct the positioning of early midbrain neurons and are Wnt responsive in the midbrain. We propose a model in which Wnt regulates FGF activity at the isthmus by driving both FGF and Sprouty gene expression. This controls a dynamic, posteriorly retracting expression of her5 that directs neuronal differentiation in a precise spatiotemporal manner in the midbrain.
Collapse
Affiliation(s)
- Carlene Dyer
- Craniofacial Development and Stem Cell Biology, King's College London, Guy's Hospital, London SE1 9RT, UK
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Su CY, Kemp HA, Moens CB. Cerebellar development in the absence of Gbx function in zebrafish. Dev Biol 2013; 386:181-90. [PMID: 24183937 DOI: 10.1016/j.ydbio.2013.10.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/23/2013] [Accepted: 10/25/2013] [Indexed: 11/26/2022]
Abstract
The midbrain-hindbrain boundary (MHB) is a well-known organizing center during vertebrate brain development. The MHB forms at the expression boundary of Otx2 and Gbx2, mutually repressive homeodomain transcription factors expressed in the midbrain/forebrain and anterior hindbrain, respectively. The genetic hierarchy of gene expression at the MHB is complex, involving multiple positive and negative feedback loops that result in the establishment of non-overlapping domains of Wnt1 and Fgf8 on either side of the boundary and the consequent specification of the cerebellum. The cerebellum derives from the dorsal part of the anterior-most hindbrain segment, rhombomere 1 (r1), which undergoes a distinctive morphogenesis to give rise to the cerebellar primordium within which the various cerebellar neuron types are specified. Previous studies in the mouse have shown that Gbx2 is essential for cerebellar development. Using zebrafish mutants we show here that in the zebrafish gbx1 and gbx2 are required redundantly for morphogenesis of the cerebellar primordium and subsequent cerebellar differentiation, but that this requirement is alleviated by knocking down Otx. Expression of fgf8, wnt1 and the entire MHB genetic program is progressively lost in gbx1-;gbx2- double mutants but is rescued by Otx knock-down. This rescue of the MHB genetic program depends on rescued Fgf signaling, however the rescue of cerebellar primordium morphogenesis is independent of both Gbx and Fgf. Based on our findings we propose a revised model for the role of Gbx in cerebellar development.
Collapse
Affiliation(s)
- Chen-Ying Su
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Hilary A Kemp
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Cecilia B Moens
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| |
Collapse
|
43
|
Barritt LC, Miller JM, Scheetz LR, Gardner K, Pierce ML, Soukup GA, Rocha-Sanchez SM. Conditional deletion of the human ortholog gene Dicer1 in Pax2-Cre expression domain impairs orofacial development. INDIAN JOURNAL OF HUMAN GENETICS 2013; 18:310-9. [PMID: 23716939 PMCID: PMC3656520 DOI: 10.4103/0971-6866.107984] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND: Orofacial clefts are common worldwide and result from insufficient growth and/or fusion during the genesis of the derivatives of the first pharyngeal arch and the frontonasal prominence. Recent studies in mice carrying conditional and tissue-specific deletions of the human ortholog Dicer1, an RNAse III family member, have highlighted its importance in cell survival, differentiation, proliferation, and morphogenesis. Nevertheless, information regarding Dicer1 and its dependent microRNAs (miRNAs) in mammalian palatogenesis and orofacial development is limited. AIMS: To describe the craniofacial phenotype, gain insight into potential mechanisms underlying the orofacial defects in the Pax2-Cre/Dicer1 CKO mouse, and shed light on the role of Dicer1 in mammalian palatogenesis. MATERIALS AND METHODS: Histological and molecular assays of wild type (WT) and Pax2-Cre/Dicer1loxP/loxP (Dicer1 CKO) mice dissected tissues have been performed to characterize and analyze the orofacial dysmorphism in Pax2-Cre/Dicer1loxP/loxP mouse. RESULTS: Dicer1 CKO mice exhibit late embryonic lethality and severe craniofacial dysmorphism, including a secondary palatal cleft. Further analysis suggest that Dicer1 deletion neither impacts primary palatal development nor the initial stages of secondary palatal formation. Instead, Dicer1 is implicated in growth, differentiation, mineralization, and survival of cells in the lateral palatal shelves. Histological and molecular analysis demonstrates that secondary palatal development becomes morphologically arrested prior to mineralization around E13.5 with a significant increase in the expression levels of apoptotic markers (P < 0.01). CONCLUSIONS: Pax2-Cre-mediated Dicer1 deletion disrupts lateral palatal outgrowth and bone mineralization during palatal shelf development, therefore providing a mammalian model for investigating the role of miRNA-mediated signaling pathways during palatogenesis.
