1
|
Schultz JD, Yuly JL, Arsenault EA, Parker K, Chowdhury SN, Dani R, Kundu S, Nuomin H, Zhang Z, Valdiviezo J, Zhang P, Orcutt K, Jang SJ, Fleming GR, Makri N, Ogilvie JP, Therien MJ, Wasielewski MR, Beratan DN. Coherence in Chemistry: Foundations and Frontiers. Chem Rev 2024; 124:11641-11766. [PMID: 39441172 DOI: 10.1021/acs.chemrev.3c00643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Coherence refers to correlations in waves. Because matter has a wave-particle nature, it is unsurprising that coherence has deep connections with the most contemporary issues in chemistry research (e.g., energy harvesting, femtosecond spectroscopy, molecular qubits and more). But what does the word "coherence" really mean in the context of molecules and other quantum systems? We provide a review of key concepts, definitions, and methodologies, surrounding coherence phenomena in chemistry, and we describe how the terms "coherence" and "quantum coherence" refer to many different phenomena in chemistry. Moreover, we show how these notions are related to the concept of an interference pattern. Coherence phenomena are indeed complex, and ambiguous definitions may spawn confusion. By describing the many definitions and contexts for coherence in the molecular sciences, we aim to enhance understanding and communication in this broad and active area of chemistry.
Collapse
Affiliation(s)
- Jonathan D Schultz
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jonathon L Yuly
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
| | - Eric A Arsenault
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Kelsey Parker
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Sutirtha N Chowdhury
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Reshmi Dani
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Sohang Kundu
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Hanggai Nuomin
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Zhendian Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jesús Valdiviezo
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Sección Química, Departamento de Ciencias, Pontificia Universidad Católica del Perú, San Miguel, Lima 15088, Peru
| | - Peng Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Kaydren Orcutt
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Bioproducts Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 800 Buchanan Street, Albany, California 94710, United States
| | - Seogjoo J Jang
- Department of Chemistry and Biochemistry, Queens College, City University of New York, Queens, New York 11367, United States
- Chemistry and Physics PhD programs, Graduate Center, City University of New York, New York, New York 10016, United States
| | - Graham R Fleming
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Nancy Makri
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Department of Physics, University of Illinois, Urbana, Illinois 61801, United States
- Illinois Quantum Information Science and Technology Center, University of Illinois, Urbana, Illinois 61801, United States
| | - Jennifer P Ogilvie
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Michael J Therien
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - David N Beratan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
- Department of Biochemistry, Duke University, Durham, North Carolina 27710, United States
| |
Collapse
|
2
|
Geva M, Langbeheim Y, Landau A, Amitay Z. Weak-Field Coherent Control of Ultrafast Molecule Making. PHYSICAL REVIEW LETTERS 2024; 133:193201. [PMID: 39576906 DOI: 10.1103/physrevlett.133.193201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/22/2024] [Accepted: 09/17/2024] [Indexed: 11/24/2024]
Abstract
Coherent control of ultrafast molecule making from colliding reactants is crucial for realizing coherent control of binary photoreactions (CCBP). To handle diverse excitation scenarios, feasibility with both weak and strong fields is essential. We experimentally demonstrate here the weak-field feasibility, achieving it even under thermally hot conditions typical of chemical reactions. The making of KAr complexes from hot pairs of colliding K and Ar atoms via resonance-mediated two-photon excitation is controlled by weak linearly chirped femtosecond pulses. Negative chirps enhance the yield. Our experimental and ab initio theoretical results are in excellent agreement. New routes to CCBP are opened.
Collapse
|
3
|
Singh K, Lee KH, Peláez D, Bande A. Accelerating wavepacket propagation with machine learning. J Comput Chem 2024; 45:2360-2373. [PMID: 39031712 DOI: 10.1002/jcc.27443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 07/22/2024]
Abstract
In this work, we discuss the use of a recently introduced machine learning (ML) technique known as Fourier neural operators (FNO) as an efficient alternative to the traditional solution of the time-dependent Schrödinger equation (TDSE). FNOs are ML models which are employed in the approximated solution of partial differential equations. For a wavepacket propagating in an anharmonic potential and for a tunneling system, we show that the FNO approach can accurately and faithfully model wavepacket propagation via the density. Additionally, we demonstrate that FNOs can be a suitable replacement for traditional TDSE solvers in cases where the results of the quantum dynamical simulation are required repeatedly such as in the case of parameter optimization problems (e.g., control). The speed-up from the FNO method allows for its combination with the Markov-chain Monte Carlo approach in applications that involve solving inverse problems such as optimal and coherent laser control of the outcome of dynamical processes.
Collapse
Affiliation(s)
- Kanishka Singh
- Theory of Electron Dynamics and Spectroscopy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Ka Hei Lee
- Theory of Electron Dynamics and Spectroscopy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany
- Fachbereich Physik, Freie Universität Berlin, Berlin, Germany
| | - Daniel Peláez
- CNRS, Institut des Sciences Moléculaires d'Orsay, Université Paris-Saclay, Orsay, France
| | - Annika Bande
- Theory of Electron Dynamics and Spectroscopy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany
- Institute of Inorganic Chemistry, Leibniz University Hannover, Hannover, Germany
- Cluster of Excellence PhoenixD, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
4
|
Lyu N, Khazaei P, Geva E, Batista VS. Simulating Cavity-Modified Electron Transfer Dynamics on NISQ Computers. J Phys Chem Lett 2024; 15:9535-9542. [PMID: 39264851 DOI: 10.1021/acs.jpclett.4c02220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
We present an algorithm based on the quantum-mechanically exact tensor-train thermo-field dynamics (TT-TFD) method for simulating cavity-modified electron transfer dynamics on noisy intermediate-scale quantum (NISQ) computers. The utility and accuracy of the proposed methodology is demonstrated on a model for the photoinduced intramolecular electron transfer reaction within the carotenoid-porphyrin-C60 molecular triad in tetrahydrofuran (THF) solution. The electron transfer rate is found to increase significantly with increasing coupling strength between the molecular system and the cavity. The rate process is also seen to shift from overdamped monotonic decay to under-damped oscillatory dynamics. The electron transfer rate is seen to be highly sensitive to the cavity frequency, with the emergence of a resonance cavity frequency for which the effect of coupling to the cavity is maximal. Finally, an implementation of the algorithm on the IBM Osaka quantum computer is used to demonstrate how TT-TFD-based electron transfer dynamics can be simulated accurately on NISQ computers.
