1
|
Xu Y, Xu T, Huang C, Amakye WK, Liu L, Fan J, Zhu Y, Yao M, Ren J. Investigating immune-modulatory function of α-glucopyranose-rich compound polysaccharides by MC38-N4/OT-I co-culture system. Int J Biol Macromol 2024; 278:134941. [PMID: 39173810 DOI: 10.1016/j.ijbiomac.2024.134941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/09/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024]
Abstract
The potential antitumor function of polysaccharides is well accepted, it is unclear whether polysaccharides have immunoregulatory effect on CD8+ T lymphocyte cells to attack tumor cells. To evaluate the CD8+ T function enhancing role of polysaccharide compounds, the MC38-N4/OT-I co-culture system was established. The synergistic and complementary immune effect of α-glucopyranose-rich compound polysaccharides can be achieved by manipulating the antigen-specific T-cell expansion capacity and efficacy. This study was designed to investigate the antitumor-enhancement activity of a α-glucopyranose-rich compound polysaccharides by determining the activation of CD8+ T cells in a co-culture system. Compared to the control group (42.5 % ± 0.72 %), the specific α-glucopyranose-rich compound polysaccharides, comprising Agaricus blazei Murill, Grifola frondosa and Pericarpium Citri Reticulatae, demonstrated a significant decrease (20.4 % ± 1.23 %, p < 0.05) in the survival rate of MC38-N4 cells in the co-culture system. Additionally, the α-glucopyranose-rich compound polysaccharides resulted in a substantial increase (p < 0.01) in the proportion of CD8+ T cells and CD62L+ central memory T cells, which is a less differentiated T cell subset with high immune activity. Collectively, we reported that specific polysaccharide combination, which remodel the function of cytotoxic T cells and provided a basis for improving immune functions by using the specific types of polysaccharides.
Collapse
Affiliation(s)
- Yongzhao Xu
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, PR China
| | - Tianxiong Xu
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, PR China
| | - Chujun Huang
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, PR China
| | - William Kwame Amakye
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, PR China
| | - Lun Liu
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, PR China
| | - Junhao Fan
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, PR China
| | - Ying Zhu
- Infinitus (China) Ltd., Guangzhou, Guangdong 510665, PR China
| | - Maojin Yao
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510182, PR China.
| | - Jiaoyan Ren
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, PR China.
| |
Collapse
|
2
|
Forman MR, Chehab RF. A Glimmer of Hope for Medically Indicated Preterm Delivery. J Womens Health (Larchmt) 2021; 30:1216. [PMID: 33577393 DOI: 10.1089/jwh.2021.0004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Michele R. Forman
- Department of Nutrition Science, College of Health and Human Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Rana F. Chehab
- Department of Nutrition Science, College of Health and Human Sciences, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
3
|
Cassiem W, de Kock M. The anti-proliferative effect of apricot and peach kernel extracts on human colon cancer cells in vitro. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:32. [PMID: 30696432 PMCID: PMC6352493 DOI: 10.1186/s12906-019-2437-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 01/14/2019] [Indexed: 12/01/2022]
Abstract
Background Colorectal malignant neoplasms is one of the leading causes of death in both men and women in the developed world and the incidence has recently increased markedly in South Africa. Studies have highlighted the beneficial effects of Amygdalin, a cyanogenic compound found in both peach and apricot kernels, in its ability to suppress the development of colon cancer. The focus of this study was to investigate the potential anti-proliferative properties of various apricot and peach kernels extractions from South Africa and China and to monitor alterations in cell cycle kinetics in colon cancer cells. Methods Studies were conducted on HT-29 colon cancer cells. The interactive role of three different kernel extractions on the modulation of cell proliferation, apoptosis and cell cycle progression was monitored over 24, 48 and 72 h periods. Results After 24 h, all extracts of the South African apricot kernels had a dose related bi-phasic proliferative effect on the HT-29 cells. It stimulated cell proliferation at the lowest and highest concentrations while at 500 μg/mL it inhibited cell proliferation. In contrast, after 72 h, the low concentration inhibited cell proliferation while the 500 μg/mL extracts stimulated cell proliferation. Morphological changes were observed in cells incubated with Chinese kernel extracts after 24 h and South African kernel treatment (1000 μg/mL) after 72 h. A possible intra-S-phase block after 24 and 48 h exposure to South African hydrophilic kernel extracts was observed. This transient block that is more concerned with tolerating and accommodating damage during replication rather than repairing it, could explain the initial anti-proliferative effects observed after 24 h exposure to the various Chinese kernel extract concentrations. Conclusion Abrogation of the block by exhaustion of the cyanide production, most likely allowed the cells to resume the cell cycle and continue into mitosis, whereas low ATP levels caused by the presence of amygdalin in the kernels, can also cause the induction of pycnosis or necrosis. These results highlight the possible mechanisms of growth inhibition by amygdalin containing extracts and may contribute towards the development of dietary anti-cancer therapies.
Collapse
|
4
|
Loomans-Kropp HA, Umar A. Cancer prevention and screening: the next step in the era of precision medicine. NPJ Precis Oncol 2019; 3:3. [PMID: 30701196 PMCID: PMC6349901 DOI: 10.1038/s41698-018-0075-9] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/07/2018] [Indexed: 12/12/2022] Open
Abstract
A primary mode of cancer prevention and early detection in the United States is the widespread practice of screening. Although many strategies for early detection and prevention are available, adverse outcomes, such as overdiagnosis and overtreatment, are prevalent among those utilizing these approaches. Broad use of mammography and prostate cancer screening are key examples illustrating the potential harms stemming from the detection of indolent lesions and the subsequent overtreatment. Furthermore, there are several cancers for which prevention strategies do not currently exist. Clinical and experimental evidence have expanded our understanding of cancer initiation and progression, and have instructed the development of improved, precise modes of cancer prevention and early detection. Recent cancer prevention and early detection innovations have begun moving towards the integration of molecular knowledge and risk stratification profiles to allow for a more accurate representation of at-risk individuals. The future of cancer prevention and early detection efforts should emphasize the incorporation of precision cancer prevention integration where screening and cancer prevention regimens can be matched to one's risk of cancer due to known genomic and environmental factors.
