1
|
Yadav K, Batra P, Bhaskar V, Aggarwal A, Banerjee BD, Kumar H, Sharma T. Genetic Expression of CYP2B6 Gene in Phenobarbitone Responder and Non-responder Neonates. Indian Pediatr 2023. [DOI: 10.1007/s13312-023-2843-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
2
|
Gillam EMJ, Kramlinger VM. Opportunities for Accelerating Drug Discovery and Development by Using Engineered Drug-Metabolizing Enzymes. Drug Metab Dispos 2023; 51:392-402. [PMID: 36460479 DOI: 10.1124/dmd.121.000743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/08/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022] Open
Abstract
The study of drug metabolism is fundamental to drug discovery and development (DDD) since by mediating the clearance of most drugs, metabolic enzymes influence their bioavailability and duration of action. Biotransformation can also produce pharmacologically active or toxic products, which complicates the evaluation of the therapeutic benefit versus liability of potential drugs but also provides opportunities to explore the chemical space around a lead. The structures and relative abundance of metabolites are determined by the substrate and reaction specificity of biotransformation enzymes and their catalytic efficiency. Preclinical drug biotransformation studies are done to quantify in vitro intrinsic clearance to estimate likely in vivo pharmacokinetic parameters, to predict an appropriate dose, and to anticipate interindividual variability in response, including from drug-drug interactions. Such studies need to be done rapidly and cheaply, but native enzymes, especially in microsomes or hepatocytes, do not always produce the full complement of metabolites seen in extrahepatic tissues or preclinical test species. Furthermore, yields of metabolites are usually limiting. Engineered recombinant enzymes can make DDD more comprehensive and systematic. Additionally, as renewable, sustainable, and scalable resources, they can also be used for elegant chemoenzymatic, synthetic approaches to optimize or synthesize candidates as well as metabolites. Here, we will explore how these new tools can be used to enhance the speed and efficiency of DDD pipelines and provide a perspective on what will be possible in the future. The focus will be on cytochrome P450 enzymes to illustrate paradigms that can be extended in due course to other drug-metabolizing enzymes. SIGNIFICANCE STATEMENT: Protein engineering can generate enhanced versions of drug-metabolizing enzymes that are more stable, better suited to industrial conditions, and have altered catalytic activities, including catalyzing non-natural reactions on structurally complex lead candidates. When applied to drugs in development, libraries of engineered cytochrome P450 enzymes can accelerate the identification of active or toxic metabolites, help elucidate structure activity relationships, and, when combined with other synthetic approaches, provide access to novel structures by regio- and stereoselective functionalization of lead compounds.
Collapse
Affiliation(s)
- Elizabeth M J Gillam
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, Australia (E.M.J.G.) and Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee (V.M.K.)
| | - Valerie M Kramlinger
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, Australia (E.M.J.G.) and Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee (V.M.K.)
| |
Collapse
|
3
|
Men S, Wang H. Phenobarbital in Nuclear Receptor Activation: An Update. Drug Metab Dispos 2023; 51:210-218. [PMID: 36351837 PMCID: PMC9900862 DOI: 10.1124/dmd.122.000859] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/11/2022] Open
Abstract
Phenobarbital (PB) is a commonly prescribed anti-epileptic drug that can also benefit newborns from hyperbilirubinemia. Being the first drug demonstrating hepatic induction of cytochrome P450 (CYP), PB has since been broadly used as a model compound to study xenobiotic-induced drug metabolism and clearance. Mechanistically, PB-mediated CYP induction is linked to a number of nuclear receptors, such as the constitutive androstane receptor (CAR), pregnane X receptor (PXR), and estrogen receptor α, with CAR being the predominant regulator. Unlike prototypical agonistic ligands, PB-mediated activation of CAR does not involve direct binding with the receptor. Instead, dephosphorylation of threonine 38 in the DNA-binding domain of CAR was delineated as a key signaling event underlying PB-mediated indirect activation of CAR. Further studies revealed that such phosphorylation sites appear to be highly conserved among most human nuclear receptors. Interestingly, while PB is a pan-CAR activator in both animals and humans, PB activates human but not mouse PXR. The species-specific role of PB in gene regulation is a key determinant of its implication in xenobiotic metabolism, drug-drug interactions, energy homeostasis, and cell proliferation. In this review, we summarize the recent progress in our understanding of PB-provoked transactivation of nuclear receptors with a focus on CAR and PXR. SIGNIFICANCE STATEMENT: Extensive studies using PB as a research tool have significantly advanced our understanding of the molecular basis underlying nuclear receptor-mediated drug metabolism, drug-drug interactions, energy homeostasis, and cell proliferation. In particular, CAR has been established as a cell signaling-regulated nuclear receptor in addition to ligand-dependent functionality. This mini-review highlights the mechanisms by which PB transactivates CAR and PXR.
Collapse
Affiliation(s)
- Shuaiqian Men
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (S.M., H.W.)
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (S.M., H.W.)
| |
Collapse
|
4
|
Lynch C, Sakamuru S, Xia M. Screening Method for the Identification of Compounds That Activate Pregnane X Receptor. Curr Protoc 2022; 2:e615. [PMID: 36469580 PMCID: PMC9904169 DOI: 10.1002/cpz1.615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pregnane X receptor (PXR) is a nuclear receptor found mainly in the liver and intestine, whose main function is to regulate the expression of drug-metabolizing enzymes and transporters. Recently, it has been noted that PXR plays critical roles in energy homeostasis, immune response, and cancer. Therefore, identifying chemicals or compounds that can modulate PXR is of great interest, as these can result in downstream toxicity or, alternatively, may have therapeutic potential. Testing one compound at a time for PXR activity would be inefficient and take thousands of hours for large compound libraries. Here, we describe a high-throughput screening method that encompasses plating and treating HepG2-CYP3A4-hPXR cells in a 1536-well plate, as well as reading and interpreting assay (e.g., luciferase reporter gene activity) endpoints. These cells are stably transfected with a human PXR expression vector and CYP3A4-promoter-driven luciferase reporter vector, allowing the identification of compounds that activate PXR through cytochrome 450 3A4. We also describe how to analyze the data from each assay and explain follow-up steps, namely pharmacological characterization and quantitative polymerase chain reaction (qPCR) assays, which can be performed to confirm results from the original screen. These methods can be used to identify and confirm hPXR activators after completion of a compound screening. Published 2022. This article is a U.S. Government work and is in the public domain in the USA. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Establishment of a high-throughput assay to identify hPXR activators Basic Protocol 2: Quantitative high-throughput screening a compound library to classify hPXR activators Basic Protocol 3: Performing pharmacological characterization and qPCR assays to confirm hPXR activators.
Collapse
Affiliation(s)
- Caitlin Lynch
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Srilatha Sakamuru
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| |
Collapse
|
5
|
Sato T, Shizu R, Miura Y, Hosaka T, Kanno Y, Sasaki T, Yoshinari K. Development of a strategy to identify and evaluate direct and indirect activators of constitutive androstane receptor in rats. Food Chem Toxicol 2022; 170:113510. [DOI: 10.1016/j.fct.2022.113510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 10/25/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
|
6
|
Madejczyk AM, Canzian F, Góra-Tybor J, Campa D, Sacha T, Link-Lenczowska D, Florek I, Prejzner W, Całbecka M, Rymko M, Dudziński M, Orzechowska MJ, Jamroziak K. Impact of genetic polymorphisms of drug transporters ABCB1 and ABCG2 and regulators of xenobiotic transport and metabolism PXR and CAR on clinical efficacy of dasatinib in chronic myeloid leukemia. Front Oncol 2022; 12:952640. [PMID: 36212403 PMCID: PMC9537611 DOI: 10.3389/fonc.2022.952640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022] Open
Abstract
Introduction Functional single-nucleotide polymorphisms (SNPs) in genes regulating cellular uptake, elimination, and metabolism of xenobiotics may potentially influence the outcome of chronic myeloid leukemia (CML) patients treated with BCR-ABL1 tyrosine kinase inhibitors (TKI). Dasatinib, a second-generation TKI, is a substrate of the ABC-superfamily xenobiotic transporters ABCB1 (MDR1, Pg-P) and ABCG2 (BCRP). Pregnane X receptor (PXR, NR1I2) and constitutive androstane receptor (CAR, NR1I3) are involved in the control of expression of ABCB1 and ABCG2. Aim of the study In this study, we assessed the impact of inherited variants in ABCB1, ABCG2, PXR, and CAR genes on dasatinib efficacy and toxicity in CML. Materials and methods Sixty-one tagging SNPs in ABCB1, ABCG2, PXR, and CAR genes were analyzed by real-time quantitative PCR with specific probes in 86 CML patients who failed imatinib therapy. Results We found the associations between SNPs rs7787082 (ABCB1, OR = 0.2; 95% CI = 0.06-0.66, p = 0.008), rs12505410 (ABCG2, OR = 3.82; 95% CI = 1.38-10.55; p = 0.010), and rs3114018 (ABCG2, OR = 0.24; 95% CI = 0.08-0.71; p = 0.010) and the probability of achieving CCyR. Furthermore, progression-free survival (PFS) was significantly influenced by SNPs rs3732357 (HR = 0.2, 95% CI = 0.26-0.70; p = 0.001), rs3732360 (HR = 0.59; 95% CI = 0.38-0.93; p = 0.020), rs11917714 (HR = 0.58; 95% CI = 0.36-0.92; p = 0.020), and rs3732359 (HR = 0.57; 95% CI = 0.36-0.91; p = 0.024) in PXR; rs2307418 (HR = 2.02; 95% CI = 1.19-3.43; p = 0.048) in CAR; and rs2235023 (HR = 2.49; 95% CI = 1.13-5.50; p = 0.011) and rs22114102 (HR = 1.90; 95% CI = 1.00-3.63; p = 0.028) in ABCB1. Moreover, overall survival (OS) was impacted by rs3842 (HR = 1.84; 95% CI = 1.01-3.33; p = 0.012) and rs2235023 (HR = 2.28; 95% CI = 1.03 = 5.02; p = 0.027) in ABCB1, rs11265571 (HR = 1.59; 95% CI = 0.82-3.08; p = 0.037) and rs2307418 (HR = 73.68; 95% CI = 4.47-1215.31; p = 0.003) in CAR, and rs3732360 (HR = 0.64; 95% CI = 0.40 = 1.04; p = 0.049) in PXR. Taking into account the influence of the tested SNPs on treatment toxicity, we found a significant relationship between allele G of polymorphism in the ABCB1 rs7787082 (OR = 4.46; 95% CI = 1.38-14.39 p = 0.012) and hematological complications assuming the codominant gene inheritance model as well as a significant correlation between the presence of minor allele (G) of SNP rs2725256 in the ABCG2 gene (OR = 4.71; 95% CI = 1.20-18.47; p = 0.026) and the occurrence of non-hematological complications assuming a recessive gene inheritance model. Conclusion Our data suggest that inherited variants in the genes encoding for proteins involved in the transport of xenobiotics may modify the toxicity and efficacy of dasatinib therapy in CML patients.