Collapse
Affiliation(s)
- Ningyi Lyu
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Multiscale Research Institute of Complex Systems, Fudan University, Shanghai, 200433, China
| | - Pouya Khazaei
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Eitan Geva
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Yale Quantum Institute, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
5
|
Kosloff R. Quantum Molecular Devices. ACS PHYSICAL CHEMISTRY AU 2024; 4:226-231. [PMID: 38800727 PMCID: PMC11117685 DOI: 10.1021/acsphyschemau.3c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 05/29/2024]
Abstract
Miniaturization has been the driving force in contemporary technologies. However, two main obstacles limit further progress: additional reduction in size has reached its quantum limit, and lithography has reached its threshold. Future progress requires tackling three challenges: chemical synthesis of a complete device, active cooling for exploiting quantum characteristics, and quantum coherent control for operation. Chemical synthesis replaces the current top-bottom approach to manufacturing with bottom-up synthesis from elementary building blocks. New ultracold synthetic methods should be developed. An additional challenge is the active cooling of molecules, where the bottleneck is entropy removal. Notably, the current solution, namely, diffusion, is too slow. A coherent approach offers a possible solution; specifically, quantum coherent control is the method of choice for manipulating ultracold matter. Finally, the many degrees of freedom of molecules should be an asset that allows the design and implementation of complex tasks such as sensing communication and computing.
Collapse
Affiliation(s)
- Ronnie Kosloff
- Institute of Chemistry, Hebrew
University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
6
|
Fushitani M, Fujise H, Hishikawa A, You D, Saito S, Luo Y, Ueda K, Ibrahim H, Légaré F, Pratt ST, Eng-Johnsson P, Mauritsson J, Olofsson A, Peschel J, Simpson ER, Carpeggiani PA, Ertel D, Maroju PK, Moioli M, Sansone G, Shah R, Csizmadia T, Dumergue M, Nandiga Gopalakrishna H, Kühn S, Callegari C, Danailov M, Demidovich A, Raimondi L, Zangrando M, De Ninno G, Di Fraia M, Giannessi L, Plekan O, Rebernik Ribic P, Prince KC. Wave packet dynamics and control in excited states of molecular nitrogen. J Chem Phys 2024; 160:104203. [PMID: 38469909 DOI: 10.1063/5.0188182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/16/2024] [Indexed: 03/13/2024] Open
Abstract
Wave packet interferometry with vacuum ultraviolet light has been used to probe a complex region of the electronic spectrum of molecular nitrogen, N2. Wave packets of Rydberg and valence states were excited by using double pulses of vacuum ultraviolet (VUV), free-electron-laser (FEL) light. These wave packets were composed of contributions from multiple electronic states with a moderate principal quantum number (n ∼ 4-9) and a range of vibrational and rotational quantum numbers. The phase relationship of the two FEL pulses varied in time, but as demonstrated previously, a shot-by-shot analysis allows the spectra to be sorted according to the phase between the two pulses. The wave packets were probed by angle-resolved photoionization using an infrared pulse with a variable delay after the pair of excitation pulses. The photoelectron branching fractions and angular distributions display oscillations that depend on both the time delays and the relative phases of the VUV pulses. The combination of frequency, time delay, and phase selection provides significant control over the ionization process and ultimately improves the ability to analyze and assign complex molecular spectra.
Collapse
Affiliation(s)
- Mizuho Fushitani
- Department of Chemistry, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Hikaru Fujise
- Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Akiyoshi Hishikawa
- Department of Chemistry, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8602, Japan
- Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Daehyun You
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Shu Saito
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Yu Luo
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Kiyoshi Ueda
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Heide Ibrahim
- INRS, Énergie, Matériaux et Télécommunications, 1650 Bld. Lionel Boulet, Varennes, Québec J3X 1S2, Canada
| | - Francois Légaré
- INRS, Énergie, Matériaux et Télécommunications, 1650 Bld. Lionel Boulet, Varennes, Québec J3X 1S2, Canada
| | - Stephen T Pratt
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | | | | | - Anna Olofsson
- Department of Physics, Lund University, Lund, Sweden
| | | | | | | | - Dominik Ertel
- Stefan-Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Strasse 19, 79104 Freiburg, Germany
| | - Praveen Kumar Maroju
- Stefan-Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Strasse 19, 79104 Freiburg, Germany
| | - Matteo Moioli
- Stefan-Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Strasse 19, 79104 Freiburg, Germany
| | - Giuseppe Sansone
- Stefan-Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Strasse 19, 79104 Freiburg, Germany
| | - Ronak Shah
- Stefan-Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Strasse 19, 79104 Freiburg, Germany
| | - Tamás Csizmadia
- ELI ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3, H-6728 Szeged, Hungary
| | - Mathieu Dumergue
- ELI ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3, H-6728 Szeged, Hungary
| | | | - Sergei Kühn
- ELI ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3, H-6728 Szeged, Hungary
| | | | | | | | | | - Marco Zangrando
- Department of Chemistry, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8602, Japan
- Elettra Sincrotrone Trieste, I-34149 Trieste, Italy
| | - Giovanni De Ninno
- Department of Chemistry, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8602, Japan
- Elettra Sincrotrone Trieste, I-34149 Trieste, Italy
| | | | - Luca Giannessi
- Department of Chemistry, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8602, Japan
- Elettra Sincrotrone Trieste, I-34149 Trieste, Italy
| | | | - Primoz Rebernik Ribic
- Department of Chemistry, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8602, Japan
- Elettra Sincrotrone Trieste, I-34149 Trieste, Italy
| | - Kevin C Prince
- Department of Chemistry, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8602, Japan
- Elettra Sincrotrone Trieste, I-34149 Trieste, Italy
| |
Collapse
|
7
|
Perrett S, Chatrchyan V, Buckup T, van Thor JJ. Application of density matrix Wigner transforms for ultrafast macromolecular and chemical x-ray crystallography. J Chem Phys 2024; 160:100901. [PMID: 38456527 DOI: 10.1063/5.0188888] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