Collapse
Affiliation(s)
- Holli A Loomans-Kropp
- 1Cancer Prevention Fellowship Program, Division of Cancer Prevention, National Cancer Institute, Rockville, MD USA.,2Gastrointestinal and Other Cancers Branch, Division of Cancer Prevention, National Cancer Institute, Rockville, MD USA
| | - Asad Umar
- 1Cancer Prevention Fellowship Program, Division of Cancer Prevention, National Cancer Institute, Rockville, MD USA
| |
Collapse
|
5
|
Chemoprevention of Rat Mammary Carcinogenesis by Apiaceae Spices. Int J Mol Sci 2017; 18:ijms18020425. [PMID: 28212313 PMCID: PMC5343959 DOI: 10.3390/ijms18020425] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/17/2017] [Accepted: 02/08/2017] [Indexed: 02/07/2023] Open
Abstract
Scientific evidence suggests that many herbs and spices have medicinal properties that alleviate symptoms or prevent disease. In this study, we examined the chemopreventive effects of the Apiaceae spices, anise, caraway, and celery seeds against 17β-estrogen (E2)-mediated mammary tumorigenesis in an ACI (August-Copenhagen Irish) rat model. Female ACI rats were given either control diet (AIN 93M) or diet supplemented with 7.5% (w/w) of anise, caraway, or celery seed powder. Two weeks later, one half of the animals in each group received subcutaneous silastic implants of E2. Diet intake and body weight were recorded weekly, and animals were euthanized after 3 and 12 weeks. E2-treatment showed significantly (2.1- and 3.4-fold) enhanced growth of pituitary gland at 3 and 12 weeks, respectively. All test spices significantly offset the pituitary growth by 12 weeks, except celery which was effective as early as three weeks. Immunohistochemical analysis for proliferative cell nuclear antigen (PCNA) in mammary tissues showed significant reduction in E2-mediated mammary cell proliferation. Test spices reduced the circulating levels of both E2 and prolactin at three weeks. This protection was more pronounced at 12 weeks, with celery eliciting the highest effect. RT-PCR and western blot analysis were performed to determine the potential molecular targets of the spices. Anise and caraway diets significantly offset estrogen-mediated overexpression of both cyclin D1 and estrogen receptor α (ERα). The effect of anise was modest. Likewise, expression of CYP1B1 and CYP1A1 was inhibited by all test spices. Based on short-term molecular markers, caraway was selected over other spices based on its enhanced effect on estrogen-associated pathway. Therefore, a tumor-end point study in ACI rats was conducted with dietary caraway. Tumor palpation from 12 weeks onwards revealed tumor latency of 29 days in caraway-treated animals compared with first tumor appearance at 92 days in control group. At the end of the study (25 weeks), the tumor incidence was 96% in the control group compared with only 70% in the caraway group. A significant reduction in tumor volume (661 ± 123 vs. 313 ± 81 mm³) and tumor multiplicity (4.2 ± 0.4 vs. 2.5 ± 0.5 tumors/animal) was also observed in the caraway group compared with the control group. Together, our data show dietary caraway can significantly delay and prevent the hormonal mammary tumorigenesis by modulating different cellular and molecular targets.
Collapse
|
6
|
Abstract
Apoptosis, a form of programmed cell death, is a pivotal defense against the occurrence of cancer and is essential to metazoans in maintaining tissue homeostasis. Apoptosis exhibits a distinctive phenotype and involves elimination of potentially deleterious cells. Many diseases have been associated with aberrantly regulated apoptotic cell death, ultimately leading to inhibition of apoptosis and propagation of diseases such as cancer. Elucidation of the critical events associated with carcinogenesis provides the opportunity for dietary intervention to prevent cancer development through induction of apoptosis, Particularly by bioactive agents or functional foods. Diet is a significant environmental factor in the overall cancer process and can exacerbate or interfere with carcinogenesis. Apoptosis occurs primarily through two well-recognized pathways in cells, including the Intrinsic, or mitochondrial-mediated, effector mechanism and the extrinsic, or death receptor-mediated, effector mechanism. In addition to diet's effects on protein expression and function, evidence is also accumulating that a large number of dietary food components can exert effects on the human genome, either directly or indirectly, to modulate gene expression. In fact, many diet-related genes are involved in carcinogenesis as well as apoptosis, and thus are ultimately molecular targets for dietary chemopreventlon. There are multiple steps within pathways in which dietary components can alter gene expression and phenotypes of cells and thus influence cancer outcomes (nutritional transcriptomic effect). Thus, apoptosis is an emerging therapeutic target of bioactive agents of diet. In this review, the process of apoptosis is discussed and the potential mechanistic interaction of bioactive agents, as components of functional foods, is explored within the context of apoptosis.