Collapse
Affiliation(s)
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center Deutsche Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | | | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy
| | - Tomasz Sacha
- Department of Hematology, Jagiellonian University Medical College, Kraków, Poland
| | | | - Izabela Florek
- Department of Hematology, Jagiellonian University Medical College, Kraków, Poland
| | - Witold Prejzner
- Department of Hematology, Medical University of Gdańsk, Gdańsk, Poland
| | - M. Całbecka
- Department of Hematology, Copernicus Specialist Municipal Hospital, Toruń, Poland
| | - M. Rymko
- Department of Hematology, Copernicus Specialist Municipal Hospital, Toruń, Poland
| | - M. Dudziński
- Department of Hematology, Teaching Hospital No 1, Rzeszów, Poland
| | - Magdalena Julita Orzechowska
- Department of Molecular Carcinogenesis, Chair of Molecular Medicine and Biotechnology, Faculty of Medicine, Medical University of Łódź, Łódź, Poland
| | - Krzysztof Jamroziak
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
7
|
Petros Z, Habtewold A, Makonnen E, Aklillu E. Constitutive androstane receptor and pregnane X receptor genotype influence efavirenz plasma concentration and CYP2B6 enzyme activity. Sci Rep 2022; 12:9698. [PMID: 35690682 PMCID: PMC9188543 DOI: 10.1038/s41598-022-14032-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/31/2022] [Indexed: 11/24/2022] Open
Abstract
Efavirenz is metabolized by CYP2B6, an inducible enzyme whose expression is regulated by the constitutive androstane receptor and pregnane X receptor nuclear receptors. CAR and PXR are encoded by genetically polymorphic NR1I2 and NR1I3, respectively. We examined the impact of NR1I2 and NR1I3 genotype on plasma EFV concentration and CYP2B6 enzyme activity among TB-HIV co-infected patients in Ethiopia. Treatment-naïve HIV patients with TB co-infection (n = 80) were enrolled and received first-line EFV-based antiretroviral and rifampicin-based anti-TB therapy. Plasma EFV and 8-hydroxy-EFV concentrations at the 4th and 16th week of EFV treatment were determined using LC/MS/MS. EFV/8-hydroxy-EFVmetabolic ratio was used as CYP2B6 metabolic activity index. In multivariate regression analysis, NR1I3 rs3003596C or NR1I2 rs2472677T variant allele carriers had significantly lower plasma EFV concentrations than non-carriers. Patients with NR1I2 rs3814057C/C genotype or NR1I3 rs3003596C allele carriers had significantly lower mean log EFV MR. Among CYP2B6*6 allele carriers, patients with NR1I3 rs2502815T/T or NR1I2 rs3814057C/C genotype had significantly lower mean log EFV MR. In conclusion, genetic variants in NR1I2 and NR1I3 genes influence plasma EFV exposure and CYP2B6 enzyme activity in TB-HIV co-infected patients on drug treatment.
Collapse
Affiliation(s)
- Zelalem Petros
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Pharmacy, College of Medicine and Health Sciences, Wachamo University, Hosaena, Ethiopia
| | - Abiy Habtewold
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Pharmaceutical Sciences, School of Pharmacy, Wiliam Carey University, Biloxi, MS, USA
| | - Eyasu Makonnen
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT Africa), College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Eleni Aklillu
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital-Huddinge, Stockholm, Sweden.
| |
Collapse
|
8
|
Stouras I, Papaioannou TG, Tsioufis K, Eliopoulos AG, Sanoudou D. The Challenge and Importance of Integrating Drug-Nutrient-Genome Interactions in Personalized Cardiovascular Healthcare. J Pers Med 2022; 12:jpm12040513. [PMID: 35455629 PMCID: PMC9033008 DOI: 10.3390/jpm12040513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/12/2022] [Accepted: 03/18/2022] [Indexed: 12/30/2022] Open
Abstract
Despite the rich armamentarium of available drugs against different forms of cardiovascular disease (CVD), major challenges persist in their safe and effective use. These include high rates of adverse drug reactions, increased heterogeneity in patient responses, suboptimal drug efficacy, and in some cases limited compliance. Dietary elements (including food, beverages, and supplements) can modulate drug absorption, distribution, metabolism, excretion, and action, with significant implications for drug efficacy and safety. Genetic variation can further modulate the response to diet, to a drug, and to the interaction of the two. These interactions represent a largely unexplored territory that holds considerable promise in the field of personalized medicine in CVD. Herein, we highlight examples of clinically relevant drug–nutrient–genome interactions, map the challenges faced to date, and discuss their future perspectives in personalized cardiovascular healthcare in light of the rapid technological advances.
Collapse
Affiliation(s)
- Ioannis Stouras
- Clinical Genomics and Pharmacogenomics Unit, 4th Department of Internal Medicine, Attikon Hospital Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Theodore G. Papaioannou
- First Department of Cardiology, Hippokration Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (T.G.P.); (K.T.)
| | - Konstantinos Tsioufis
- First Department of Cardiology, Hippokration Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (T.G.P.); (K.T.)
| | - Aristides G. Eliopoulos
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- Department of Biology, Medical School, National and Kapodistrian University of Athens, 15771 Athens, Greece
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Despina Sanoudou
- Clinical Genomics and Pharmacogenomics Unit, 4th Department of Internal Medicine, Attikon Hospital Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- Correspondence:
| |
Collapse
|
9
|
Vansell NR. Mechanisms by Which Inducers of Drug Metabolizing Enzymes Alter Thyroid Hormones in Rats. Drug Metab Dispos 2022; 50:508-517. [DOI: 10.1124/dmd.121.000498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 12/23/2021] [Indexed: 11/22/2022] Open
|
10
|
Molecular Mechanisms of the SLC13A5 Gene Transcription. Metabolites 2021; 11:metabo11100706. [PMID: 34677420 PMCID: PMC8537064 DOI: 10.3390/metabo11100706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/02/2022] Open
Abstract
Citrate is a crucial energy sensor that plays a central role in cellular metabolic homeostasis. The solute carrier family 13 member 5 (SLC13A5), a sodium-coupled citrate transporter highly expressed in the mammalian liver with relatively low levels in the testis and brain, imports citrate from extracellular spaces into the cells. The perturbation of SLC13A5 expression and/or activity is associated with non-alcoholic fatty liver disease, obesity, insulin resistance, cell proliferation, and early infantile epileptic encephalopathy. SLC13A5 has been proposed as a promising therapeutic target for the treatment of these metabolic disorders. In the liver, the inductive expression of SLC13A5 has been linked to several xenobiotic receptors such as the pregnane X receptor and the aryl hydrocarbon receptor as well as certain hormonal and nutritional stimuli. Nevertheless, in comparison to the heightened interest in understanding the biological function and clinical relevance of SLC13A5, studies focusing on the regulatory mechanisms of SLC13A5 expression are relatively limited. In this review, we discuss the current advances in our understanding of the molecular mechanisms by which the expression of SLC13A5 is regulated. We expect this review will provide greater insights into the regulation of the SLC13A5 gene transcription and the signaling pathways involved therein.
Collapse
|
11
|
El-Ghiaty MA, El-Kadi AO. Arsenic: Various species with different effects on cytochrome P450 regulation in humans. EXCLI JOURNAL 2021; 20:1184-1242. [PMID: 34512225 PMCID: PMC8419240 DOI: 10.17179/excli2021-3890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/02/2021] [Indexed: 11/22/2022]
Abstract
Arsenic is well-recognized as one of the most hazardous elements which is characterized by its omnipresence throughout the environment in various chemical forms. From the simple inorganic arsenite (iAsIII) and arsenate (iAsV) molecules, a multitude of more complex organic species are biologically produced through a process of metabolic transformation with biomethylation being the core of this process. Because of their differential toxicity, speciation of arsenic-based compounds is necessary for assessing health risks posed by exposure to individual species or co-exposure to several species. In this regard, exposure assessment is another pivotal factor that includes identification of the potential sources as well as routes of exposure. Identification of arsenic impact on different physiological organ systems, through understanding its behavior in the human body that leads to homeostatic derangements, is the key for developing strategies to mitigate its toxicity. Metabolic machinery is one of the sophisticated body systems targeted by arsenic. The prominent role of cytochrome P450 enzymes (CYPs) in the metabolism of both endobiotics and xenobiotics necessitates paying a great deal of attention to the possible effects of arsenic compounds on this superfamily of enzymes. Here we highlight the toxicologically relevant arsenic species with a detailed description of the different environmental sources as well as the possible routes of human exposure to these species. We also summarize the reported findings of experimental investigations evaluating the influence of various arsenicals on different members of CYP superfamily using human-based models.
Collapse
Affiliation(s)
- Mahmoud A. El-Ghiaty
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ayman O.S. El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
12
|
Li H, Wang YG, Ma ZC, Yun-Hang G, Ling S, Teng-Fei C, Guang-Ping Z, Gao Y. A high-throughput cell-based gaussia luciferase reporter assay for measurement of CYP1A1, CYP2B6, and CYP3A4 induction. Xenobiotica 2021; 51:752-763. [PMID: 33896369 DOI: 10.1080/00498254.2021.1918800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The induction of cytochrome P450s can result in reduced drug efficacy and lead to potential drug-drug interactions. The xenoreceptors-aryl hydrocarbon receptor (AhR), constitutive androstane receptor (CAR), and pregnane X receptor (PXR)-play key roles in CYP induction by xenobiotics. In order to be able to rapidly screen for the induction of three enzymes (CYP1A1, CYP2B6, and CYP3A4), we generated a stable AhR-responsive HepG2 cell line, a stable CAR-responsive HepG2 cell line, and a stable PXR-responsive HepG2 cell line.To validate these stable xenoreceptor-responsive HepG2 cell lines, we evaluated the induction of the different Gaussia reporter activities, as well as the mRNA and protein expression levels of endogenous CYPs in response to different inducers.The induction of luciferase activity in the stable xenoreceptor-responsive HepG2 cell lines by specific inducers occurred in a concentration dependent manner. There was a positive correlation between the induction of luciferase activities and the induction endogenous CYP mRNA expression levels. These xenoreceptor-responsive HepG2 cell lines were further validated with known CYP1A1, CYP2B6, and CYP3A4 inducers.These stable xenoreceptor-responsive HepG2 cell lines may be used in preclinical research for the rapid and sensitive detection of AhR, CAR, and PXR ligands that induce CYP450 isoforms.
Collapse
Affiliation(s)
- Han Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu-Guang Wang
- Institute of Radiation Medicine Academy of Military Medical Sciences, Beijing, China
| | - Zeng-Chun Ma
- Institute of Radiation Medicine Academy of Military Medical Sciences, Beijing, China
| | - Gao Yun-Hang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Song Ling
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chen Teng-Fei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhang Guang-Ping
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yue Gao
- Institute of Radiation Medicine Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
13
|
Amezian D, Nauen R, Le Goff G. Transcriptional regulation of xenobiotic detoxification genes in insects - An overview. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 174:104822. [PMID: 33838715 DOI: 10.1016/j.pestbp.2021.104822] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/08/2021] [Accepted: 03/02/2021] [Indexed: 05/21/2023]
Abstract
Arthropods have well adapted to the vast array of chemicals they encounter in their environment. Whether these xenobiotics are plant allelochemicals or anthropogenic insecticides one of the strategies they have developed to defend themselves is the induction of detoxification enzymes. Although upregulation of detoxification enzymes and efflux transporters in response to specific inducers has been well described, in insects, yet, little is known on the transcriptional regulation of these genes. Over the past twenty years, an increasing number of studies with insects have used advanced genetic tools such as RNAi, CRISPR/Cas9 and reporter gene assays to dissect the genomic grounds of their xenobiotic response and hence contributed substantially in improving our knowledge on the players involved. Xenobiotics are partly recognized by various "xenobiotic sensors" such as membrane-bound or nuclear receptors. This initiates a molecular reaction cascade ultimately leading to the translocation of a transcription factor to the nucleus that recognizes and binds to short sequences located upstream their target genes to activate transcription. To date, a number of signaling pathways were shown to mediate the upregulation of detoxification enzymes in arthropods and to play a role in either metabolic resistance to insecticides or host-plant adaptation. These include nuclear receptors AhR/ARNT and HR96, GPCRs, CncC and MAPK/CREB. Recent work reveals that upregulation and activation of some components of these pathways as well as polymorphism in the binding motifs of transcription factors are linked to insects' adaptive processes. The aim of this mini-review is to summarize and describe recent work that shed some light on the main regulatory routes of detoxification gene expression in insects.