Time-Resolved Serial Femtosecond Crystallography (TR-SFX) conducted at X-ray Free Electron Lasers (XFELs) has become a powerful tool for capturing macromolecular structural movies of light-initiated processes. As the capabilities of XFELs advance, we anticipate that a new range of coherent control and structural Raman measurements will become achievable. Shorter optical and x-ray pulse durations and increasingly more exotic pulse regimes are becoming available at free electron lasers. Moreover, with high repetition enabled by the superconducting technology of European XFEL (EuXFEL) and Linac Coherent Light Source (LCLS-II) , it will be possible to improve the signal-to-noise ratio of the light-induced differences, allowing for the observation of vibronic motion on the sub-Angstrom level. To predict and assign this coherent motion, which is measurable with a structural technique, new theoretical approaches must be developed. In this paper, we present a theoretical density matrix approach to model the various population and coherent dynamics of a system, which considers molecular system parameters and excitation conditions. We emphasize the use of the Wigner transform of the time-dependent density matrix, which provides a phase space representation that can be directly compared to the experimental positional displacements measured in a TR-SFX experiment. Here, we extend the results from simple models to include more realistic schemes that include large relaxation terms. We explore a variety of pulse schemes using multiple model systems using realistic parameters. An open-source software package is provided to perform the density matrix simulation and Wigner transformations. The open-source software allows us to define any arbitrary level schemes as well as any arbitrary electric field in the interaction Hamiltonian.
Collapse
Affiliation(s)
- Samuel Perrett
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | - Viktoria Chatrchyan
- Physikalisch Chemisches Institut, Ruprecht-Karls Universität, D-69120 Heidelberg, Germany
| | - Tiago Buckup
- Physikalisch Chemisches Institut, Ruprecht-Karls Universität, D-69120 Heidelberg, Germany
| | - Jasper J van Thor
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
8
|
Percolation physics and density transition frameworks converge in biomolecular condensation. Proc Natl Acad Sci U S A 2022; 119:e2210177119. [PMID: 35921445 PMCID: PMC9371638 DOI: 10.1073/pnas.2210177119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
9
|
Saller MAC, Lai Y, Geva E. An Accurate Linearized Semiclassical Approach for Calculating Cavity-Modified Charge Transfer Rate Constants. J Phys Chem Lett 2022; 13:2330-2337. [PMID: 35245071 DOI: 10.1021/acs.jpclett.2c00122] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We show that combining the linearized semiclasscial approximation with Fermi's golden rule (FGR) rate theory gives rise to a general-purpose cost-effective and scalable computational framework that can accurately capture the cavity-induced rate enhancement of charge transfer reactions that occurs when the molecular system is placed inside a microcavity. Both partial linearization with respect to the nuclear and photonic degrees of freedom and full linerization with respect to nuclear, photonic, and electronic degrees of freedom (the latter within the mapping Hamiltonian approach) are shown to be highly accurate, provided that the Wigner transforms of the product (WoP) of operators at the initial time is not replaced by the product of their Wigner transforms. We also show that the partial linearization method yields the quantum-mechanically exact cavity-modified FGR rate constant for a model system in which the donor and acceptor potential energy surfaces are harmonic and identical except for a shift in the equilibrium energy and geometry, if WoP is applied.
Collapse
Affiliation(s)
- Maximilian A C Saller
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yifan Lai
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Eitan Geva
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
10
|
Hu JW, Han YC. Investigation of photoassociation with full-dimensional thermal-random-phase wavefunctions. J Chem Phys 2021; 155:064108. [PMID: 34391372 DOI: 10.1063/5.0059543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
By taking the femtosecond two-photon photoassociation (PA) of magnesium atoms as an example, we propose a method to calculate the thermally averaged population, which is transferred from the ground X1Σg + state to the target (1)1Πg state, based on the solution of full-dimensional time-dependent Schrödinger equation. In this method, named as method A, we use thermal-random-phase wavefunctions with the random phases expanded in both the vibrational and rotational degrees of freedom to model the thermal ensemble of the initial eigenstates. This method is compared with the other two methods (B and C) at different temperatures. Method B is also based on thermal-random-phase wavefunctions, except that the random-phase expansion is merely used for the vibrational degree of freedom. Method C is based on the independent propagation of every initial eigenstate, instead of the thermal-random-phase wavefunctions. Taking the (1)1Πg state as the target state, it is found that although these three methods can present the same population on the (1)1Πg state, the computation efficiency of method A increases dramatically with the increase in temperature. With this efficient method A, we find that the PA process at 1000 K can also induce rotational coherence, i.e., the molecular field-free alignment in the excited electronic states.
Collapse
Affiliation(s)
- Jin-Wei Hu
- Department of Physics, Dalian University of Technology, Dalian 116024, China
| | - Yong-Chang Han
- Department of Physics, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
11
|
Kaufman B, Rozgonyi T, Marquetand P, Weinacht T. Coherent Control of Internal Conversion in Strong-Field Molecular Ionization. PHYSICAL REVIEW LETTERS 2020; 125:053202. [PMID: 32794883 DOI: 10.1103/physrevlett.125.053202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/25/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
We demonstrate coherent control over internal conversion during strong-field molecular ionization with shaped, few-cycle laser pulses. The control is driven by interference in different neutral states, which are coupled via non-Born-Oppenheimer terms in the molecular Hamiltonian. Our measurements highlight the preservation of electronic coherence in nonadiabatic transitions between electronic states.