Collapse
Affiliation(s)
- Keith R Martin
- Department of Nutritional Sciences, The Pennsylvania State University, 126 Henderson Building South, University Park, PA 16802, USA.
| |
Collapse
|
7
|
Singh G, Jawed A, Paul D, Bandyopadhyay KK, Kumari A, Haque S. Concomitant Production of Lipids and Carotenoids in Rhodosporidium toruloides under Osmotic Stress Using Response Surface Methodology. Front Microbiol 2016; 7:1686. [PMID: 27826295 PMCID: PMC5078724 DOI: 10.3389/fmicb.2016.01686] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 10/07/2016] [Indexed: 11/13/2022] Open
Abstract
As a replacement to existing fossil fuels, biofuels, have proven their worth; however, their widespread use is limited due to inconsistent yields, higher costs and poor productivity. An oleaginous yeast, Rhodosporidium toruloides has been reported to accumulate substantial amounts of lipids (that can be converted to biofuels) and therefore, it was selected for study and optimization. Apart from lipids, R. toruloides is also reported to produce carotene that can be used as a therapeutic agent. In this study, the culture medium was statistically modeled and optimized for concomitant production of lipids and carotenoids and for improving and maximizing the productivity of lipids as well as carotenes. The two metabolites were expressed differentially in the growth cycle of the organism. Culture medium components were simultaneously varied at five different levels using statistical modeling employing response surface methodology (RSM). Osmotic stress was introduced in order to simulate saline conditions and optimize the carotenoid as well as lipid production process, to be used in conditions with high salt contents. We observed a 10% (w/v) increase in carotenoid production in initial experiments under osmotic stress due to high salt concentration, while the increase in lipid synthesis was not pronounced. In this study, we demonstrate 36.2% (w/v) lipid production and 27.2% (w/v) carotenoid production, under osmotic stress with high salt concentrations, for the first time.
Collapse
Affiliation(s)
- Gunjan Singh
- Amity Institute of Biotechnology, Amity University Noida, India
| | | | - Debarati Paul
- Amity Institute of Biotechnology, Amity University Noida, India
| | | | - Abha Kumari
- Amity Institute of Biotechnology, Amity University Noida, India
| | - Shafiul Haque
- Department of Biosciences, Jamia Millia Islamia New Delhi, India
| |
Collapse
|
8
|
Lottenberg AMP, Fan PLT, Buonacorso V. Effects of dietary fiber intake on inflammation in chronic diseases. EINSTEIN-SAO PAULO 2016; 8:254-8. [PMID: 26760015 DOI: 10.1590/s1679-45082010md1310] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Accepted: 04/12/2010] [Indexed: 12/31/2022] Open
Abstract
Chronic diseases such as obesity, type-2 diabetes, metabolic syndrome and cardiovascular diseases are associated with inflammation due the increase of TNF-α, IL-6 and C-reactive protein concentrations. Occidental life style, specially related to the changes in food habits as observed in the past years, have an important role in the development of these diseases. Among the life style changes identified as having an impact in the development of diseases, is the decrease in dietary fiber consumption. Some studies have shown the negative relationship between fiber ingestion and inflammatory markers in chronic diseases. Dietary fibers have an important and a well-known role in different physiologic functions such as intestinal peristalsis, weight reduction by acting on satiety mechanisms, preventing colon cancer, reducing cholesterol and post-prandial glycaemia.
Collapse
Affiliation(s)
- Ana Maria Pita Lottenberg
- Department of Endocrinology, Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo - USP, BR
| | | | - Vivian Buonacorso
- Instituto Israelita de Ensino e Pesquisa Albert Einstein - IIEPAE, São Paulo, SP, BR
| |
Collapse
|
9
|
Yusof KM, Makpol S, Jamal R, Harun R, Mokhtar N, Ngah WZW. γ-Tocotrienol and 6-Gingerol in Combination Synergistically Induce Cytotoxicity and Apoptosis in HT-29 and SW837 Human Colorectal Cancer Cells. Molecules 2015; 20:10280-97. [PMID: 26046324 PMCID: PMC6272690 DOI: 10.3390/molecules200610280] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 12/16/2022] Open
Abstract
Numerous bioactive compounds have cytotoxic properties towards cancer cells. However, most studies have used single compounds when bioactives may target different pathways and exert greater cytotoxic effects when used in combination. Therefore, the objective of this study was to determine the anti-proliferative effect of γ-tocotrienol (γ-T3) and 6-gingerol (6G) in combination by evaluating apoptosis and active caspase-3 in HT-29 and SW837 colorectal cancer cells. MTS assays were performed to determine the anti-proliferative and cytotoxicity effect of γ-T3 (0–150 µg/mL) and 6G (0–300 µg/mL) on the cells. The half maximal inhibitory concentration (IC50) value of 6G+ γ-T3 for HT-29 was 105 + 67 µg/mL and for SW837 it was 70 + 20 µg/mL. Apoptosis, active caspase-3 and annexin V FITC assays were performed after 24 h of treatment using flow cytometry. These bioactives in combination showed synergistic effect on HT-29 (CI: 0.89 ± 0.02,) and SW837 (CI: 0.79 ± 0.10) apoptosis was increased by 21.2% in HT-29 and 55.4% in SW837 (p < 0.05) after 24 h treatment, while normal hepatic WRL-68 cells were unaffected. Increased apoptosis by the combined treatments was also observed morphologically, with effects like cell shrinkage and pyknosis. In conclusion, although further studies need to be done, γ-T3 and 6G when used in combination act synergistically increasing cytotoxicity and apoptosis in cancer cells.
Collapse
Affiliation(s)
- Khairunnisa' Md Yusof
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Center, Jalan Ya'acob Latiff, Bandar Tun Razak, Cheras 56000, Malaysia.
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Ya'acob Latiff, Bandar Tun Razak, Cheras 56000, Malaysia.