Collapse
Affiliation(s)
- Dries Amezian
- Université Côte d'Azur, INRAE, CNRS, ISA, F-06903 Sophia Antipolis, France
| | - Ralf Nauen
- Bayer AG, Crop Science Division, R&D, Alfred Nobel-Strasse 50, 40789 Monheim, Germany.
| | - Gaëlle Le Goff
- Université Côte d'Azur, INRAE, CNRS, ISA, F-06903 Sophia Antipolis, France.
| |
Collapse
|
14
|
Desta Z, El-Boraie A, Gong L, Somogyi AA, Lauschke VM, Dandara C, Klein K, Miller NA, Klein TE, Tyndale RF, Whirl-Carrillo M, Gaedigk A. PharmVar GeneFocus: CYP2B6. Clin Pharmacol Ther 2021; 110:82-97. [PMID: 33448339 DOI: 10.1002/cpt.2166] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022]
Abstract
The Pharmacogene Variation Consortium (PharmVar) catalogs star (*) allele nomenclature for the polymorphic human CYP2B6 gene. Genetic variation within the CYP2B6 gene locus impacts the metabolism or bioactivation of clinically important drugs. Of particular importance are efficacy and safety concerns regarding: efavirenz, which is used for the treatment of HIV type-1 infection; methadone, a mainstay in the treatment of opioid use disorder and as an analgesic; ketamine, used as an antidepressant and analgesic; and bupropion, which is prescribed to treat depression and for smoking cessation. This GeneFocus provides a comprehensive overview and summary of CYP2B6 and describes how haplotype information catalogued by PharmVar is utilized by the Pharmacogenomics Knowledgebase (PharmGKB) and the Clinical Pharmacogenetics Implementation Consortium (CPIC).
Collapse
Affiliation(s)
- Zeruesenay Desta
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ahmed El-Boraie
- Centre for Addiction and Mental Health and Departments of Pharmacology & Toxicology, and Psychiatry, University of Toronto, Toronto, Canada
| | - Li Gong
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA
| | - Andrew A Somogyi
- Discipline of Pharmacology, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Collet Dandara
- Division of Human Genetics, Department of Pathology & Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Kathrin Klein
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tuebingen, Tuebingen, Germany
| | - Neil A Miller
- Genomic Medicine Center, Children's Mercy, Kansas City, Missouri, USA.,School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Teri E Klein
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA
| | - Rachel F Tyndale
- Centre for Addiction and Mental Health and Departments of Pharmacology & Toxicology, and Psychiatry, University of Toronto, Toronto, Canada
| | | | - Andrea Gaedigk
- Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children's Mercy, Kansas City, Missouri, USA.,School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA
| |
Collapse
|
15
|
Characterization of human pregnane X receptor activators identified from a screening of the Tox21 compound library. Biochem Pharmacol 2020; 184:114368. [PMID: 33333074 DOI: 10.1016/j.bcp.2020.114368] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 01/28/2023]
Abstract
The pregnane X receptor (PXR; NR1I2) is an important nuclear receptor whose main function is to regulate enzymes within drug metabolism. The main drug metabolizing enzyme regulated by PXR, cytochrome P450 (CYP) 3A4, accounts for the metabolism of nearly 50% of all marketed drugs. Recently, PXR has also been identified as playing a role in energy homeostasis, immune response, and cancer. Due to its interaction with these important roles, alongside its drug-drug interaction function, it is imperative to identify compounds which can modulate PXR. In this study, we screened the Tox21 10,000 compound collection to identify hPXR agonists using a stable hPXR-Luc HepG2 cell line. A pharmacological study in the presence of a PXR antagonist was performed to confirm the activity of the chosen potential hPXR agonists in the same cells. Finally, metabolically competent cell lines - HepaRG and HepaRG-PXR-Knockout (KO) - were used to further confirm the potential PXR activators. We identified a group of structural clusters and singleton compounds which included potentially novel hPXR agonists. Of the 21 selected compounds, 11 potential PXR activators significantly induced CYP3A4 mRNA expression in HepaRG cells. All of these compounds lost their induction when treating HepaRG-PXR-KO cells, confirming their PXR activation. Etomidoline presented as a potentially selective agonist of PXR. In conclusion, the current study has identified 11 compounds as potentially novel or not well-characterized PXR activators. These compounds should further be studied for their potential effects on drug metabolism and drug-drug interactions due to the immense implications of being a PXR agonist.
Collapse
|
16
|
Lee HS, Lee J, Smolensky D, Lee SH. Potential benefits of patchouli alcohol in prevention of human diseases: A mechanistic review. Int Immunopharmacol 2020; 89:107056. [PMID: 33039955 PMCID: PMC7543893 DOI: 10.1016/j.intimp.2020.107056] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/16/2020] [Accepted: 09/26/2020] [Indexed: 12/18/2022]
Abstract
Patchouli alcohol (PA) is a bioactive component in essential oil extracted from Pogostemon cablin. The present review provides the scientific mechanisms for health beneficial activities of PA in diverse disease models. PA possesses diverse health beneficial activities.
Patchouli alcohol (PA), a tricyclic sesquiterpene, is a dominant bioactive component in oil extracted from the aerial parts of Pogostemon cablin (patchouli). Diverse beneficial activities have been reported, including anti-influenza virus, anti-depressant, anti-nociceptive, vasorelaxation, lung protection, brain protection, anti-ulcerogenic, anti-colitis, pre-biotic-like, anti-inflammatory, anti-cancer and protective activities against metabolic diseases. However, detailed mechanistic studies are required to explore the possibility of developing PA as a functional food material or promising drug for the prevention and treatment of human diseases. This review highlights multiple molecular targets and working mechanisms by which PA mediates health benefits.
Collapse
Affiliation(s)
- Hee-Seop Lee
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD 20742, USA
| | - Jihye Lee
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD 20742, USA
| | - Dmitriy Smolensky
- Grain Quality and Structure Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Manhattan, KS 66502, USA
| | - Seong-Ho Lee
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
17
|
Ooeda K, Kubiura‐Ichimaru M, Tsuji S, Okuyama S, Yamashita M, Mine A, Kawamura F, Ueyama T, Tada M. A two-dimensional multiwell cell culture method for the production of CYP3A4-expressing hepatocyte-like cells from HepaRG cells. Pharmacol Res Perspect 2020; 8:e00652. [PMID: 32955797 PMCID: PMC7507088 DOI: 10.1002/prp2.652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/19/2022] Open
Abstract
Cytochrome P450 enzymes (CYP) function in drug metabolism in the liver. To evaluate numerous drug candidates, a high-content screening (HCS) system with hepatocyte-like cells (HLCs) that can replace adult human hepatocytes is required. Human hepatocellular carcinoma HepaRG is the only cell line capable of providing HLCs with high CYP3A4 expression comparable to that in adult hepatocytes after cell differentiation. The aim of this study was to design an ideal multiwell culture system for HLCs using transgenic HepaRG cells expressing the EGFP coding an enhanced green fluorescent protein under CYP3A4 transcriptional regulation. HLCs were matured on five different types of 96-well black plates. Culturing HLCs on glass-bottom Optical CVG plates significantly promoted cell maturation and increased metabolic activity by twofold under two-dimensional (2D) culture conditions, and these features were enhanced by 2% collagen coating. Three plates for three-dimensional (3D) cell cultures with a gas-exchangeable fabric or dimethylpolysiloxane membrane bottom formed multiple round colonies, whereas they were ineffective for CYP3A4 expression. Under optimized conditions presented here, HLCs lost responsiveness to nuclear receptor-mediated transcriptional induction of CYP3A4, suggesting that CYP3A4 transcription has already been fully upregulated. Therefore, HepaRG-derived HLCs will provide an alternative to human hepatocytes with high levels of CYP3A4 enzyme activity even under 2D culture conditions. This will improve a variety of drug screening methods.
Collapse
Affiliation(s)
- Keiko Ooeda
- Stem Cells & Reprogramming LaboratoryDepartment of BiologyFaculty of ScienceToho UniversityFunabashiJapan
| | - Musashi Kubiura‐Ichimaru
- Stem Cells & Reprogramming LaboratoryDepartment of BiologyFaculty of ScienceToho UniversityFunabashiJapan
| | | | - Shota Okuyama
- Stem Cells & Reprogramming LaboratoryDepartment of BiologyFaculty of ScienceToho UniversityFunabashiJapan
| | - Mao Yamashita
- Stem Cells & Reprogramming LaboratoryDepartment of BiologyFaculty of ScienceToho UniversityFunabashiJapan
| | - Akari Mine
- Stem Cells & Reprogramming LaboratoryDepartment of BiologyFaculty of ScienceToho UniversityFunabashiJapan
| | - Fumihiko Kawamura
- Stem Cells & Reprogramming LaboratoryDepartment of BiologyFaculty of ScienceToho UniversityFunabashiJapan
| | | | - Masako Tada
- Stem Cells & Reprogramming LaboratoryDepartment of BiologyFaculty of ScienceToho UniversityFunabashiJapan
| |
Collapse
|
18
|
Noncanonical Constitutive Androstane Receptor Signaling in Gene Regulation. Int J Mol Sci 2020; 21:ijms21186735. [PMID: 32937916 PMCID: PMC7555422 DOI: 10.3390/ijms21186735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 11/17/2022] Open
Abstract
The constitutive androstane receptor (CAR, NR1I3) is extremely important for the regulation of many physiological processes, especially xenobiotic (drug) metabolism and transporters. CAR differs from steroid hormone receptors in that it can be activated using structurally unrelated chemicals, both through direct ligand-binding and ligand-independent (indirect) mechanisms. By binding to specific responsive elements on DNA, CAR increases the expression of its target genes encoding drug-metabolizing enzymes and transporters. Therefore, CAR is mainly characterized as a ligand-dependent or ligand-independent transcription factor, and the induction of gene expression is considered the canonical mode of CAR action. Consistent with its central role in xenobiotic metabolism, CAR signaling includes a collection of mechanisms that are employed alongside the core transcriptional machinery of the receptor. These so-called noncanonical CAR pathways allow the receptor to coordinate the regulation of many aspects of cell biology. In this mini-review, we review noncanonical CAR signaling, paying special attention to the role of CAR in energy homeostasis and cell proliferation.
Collapse
|
19
|
Zhao M, Zhao H, Lin L, Wang Y, Chen M, Wu B. Nuclear receptor co-repressor RIP140 regulates diurnal expression of cytochrome P450 2b10 in mouse liver. Xenobiotica 2020; 50:1139-1148. [PMID: 32238093 DOI: 10.1080/00498254.2020.1751342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Elucidating the mechanisms for circadian expression of drug-metabolizing enzymes is essential for a better understanding of dosing time-dependent drug metabolism and pharmacokinetics. CYP2B6 (Cyp2b10 in mice) is an important enzyme responsible for metabolism and detoxification of approximately 10% of drugs. Here, we aimed to investigate a potential role of nuclear receptor co-repressor RIP140 in circadian regulation of Cyp2b10 in mice.We first uncovered diurnal rhythmicity in hepatic RIP140 mRNA and protein with peak values at ZT10 (ZT, zeitgeber time). RIP140 ablation up-regulated Cyp2b10 expression and blunted its rhythm in mice and in AML-12 cells. Consistent with a negative regulatory effect, overexpression of RIP140 inhibited Cyp2b10 promoter activity and reduced cellular Cyp2b10 expression.Furthermore, RIP140 suppressed Car- and Pxr-mediated transactivation of Cyp2b10, and the suppressive effects were attenuated when the RIP140 gene was silenced. Chromatin immunoprecipitation assays revealed that recruitment of RIP140 protein to the Cyp2b10 promoter was circadian time-dependent in wild-type mice. More extensive recruitment was observed at ZT10 than at ZT2 consistent with the rhythmic pattern of RIP140 protein. However, the time-dependency of RIP140 recruitment was lost in RIP140-/- mice.Additionally, we identified a D-box and a RORE cis-element in RIP140 promoter. D-box- and RORE-acting clock components such as Dbp, E4bp4, Rev-erbα/β and Rorα transcriptionally regulated RIP140, potentially accounting for its rhythmic expression.In conclusion, RIP140 regulates diurnal expression of Cyp2b10 in mouse liver through periodical repression of Car- and Pxr-mediated transactivation. This co-regulator-driven mechanism represents a novel source of diurnal rhythmicity in drug-metabolizing enzymes.