Collapse
Affiliation(s)
- Brian Kaufman
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800, USA
| | - Tamás Rozgonyi
- Wigner Research Centre for Physics, P.O. Box 49, H-1525 Budapest, Hungary
- Research Centre for Natural Sciences, Magyar tudósok Körútja. 2, H-1117 Budapest, Hungary
| | - Philipp Marquetand
- University of Vienna, Faculty of Chemistry, Institute of Theoretical Chemistry, Währinger Straße 17, 1090 Wien, Austria
- Vienna Research Platform on Accelerating Photoreaction Discovery, University of Vienna, Währinger Straße 17, 1090 Wien, Austria
- University of Vienna, Faculty of Chemistry, Data Science @ Uni Vienna, Währinger Straße 29, 1090 Wien, Austria
| | - Thomas Weinacht
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800, USA
| |
Collapse
|
12
|
Garzón-Ramírez AJ, Franco I. Symmetry breaking in the Stark Control of Electrons at Interfaces (SCELI). J Chem Phys 2020; 153:044704. [DOI: 10.1063/5.0013190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
| | - Ignacio Franco
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
- Department of Physics, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
13
|
McGinnis CN, Holland DL, Su Q, Grobe R. Universal energy scaling law for optimally excited nonlinear oscillators. Phys Rev E 2020; 101:032202. [PMID: 32289949 DOI: 10.1103/physreve.101.032202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 02/03/2020] [Indexed: 11/07/2022]
Abstract
We compute the optimal temporal profile for an external driving force F(t) that can maximize the energy absorption of any driven nonlinear oscillator. The technique is based on constraining the maximum amplitude of the force field such that optimal control theory can provide quasianalytical solutions. We illustrate this computational technique for the undamped Duffing oscillator as well as for a driven quantum mechanical two-level system. We find that under optimal force conditions the asymptotic time-dependence of the maximum amplitude growth is given by a power law X(t)∼t^{2/α}, where the (possibly noninteger) exponent is determined by the highest degree of the oscillator's nonlinearity α. As a universal result, this predicts that the maximal energy absorption of any nonlinear oscillator grows (under an optimized force field) quadratically in time. We also find for the two-level system that-even under optimized excitation conditions-the maximally achievable inversion does not monotonically increase with the force amplitude. It is characterized by an interesting sequence of n-cycle thresholds as well as a self-termination of the growth.
Collapse
Affiliation(s)
- C N McGinnis
- Intense Laser Physics Theory Unit and Department of Physics Illinois State University, Normal, Illinois 61790-4560, USA
| | - D L Holland
- Intense Laser Physics Theory Unit and Department of Physics Illinois State University, Normal, Illinois 61790-4560, USA
| | - Q Su
- Intense Laser Physics Theory Unit and Department of Physics Illinois State University, Normal, Illinois 61790-4560, USA
| | - R Grobe
- Intense Laser Physics Theory Unit and Department of Physics Illinois State University, Normal, Illinois 61790-4560, USA
| |
Collapse
|
14
|
Godde B, Jouaiti A, Mauro M, Marquardt R, Chaumont A, Robert V. The Motion of an Azobenzene Light‐Controlled Switch: A Joint Theoretical and Experimental Approach. CHEMSYSTEMSCHEM 2019. [DOI: 10.1002/syst.201900003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Bérangère Godde
- Laboratoire de Tectonique MoléculaireUMR UDS-CNRS 7140icFRCUniversité de Strasbourg Institut Le Bel, 4, rue B. Pascal F-67000 Strasbourg France
| | - Abdelaziz Jouaiti
- Laboratoire de Tectonique MoléculaireUMR UDS-CNRS 7140icFRCUniversité de Strasbourg Institut Le Bel, 4, rue B. Pascal F-67000 Strasbourg France
| | - Matteo Mauro
- Institut de Physique et Chimie des Matériaux de StrasbourgUMR UDS-CNRS 7504Université de Strasbourg 23, rue du Loess F-67000 Strasbourg France
| | - Roberto Marquardt
- Laboratoire de Chimie QuantiqueInstitut de Chimie, UMR UDS-CNRS 7177Université de Strasbourg Institut Le Bel, 4, rue B. Pascal F-67000 Strasbourg France
| | - Alain Chaumont
- Laboratoire de Chimie Moléculaire de l'Etat SolideUMR UDS-CNRS 7140Université de Strasbourg Institut Le Bel 4, rue B. Pascal F-67000 Strasbourg France
| | - Vincent Robert
- Laboratoire de Chimie QuantiqueInstitut de Chimie, UMR UDS-CNRS 7177Université de Strasbourg Institut Le Bel, 4, rue B. Pascal F-67000 Strasbourg France
| |
Collapse
|
15
|
Morichika I, Murata K, Sakurai A, Ishii K, Ashihara S. Molecular ground-state dissociation in the condensed phase employing plasmonic field enhancement of chirped mid-infrared pulses. Nat Commun 2019; 10:3893. [PMID: 31467268 PMCID: PMC6715752 DOI: 10.1038/s41467-019-11902-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 08/09/2019] [Indexed: 01/22/2023] Open
Abstract
Selective bond cleavage via vibrational excitation is the key to active control over molecular reactions. Despite its great potential, the practical implementation in condensed phases have been hampered to date by poor excitation efficiency due to fast vibrational relaxation. Here we demonstrate vibrationally mediated, condensed-phase molecular dissociation by employing intense plasmonic near-fields of temporally-shaped mid-infrared (mid-IR) pulses. Both down-chirping and substantial field enhancement contribute to efficient ladder climbing of the carbonyl stretch vibration of W(CO)6 in n-hexane solution and to the resulting CO dissociation. We observe an absorption band emerging with laser irradiation at the excitation beam area, which indicates that the dissociation is followed by adsorption onto metal surfaces. This successful demonstration proves that the combination of ultrafast optics and nano-plasmonics in the mid-IR range is useful for mode-selective vibrational ladder climbing, paving the way toward controlled ground-state chemistry.