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Center, Jalan Ya'acob Latiff, Bandar Tun Razak, Cheras 56000, Malaysia.
| | - Roslan Harun
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Center, Jalan Ya'acob Latiff, Bandar Tun Razak, Cheras 56000, Malaysia.
| | - Norfilza Mokhtar
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Center, Jalan Ya'acob Latiff, Bandar Tun Razak, Cheras 56000, Malaysia.
| | - Wan Zurinah Wan Ngah
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Center, Jalan Ya'acob Latiff, Bandar Tun Razak, Cheras 56000, Malaysia.
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Ya'acob Latiff, Bandar Tun Razak, Cheras 56000, Malaysia.
| |
Collapse
|
10
|
Aiyer HS, Warri AM, Woode DR, Hilakivi-Clarke L, Clarke R. Influence of berry polyphenols on receptor signaling and cell-death pathways: implications for breast cancer prevention. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:5693-708. [PMID: 22300613 PMCID: PMC3383353 DOI: 10.1021/jf204084f] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Breast cancer is the most commonly diagnosed cancer among women worldwide. Many women have become more aware of the benefits of increasing fruit consumption, as part of a healthy lifestyle, for the prevention of cancer. The mechanisms by which fruits, including berries, prevent breast cancer can be partially explained by exploring their interactions with pathways known to influence cell proliferation and evasion of cell-death. Two receptor pathways, estrogen receptor (ER) and tyrosine kinase receptors, especially the epidermal growth factor receptor (EGFR) family, are drivers of cell proliferation and play a significant role in the development of both primary and recurrent breast cancer. There is strong evidence to show that several phytochemicals present in berries such as cyanidin, delphinidin, quercetin, kaempferol, ellagic acid, resveratrol, and pterostilbene interact with and alter the effects of these pathways. Furthermore, they also induce cell death (apoptosis and autophagy) via their influence on kinase signaling. This review summarizes in vitro data regarding the interaction of berry polyphenols with the specific receptors and the mechanisms by which they induce cell death. This paper also presents in vivo data of primary breast cancer prevention by individual compounds and whole berries. Finally, a possible role for berries and berry compounds in the prevention of breast cancer and a perspective on the areas that require further research are presented.
Collapse
Affiliation(s)
- Harini S Aiyer
- Georgetown University School of Medicine, Vincent T. Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road NW, W401, Research Bldg, Washington, D.C. 20057
- Corresponding author: Harini S. Aiyer, PhD (Tel: 202-687-4060; Fax: 202-687-7505; )
| | - Anni M Warri
- Georgetown University School of Medicine, Vincent T. Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road NW, W401, Research Bldg, Washington, D.C. 20057
| | - Denzel R Woode
- Columbia University, 5992 Lerner Hall, New York, NY 10027
| | - Leena Hilakivi-Clarke
- Georgetown University School of Medicine, Vincent T. Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road NW, W401, Research Bldg, Washington, D.C. 20057
| | - Robert Clarke
- Georgetown University School of Medicine, Vincent T. Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road NW, W401, Research Bldg, Washington, D.C. 20057
| |
Collapse
|
11
|
Tropea A, Gervasi T, Melito M, Curto AL, Curto RL. Does the light influence astaxanthin production in Xanthophyllomyces dendrorhous? Nat Prod Res 2012; 27:647-53. [DOI: 10.1080/14786419.2012.688045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- A. Tropea
- a Department of Food and Environmental Sciences , University of Messina , Viale F. S. d’Alcontres, Messina , Italy
| | - T. Gervasi
- a Department of Food and Environmental Sciences , University of Messina , Viale F. S. d’Alcontres, Messina , Italy
| | - M.R. Melito
- a Department of Food and Environmental Sciences , University of Messina , Viale F. S. d’Alcontres, Messina , Italy
| | - A. Lo Curto
- a Department of Food and Environmental Sciences , University of Messina , Viale F. S. d’Alcontres, Messina , Italy
| | - R. Lo Curto
- a Department of Food and Environmental Sciences , University of Messina , Viale F. S. d’Alcontres, Messina , Italy
| |
Collapse
|
12
|
de Paula Carli A, de Abreu Vieira PM, Silva KTS, de Sá Cota RG, Carneiro CM, Castro-Borges W, de Andrade MHG. Bowman-Birk inhibitors, proteasome peptidase activities and colorectal pre neoplasias induced by 1,2-dimethylhydrazine in Swiss mice. Food Chem Toxicol 2012; 50:1405-12. [PMID: 22326805 DOI: 10.1016/j.fct.2012.01.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 01/17/2012] [Accepted: 01/19/2012] [Indexed: 12/24/2022]
Abstract
Bowman-Birk inhibitors (BBIs) are protein molecules containing two inhibitory domains for enzymes similar to trypsin and chymotrypsin. Interest in these inhibitors arose from their properties against the cancer chemically induced by 1,2-dimethylhydrazine (DMH). In this study the effect of two BBI preparations (from Glycine max and Macrotyloma axillare) were evaluated for the prevention of colorectal neoplasia induced by intraperitoneal injections of DMH, given at a dose of 30 mg/kg, during 12 weeks. Mice treated with DMH presented histopathological alterations consistent with tumor development, augmented CD44 expression and increased proteasome peptidase activities. Lysosomal fractions, obtained from the intestines, were chromatographed in a Sepharose-BBI column and increased activity for trypsin and chymotrypsin-like proteases recovered from DMH-treated animals. In parallel, mice treated for eight weeks with BBIs showed a decrease in the chymotrypsin and trypsin-like proteasome activities compared to animals fed on normal diet. For the groups receiving simultaneous treatment with DMH and BBIs, dysplasic lesions were not observed and proteasome peptidase activities were similar to the control group after the 24th week. These results suggest that the mechanism by which BBIs could prevent the appearance of pre neoplastic lesions is associated with inhibition of both the lysosomal and proteasome-dependent proteolytic pathways.