Collapse
Affiliation(s)
- Mengjing Zhao
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Huan Zhao
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Luomin Lin
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Yi Wang
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Menglin Chen
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Baojian Wu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
20
|
Zhang G, Liu M, Song M, Wang J, Cai J, Lin C, Li Y, Jin X, Shen C, Chen Z, Cai D, Gao Y, Zhu C, Lin C, Liu C. Patchouli alcohol activates PXR and suppresses the NF-κB-mediated intestinal inflammatory. JOURNAL OF ETHNOPHARMACOLOGY 2020; 248:112302. [PMID: 31614203 DOI: 10.1016/j.jep.2019.112302] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 10/07/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The pregnane-X-receptor (PXR) is involved in inflammatory bowel disease (IBD). Patchouli alcohol (PA) has anti-inflammatory effects; however, the effect of PA on IBD pathogenesis remains largely unknown. AIM OF THE STUDY The aim of the present study was to investigate the anti-inflammatory effect of PA, primarily focused on crosstalk between PA-mediated PXR activation and NF-κB inhibition. MATERIALS AND METHODS We evaluated the anti-inflammatory effect of PA with respect to PXR/NF-κB signalling using in vitro and in vivo models. In vitro, PA, identified as a PXR agonist, was evaluated by hPXR transactivation assays and through assessing for CYP3A4 expression and activity. NF-κB inhibition was analysed based on NF-κB luciferase assays, NF-κB-mediated pro-inflammatory gene expression, and NF-κB nuclear translocation after activation of PXR by PA. In vivo, colonic mPXR and NF-κB signalling were analysed to assess PA-mediated the protective effect against dextran sulphate sodium (DSS)-induced colitis. Furthermore, pharmacological inhibition of PXR was further evaluated by examining PA protection against DSS-induced colitis. RESULTS PA induced CYP3A4 expression and activity via an hPXR-dependent mechanism. PA-mediated PXR activation attenuated inflammation by inhibiting NF-κB activity and nuclear translocation. The anti-inflammatory effect of PA on NF-κB was abolished by PXR knockdown. PA prevented DSS-induced inflammation by regulating PXR/NF-κB signalling, whereas pharmacological PXR inhibition abated PA-mediated suppressive effects on NF-κB inflammation signalling. CONCLUSIONS PA activates PXR signalling and suppresses NF-κB signalling, consequently causing amelioration of inflammation. Our results highlight the importance of PXR-NF-κB crosstalk in colitis and suggest a novel therapeutic reagent.
Collapse
Affiliation(s)
- Guohui Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Zhuhai Precision Medicine Center, Zhuhai People(')s Hospital, Zhuhai, China
| | - Meijing Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Meng Song
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jueyu Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jiazhong Cai
- Pi-Wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Chuanquan Lin
- Pi-Wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yanwu Li
- Pi-Wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xin Jin
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Chuangpeng Shen
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zhao Chen
- The Fifth Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 500095, China
| | - Dake Cai
- The Fifth Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 500095, China
| | - Yong Gao
- Pi-Wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Chenchen Zhu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Chaozhan Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Changhui Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
21
|
Ghanem CI, Manautou JE. Modulation of Hepatic MRP3/ABCC3 by Xenobiotics and Pathophysiological Conditions: Role in Drug Pharmacokinetics. Curr Med Chem 2019; 26:1185-1223. [PMID: 29473496 DOI: 10.2174/0929867325666180221142315] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/17/2018] [Accepted: 02/05/2018] [Indexed: 12/13/2022]
Abstract
Liver transporters play an important role in the pharmacokinetics and disposition of pharmaceuticals, environmental contaminants, and endogenous compounds. Among them, the family of ATP-Binding Cassette (ABC) transporters is the most important due to its role in the transport of endo- and xenobiotics. The ABCC sub-family is the largest one, consisting of 13 members that include the cystic fibrosis conductance regulator (CFTR/ABCC7); the sulfonylurea receptors (SUR1/ABCC8 and SUR2/ABCC9) and the multidrug resistanceassociated proteins (MRPs). The MRP-related proteins can collectively confer resistance to natural, synthetic drugs and their conjugated metabolites, including platinum-containing compounds, folate anti-metabolites, nucleoside and nucleotide analogs, among others. MRPs can be also catalogued into "long" (MRP1/ABCC1, -2/C2, -3/C3, -6/C6, and -7/C10) and "short" (MRP4/C4, -5/C5, -8/C11, -9/C12, and -10/C13) categories. While MRP2/ABCC2 is expressed in the canalicular pole of hepatocytes, all others are located in the basolateral membrane. In this review, we summarize information from studies examining the changes in expression and regulation of the basolateral hepatic transporter MPR3/ABCC3 by xenobiotics and during various pathophysiological conditions. We also focus, primarily, on the consequences of such changes in the pharmacokinetic, pharmacodynamic and/or toxicity of different drugs of clinical use transported by MRP3.
Collapse
Affiliation(s)
- Carolina I Ghanem
- Instituto de Investigaciones Farmacologicas (ININFA), Facultad de Farmacia y Bioquimica. CONICET. Universidad de Buenos Aires, Buenos Aires, Argentina.,Catedra de Fisiopatologia. Facultad de Farmacia y Bioquimica. Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jose E Manautou
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
22
|
Yoshinari K, Nagai M. [In silico prediction models of the induction of drug-metabolizing enzymes for drug discovery]. Nihon Yakurigaku Zasshi 2019; 153:186-191. [PMID: 30971659 DOI: 10.1254/fpj.153.186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Drug metabolism in the liver is a major factor affecting pharmacokinetics of drugs, and cytochrome P450s (P450s) are major enzymes responsible for it. Since drug-drug interactions (DDIs) can affect the pharmacokinetics of concomitantly administrated drugs, it may limit the drug therapy such as dose adjustment and contraindications for co-administration and lead to dose adjustment and contraindications for co-administration. DDI is thus one of the risk factors to be reduced in the lead-optimization stage. Therefore, it is important to estimate DDI risk in the early drug discovery stage and develop candidates with low DDI risk. P450 induction is one of the important mechanisms causing DDIs and the activation of nuclear receptors is involved in this phenomenon. In this manuscript, the mechanism and evaluation methods of P450 induction are briefly reviewed, and then the new in silico methods for the prediction of P450 induction, which have been recently established by us, and its application to drug development are introduced.
Collapse
Affiliation(s)
- Kouichi Yoshinari
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Mika Nagai
- Pharmacokinetics and Safety Department, Drug Research Center, Kaken Pharmaceutical Co., Ltd
| |
Collapse
|
23
|
Chang S, Su Y, Sun Y, Meng X, Shi B, Shan A. Response of the nuclear receptors PXR and CAR and their target gene mRNA expression in female piglets exposed to zearalenone. Toxicon 2018; 151:111-118. [PMID: 30017994 DOI: 10.1016/j.toxicon.2018.06.081] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 06/21/2018] [Accepted: 06/25/2018] [Indexed: 12/21/2022]
Abstract
A study was conducted to determine the effects of zearalenone (ZEN) on the mRNA expression of pregnane X receptor (PXR), constitutive and rostane receptor (CAR), and phase I and II enzymes as well as the toxicity in the liver of female weanling piglets. Thirty-two female weanling piglets (Duroc × Landrace × Large white, 12.27 ± 0.30 kg)were divided into four groups (n = 8 piglets/group) that were supplemented with 0 (control), 0.5, 1 or 2 mg/kg ZEN. The trial period lasted for 28 d. The results showed that the ZEN supplementation in the diets (0.5-2 mg/kg) had no effect on growth performance but dose-dependently increased serum aspartate aminotransferase, alanineaminotransferase, alkaline phosphatase, and γ-glutamyltransferase activities (P < 0.05). The ZEN residue in the liver (P < 0.01) was also linearly and dose-dependently increased. Furthermore, the mRNA expression of PXR, CAR, phase I enzymes (i.e., cyp2e1, cyp3a5, cyp2a6, cyp1a1, and cyp1a2), and phase II enzymes (i.e., gsta1, gsta2, ugt1a3) significantly increased linearly in a dose-dependent manner (P < 0.05). However, the spleen relative weight and the glutathione peroxidase activity in the liver (P < 0.05) linearly decreased as the dietary ZEN concentration increased; the mRNA expression of the nuclear receptors PXR and CAR is responsive to ZEN in female piglets, and ZEN increases the mRNA expression of their target genes. This finding shows that the nuclear receptor signaling system plays an important role in the defense against ZEN.
Collapse
Affiliation(s)
- Siying Chang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Yang Su
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Yuchen Sun
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Xiangyu Meng
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Baoming Shi
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
24
|
Chen JT, Wei L, Chen TL, Huang CJ, Chen RM. Regulation of cytochrome P450 gene expression by ketamine: a review. Expert Opin Drug Metab Toxicol 2018; 14:709-720. [PMID: 29888644 DOI: 10.1080/17425255.2018.1487397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Although used as an anesthetic drug for decades, ketamine appears to have garnered renewed interest due to its potential therapeutic uses in pain therapy, neurology, and psychiatry. Ketamine undergoes extensive oxidative metabolism by cytochrome P450 (CYP) enzymes. Considerable efforts have been expended to elucidate the ketamine-induced regulation of CYP gene expression. The safety profile of chronic ketamine administration is still unclear. Understanding how ketamine regulates CYP gene expression is clinically meaningful. Areas covered: In this article, the authors provide a brief review of clinical applications of ketamine and its metabolism by CYP enzymes. We discuss the effects of ketamine on the regulation of CYP gene expression, exploring aspects of cytoskeletal remodeling, mitochondrial functions, and calcium homeostasis. Expert opinion: Ketamine may inhibit CYP gene expression through inhibiting calcium signaling, decreasing ATP levels, producing excessive reactive oxygen species, and subsequently perturbing cytoskeletal dynamics. Further research is still needed to avoid possible ketamine-drug interactions during long-term use in the clinic.
Collapse
Affiliation(s)
- Jui-Tai Chen
- a Department of Anesthesiology, School of Medicine, College of Medicine , Taipei Medical University , Taipei City , Taiwan.,b Department of Anesthesiology, Wan-Fang Hospital , Taipei Medical University , Taipei City , Taiwan
| | - Li Wei
- c Department of Neurosurgery, Wan-Fang Hospital , Taipei Medical University , Taipei City , Taiwan
| | - Ta-Liang Chen
- d Anesthesiology and Health Policy Research Center , Taipei Medical University Hospital , Taipei City , Taiwan
| | - Chun-Jen Huang
- a Department of Anesthesiology, School of Medicine, College of Medicine , Taipei Medical University , Taipei City , Taiwan.,b Department of Anesthesiology, Wan-Fang Hospital , Taipei Medical University , Taipei City , Taiwan
| | - Ruei-Ming Chen
- d Anesthesiology and Health Policy Research Center , Taipei Medical University Hospital , Taipei City , Taiwan.,e Graduate Institute of Medical Sciences, College of Medicine , Taipei Medical University , Taipei City , Taiwan.,f Cellular Physiology and Molecular Image Research Center, Wan-Fang Hospital , Taipei Medical University , Taipei City , Taiwan
| |
Collapse
|
25
|
Buchman CD, Chai SC, Chen T. A current structural perspective on PXR and CAR in drug metabolism. Expert Opin Drug Metab Toxicol 2018; 14:635-647. [PMID: 29757018 DOI: 10.1080/17425255.2018.1476488] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Pregnane X receptor (PXR) and the constitutive androstane receptor (CAR) are two members of the nuclear receptor superfamily that play major roles in the expression of various drug metabolism enzymes and are known for their ligand promiscuity. As with other nuclear receptors, PXR and CAR are each composed of a ligand-binding domain (LBD) and a DNA-binding domain (DBD) connected by a hinge region. Areas covered: This review focuses on the information obtained over the last 15+ years from X-ray crystallography studies of the structure of PXR and CAR. Areas of focus include the mobility of each structure, based on temperature factors (B factors); multimeric interactions; the binding of coregulators and ligands; and how the crystal structures were obtained. The first use of hydrogen-deuterium exchange coupled with mass spectroscopy (HDX-MS) to study compound-protein interactions in the PXR-LBD is also addressed. Expert opinion: X-ray crystallography studies have provided us with an excellent understanding of how the LBDs of each receptor function; however, many questions remain concerning the structure of these receptors. Future research should focus on determining the co-crystal structure of an antagonist bound to PXR and on studying the structural aspects of the full-length CAR and PXR proteins.