Collapse
Affiliation(s)
- Ikki Morichika
- Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Kei Murata
- Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Atsunori Sakurai
- Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Kazuyuki Ishii
- Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Satoshi Ashihara
- Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| |
Collapse
|
16
|
Fábri C, Marquardt R, Császár AG, Quack M. Controlling tunneling in ammonia isotopomers. J Chem Phys 2019; 150:014102. [DOI: 10.1063/1.5063470] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Csaba Fábri
- Laboratory of Molecular Structure and Dynamics, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
- MTA-ELTE Complex Chemical Systems Research Group, P.O. Box 32, H-1518 Budapest 112, Hungary
- Physical Chemistry, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Roberto Marquardt
- Physical Chemistry, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratoire de Chimie Quantique, Institut de Chimie UMR 7177 CNRS/Université de Strasbourg, 4, Rue Blaise Pascal CS 90032, 67081 Strasbourg Cedex, France
| | - Attila G. Császár
- Laboratory of Molecular Structure and Dynamics, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
- MTA-ELTE Complex Chemical Systems Research Group, P.O. Box 32, H-1518 Budapest 112, Hungary
| | - Martin Quack
- Physical Chemistry, ETH Zürich, CH-8093 Zürich, Switzerland
| |
Collapse
|
17
|
Shu Z, Liu Y, Cao Q, Yang P, Zhang S, Plenio MB, Jelezko F, Cai J. Observation of Floquet Raman Transition in a Driven Solid-State Spin System. PHYSICAL REVIEW LETTERS 2018; 121:210501. [PMID: 30517807 DOI: 10.1103/physrevlett.121.210501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Indexed: 06/09/2023]
Abstract
We experimentally observe Floquet Raman transitions in the weakly driven solid-state spin system of a nitrogen-vacancy center in diamond. The periodically driven spin system simulates a two-band Wannier-Stark ladder model and allows us to observe coherent spin state transfer arising from a Raman transition mediated by Floquet synthetic levels. It also leads to the prediction of an analog photon-assisted Floquet Raman transition and dynamical localization in a driven two-level quantum system. The demonstrated rich Floquet dynamics offers new capabilities to achieve effective Floquet coherent control of a quantum system with potential applications in various types of quantum technologies based on driven quantum dynamics. In particular, the Floquet Raman system may be used as a quantum simulator for the physics of periodically driven systems.
Collapse
Affiliation(s)
- Zijun Shu
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
- International Joint Laboratory on Quantum Sensing and Quantum Metrology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yu Liu
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
- International Joint Laboratory on Quantum Sensing and Quantum Metrology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qingyun Cao
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
- International Joint Laboratory on Quantum Sensing and Quantum Metrology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Pengcheng Yang
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
- International Joint Laboratory on Quantum Sensing and Quantum Metrology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shaoliang Zhang
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
- International Joint Laboratory on Quantum Sensing and Quantum Metrology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Martin B Plenio
- International Joint Laboratory on Quantum Sensing and Quantum Metrology, Huazhong University of Science and Technology, Wuhan 430074, China
- Institut für Theoretische Physik and IQST, Albert-Einstein Allee 11, Universität Ulm, D-89081 Ulm, Germany
| | - Fedor Jelezko
- International Joint Laboratory on Quantum Sensing and Quantum Metrology, Huazhong University of Science and Technology, Wuhan 430074, China
- Institut für Quantenoptik and IQST, Albert-Einstein Allee 11, Universität Ulm, D-89081 Ulm, Germany
| | - Jianming Cai
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
- International Joint Laboratory on Quantum Sensing and Quantum Metrology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
18
|
McCormack P, Han F, Yan Z. Self-Organization of Metal Nanoparticles in Light: Electrodynamics-Molecular Dynamics Simulations and Optical Binding Experiments. J Phys Chem Lett 2018; 9:545-549. [PMID: 29337570 DOI: 10.1021/acs.jpclett.7b03188] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Light-driven self-organization of metal nanoparticles (NPs) can lead to unique optical matter systems, yet simulation of such self-organization (i.e., optical binding) is a complex computational problem that increases nonlinearly with system size. Here we show that a combined electrodynamics-molecular dynamics simulation technique can simulate the trajectories and predict stable configurations of silver NPs in optical fields. The simulated dynamic equilibrium of a two-NP system matches the probability density of oscillations for two optically bound NPs obtained experimentally. The predicted stable configurations for up to eight NPs are further compared to experimental observations of silver NP clusters formed by optical binding in a Bessel beam. All configurations are confirmed to form in real systems, including pentagonal clusters with five-fold symmetry. Our combined simulations and experiments have revealed a diverse optical matter system formed by anisotropic optical binding interactions, providing a new strategy to discover artificial materials.