Collapse
|
13
|
Llaverias G, Danilo C, Mercier I, Daumer K, Capozza F, Williams TM, Sotgia F, Lisanti MP, Frank PG. Role of cholesterol in the development and progression of breast cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 178:402-12. [PMID: 21224077 DOI: 10.1016/j.ajpath.2010.11.005] [Citation(s) in RCA: 229] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 08/12/2010] [Accepted: 09/30/2010] [Indexed: 02/07/2023]
Abstract
Diet and obesity are important risk factors for cancer development. Many studies have suggested an important role for several dietary nutrients in the progression and development of breast cancer. However, few studies have specifically addressed the role of components of a Western diet as important factors involved in breast cancer initiation and progression. The present study examined the role of cholesterol in the regulation of tumor progression in a mouse model of mammary tumor formation. The results suggest that cholesterol accelerates and enhances tumor formation. In addition, tumors were more aggressive, and tumor angiogenesis was enhanced. Metabolism of cholesterol was also examined in this mouse model. It was observed that plasma cholesterol levels were reduced during tumor development but not prior to its initiation. These data provide new evidence for an increased utilization of cholesterol by tumors and for its role in tumor formation. Taken together, these results imply that an increase in plasma cholesterol levels accelerates the development of tumors and exacerbates their aggressiveness.
Collapse
Affiliation(s)
- Gemma Llaverias
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Simpson JL, Bailey LB, Pietrzik K, Shane B, Holzgreve W. Micronutrients and women of reproductive potential: required dietary intake and consequences of dietary deficienty or excess. Part II - Vitamin D, Vitamin A, Iron, Zinc, Iodine, Essential Fatty Acids. J Matern Fetal Neonatal Med 2010; 24:1-24. [DOI: 10.3109/14767051003678226] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
15
|
Abstract
IMPORTANCE OF THE FIELD Due to the failure and severe toxicity of cancer chemotherapy, silibinin, a natural flavonoid from the seeds of milk thistle, has recently received more attention for its potential anticancer and nontoxic roles in animals and humans. Silibinin has clearly demonstrated inhibition of multiple cancer cell signaling pathways, including growth inhibition, inhibition of angiogenesis, chemosensitization, and inhibition of invasion and metastasis. Cumulative evidence implicates that silibinin is a potential agent for cancer chemoprevention and chemotherapy. AREAS COVERED IN THIS REVIEW Our aim is to discuss the recent progress of silibinin in regulating multiple anticancer proliferative signaling pathways; the review covers literature mainly from the past 3 - 5 years. WHAT THE READER WILL GAIN One of the strategies for tumor therapy is eradication of cancer cells through targeting specific cell-proliferative pathways. This review highlights the current knowledge of silibinin in regulating multiple cellular proliferative pathways in cancer cells, including receptor tyrosine kinases, androgen receptor, STATs, NF-kappaB, cell cycle regulatory and apoptotic signaling pathways. TAKE HOME MESSAGE The molecular mechanisms of silibinin-mediated antiproliferative effects are mainly via receptor tyrosine kinases, androgen receptor, STATs, NF-kappaB, cell cycle regulatory and apoptotic signaling pathways in various cancer cells. Targeting inhibition of proliferative pathways through silibinin treatment may provide a new approach for improving chemopreventive and chemotherapeutic effects.
Collapse
Affiliation(s)
- Lei Li
- The First Hospital of Xi'an Jiaotong University, Department of Urology, 277 Yanta West Road, Xi'an 710061, People's Republic of China
| | | | | | | |
Collapse
|
16
|
Klenow S, Pool-Zobel BL, Glei M. Influence of inorganic and organic iron compounds on parameters of cell growth and survival in human colon cells. Toxicol In Vitro 2009; 23:400-7. [DOI: 10.1016/j.tiv.2009.01.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
17
|
Frengova GI, Beshkova DM. Carotenoids from Rhodotorula and Phaffia: yeasts of biotechnological importance. J Ind Microbiol Biotechnol 2008; 36:163-80. [PMID: 18982370 DOI: 10.1007/s10295-008-0492-9] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 10/14/2008] [Indexed: 10/21/2022]
Abstract
Carotenoids represent a group of valuable molecules for the pharmaceutical, chemical, food and feed industries, not only because they can act as vitamin A precursors, but also for their coloring, antioxidant and possible tumor-inhibiting activity. Animals cannot synthesize carotenoids, and these pigments must therefore be added to the feeds of farmed species. The synthesis of different natural commercially important carotenoids (beta-carotene, torulene, torularhodin and astaxanthin) by several yeast species belonging to the genera Rhodotorula and Phaffia has led to consider these microorganisms as a potential pigment sources. In this review, we discuss the biosynthesis, factors affecting carotenogenesis in Rhodotorula and Phaffia strains, strategies for improving the production properties of the strains and directions for potential utility of carotenoid-synthesizing yeast as a alternative source of natural carotenoid pigments.