Collapse
Affiliation(s)
- Cameron D Buchman
- a Department of Chemical Biology and Therapeutics , St. Jude Children's Research Hospital , Memphis , TN , USA
| | - Sergio C Chai
- a Department of Chemical Biology and Therapeutics , St. Jude Children's Research Hospital , Memphis , TN , USA
| | - Taosheng Chen
- a Department of Chemical Biology and Therapeutics , St. Jude Children's Research Hospital , Memphis , TN , USA
| |
Collapse
|
26
|
Mackowiak B, Hodge J, Stern S, Wang H. The Roles of Xenobiotic Receptors: Beyond Chemical Disposition. Drug Metab Dispos 2018; 46:1361-1371. [PMID: 29759961 DOI: 10.1124/dmd.118.081042] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/07/2018] [Indexed: 02/06/2023] Open
Abstract
Over the past 20 years, the ability of the xenobiotic receptors to coordinate an array of drug-metabolizing enzymes and transporters in response to endogenous and exogenous stimuli has been extensively characterized and well documented. The constitutive androstane receptor (CAR) and the pregnane X receptor (PXR) are the xenobiotic receptors that have received the most attention since they regulate the expression of numerous proteins important to drug metabolism and clearance and formulate a central defensive mechanism to protect the body against xenobiotic challenges. However, accumulating evidence has shown that these xenobiotic sensors also control many cellular processes outside of their traditional realms of xenobiotic metabolism and disposition, including physiologic and/or pathophysiologic responses in energy homeostasis, cell proliferation, inflammation, tissue injury and repair, immune response, and cancer development. This review will highlight recent advances in studying the noncanonical functions of xenobiotic receptors with a particular focus placed on the roles of CAR and PXR in energy homeostasis and cancer development.
Collapse
Affiliation(s)
- Bryan Mackowiak
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland
| | - Jessica Hodge
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland
| | - Sydney Stern
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland
| |
Collapse
|
27
|
Cherian MT, Chai SC, Wright WC, Singh A, Alexandra Casal M, Zheng J, Wu J, Lee RE, Griffin PR, Chen T. CINPA1 binds directly to constitutive androstane receptor and inhibits its activity. Biochem Pharmacol 2018; 152:211-223. [PMID: 29608908 DOI: 10.1016/j.bcp.2018.03.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 03/28/2018] [Indexed: 01/28/2023]
Abstract
The constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are xenobiotic sensors that regulate the expression of drug-metabolizing enzymes and efflux transporters. CAR activation promotes drug elimination, thereby reducing therapeutic effectiveness, or causes adverse drug effects via toxic metabolites. CAR inhibitors could be used to attenuate these adverse drug effects. CAR and PXR share ligands and target genes, confounding the understanding of the regulation of receptor-specific activity. We previously identified a small-molecule inhibitor, CINPA1, that inhibits CAR (without activating PXR at lower concentrations) by altering CAR-coregulator interactions and reducing CAR recruitment to DNA response elements of regulated genes. However, solid evidence was not presented for the direct binding of CINPA1 to CAR. In this study, we demonstrate direct interaction of CINPA1 with the CAR ligand-binding domain (CAR-LBD) and identify key residues involved in such interactions through a combination of biophysical and computational methods. We found that CINPA1 resides in the ligand-binding pocket to stabilize the CAR-LBD in a more rigid, less fluid state. Molecular dynamics simulations, together with our previously reported docking model, enabled us to predict which CAR residues were critical for interactions with CINPA1. The importance of these residues for CINPA1 binding were then validated by directed mutations and testing the mutant CAR proteins in transcription reporter and coregulatory interaction assays. We demonstrated strong hydrogen bonding of CINPA1 with N165 and H203 and identified other residues involved in hydrophobic contacts with CINPA1. Overall, our data confirm that CINPA1 directly binds to CAR.
Collapse
Affiliation(s)
- Milu T Cherian
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Sergio C Chai
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - William C Wright
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, 920 Madison Avenue, Memphis, TN 38163, USA
| | - Aman Singh
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, 920 Madison Avenue, Memphis, TN 38163, USA
| | - Morgan Alexandra Casal
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; School of Pharmacy, University of Pittsburgh, 3501 Terrace Street, Pittsburgh, PA 15213, USA
| | - Jie Zheng
- Department of Molecular Medicine, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Jing Wu
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Richard E Lee
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Patrick R Griffin
- Department of Molecular Medicine, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Taosheng Chen
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, 920 Madison Avenue, Memphis, TN 38163, USA.
| |
Collapse
|
28
|
Abstract
The nuclear receptor family of transcription factor proteins mediates endocrine function and plays critical roles in the development, physiology and pharmacology. Malfunctioning nuclear receptors are associated with several disease states. The functional activity of nuclear receptors is regulated by small molecular hormonal and synthetic molecules. Multiple sources of evidence have identified and distinguished between the different allosteric pathways initiated by ligands, DNA and cofactors such as co-activators and co-repressors. Also, these biophysical studies are attempting to determine how these pathways that regulate co-activator and DNA recognition can control gene transcription. Thus, there is a growing interest in determining the genome-scale impact of allostery in nuclear receptors. Today, it is accepted that a detailed understanding of the allosteric regulatory pathways within the nuclear receptor molecular complex will enable the development of efficient drug therapies in the long term.
Collapse
Affiliation(s)
- Elias J Fernandez
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, USA.
| |
Collapse
|
29
|
Yamasaki Y, Kobayashi K, Inaba A, Uehara D, Tojima H, Kakizaki S, Chiba K. Indirect activation of pregnane X receptor in the induction of hepatic CYP3A11 by high-dose rifampicin in mice. Xenobiotica 2017; 48:1098-1105. [PMID: 29095659 DOI: 10.1080/00498254.2017.1400128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Rifampicin (RIF), a typical ligand of human pregnane X receptor (PXR), powerfully induces the expression of cytochrome P450 3A4 (CYP3A4) in humans. Although it is thought that RIF is not a ligand of rodent PXR, treatment with high-dose RIF (e.g. more than 20 mg/kg) increases the expression of CYP3A in the mouse liver. In this study, we investigated whether the induction of CYP3A by high-dose RIF in the mouse liver is mediated via indirect activation of mouse PXR (mPXR). The results showed that high-dose RIF increased the expression of CYP3A11 and other PXR-target genes in the liver of wild-type mice but not PXR-knockout mice. However, the results of reporter gene and ligand-dependent assembly assays showed that RIF does not activate mPXR in a ligand-dependent manner. In addition, high-dose RIF stimulated nuclear accumulation of mPXR in the mouse liver, and geldanamycin and okadaic acid attenuated the induction of Cyp3a11 and other PXR-target genes in primary hepatocytes, suggesting that high-dose RIF triggers nuclear translocation of mPXR. In conclusion, the present study suggests that high-dose RIF stimulates nuclear translocation of mPXR in the liver of mice by indirect activation, resulting in the transactivation of Cyp3a11 and other PXR-target genes.
Collapse
Affiliation(s)
- Yuki Yamasaki
- a Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University , Chiba , Japan and
| | - Kaoru Kobayashi
- a Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University , Chiba , Japan and
| | - Asumi Inaba
- a Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University , Chiba , Japan and
| | - Daisuke Uehara
- b Division of Gastroenterology and Hepatology, Department of Internal Medicine, Graduate School of Medicine, Gunma University , Maebashi , Japan
| | - Hiroki Tojima
- b Division of Gastroenterology and Hepatology, Department of Internal Medicine, Graduate School of Medicine, Gunma University , Maebashi , Japan
| | - Satoru Kakizaki
- b Division of Gastroenterology and Hepatology, Department of Internal Medicine, Graduate School of Medicine, Gunma University , Maebashi , Japan
| | - Kan Chiba
- a Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University , Chiba , Japan and
| |
Collapse
|
30
|
Emerging Therapeutics to Overcome Chemoresistance in Epithelial Ovarian Cancer: A Mini-Review. Int J Mol Sci 2017; 18:ijms18102171. [PMID: 29057791 PMCID: PMC5666852 DOI: 10.3390/ijms18102171] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/13/2017] [Accepted: 10/16/2017] [Indexed: 12/14/2022] Open
Abstract
Ovarian cancer is the fifth leading cause of cancer death among women and the most lethal gynecologic malignancy. One of the leading causes of death in high-grade serous ovarian cancer (HGSOC) is chemoresistant disease, which may present as intrinsic or acquired resistance to therapies. Here we discuss some of the known molecular mechanisms of chemoresistance that have been exhaustively investigated in chemoresistant ovarian cancer, including drug efflux pump multidrug resistance protein 1 (MDR1), the epithelial–mesenchymal transition, DNA damage and repair capacity. We also discuss novel therapeutics that may address some of the challenges in bringing approaches that target chemoresistant processes from bench to bedside. Some of these new therapies include novel drug delivery systems, targets that may halt adaptive changes in the tumor, exploitation of tumor mutations that leave cancer cells vulnerable to irreversible damage, and novel drugs that target ribosomal biogenesis, a process that may be uniquely different in cancer versus non-cancerous cells. Each of these approaches, or a combination of them, may provide a greater number of positive outcomes for a broader population of HGSOC patients.
Collapse
|
31
|
Cocci P, Mosconi G, Palermo FA. Pregnane X receptor (PXR) signaling in seabream primary hepatocytes exposed to extracts of seawater samples collected from polycyclic aromatic hydrocarbons (PAHs)-contaminated coastal areas. MARINE ENVIRONMENTAL RESEARCH 2017; 130:181-186. [PMID: 28760623 DOI: 10.1016/j.marenvres.2017.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/04/2017] [Accepted: 07/18/2017] [Indexed: 06/07/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are persistent organic pollutants damaging to the marine environment and the wildlife. Herein, we investigated the effects of extracts from coastal seawaters (central Adriatic sea, Italy), showing high concentrations of PAHs, on pregnane X receptor (PXR)-transcriptional regulation of the cytochrome P450 3A (CYP3A) gene using seabream primary hepatocytes. The results show that concentrated extracts of seawater with original ΣPAH concentrations above the putative threshold of 30 ng L-1 increased expression of PXR and its main target gene, CYP3A. Similar results were observed for LXR and its target gene SREBP-1c suggesting pathway cross-talk. These data are further supported by the finding of multiple PXR and LXR response elements in the putative promoters of their target genes. Overall, our data indicate the capacity of seawater extracts, containing environmentally relevant levels of PAHs, to affect multiple pathways, including lipid and cholesterol metabolism.