Collapse
Affiliation(s)
- Patrick McCormack
- Department of Chemical and Biomolecular Engineering, Clarkson University , Potsdam, New York 13699, United States
| | - Fei Han
- Department of Chemical and Biomolecular Engineering, Clarkson University , Potsdam, New York 13699, United States
| | - Zijie Yan
- Department of Chemical and Biomolecular Engineering, Clarkson University , Potsdam, New York 13699, United States
| |
Collapse
|
19
|
Song YJ, Tan QS, Kuang LM. Control quantum evolution speed of a single dephasing qubit for arbitrary initial states via periodic dynamical decoupling pulses. Sci Rep 2017; 7:43654. [PMID: 28272546 PMCID: PMC5341562 DOI: 10.1038/srep43654] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/26/2017] [Indexed: 01/03/2023] Open
Abstract
We investigate the possibility to control quantum evolution speed of a single dephasing qubit for arbitrary initial states by the use of periodic dynamical decoupling (PDD) pulses. It is indicated that the quantum speed limit time (QSLT) is determined by initial and final quantum coherence of the qubit, as well as the non-Markovianity of the system under consideration during the evolution when the qubit is subjected to a zero-temperature Ohmic-like dephasing reservoir. It is shown that final quantum coherence of the qubit and the non-Markovianity of the system can be modulated by PDD pulses. Our results show that for arbitrary initial states of the dephasing qubit with non-vanishing quantum coherence, PDD pulses can be used to induce potential acceleration of the quantum evolution in the short-time regime, while PDD pulses can lead to potential speedup and slow down in the long-time regime. We demonstrate that the effect of PDD on the QSLT for the Ohmic or sub-Ohmic spectrum (Markovian reservoir) is much different from that for the super-Ohmic spectrum (non-Markovian reservoir).
Collapse
Affiliation(s)
- Ya-Ju Song
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China
| | - Qing-Shou Tan
- College of Physics and Electronic Engineering, Hainan Normal University, Haikou 571158, China
| | - Le-Man Kuang
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
20
|
Liebel M, Kukura P. Lack of evidence for phase-only control of retinal photoisomerization in the strict one-photon limit. Nat Chem 2016; 9:45-49. [DOI: 10.1038/nchem.2598] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 07/19/2016] [Indexed: 12/23/2022]
|
21
|
Waldl M, Oppel M, González L. Controlling the Excited-State Dynamics of Nuclear Spin Isomers Using the Dynamic Stark Effect. J Phys Chem A 2016; 120:4907-14. [PMID: 26840424 DOI: 10.1021/acs.jpca.5b12542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Stark control of chemical reactions uses intense laser pulses to distort the potential energy surfaces of a molecule, thus opening new chemical pathways. We use the concept of Stark shifts to convert a local minimum into a local maximum of the potential energy surface, triggering constructive and destructive wave-packet interferences, which then induce different dynamics on nuclear spin isomers in the electronically excited state of a quinodimethane derivative. Model quantum-dynamical simulations on reduced dimensionality using optimized ultrashort laser pulses demonstrate a difference of the excited-state dynamics of two sets of nuclear spin isomers, which ultimately can be used to discriminate between these isomers.
Collapse
Affiliation(s)
- Maria Waldl
- Institut für Theoretische Chemie, Universität Wien , Währinger Str. 17, 1090 Wien, Austria
| | - Markus Oppel
- Institut für Theoretische Chemie, Universität Wien , Währinger Str. 17, 1090 Wien, Austria
| | - Leticia González
- Institut für Theoretische Chemie, Universität Wien , Währinger Str. 17, 1090 Wien, Austria
| |
Collapse
|
22
|
Epshtein M, Portnov A, Bar I. CD 3 Deformation Modes as Preferential Promoters of Methylamine- d3 to the First Electronic State. J Phys Chem A 2016; 120:3049-54. [DOI: 10.1021/acs.jpca.5b10309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michael Epshtein
- Department
of Physics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Alexander Portnov
- Department
of Physics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Ilana Bar
- Department
of Physics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
23
|
Pradhan E, Brown A. Vibrational energies for HFCO using a neural network sum of exponentials potential energy surface. J Chem Phys 2016; 144:174305. [DOI: 10.1063/1.4948440] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ekadashi Pradhan
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Alex Brown
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
24
|
McRobbie PL, Geva E. Coherent Control of Population Transfer via Linear Chirp in Liquid Solution: The Role of Motional Narrowing. J Phys Chem A 2015; 120:3015-22. [DOI: 10.1021/acs.jpca.5b09736] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Porscha L. McRobbie
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Eitan Geva
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
25
|
Talukder S, Sen S, Shandilya BK, Sharma R, Chaudhury P, Adhikari S. Enhancing the branching ratios in the dissociation channels for O(16)O(16)O(18) molecule by designing optimum laser pulses: A study using stochastic optimization. J Chem Phys 2015; 143:144109. [PMID: 26472365 DOI: 10.1063/1.4932333] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We propose a strategy of using a stochastic optimization technique, namely, simulated annealing to design optimum laser pulses (both IR and UV) to achieve greater fluxes along the two dissociating channels (O(18) + O(16)O(16) and O(16) + O(16)O(18)) in O(16)O(16)O(18) molecule. We show that the integrated fluxes obtained along the targeted dissociating channel is larger with the optimized pulse than with the unoptimized one. The flux ratios are also more impressive with the optimized pulse than with the unoptimized one. We also look at the evolution contours of the wavefunctions along the two channels with time after the actions of both the IR and UV pulses and compare the profiles for unoptimized (initial) and optimized fields for better understanding the results that we achieve. We also report the pulse parameters obtained as well as the final shapes they take.
Collapse
Affiliation(s)
- Srijeeta Talukder
- Department of Chemistry, University of Calcutta, 92 A P C Road, Kolkata 700 009, India
| | - Shrabani Sen
- Department of Chemistry, Rammohan College, 102/1, Raja Rammohan Sarani, Kolkata 700 009, India
| | - Bhavesh K Shandilya
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Rahul Sharma
- Department of Chemistry, St. Xavier's College, 30 Mother Teresa Sarani, Kolkata 700 016, India
| | - Pinaki Chaudhury
- Department of Chemistry, University of Calcutta, 92 A P C Road, Kolkata 700 009, India
| | - Satrajit Adhikari
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| |
Collapse
|
26
|
Solá IR, González-Vázquez J, de Nalda R, Bañares L. Strong field laser control of photochemistry. Phys Chem Chem Phys 2015; 17:13183-200. [PMID: 25835746 DOI: 10.1039/c5cp00627a] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Strong ultrashort laser pulses have opened new avenues for the manipulation of photochemical processes like photoisomerization or photodissociation. The presence of light intense enough to reshape the potential energy surfaces may steer the dynamics of both electrons and nuclei in new directions. A controlled laser pulse, precisely defined in terms of spectrum, time and intensity, is the essential tool in this type of approach to control chemical dynamics at a microscopic level. In this Perspective we examine the current strategies developed to achieve control of chemical processes with strong laser fields, as well as recent experimental advances that demonstrate that properties like the molecular absorption spectrum, the state lifetimes, the quantum yields and the velocity distributions in photodissociation processes can be controlled by the introduction of carefully designed strong laser fields.