Collapse
Affiliation(s)
- Ginka I Frengova
- Laboratory of Applied Microbiology, Institute of Microbiology, Bulgarian Academy of Sciences, 26 Maritza Blvd., 4002, Plovdiv, Bulgaria.
| | | |
Collapse
|
18
|
Hawk ET, Greenwood A, Gritz ER, McTiernan A, Sellers T, Hursting SD, Leischow S, Grad O. The Translational Research Working Group developmental pathway for lifestyle alterations. Clin Cancer Res 2008; 14:5707-13. [PMID: 18794079 DOI: 10.1158/1078-0432.ccr-08-1262] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Translational Research Working Group (TRWG) was created as a national initiative to evaluate the current status of National Cancer Institute's investment in translational research and envision its future. The TRWG conceptualized translational research as a set of six developmental processes or pathways focused on various clinical goals. One of those pathways describes the development of lifestyle alterations, which can, variously, be recommended to prevent cancer, modify a patient's adherence and response to cancer treatment, ameliorate side effects of cancer treatments, or improve prognosis and quality of life in cancer patients and survivors. The lifestyle alteration pathway was conceived not as a comprehensive description of the corresponding real-world processes, but rather as a tool designed to facilitate movement of a candidate lifestyle alteration through the translational process up to the point where it could be handed off for definitive testing, when appropriate. This article discusses key issues associated with the development of lifestyle alterations in light of the pathway.
Collapse
|
19
|
Rogers CJ, Colbert LH, Greiner JW, Perkins SN, Hursting SD. Physical activity and cancer prevention : pathways and targets for intervention. Sports Med 2008; 38:271-96. [PMID: 18348589 DOI: 10.2165/00007256-200838040-00002] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The prevalence of obesity, an established epidemiological risk factor for many cancers, has risen steadily for the past several decades in the US and many other countries. Particularly alarming are the increasing rates of obesity among children, portending continuing increases in the rates of obesity and obesity-related cancers for many years to come. Modulation of energy balance, via increased physical activity, has been shown in numerous comprehensive epidemiological reviews to reduce cancer risk. Unfortunately, the effects and mechanistic targets of physical activity interventions on the carcinogenesis process have not been thoroughly characterized. Studies to date suggest that exercise can exert its cancer-preventive effects at many stages during the process of carcinogenesis, including both tumour initiation and progression. As discussed in this review, exercise may be altering tumour initiation events by modifying carcinogen activation, specifically by enhancing the cytochrome P450 system and by enhancing selective enzymes in the carcinogen detoxification pathway, including, but not limited to, glutathione-S-transferases. Furthermore, exercise may reduce oxidative damage by increasing a variety of anti-oxidant enzymes, enhancing DNA repair systems and improving intracellular protein repair systems. In addition to altering processes related to tumour initiation, exercise may also exert a cancer-preventive effect by dampening the processes involved in the promotion and progression stages of carcinogenesis, including scavenging reactive oxygen species (ROS); altering cell proliferation, apoptosis and differentiation; decreasing inflammation; enhancing immune function; and suppressing angiogenesis. A paucity of data exists as to whether exercise may be working as an anti-promotion strategy via altering ROS in initiated or preneoplastic models; therefore, no conclusions can be made about this possible mechanism. The studies directly examining cell proliferation and apoptosis have shown that exercise can enhance both processes, which is difficult to interpret in the context of carcinogenesis. Studies examining the relationship between exercise and chronic inflammation suggest that exercise may reduce pro-inflammatory mediators and reduce the state of low-grade, chronic inflammation. Additionally, exercise has been shown to enhance components of the innate immune response (i.e. macrophage and natural killer cell function). Finally, only a limited number of studies have explored the relationship between exercise and angiogenesis; therefore, no conclusions can be made currently about the role of exercise in the angiogenesis process as it relates to tumour progression. In summary, exercise can alter biological processes that contribute to both anti-initiation and anti-progression events in the carcinogenesis process. However, more sophisticated, detailed studies are needed to examine each of the potential mechanisms contributing to an exercise-induced decrease in carcinogenesis in order to determine the minimum dose, duration and frequency of exercise needed to yield significant cancer-preventive effects, and whether exercise can be used prescriptively to reverse the obesity-induced physiological changes that increase cancer risk.
Collapse
Affiliation(s)
- Connie J Rogers
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | | | | | | | | |
Collapse
|
20
|
|
21
|
Lanza E, Yu B, Murphy G, Albert PS, Caan B, Marshall JR, Lance P, Paskett ED, Weissfeld J, Slattery M, Burt R, Iber F, Shike M, Kikendall JW, Brewer BK, Schatzkin A. The polyp prevention trial continued follow-up study: no effect of a low-fat, high-fiber, high-fruit, and -vegetable diet on adenoma recurrence eight years after randomization. Cancer Epidemiol Biomarkers Prev 2007; 16:1745-52. [PMID: 17855692 DOI: 10.1158/1055-9965.epi-07-0127] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The Polyp Prevention Trial (PPT) was a multicenter randomized clinical trial to evaluate the effects of a high-fiber (18 g/1,000 kcal), high-fruit and -vegetable (3.5 servings/1,000 kcal), and low-fat (20% of total energy) diet on the recurrence of adenomatous polyps in the large bowel over a period of 4 years. Although intervention participants reported a significantly reduced intake of dietary fat, and increased fiber, fruit, and vegetable intakes, their risk of recurrent adenomas was not significantly different from that of the controls. Since the PPT intervention lasted only 4 years, it is possible that participants need to be followed for a longer period of time before treatment differences in adenoma recurrence emerge, particularly if diet affects early events in the neoplastic process. The PPT-Continued Follow-up Study (PPT-CFS) was a post-intervention observation of PPT participants for an additional 4 years from the completion of the trial. Of the 1,905 PPT participants, 1,192 consented to participate in the PPT-CFS and confirmed colonoscopy reports were obtained on 801 participants. The mean time between the main trial end point colonoscopy and the first colonoscopy in the PPT-CFS was 3.94 years (intervention group) and 3.87 years (control group). The baseline characteristics of 405 intervention participants and 396 control participants in the PPT-CFS were quite similar. Even though the intervention group participants increased their fat intake and decreased their intakes of fiber, fruits, and vegetables during the PPT-CFS, they did not go back to their prerandomization baseline diet (P < 0.001 from paired t tests) and intake for each of the three dietary goals was still significantly different from that in the controls during the PPT-CFS (P < 0.001 from t tests). As the CFS participants are a subset of the people in the PPT study, the nonparticipants might not be missing completely at random. Therefore, a multiple imputation method was used to adjust for potential selection bias. The relative risk (95% confidence intervals) of recurrent adenoma in the intervention group compared with the control group was 0.98 (0.88-1.09). There were no significant intervention-control group differences in the relative risk for recurrence of an advanced adenoma (1.06; 0.81-1.39) or multiple adenomas (0.92; 0.77-1.10). We also used a multiple imputation method to examine the cumulative recurrence of adenomas through the end of the PPT-CFS: the intervention-control relative risk (95% confidence intervals) for any adenoma recurrence was 1.04 (0.98-1.09). This study failed to show any effect of a low-fat, high-fiber, high-fruit and -vegetable eating pattern on adenoma recurrence even with 8 years of follow-up. (Cancer Epidemiol Biomarkers Prev 2007;16(9):1745-52).