Collapse
Affiliation(s)
- Paolo Cocci
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino, MC, Italy
| | - Gilberto Mosconi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino, MC, Italy
| | - Francesco Alessandro Palermo
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino, MC, Italy.
| |
Collapse
|
32
|
Ueyama T, Tsuji S, Sugiyama T, Tada M. Fluorometric evaluation of CYP3A4 expression using improved transgenic HepaRG cells carrying a dual-colour reporter for CYP3A4 and CYP3A7. Sci Rep 2017; 7:2874. [PMID: 28588200 PMCID: PMC5460180 DOI: 10.1038/s41598-017-03146-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/24/2017] [Indexed: 01/29/2023] Open
Abstract
Primary human hepatocytes are necessary to evaluate cytotoxicity, drug metabolism, and drug–drug interactions for candidate compounds in early-phase drug discovery and development. However, these analyses are often hampered by limited resources and functional or genetic variation among lots. HepaRG human hepatocellular carcinoma cells can differentiate into mature hepatocyte-like cells (HepLCs) that possess similar metabolic activity to human hepatocytes. We previously established transgenic HepaRG cells carrying a dual reporter that express red fluorescent protein (RFP) under the transcriptional regulation of CYP3A7 in the hepatoblast-like cell state and enhanced green fluorescent protein (EGFP) under the transcriptional regulation of CYP3A4 following HepLC differentiation. In this study, we successfully isolated a subclone of transgenic CYP3A4G/7R HepaRG cells with an improved HepLC differentiation potency. Midazolam metabolism by CYP3A4 in these HepLCs was comparable to that in wild-type HepLCs. The EGFP fluorescence intensity was greatly induced by rifampicin (RIF) treatment. There was a strong correlation between fluorometric and metabolic analyses. The fold change in EGFP-positive cells was comparable to those in the CYP3A4 mRNA level and luminescence of proluciferin metabolites. RIF treatment and cell proliferation increased the RFP-positive cell number. Thus, CYP3A4G/7R HepLCs provide a real-time, multiwell-based system to co-evaluate CYP3A4 induction and hepatic regeneration.
Collapse
Affiliation(s)
- Takafumi Ueyama
- Tottori Cell Laboratory, Cell Technology, KAC Co., Ltd., Yonago, Japan.,Chromosome Engineering Research Centre, Tottori University, Yonago, Japan
| | - Saori Tsuji
- Tottori Cell Laboratory, Cell Technology, KAC Co., Ltd., Yonago, Japan.,Chromosome Engineering Research Centre, Tottori University, Yonago, Japan
| | - Takemi Sugiyama
- Tottori Cell Laboratory, Cell Technology, KAC Co., Ltd., Yonago, Japan
| | - Masako Tada
- Chromosome Engineering Research Centre, Tottori University, Yonago, Japan. .,Stem Cells & Reprogramming Laboratory, Human Biology, Department of Biology, Faculty of Science, Toho University, Miyama 2-2-1, Funabashi, Chiba, 274-8510, Japan.
| |
Collapse
|
33
|
Desaulniers D, Cooke GM, Leingartner K, Soumano K, Cole J, Yang J, Wade M, Yagminas A. Effects of Postnatal Exposure to a Mixture of Polychlorinated Biphenyls, p,p′-dichlorodiphenyltrichloroethane, and p-p′-dichlorodiphenyldichloroethene in Prepubertal and Adult Female Sprague-Dawley Rats. Int J Toxicol 2016; 24:111-27. [PMID: 16036770 DOI: 10.1080/10915810590936382] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The postnatal period is a critical phase of development and a time during which humans are exposed to higher levels of persistent organic pollutants (POPs), than during subsequent periods of life. There is a paucity of information describing effects of postnatal exposure to environmentally relevant mixtures of POPs, such as polychlorinated biphenyls (PCBs), p,p′-dichlorodiphenyltrichloroethane (DDT), and p,p′-dichlorodiphenyldichloroethene (DDE). To provide data useful for the risk assessment of postnatal exposure to POPs, mixtures containing 19 PCBs, DDT, and DDE were prepared according to their concentrations previously measured in the milk of Canadian women, and dose-response effects were tested on the proliferation of MCF7-E3 cells in vitro, and in vivo experiments. Female neonates were exposed by gavage at postnatal days (PNDs) 1, 5, 10, 15, and 20 with dosages equivalent to 10, 100, and 1000 times the estimated human exposure level over the first 24 days of life. The MCF7-E3 cells showed a 227% increase in the AlamarBlue proliferation index, suggesting estrogen-like properties of the mixture, but this was not confirmed in vivo, given the absence of uterotrophic effects at PND21. An increase (511%) in hepatic ethoxyresorufin- o-deethylase activity at the dose 100 × was the most sensitive endpoint among those measured at PND21 (organ weight, mammary gland and ovarian morphometry, hepatic enzyme inductions, serum thyroxine and pituitary hormones). In liver samples from older female rats (previously involved in a mammary tumor study [Desaulniers et al., Toxicol. Sci. 75:468–480, 2001]), hepatic metabolism of 14C-estradiol-17 β (E2) at PND55 to PND62 was significantly higher in the 1000 × compared to the control group, but hepatic detoxification enzyme activities had already returned to control values. The production of hepatic 2-hydroxy-E2 decreased, whereas that of estrone increased with age. In conclusion, the smallest dose of the mixture to induce significant effects was 100×, and mixture-induced changes in the hepatic metabolism of estrogens might be a sensitive indicator of persistent effects.
Collapse
Affiliation(s)
- Daniel Desaulniers
- Environmental Health Sciences Bureau, Healthy Environment and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abe T, Takahashi M, Kano M, Amaike Y, Ishii C, Maeda K, Kudoh Y, Morishita T, Hosaka T, Sasaki T, Kodama S, Matsuzawa A, Kojima H, Yoshinari K. Activation of nuclear receptor CAR by an environmental pollutant perfluorooctanoic acid. Arch Toxicol 2016; 91:2365-2374. [DOI: 10.1007/s00204-016-1888-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 11/02/2016] [Indexed: 01/12/2023]
|
35
|
Zhong S, Han W, Hou C, Liu J, Wu L, Liu M, Liang Z, Lin H, Zhou L, Liu S, Tang L. Relation of Transcriptional Factors to the Expression and Activity of Cytochrome P450 and UDP-Glucuronosyltransferases 1A in Human Liver: Co-Expression Network Analysis. AAPS JOURNAL 2016; 19:203-214. [PMID: 27681103 DOI: 10.1208/s12248-016-9990-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/08/2016] [Indexed: 12/31/2022]
Abstract
Cytochrome P450 (CYPs) and UDP-glucuronosyltransferases (UGTs) play important roles in the metabolism of exogenous and endogenous compounds. The gene transcription of CYPs and UGTs can be enhanced or reduced by transcription factors (TFs). This study aims to explore novel TFs involved in the regulatory network of human hepatic UGTs/CYPs. Correlations between the transcription levels of 683 key TFs and CYPs/UGTs in three different human liver expression profiles (n = 640) were calculated first. Supervised weighted correlation network analysis (sWGCNA) was employed to define hub genes among the selected TFs. The relationship among 17 defined TFs, CYPs/UGTs expression, and activity were evaluated in 30 liver samples from Chinese patients. The positive controls (e.g., PPARA, NR1I2, NR1I3) and hub TFs (NFIA, NR3C2, and AR) in the GreysWGCNA Module were significantly and positively associated with CYPs/UGTs expression. And the cancer- or inflammation-related TFs (TEAD4, NFKB2, and NFKB1) were negatively associated with mRNA expression of CYP2C9/CYP2E1/UGT1A9. Furthermore, the effect of NR1I2, NR1I3, AR, TEAD4, and NFKB2 on CYP450/UGT1A gene transcription translated into moderate influences on enzyme activities. To our knowledge, this is the first study to integrate Gene Expression Omnibus (GEO) datasets and supervised weighted correlation network analysis (sWGCNA) for defining TFs potentially related to CYPs/UGTs. We detected several novel TFs involved in the regulatory network of hepatic CYPs and UGTs in humans. Further validation and investigation may reveal their exact mechanism of CYPs/UGTs regulation.
Collapse
Affiliation(s)
- Shilong Zhong
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Southern Medical University, Guangzhou, China.,Medical Research Center of Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| | - Weichao Han
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, Department of Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Chuqi Hou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, Department of Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Junjin Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, Department of Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Lili Wu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, Department of Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Menghua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, Department of Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhi Liang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, Department of Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Haoming Lin
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Southern Medical University, Guangzhou, China
| | - Shuwen Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Southern Medical University, Guangzhou, China. .,Guangdong Provincial Key Laboratory of New Drug Screening, Department of Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Lan Tang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Southern Medical University, Guangzhou, China. .,Guangdong Provincial Key Laboratory of New Drug Screening, Department of Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
36
|
A brief history of the discovery of PXR and CAR as xenobiotic receptors. Acta Pharm Sin B 2016; 6:450-452. [PMID: 27709013 PMCID: PMC5045536 DOI: 10.1016/j.apsb.2016.06.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/21/2016] [Accepted: 04/28/2016] [Indexed: 02/01/2023] Open
Abstract
The nuclear receptors pregnane X receptor (PXR) and constitutive androstane receptor (CAR) were cloned and/or established as xenobiotic receptors in 1998. Due to their activities in the transcriptional regulation of phase I and phase II enzymes as well as drug transporters, PXR and CAR have been defined as the master regulators of xenobiotic responses. The discovery of PXR and CAR provides the essential molecular basis by which drugs and other xenobiotic compounds regulate the expression of xenobiotic enzymes and transporters. This article is intended to provide a historical overview on the discovery of PXR and CAR as xenobiotic receptors.
Collapse
|
37
|
Hedrich WD, Hassan HE, Wang H. Insights into CYP2B6-mediated drug-drug interactions. Acta Pharm Sin B 2016; 6:413-425. [PMID: 27709010 PMCID: PMC5045548 DOI: 10.1016/j.apsb.2016.07.016] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/18/2016] [Accepted: 05/27/2016] [Indexed: 01/11/2023] Open
Abstract
Mounting evidence demonstrates that CYP2B6 plays a much larger role in human drug metabolism than was previously believed. The discovery of multiple important substrates of CYP2B6 as well as polymorphic differences has sparked increasing interest in the genetic and xenobiotic factors contributing to the expression and function of the enzyme. The expression of CYP2B6 is regulated primarily by the xenobiotic receptors constitutive androstane receptor (CAR) and pregnane X receptor (PXR) in the liver. In addition to CYP2B6, these receptors also mediate the inductive expression of CYP3A4, and a number of important phase II enzymes and drug transporters. CYP2B6 has been demonstrated to play a role in the metabolism of 2%–10% of clinically used drugs including widely used antineoplastic agents cyclophosphamide and ifosfamide, anesthetics propofol and ketamine, synthetic opioids pethidine and methadone, and the antiretrovirals nevirapine and efavirenz, among others. Significant inter-individual variability in the expression and function of the human CYP2B6 gene exists and can result in altered clinical outcomes in patients receiving treatment with CYP2B6-substrate drugs. These variances arise from a number of sources including genetic polymorphism, and xenobiotic intervention. In this review, we will provide an overview of the key players in CYP2B6 expression and function and highlight recent advances made in assessing clinical ramifications of important CYP2B6-mediated drug–drug interactions.