Collapse
Affiliation(s)
- Ignacio R Solá
- Departamento de Química Física I (Unidad Asociada de I+D+i al CSIC), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | | | | | | |
Collapse
|
27
|
Falvo C, Debnath A, Meier C. Vibrational ladder climbing in carboxy-hemoglobin: effects of the protein environment. J Chem Phys 2015; 138:145101. [PMID: 24981547 DOI: 10.1063/1.4799271] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We present simulations on vibrational ladder climbing in carboxy-hemoglobin. Motivated by recent experiments, we study the influence of different realistic pump probe parameters. To allow for a direct comparison with experimental results, transient absorption spectra obtained by a weak probe pulse following the strong, shaped pump pulse are calculated. The influence of the protein fluctuations is taken into account using a recently developed microscopic model. This model consists of a quantum Hamiltonian describing the CO vibration in carboxy-hemoglobin, together with a fluctuating potential, which is obtained by electronic structure calculation based on a large number of protein configurations. Using realistic pulse parameters, vibrational excitations to very high-lying states are possible, in qualitative agreement with experimental observations.
Collapse
Affiliation(s)
- Cyril Falvo
- Institut des Sciences Moléculaires d'Orsay, UMR CNRS 8214, Univ. Paris Sud, 91405 Orsay Cedex, France
| | - Arunangshu Debnath
- Laboratoire Collisions Agrégats et Réactivité, IRSAMC, UMR CNRS 5589, Université Paul Sabatier, 31062 Toulouse, France
| | - Christoph Meier
- Laboratoire Collisions Agrégats et Réactivité, IRSAMC, UMR CNRS 5589, Université Paul Sabatier, 31062 Toulouse, France
| |
Collapse
|
28
|
Potential energy surfaces and reaction pathways for light-mediated self-organization of metal nanoparticle clusters. Nat Commun 2014; 5:3751. [PMID: 24786197 DOI: 10.1038/ncomms4751] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 03/28/2014] [Indexed: 12/28/2022] Open
Abstract
Potential energy surfaces are the central concept in understanding the assembly of molecules; atoms form molecules via covalent bonds with structures defined by the stationary points of the surfaces. Similarly, dispersion interactions give Lennard-Jones potentials that describe atomic clusters and liquids. The formation of molecules and clusters can follow various pathways depending on the initial conditions and the potentials. Here we show that analogous mechanistic effects occur in light-mediated self-organization of metal nanoparticles; atoms are replaced by silver nanoparticles that are arranged by electrodynamic (that is, optical trapping and optical binding) interactions. We demonstrate this concept using simple Gaussian optical fields and the formation of stable clusters with various two-dimensional (2D) and three-dimensional (3D) geometries. The formation of specific clusters is 'path-dependent'; the particle motions follow an electrodynamic potential energy surface. This work paves the way for rational design of photonic clusters with combinations of imposed beam shapes, gradients and optical binding interactions.
Collapse
|
29
|
Guerrero RD, Arango CA, Reyes A. Optimal control of wave-packets: a semiclassical approach. Mol Phys 2014. [DOI: 10.1080/00268976.2013.834085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Debnath A, Falvo C, Meier C. State-Selective Excitation of the CO Stretch in Carboxyhemoglobin by Mid-IR Laser Pulse Shaping: A Theoretical Investigation. J Phys Chem A 2013; 117:12884-8. [DOI: 10.1021/jp410473u] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | - Cyril Falvo
- Institut
des Sciences
Moléculaires d’Orsay, UMR CNRS 8214, Univ Paris-Sud, 91405 Orsay, France
| | - Christoph Meier
- LCAR-IRSAMC, Université Paul Sabatier, 31062 Toulouse, France
| |
Collapse
|
31
|
Amaran S, Kosloff R, Tomza M, Skomorowski W, Pawłowski F, Moszynski R, Rybak L, Levin L, Amitay Z, Berglund JM, Reich DM, Koch CP. Femtosecond two-photon photoassociation of hot magnesium atoms: A quantum dynamical study using thermal random phase wavefunctions. J Chem Phys 2013; 139:164124. [DOI: 10.1063/1.4826350] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
32
|
Petek H. Photoexcitation of adsorbates on metal surfaces: one-step or three-step. J Chem Phys 2013; 137:091704. [PMID: 22957546 DOI: 10.1063/1.4746801] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In this essay we discuss the light-matter interactions at molecule-covered metal surfaces that initiate surface photochemistry. The hot-electron mechanism for surface photochemistry, whereby the absorption of light by a metal surface creates an electron-hole pair, and the hot electron scatters through an unoccupied resonance of adsorbate to initiate nuclear dynamics leading to photochemistry, has become widely accepted. Yet, ultrafast spectroscopic measurements of molecule-surface electronic structure and photoexcitation dynamics provide scant support for the hot electron mechanism. Instead, in most cases the adsorbate resonances are excited through photoinduced substrate-to-adsorbate charge transfer. Based on recent studies of the role of coherence in adsorbate photoexcitation, as measured by the optical phase and momentum resolved two-photon photoemission measurements, we examine critically the hot electron mechanism, and propose an alternative description based on direct charge transfer of electrons from the substrate to adsorbate. The advantage of this more quantum mechanically rigorous description is that it informs how material properties of the substrate and adsorbate, as well as their interaction, influence the frequency dependent probability of photoexcitation and ultimately how light can be used to probe and control surface femtochemistry.