Collapse
Affiliation(s)
- Elaine Lanza
- Laboratory for Cancer Prevention, Centre for Cancer Research, National Cancer Institute, 6116 Executive Boulevard, Room 7206, Bethesda, MD 20892-8325, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Este artigo discute as possibilidades de proteção contra o desenvolvimento do câncer, proporcionadas por carotenóides provenientes da alimentação, com base em uma revisão da literatura. Os carotenóides têm demonstrado uma ação protetora contra a carcinogênese, tanto em estudos in vitro como in vivo, com animais e humanos. Entre eles, a beta-criptoxantina, a fucoxantina, a astaxantina, a capsantina, a crocetina e o fitoeno, têm sido pouco explorados, e a literatura ainda se mostra extremamente limitada e pouco conclusiva. Estudos experimentais com humanos demonstraram não haver efeito, ou efeito reverso, do beta-caroteno, no entanto, não incluíram anteriormente variáveis intervenientes e interativas que deveriam ter sido controladas. A partir da evidência científica, baseada em estudos epidemiológicos e ensaios experimentais recentes, e da elucidação dos mecanismos de atuação de fitoquímicos relacionados à maior proteção contra o câncer, conclui-se que a alimentação rica em carotenóides provenientes das frutas, legumes e verduras, representa um possível fator de proteção contra o desenvolvimento do câncer.
Collapse
|
23
|
|
24
|
Abstract
Evidence continues to mount that dietary components are important determinants of cancer risk and tumor behavior. Although these linkages are fascinating, numerous inconsistencies are also evident in the literature. Although multifactorial, these discrepancies likely reflect variation in the ability of food constituents to reach and/or modify critical molecular targets. Genetic polymorphisms can alter the response to dietary components (nutrigenetic effect) by influencing the absorption, metabolism, or site of action. Likewise, variation in DNA methylation patterns and other epigenomic events that influence overall gene expression can influence the biological response to food components and vice versa. Fluctuations in the ability of food components to increase or depress gene expression (nutritional transcriptomic effect) may also account for some of the inconsistencies in the response to foods. Functional proteomic studies that capture all of the proteins produced by a species and link them to physiological significance within the cell will be fundamental to understanding the relationship between dietary interventions, proteome changes, and cancer. Although a bioactive food component may influence a number of key molecular events that are involved with cancer prevention, to do so it must achieve an effective concentration within the target site, be in the correct metabolic form, and bring about a change in one or more small molecular weight signals in the cellular milleau (metabolomic effects). Fundamental to assessing and evaluating the significance of the interrelationships among bioactive food components with nutrigenetics, nutritional epigenomics, nutritional transcriptomics, proteomics, and metabolomics is knowledge about the appropriate tissue/cell or surrogate to evaluate and validated biomarkers that reflect changes in each. As the era of molecular nutrition grows, a greater understanding about the role of foods and their components on cancer risk and tumor behavior will surely unfold. Such information will be critical in the development of effective preemptive approaches to reduce the cancer burden.
Collapse
Affiliation(s)
- John A Milner
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Rockville, MD 20892, USA.
| |
Collapse
|
25
|
Barnard RJ, Gonzalez JH, Liva ME, Ngo TH. Effects of a Low-Fat, High-Fiber Diet and Exercise Program on Breast Cancer Risk Factors In Vivo and Tumor Cell Growth and Apoptosis In Vitro. Nutr Cancer 2006; 55:28-34. [PMID: 16965238 DOI: 10.1207/s15327914nc5501_4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The present study investigated the effects of a diet and exercise intervention on known breast cancer (BCa) risk factors, including estrogen, obesity, insulin, and insulin-like growth factor-I (IGF-I), in overweight/obese, postmenopausal women. In addition, using the subjects' pre- and postintervention serum in vitro, serum-stimulated growth and apoptosis of three estrogen receptor-positive BCa cell lines were studied. The women where placed on a low-fat (10-15% kcal), high-fiber (30-40 g per 1,000 kcal/day) diet and attended daily exercise classes for 2 wk. Serum estradiol was reduced in the women on hormone treatment (HT; n = 28) as well as those not on HT (n = 10). Serum insulin and IGF-I were significantly reduced in all women, whereas IGF binding protein-1 was increased significantly. In vitro growth of the BCa cell lines was reduced by 6.6% for the MCF-7 cells, 9.9% for the ZR-75-1 cells, and 18.5% for the T-47D cells. Apoptosis was increased by 20% in the ZR-75-1 cells, 23% in the MCF-7 cells, and 30% in the T-47D cells (n = 12). These results show that a very-low-fat, high-fiber diet combined with daily exercise results in major reductions in risk factors for BCa while subjects remained overweight/obese. These in vivo serum changes slowed the growth and induced apoptosis in serum-stimulated BCa cell lines in vitro.