Collapse
Affiliation(s)
- Laura C Barritt
- Department of Oral Biology, Creighton University School of Dentistry, Omaha, NE, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Szulc KU, Nieman BJ, Houston EJ, Bartelle BB, Lerch JP, Joyner AL, Turnbull DH. MRI analysis of cerebellar and vestibular developmental phenotypes in Gbx2 conditional knockout mice. Magn Reson Med 2013; 70:1707-17. [PMID: 23400959 DOI: 10.1002/mrm.24597] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 11/20/2012] [Accepted: 11/21/2012] [Indexed: 12/19/2022]
Abstract
PURPOSE Our aim in this study was to apply three-dimensional MRI methods to analyze early postnatal morphological phenotypes in a Gbx2 conditional knockout (Gbx2-CKO) mouse that has variable midline deletions in the central cerebellum, reminiscent of many human cerebellar hypoplasia syndromes. METHODS In vivo three-dimensional manganese-enhanced MRI at 100-µm isotropic resolution was used to visualize mouse brains between postnatal days 3 and 11, when cerebellum morphology undergoes dramatic changes. Deformation-based morphometry and volumetric analysis of manganese-enhanced MRI images were used to, respectively, detect and quantify morphological phenotypes in Gbx2-CKO mice. Ex vivo micro-MRI was performed after perfusion-fixation with supplemented gadolinium for higher resolution (50-µm) analysis. RESULTS In vivo manganese-enhanced MRI and deformation-based morphometry correctly identified known cerebellar defects in Gbx2-CKO mice, and novel phenotypes were discovered in the deep cerebellar nuclei and the vestibulo-cerebellum, both validated using histology. Ex vivo micro-MRI revealed subtle phenotypes in both the vestibulo-cerebellum and the vestibulo-cochlear organ, providing an interesting example of complementary phenotypes in a sensory organ and its associated brain region. CONCLUSION These results show the potential of three-dimensional MRI for detecting and analyzing developmental defects in mouse models of neurodevelopmental diseases.
Collapse
Affiliation(s)
- Kamila U Szulc
- Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York, USA; Biomedical Imaging Program, New York University School of Medicine, New York, New York, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Alwin Prem Anand A, Gowri Sankar S, Kokila Vani V. Immortalization of neuronal progenitors using SV40 large T antigen and differentiation towards dopaminergic neurons. J Cell Mol Med 2012; 16:2592-610. [PMID: 22863662 PMCID: PMC4118228 DOI: 10.1111/j.1582-4934.2012.01607.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 07/16/2012] [Indexed: 01/19/2023] Open
Abstract
Transplantation is common in clinical practice where there is availability of the tissue and organ. In the case of neurodegenerative disease such as Parkinson's disease (PD), transplantation is not possible as a result of the non-availability of tissue or organ and therefore, cell therapy is an innovation in clinical practice. However, the availability of neuronal cells for transplantation is very limited. Alternatively, immortalized neuronal progenitors could be used in treating PD. The neuronal progenitor cells can be differentiated into dopaminergic phenotype. Here in this article, the current understanding of the molecular mechanisms involved in the differentiation of dopaminergic phenotype from the neuronal progenitors immortalized with SV40 LT antigen is discussed. In addition, the methods of generating dopaminergic neurons from progenitor cells and the factors that govern their differentiation are elaborated. Recent advances in cell-therapy based transplantation in PD patients and future prospects are discussed.
Collapse
|
46
|
Abstract
The cerebellum controls smooth and skillful movements and it is also involved in higher cognitive and emotional functions. The cerebellum is derived from the dorsal part of the anterior hindbrain and contains two groups of cerebellar neurons: glutamatergic and gamma-aminobutyric acid (GABA)ergic neurons. Purkinje cells are GABAergic and granule cells are glutamatergic. Granule and Purkinje cells receive input from outside of the cerebellum from mossy and climbing fibers. Genetic analysis of mice and zebrafish has revealed genetic cascades that control the development of the cerebellum and cerebellar neural circuits. During early neurogenesis, rostrocaudal patterning by intrinsic and extrinsic factors, such as Otx2, Gbx2 and Fgf8, plays an important role in the positioning and formation of the cerebellar primordium. The cerebellar glutamatergic neurons are derived from progenitors in the cerebellar rhombic lip, which express the proneural gene Atoh1. The GABAergic neurons are derived from progenitors in the ventricular zone, which express the proneural gene Ptf1a. The mossy and climbing fiber neurons originate from progenitors in the hindbrain rhombic lip that express Atoh1 or Ptf1a. Purkinje cells exhibit mediolateral compartmentalization determined on the birthdate of Purkinje cells, and linked to the precise neural circuitry formation. Recent studies have shown that anatomy and development of the cerebellum is conserved between mammals and bony fish (teleost species). In this review, we describe the development of cerebellar neurons and neural circuitry, and discuss their evolution by comparing developmental processes of mammalian and teleost cerebellum.