Collapse
Key Words
- 4-OH-CPA, 4-hydroxycyclophosphamide
- C/EBP, CCAAT/enhancer-binding protein
- CAR
- CAR, constitutive androstane receptor
- CHOP, cyclophosphamide–doxorubicin–vincristine–prednisone
- CITCO, (6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde-O-(3,4-dichlorobenzyl)oxime)
- COUP-TF, chicken ovalbumin upstream promoter-transcription factor
- CPA, cyclophosphamide
- CYP, cytochrome P450
- CYP2B6
- Cyclophosphamide
- DDI, drug–drug interaction
- DEX, dexamethasone
- Drug–drug interaction
- E2, estradiol
- EFV, efavirenz
- ERE, estrogen responsive element
- Efavirenz
- GR, glucocorticoid receptor
- GRE, glucocorticoid responsive element
- HAART, highly active antiretroviral therapy
- HNF, hepatocyte nuclear factor
- IFA, Ifosfamide
- MAOI, monoamine oxidase inhibitor
- NNRTI, non-nucleotide reverse-transcriptase inhibitor
- NR1/2, nuclear receptor binding site 1/2
- NVP, nevirapine
- PB, phenobarbital
- PBREM, phenobarbital-responsive enhancer module
- PCN, pregnenolone 16 alpha-carbonitrile
- PXR
- PXR, pregnane X receptor
- Polymorphism
- RIF, rifampin
- SNP, single nucleotide polymorphism
- TCPOBOP, 1,4-bis[3,5-dichloropyridyloxy]benzene
- UGT, UDP-glucuronosyl transferase
Collapse
Affiliation(s)
| | | | - Hongbing Wang
- Corresponding author at: Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, USA. Tel.: +1 410 706 1280; fax: +1 410 706 5017.
| |
Collapse
|
38
|
Modulation of CYP3A4 activity alters the cytotoxicity of lipophilic phycotoxins in human hepatic HepaRG cells. Toxicol In Vitro 2016; 33:136-46. [DOI: 10.1016/j.tiv.2016.02.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 02/02/2016] [Accepted: 02/17/2016] [Indexed: 11/23/2022]
|
39
|
Nagai M, Konno Y, Satsukawa M, Yamashita S, Yoshinari K. Establishment of In Silico Prediction Models for CYP3A4 and CYP2B6 Induction in Human Hepatocytes by Multiple Regression Analysis Using Azole Compounds. ACTA ACUST UNITED AC 2016; 44:1390-8. [PMID: 27208383 DOI: 10.1124/dmd.115.068619] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 05/18/2016] [Indexed: 11/22/2022]
Abstract
Drug-drug interactions (DDIs) via cytochrome P450 (P450) induction are one clinical problem leading to increased risk of adverse effects and the need for dosage adjustments and additional therapeutic monitoring. In silico models for predicting P450 induction are useful for avoiding DDI risk. In this study, we have established regression models for CYP3A4 and CYP2B6 induction in human hepatocytes using several physicochemical parameters for a set of azole compounds with different P450 induction as characteristics as model compounds. To obtain a well-correlated regression model, the compounds for CYP3A4 or CYP2B6 induction were independently selected from the tested azole compounds using principal component analysis with fold-induction data. Both of the multiple linear regression models obtained for CYP3A4 and CYP2B6 induction are represented by different sets of physicochemical parameters. The adjusted coefficients of determination for these models were of 0.8 and 0.9, respectively. The fold-induction of the validation compounds, another set of 12 azole-containing compounds, were predicted within twofold limits for both CYP3A4 and CYP2B6. The concordance for the prediction of CYP3A4 induction was 87% with another validation set, 23 marketed drugs. However, the prediction of CYP2B6 induction tended to be overestimated for these marketed drugs. The regression models show that lipophilicity mostly contributes to CYP3A4 induction, whereas not only the lipophilicity but also the molecular polarity is important for CYP2B6 induction. Our regression models, especially that for CYP3A4 induction, might provide useful methods to avoid potent CYP3A4 or CYP2B6 inducers during the lead optimization stage without performing induction assays in human hepatocytes.
Collapse
Affiliation(s)
- Mika Nagai
- Pharmacokinetics and Safety Department, Drug Research Center, Kaken Pharmaceutical, Kyoto, Japan (M.N., Y.K., M.S.); Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan (M.N., K.Y.); and Faculty of Pharmaceutical Sciences, Setsunan University, Osaka, Japan (S.Y.)
| | - Yoshihiro Konno
- Pharmacokinetics and Safety Department, Drug Research Center, Kaken Pharmaceutical, Kyoto, Japan (M.N., Y.K., M.S.); Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan (M.N., K.Y.); and Faculty of Pharmaceutical Sciences, Setsunan University, Osaka, Japan (S.Y.)
| | - Masahiro Satsukawa
- Pharmacokinetics and Safety Department, Drug Research Center, Kaken Pharmaceutical, Kyoto, Japan (M.N., Y.K., M.S.); Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan (M.N., K.Y.); and Faculty of Pharmaceutical Sciences, Setsunan University, Osaka, Japan (S.Y.)
| | - Shinji Yamashita
- Pharmacokinetics and Safety Department, Drug Research Center, Kaken Pharmaceutical, Kyoto, Japan (M.N., Y.K., M.S.); Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan (M.N., K.Y.); and Faculty of Pharmaceutical Sciences, Setsunan University, Osaka, Japan (S.Y.)
| | - Kouichi Yoshinari
- Pharmacokinetics and Safety Department, Drug Research Center, Kaken Pharmaceutical, Kyoto, Japan (M.N., Y.K., M.S.); Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan (M.N., K.Y.); and Faculty of Pharmaceutical Sciences, Setsunan University, Osaka, Japan (S.Y.)
| |
Collapse
|
40
|
Cave MC, Clair HB, Hardesty JE, Falkner KC, Feng W, Clark BJ, Sidey J, Shi H, Aqel BA, McClain CJ, Prough RA. Nuclear receptors and nonalcoholic fatty liver disease. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1083-1099. [PMID: 26962021 DOI: 10.1016/j.bbagrm.2016.03.002] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/29/2016] [Accepted: 03/01/2016] [Indexed: 02/08/2023]
Abstract
Nuclear receptors are transcription factors which sense changing environmental or hormonal signals and effect transcriptional changes to regulate core life functions including growth, development, and reproduction. To support this function, following ligand-activation by xenobiotics, members of subfamily 1 nuclear receptors (NR1s) may heterodimerize with the retinoid X receptor (RXR) to regulate transcription of genes involved in energy and xenobiotic metabolism and inflammation. Several of these receptors including the peroxisome proliferator-activated receptors (PPARs), the pregnane and xenobiotic receptor (PXR), the constitutive androstane receptor (CAR), the liver X receptor (LXR) and the farnesoid X receptor (FXR) are key regulators of the gut:liver:adipose axis and serve to coordinate metabolic responses across organ systems between the fed and fasting states. Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease and may progress to cirrhosis and even hepatocellular carcinoma. NAFLD is associated with inappropriate nuclear receptor function and perturbations along the gut:liver:adipose axis including obesity, increased intestinal permeability with systemic inflammation, abnormal hepatic lipid metabolism, and insulin resistance. Environmental chemicals may compound the problem by directly interacting with nuclear receptors leading to metabolic confusion and the inability to differentiate fed from fasting conditions. This review focuses on the impact of nuclear receptors in the pathogenesis and treatment of NAFLD. Clinical trials including PIVENS and FLINT demonstrate that nuclear receptor targeted therapies may lead to the paradoxical dissociation of steatosis, inflammation, fibrosis, insulin resistance, dyslipidemia and obesity. Novel strategies currently under development (including tissue-specific ligands and dual receptor agonists) may be required to separate the beneficial effects of nuclear receptor activation from unwanted metabolic side effects. The impact of nuclear receptor crosstalk in NAFLD is likely to be profound, but requires further elucidation. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie.
Collapse
Affiliation(s)
- Matthew C Cave
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; The Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206, USA; The KentuckyOne Health Jewish Hospital Liver Transplant Program, Louisville, KY 40202, USA.
| | - Heather B Clair
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Josiah E Hardesty
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - K Cameron Falkner
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Wenke Feng
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Barbara J Clark
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Jennifer Sidey
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Hongxue Shi
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Bashar A Aqel
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Scottsdale, AZ 85054, USA
| | - Craig J McClain
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; The Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206, USA; The KentuckyOne Health Jewish Hospital Liver Transplant Program, Louisville, KY 40202, USA
| | - Russell A Prough
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
41
|
Nuclear hormone receptor DHR96 mediates the resistance to xenobiotics but not the increased lifespan of insulin-mutant Drosophila. Proc Natl Acad Sci U S A 2016; 113:1321-6. [PMID: 26787908 PMCID: PMC4747718 DOI: 10.1073/pnas.1515137113] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lifespan of laboratory animals can be increased by genetic, pharmacological, and dietary interventions. Increased expression of genes involved in xenobiotic metabolism, together with resistance to xenobiotics, are frequent correlates of lifespan extension in the nematode worm Caenorhabditis elegans, the fruit fly Drosophila, and mice. The Green Theory of Aging suggests that this association is causal, with the ability of cells to rid themselves of lipophilic toxins limiting normal lifespan. To test this idea, we experimentally increased resistance of Drosophila to the xenobiotic dichlordiphenyltrichlorethan (DDT), by artificial selection or by transgenic expression of a gene encoding a cytochrome P450. Although both interventions increased DDT resistance, neither increased lifespan. Furthermore, dietary restriction increased lifespan without increasing xenobiotic resistance, confirming that the two traits can be uncoupled. Reduced activity of the insulin/Igf signaling (IIS) pathway increases resistance to xenobiotics and extends lifespan in Drosophila, and can also increase longevity in C. elegans, mice, and possibly humans. We identified a nuclear hormone receptor, DHR96, as an essential mediator of the increased xenobiotic resistance of IIS mutant flies. However, the IIS mutants remained long-lived in the absence of DHR96 and the xenobiotic resistance that it conferred. Thus, in Drosophila IIS mutants, increased xenobiotic resistance and enhanced longevity are not causally connected. The frequent co-occurrence of the two traits may instead have evolved because, in nature, lowered IIS can signal the presence of pathogens. It will be important to determine whether enhanced xenobiotic metabolism is also a correlated, rather than a causal, trait in long-lived mice.
Collapse
|
42
|
Dakhakhni TH, Raouf GA, Qusti SY. Evaluation of the toxic effect of the herbicide 2, 4-D on rat hepatocytes: an FT-IR spectroscopic study. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 45:311-20. [DOI: 10.1007/s00249-015-1097-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 10/26/2015] [Accepted: 11/05/2015] [Indexed: 02/03/2023]
|
43
|
Al-Anati L, Viluksela M, Strid A, Bergman Å, Andersson PL, Stenius U, Högberg J. Hydroxyl metabolite of PCB 180 induces DNA damage signaling and enhances the DNA damaging effect of benzo[a]pyrene. Chem Biol Interact 2015; 239:164-73. [PMID: 26148434 DOI: 10.1016/j.cbi.2015.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 06/16/2015] [Accepted: 07/03/2015] [Indexed: 10/23/2022]
Abstract
Non-dioxin-like (NDL) polychlorinated biphenyls (PCBs) and their hydroxyl metabolites (OH-PCBs) are ubiquitous environmental contaminants in human tissues and blood. The toxicological impact of these metabolites is poorly understood. In this study rats were exposed to ultrapure PCB180 (10-1000mg/kgbw) for 28days and induction of genotoxic stress in liver was investigated. DNA damage signaling proteins (pChk1Ser317 and γH2AXSer319) were increased dose dependently in female rats. This increase was paralleled by increasing levels of the metabolite 3'-OH-PCB180. pChk1 was the most sensitive marker. In in vitro studies HepG2 cells were exposed to 1μM of PCB180 and 3'-OH-PCB180 or the positive control benzo[a]pyrene (BaP, 5μM). 3'-OH-PCB180, but not PCB180, induced CYP1A1 mRNA and γH2AX. CYP1A1 mRNA induction was seen at 1h, and γH2AX at 3h. The anti-oxidant N-Acetyl-l-Cysteine (NAC) completely prevented, and 17β-estradiol amplified the γH2AX induction by 3'-OH-PCB180. As 3'-OH-PCB180 induced CYP1A1, a major BaP-metabolizing and activating enzyme, interactions between 3'-OH-PCB180 and BaP was also studied. The metabolite amplified the DNA damage signaling response to BaP. In conclusion, metabolism of PCB180 to its hydroxyl metabolite and the subsequent induction of CYP1A1 seem important for DNA damage induced by PCB180 in vivo. Amplification of the response with estradiol may explain why DNA damage was only seen in female rats.