Collapse
Affiliation(s)
- R James Barnard
- Department of Physiological Science, University of California, Los Angeles, Los Angeles, CA 90095-1606, USA.
| | | | | | | |
Collapse
|
26
|
Ahmed FE. Gene-gene, gene-environment & multiple interactions in colorectal cancer. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2006; 24:1-101. [PMID: 16690537 DOI: 10.1080/10590500600614295] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
This review comprehensively evaluates the influence of gene-gene, gene-environment and multiple interactions on the risk of colorectal cancer (CRC). Methods of studying these interactions and their limitations have been discussed herein. There is a need to develop biomarkers of exposure and of risk that are sensitive, specific, present in the pathway of the disease, and that have been clinically tested for routine use. The influence of inherited variation (polymorphism) in several genes has been discussed in this review; however, due to study limitations and confounders, it is difficult to conclude which ones are associated with the highest risk (either individually or in combination with environmental factors) to CRC. The majority of the sporadic cancer is believed to be due to modification of mutation risk by other genetic and/or environmental factors. Micronutrient deficiency may explain the association between low consumption of fruit/vegetables and CRC in human studies. Mitochondrial modulation by dietary factors influences the balance between cell renewal and death critical in colon mucosal homeostasis. Both genetic and epigenetic interactions are intricately dependent on each other, and collectively influence the process of colorectal tumorigenesis. The genetic and environmental interactions present a good prospect and a challenge for prevention strategies for CRC because they support the view that this highly prevalent cancer is preventable.
Collapse
Affiliation(s)
- Farid E Ahmed
- Department of Radiation Oncology, Leo W. Jenkins Cancer Center, The Brody School of Medicine, East Carolina University, Greenville, North, Carolina 27858, USA.
| |
Collapse
|
27
|
Corpet DE, Pierre F. How good are rodent models of carcinogenesis in predicting efficacy in humans? A systematic review and meta-analysis of colon chemoprevention in rats, mice and men. Eur J Cancer 2005; 41:1911-22. [PMID: 16084718 DOI: 10.1016/j.ejca.2005.06.006] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Revised: 06/13/2005] [Accepted: 06/15/2005] [Indexed: 12/17/2022]
Abstract
Tumours in rodent and human colon share many histological and genetic features. To know if rodent models of colon carcinogenesis are good predictors of chemopreventive efficacy in humans, we conducted a meta-analysis of aspirin, beta-carotene, calcium, and wheat bran studies. Controlled intervention studies of adenoma recurrence in human volunteers were compared with chemoprevention studies of carcinogen-induced tumours in rats, and of polyps in Min (Apc(+/-)) mice: 6714 volunteers, 3911 rats and 458 mice were included in the meta-analyses. Difference between models was small since most global relative risks were between 0.76 and 1.00. A closer look showed that carcinogen-induced rat studies matched human trials for aspirin, calcium, carotene, and were compatible for wheat bran. Min mice results were compatible with human results for aspirin, but discordant for calcium and wheat bran (no carotene study). These few results suggest that rodent models roughly predict effect in humans, but the prediction is not accurate for all agents. Based on three cases only, the carcinogen-induced rat model seems better than the Min mouse model. However, rodent studies are useful to screen potential chemopreventive agents, and to study mechanisms of carcinogenesis and chemoprevention.
Collapse
Affiliation(s)
- Denis E Corpet
- UMR Xenobiotiques, Institut National Recherche Agronomique, Ecole Nationale Veterinaire Toulouse, BP-87614, 23 Capelles, 31076 Toulouse, France.
| | | |
Collapse
|
28
|
McEligot AJ, Yang S, Meyskens FL. REDOX REGULATION BY INTRINSIC SPECIES AND EXTRINSIC NUTRIENTS IN NORMAL AND CANCER CELLS. Annu Rev Nutr 2005; 25:261-95. [PMID: 16011468 DOI: 10.1146/annurev.nutr.25.050304.092633] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cells in multicellular organisms are exposed to both endogenous oxidative stresses generated metabolically and to oxidative stresses that originate from neighboring cells and from other tissues. To protect themselves from oxidative stress, cells are equipped with reducing buffer systems (glutathione/GSH and thioredoxin/thioredoxin reductase) and have developed several enzymatic mechanisms against oxidants that include catalase, superoxide dismutase, and glutathione peroxidase. Other major extrinsic defenses (from the diet) include ascorbic acid, beta-carotene and other carotenoids, and selenium. Recent evidence indicates that in addition to their antioxidant function, several of these redox species and systems are involved in regulation of biological processes, including cellular signaling, transcription factor activity, and apoptosis in normal and cancer cells. The survival and overall well-being of the cell is dependent upon the balance between the activity and the intracellular levels of these antioxidants as well as their interaction with various regulatory factors, including Ref-1, nuclear factor-kappaB, and activating protein-1.
Collapse
Affiliation(s)
- Archana Jaiswal McEligot
- Department of Medicine, Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, California 92868, USA.
| | | | | |
Collapse
|
29
|
Brown PH, Rashid A. Cancer Prevention: The Importance of Accurate Risk Assessment. Cancer Epidemiol Biomarkers Prev 2005; 14:1357-8. [PMID: 15941935 DOI: 10.1158/1055-9965.epi-14-6-ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|