Collapse
Affiliation(s)
- Mitsuhiro Hashimoto
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi, 466-8550, Japan.
| | | |
Collapse
|
47
|
Affiliation(s)
- Clemens Kiecker
- Medical Research Council (MRC) Center for Developmental Neurobiology, King's College, London SE1 1UL, United Kingdom; ,
| | - Andrew Lumsden
- Medical Research Council (MRC) Center for Developmental Neurobiology, King's College, London SE1 1UL, United Kingdom; ,
| |
Collapse
|
48
|
Robertshaw E, Kiecker C. Phylogenetic origins of brain organisers. SCIENTIFICA 2012; 2012:475017. [PMID: 24278699 PMCID: PMC3820451 DOI: 10.6064/2012/475017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 06/21/2012] [Indexed: 06/02/2023]
Abstract
The regionalisation of the nervous system begins early in embryogenesis, concomitant with the establishment of the anteroposterior (AP) and dorsoventral (DV) body axes. The molecular mechanisms that drive axis induction appear to be conserved throughout the animal kingdom and may be phylogenetically older than the emergence of bilateral symmetry. As a result of this process, groups of patterning genes that are equally well conserved are expressed at specific AP and DV coordinates of the embryo. In the emerging nervous system of vertebrate embryos, this initial pattern is refined by local signalling centres, secondary organisers, that regulate patterning, proliferation, and axonal pathfinding in adjacent neuroepithelium. The main secondary organisers for the AP neuraxis are the midbrain-hindbrain boundary, zona limitans intrathalamica, and anterior neural ridge and for the DV neuraxis the notochord, floor plate, and roof plate. A search for homologous secondary organisers in nonvertebrate lineages has led to controversy over their phylogenetic origins. Based on a recent study in hemichordates, it has been suggested that the AP secondary organisers evolved at the base of the deuterostome superphylum, earlier than previously thought. According to this view, the lack of signalling centres in some deuterostome lineages is likely to reflect a secondary loss due to adaptive processes. We propose that the relative evolutionary flexibility of secondary organisers has contributed to a broader morphological complexity of nervous systems in different clades.
Collapse
Affiliation(s)
- Ellen Robertshaw
- MRC Centre for Developmental Neurobiology, King's College London, 4th Floor, New Hunt's House, Guy's Hospital Campus, London SE1 1UL, UK
| | - Clemens Kiecker
- MRC Centre for Developmental Neurobiology, King's College London, 4th Floor, New Hunt's House, Guy's Hospital Campus, London SE1 1UL, UK
| |
Collapse
|
49
|
Shi M, Hu ZL, Zheng MH, Song NN, Huang Y, Zhao G, Han H, Ding YQ. Notch-Rbpj signaling is required for the development of noradrenergic neurons in the mouse locus coeruleus. J Cell Sci 2012; 125:4320-32. [PMID: 22718343 DOI: 10.1242/jcs.102152] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The locus coeruleus (LC) is the main source of noradrenaline in the brain and is implicated in a broad spectrum of physiological and behavioral processes. However, genetic pathways controlling the development of noradrenergic neurons in the mammalian brain are largely unknown. We report here that Rbpj, a key nuclear effector in the Notch signaling pathway, plays an essential role in LC neuron development in the mouse. Conditional inactivation of Rbpj in the dorsal rhombomere (r) 1, where LC neurons are born, resulted in a dramatic increase in the number of Phox2a- and Phox2b-expressing early-differentiating LC neurons, and dopamine-β-hydroxylase- and tyrosine-hydroxylase-expressing late-differentiating LC neurons. In contrast, other neuronal populations derived from the dorsal r1 were either reduced or unchanged. In addition, a drastic upregulation of Ascl1, an essential factor for noradrenergic neurogenesis, was observed in dorsal r1 of conditional knockout mice. Through genomic sequence analysis and EMSA and ChIP assays, a conserved Rbpj-binding motif was identified within the Ascl1 promoter. A luciferase reporter assay revealed that Rbpj per se could induce Ascl1 transactivation but this effect was counteracted by its downstream-targeted gene Hes1. Moreover, our in vitro gene transfection and in ovo electroporation assays showed that Rbpj upregulated Ascl1 expression when Hes1 expression was knocked down, although it also exerted a repressive effect on Ascl1 expression in the presence of Hes1. Thus, our results provide the first evidence that Rbpj functions as a key modulator of LC neuron development by regulating Ascl1 expression directly, and indirectly through its target gene Hes1.
Collapse
Affiliation(s)
- Ming Shi
- Key Laboratory of Arrhythmias, Ministry of Education of China East Hospital, and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai 200092, China.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
White JJ, Sillitoe RV. Development of the cerebellum: from gene expression patterns to circuit maps. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:149-64. [DOI: 10.1002/wdev.65] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|