Collapse
Affiliation(s)
- Lauy Al-Anati
- Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Matti Viluksela
- Chemicals and Health Unit, National Institute for Health and Welfare (THL), P.O. Box 95, FI-70701 Kuopio, Finland; Department of Environmental Science, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Anna Strid
- Analytical and Toxicological Chemistry Unit, Department of Environmental Science and Analytical Chemistry, Stockholm University, SE 106-91 Stockholm, Sweden
| | - Åke Bergman
- Analytical and Toxicological Chemistry Unit, Department of Environmental Science and Analytical Chemistry, Stockholm University, SE 106-91 Stockholm, Sweden; Swedish Toxicology Sciences Research Center (Swetox), Forskargatan 20, 151 36 Södertälje, Sweden
| | | | - Ulla Stenius
- Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Johan Högberg
- Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
44
|
Kobayashi K, Hashimoto M, Honkakoski P, Negishi M. Regulation of gene expression by CAR: an update. Arch Toxicol 2015; 89:1045-55. [PMID: 25975989 DOI: 10.1007/s00204-015-1522-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 04/27/2015] [Indexed: 11/30/2022]
Abstract
The constitutive androstane receptor (CAR), a member of the nuclear receptor superfamily, is a well-known xenosensor that regulates hepatic drug metabolism and detoxification. CAR activation can be elicited by a large variety of xenobiotics, including phenobarbital (PB) which is not a directly binding CAR ligand. The mechanism of CAR activation is complex and involves translocation from the cytoplasm into the nucleus, followed by further activation steps in the nucleus. Recently, epidermal growth factor receptor (EGFR) has been identified as a PB-responsive receptor, and PB activates CAR by inhibiting the EGFR signaling. In addition to regulation of drug metabolism, activation of CAR has multiple biological end points such as modulation of xenobiotic-elicited liver injury, and the role of CAR in endobiotic functions such as glucose metabolism and cholesterol homeostasis is increasingly recognized. Thus, investigations on the molecular mechanism of CAR activation are critical for the real understanding of CAR-mediated processes. Here, we summarize the current understanding of mechanisms by which CAR activators regulate gene expression through cellular signaling pathways and the roles of CAR on xenobiotic-elicited hepatocellular carcinoma, liver injury, glucose metabolism and cholesterol homeostasis.
Collapse
Affiliation(s)
- Kaoru Kobayashi
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan,
| | | | | | | |
Collapse
|
45
|
Kim YH, Soumaila Issa M, Cooper AMW, Zhu KY. RNA interference: Applications and advances in insect toxicology and insect pest management. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2015; 120:109-17. [PMID: 25987228 DOI: 10.1016/j.pestbp.2015.01.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 01/05/2015] [Accepted: 01/05/2015] [Indexed: 05/27/2023]
Abstract
Since its discovery, RNA interference (RNAi) has revolutionized functional genomic studies due to its sequence-specific nature of post-transcriptional gene silencing. In this paper, we provide a comprehensive review of the recent literature and summarize the current knowledge and advances in the applications of RNAi technologies in the field of insect toxicology and insect pest management. Many recent studies have focused on identification and validation of the genes encoding insecticide target proteins, such as acetylcholinesterases, ion channels, Bacillus thuringiensis receptors, and other receptors in the nervous system. RNAi technologies have also been widely applied to reveal the role of genes encoding cytochrome P450 monooxygenases, carboxylesterases, and glutathione S-transferases in insecticide detoxification and resistance. More recently, studies have focused on understanding the mechanism of insecticide-mediated up-regulation of detoxification genes in insects. As RNAi has already shown great potentials for insect pest management, many recent studies have also focused on host-induced gene silencing, in which several RNAi-based transgenic plants have been developed and tested as proof of concept for insect pest management. These studies indicate that RNAi is a valuable tool to address various fundamental questions in insect toxicology and may soon become an effective strategy for insect pest management.
Collapse
Affiliation(s)
- Young Ho Kim
- Department of Entomology, Kansas State University, Manhattan, KS 66506-4004, USA
| | | | - Anastasia M W Cooper
- Department of Entomology, Kansas State University, Manhattan, KS 66506-4004, USA
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, KS 66506-4004, USA.
| |
Collapse
|
46
|
Kubota A, Goldstone JV, Lemaire B, Takata M, Woodin BR, Stegeman JJ. Role of pregnane X receptor and aryl hydrocarbon receptor in transcriptional regulation of pxr, CYP2, and CYP3 genes in developing zebrafish. Toxicol Sci 2015; 143:398-407. [PMID: 25424564 PMCID: PMC4306721 DOI: 10.1093/toxsci/kfu240] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Ligand-activated receptors regulate numerous genes, and mediate effects of a broad set of endogenous and exogenous chemicals in vertebrates. Understanding the roles of these transcription factors in zebrafish (Danio rerio) is important to the use of this non-mammalian model in toxicological, pharmacological, and carcinogenesis research. Response to a potential agonist for the pregnane X receptor (Pxr) [pregnenolone (PN)] was examined in developing zebrafish, to assess involvement of Pxr in regulation of selected genes, including genes in cytochrome P450 subfamilies CYP2 and CYP3. We also examined interaction of Pxr and the aryl hydrocarbon receptor (Ahr) signaling pathways. Pregnenolone caused a dose-dependent increase in mRNA levels of pxr, ahr2, CYP1A, CYP2AA1, CYP2AA12, CYP3A65, and CYP3C1, most of which peaked at 3 µM PN. The well-known Ahr agonist 3,3',4,4',5-pentachlorobiphenyl (PCB126) also upregulated expression of pxr, ahr2, CYP1A, CYP2AA12, CYP3A65, and CYP3C1 in a dose-dependent manner. Inhibition of pxr translation by morpholino antisense oligonucleotides (MO) suppressed PN-induced expression of pxr, ahr2, CYP3A65, and CYP3C1 genes. Levels of CYP2AA1 and CYP2AA12 mRNA were increased in the control-MO group exposed to PN; this was prevented by knocking down Pxr. Similarly, Ahr2-MO treatment blocked PCB126-induced mRNA expression of pxr, CYP1A, CYP2AA12, CYP3A65, and CYP3C1. The present study shows self-regulation of pxr by PN in developing zebrafish. Selected zebrafish CYP1, CYP2 (including several CYP2AAs) and CYP3 genes appear to be under the regulation of both Pxr and Ahr2.
Collapse
Affiliation(s)
- Akira Kubota
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| | - Jared V Goldstone
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| | - Benjamin Lemaire
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| | - Matthew Takata
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| | - Bruce R Woodin
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| | - John J Stegeman
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| |
Collapse
|
47
|
Ring-oxidative biotransformation and drug interactions of propofol in the livers of rats. BIOMED RESEARCH INTERNATIONAL 2015; 2015:658928. [PMID: 25710017 PMCID: PMC4331326 DOI: 10.1155/2015/658928] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 10/13/2014] [Accepted: 10/22/2014] [Indexed: 02/06/2023]
Abstract
Propofol, an intravenous anesthetic agent, is widely used for inducing and maintaining anesthesia during surgical procedures and for sedating intensive care unit patients. In the clinic, rapid elimination is one of the major advantages of propofol. Meanwhile, the biotransformation and drug interactions of propofol in rat livers are still little known. In this study, we evaluated the ring-oxidative metabolism of propofol in phenobarbital-treated rat livers and possible drug interactions. Administration of phenobarbital to male Wistar rats significantly increased levels of hepatic cytochrome P450 (CYP) 2B1/2 and microsomal pentoxyresorufin O-dealkylase (PROD) activity. Analyses by high-performance liquid chromatography and liquid chromatography mass spectroscopy revealed that propofol was metabolized by phenobarbital-treated rat liver microsomes into 4-hydroxypropofol. In comparison, PROD activity and 4-hydroxy-propofol production from propofol metabolism were suppressed by orphenodrine, an inhibitor of CYP2B1/2, and a polyclonal antibody against rat CYP2B1/2 protein. Furthermore, exposure of rats to propofol did not affect the basal or phenobarbital-enhanced levels of hepatic CYP2B1/2 protein. Meanwhile, propofol decreased the dealkylation of pentoxyresorufin by phenobarbital-treated rat liver microsomes in a concentration-dependent manner. Taken together, this study shows that rat hepatic CYP2B1/2 plays a critical role in the ring-oxidative metabolism of propofol into 4-hydroxypropofol, and this anesthetic agent can inhibit CYP2B1/2 activity without affecting protein synthesis.
Collapse
|
48
|
Yamazaki T, Ohki T, Taguchi H, Yamamoto A, Okazaki M, Sakamoto T, Mitsumoto A, Kawashima Y, Kudo N. Effects of dietary fish oil on cytochrome P450 3A expression in the liver of SHR/NDmcr-cp ( cp/ cp) rats, an animal model for metabolic syndrome. ACTA ACUST UNITED AC 2015. [DOI: 10.2131/fts.2.127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
| | - Takashi Ohki
- School of Pharmaceutical Sciences, Josai University
| | | | | | - Mari Okazaki
- School of Pharmaceutical Sciences, Josai University
| | | | | | | | - Naomi Kudo
- School of Pharmaceutical Sciences, Josai University
| |
Collapse
|
49
|
Ohno M, Kanayama T, Moore R, Ray M, Negishi M. The roles of co-chaperone CCRP/DNAJC7 in Cyp2b10 gene activation and steatosis development in mouse livers. PLoS One 2014; 9:e115663. [PMID: 25542016 PMCID: PMC4277317 DOI: 10.1371/journal.pone.0115663] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 11/16/2014] [Indexed: 11/18/2022] Open
Abstract
Cytoplasmic constitutive active/androstane receptor (CAR) retention protein (CCRP and also known as DNAJC7) is a co-chaperone previously characterized to retain nuclear receptor CAR in the cytoplasm of HepG2 cells. Here we have produced CCRP knockout (KO) mice and demonstrated that CCRP regulates CAR at multiple steps in activation of the cytochrome (Cyp) 2b10 gene in liver: nuclear accumulation, RNA polymerase II recruitment and epigenetic modifications. Phenobarbital treatment greatly increased nuclear CAR accumulation in the livers of KO males as compared to those of wild type (WT) males. Despite this accumulation, phenobarbital-induced activation of the Cyp2b10 gene was significantly attenuated. In ChIP assays, a CAR/retinoid X receptor-α (RXRα) heterodimer binding to the Cyp2b10 promoter was already increased before phenobarbital treatment and further pronounced after treatment. However, RNA polymerase II was barely recruited to the promoter even after phenobarbital treatment. Histone H3K27 on the Cyp2b10 promoter was de-methylated only after phenobarbital treatment in WT but was fully de-methylated before treatment in KO males. Thus, CCRP confers phenobarbital-induced de-methylation capability to the promoter as well as the phenobarbital responsiveness of recruiting RNA polymerase II, but is not responsible for the binding between CAR and its cognate sequence, phenobarbital responsive element module. In addition, KO males developed steatotic livers and increased serum levels of total cholesterol and high density lipoprotein in response to fasting. CCRP appears to be involved in various hepatic regulations far beyond CAR-mediated drug metabolism.
Collapse
Affiliation(s)
- Marumi Ohno
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Tomohiko Kanayama
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Rick Moore
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Manas Ray
- Knockout Core, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Masahiko Negishi
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
50
|
CYP2B6 516G>T (rs3745274) and Smoking Status Are Associated With Efavirenz Plasma Concentration in a Serbian Cohort of HIV Patients. Ther Drug Monit 2014; 36:734-8. [DOI: 10.1097/ftd.0000000000000098] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|