Collapse
Affiliation(s)
- Hrvoje Petek
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| |
Collapse
|
33
|
Sethi A, Keshavamurthy S. Driven coupled Morse oscillators: visualizing the phase space and characterizing the transport. Mol Phys 2012. [DOI: 10.1080/00268976.2012.667166] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
34
|
|
35
|
Rybak L, Amaran S, Levin L, Tomza M, Moszynski R, Kosloff R, Koch CP, Amitay Z. Generating molecular rovibrational coherence by two-photon femtosecond photoassociation of thermally hot atoms. PHYSICAL REVIEW LETTERS 2011; 107:273001. [PMID: 22243308 DOI: 10.1103/physrevlett.107.273001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Indexed: 05/31/2023]
Abstract
The formation of diatomic molecules with rotational and vibrational coherence is demonstrated experimentally in free-to-bound two-photon femtosecond photoassociation of hot atoms. In a thermal gas at a temperature of 1000 K, pairs of magnesium atoms, colliding in their electronic ground state, are excited into coherent superpositions of bound rovibrational levels in an electronically excited state. The rovibrational coherence is probed by a time-delayed third photon, resulting in quantum beats in the UV fluorescence. A comprehensive theoretical model based on ab initio calculations rationalizes the generation of coherence by Franck-Condon filtering of collision energies and partial waves, quantifying it in terms of an increase in quantum purity of the thermal ensemble. Our results open the way to coherent control of a binary reaction.
Collapse
Affiliation(s)
- Leonid Rybak
- The Shirlee Jacobs Femtosecond Laser Research Laboratory, Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Kinzel D, Marquetand P, González L. Stark Control of a Chiral Fluoroethylene Derivative. J Phys Chem A 2011; 116:2743-9. [DOI: 10.1021/jp207947x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Philipp Marquetand
- Institute of Theoretical Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
| | - Leticia González
- Institute of Theoretical Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
| |
Collapse
|
37
|
Falvo C, Meier C. A fluctuating quantum model of the CO vibration in carboxyhemoglobin. J Chem Phys 2011; 134:214106. [DOI: 10.1063/1.3592707] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
38
|
Richter M, Marquetand P, González-Vázquez J, Sola I, González L. SHARC: ab Initio Molecular Dynamics with Surface Hopping in the Adiabatic Representation Including Arbitrary Couplings. J Chem Theory Comput 2011; 7:1253-8. [DOI: 10.1021/ct1007394] [Citation(s) in RCA: 387] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Martin Richter
- Institut für Physikalische Chemie, Friedrich-Schiller-Universität Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Philipp Marquetand
- Institut für Physikalische Chemie, Friedrich-Schiller-Universität Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Jesús González-Vázquez
- Institut für Physikalische Chemie, Friedrich-Schiller-Universität Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Ignacio Sola
- Departamento de Química Física I, Universidad Complutense, 28040 Madrid, Spain
| | - Leticia González
- Institut für Physikalische Chemie, Friedrich-Schiller-Universität Jena, Helmholtzweg 4, 07743 Jena, Germany
| |
Collapse
|
39
|
Chuntonov L, Fleischer A, Amitay Z. Weak-field multiphoton femtosecond coherent control in the single-cycle regime. OPTICS EXPRESS 2011; 19:6865-6882. [PMID: 21451714 DOI: 10.1364/oe.19.006865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Weak-field coherent phase control of atomic non-resonant multiphoton excitation induced by shaped femtosecond pulses is studied theoretically in the single-cycle regime. The carrier-envelope phase (CEP) of the pulse, which in the multi-cycle regime does not play any control role, is shown here to be a new effective control parameter that its effect is highly sensitive to the spectral position of the ultrabroad spectrum. Rationally chosen position of the ultrabroadband spectrum coherently induces several groups of multiphoton transitions from the ground state to the excited state of the system: transitions involving only absorbed photons as well as Raman transitions involving both absorbed and emitted photons. The intra-group interference is controlled by the relative spectral phase of the different frequency components of the pulse, while the inter-group interference is controlled jointly by the CEP and the relative spectral phase. Specifically, non-resonant two- and three-photon excitation is studied in a simple model system within the perturbative frequency-domain framework. The developed intuition is then applied to weak-field multiphoton excitation of atomic cesium (Cs), where the simplified model is verified by non-perturbative numerical solution of the time-dependent Schrödinger equation. We expect this work to serve as a basis for a new line of femtosecond coherent control experiments.
Collapse
Affiliation(s)
- Lev Chuntonov
- The Shirlee Jacobs Femtosecond Laser Research Laboratory, Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | |
Collapse
|
40
|
Saha R, Batista VS. Tunneling under Coherent Control by Sequences of Unitary Pulses. J Phys Chem B 2011; 115:5234-42. [DOI: 10.1021/jp108331x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rajdeep Saha
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Victor S. Batista
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
41
|
Marquetand P, Richter M, González-Vázquez J, Sola I, González L. Nonadiabatic ab initio molecular dynamics including spin–orbit coupling and laser fields. Faraday Discuss 2011; 153:261-73; discussion 293-319. [DOI: 10.1039/c1fd00055a] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Znakovskaya I, von den Hoff P, Schirmel N, Urbasch G, Zherebtsov S, Bergues B, de Vivie-Riedle R, Weitzel KM, Kling MF. Waveform control of orientation-dependent ionization of DCl in few-cycle laser fields. Phys Chem Chem Phys 2011; 13:8653-8. [DOI: 10.1039/c0cp02743j] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Kuroda DG, Singh CP, Peng Z, Kleiman VD. Exploring the role of phase modulation on photoluminescence yield. Faraday Discuss 2011; 153:61-72; discussion 73-91. [PMID: 22452074 DOI: 10.1039/c1fd00068c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report an investigation to elucidate the mechanisms of control in phase-sensitive experiments in two molecular systems. A first inspection of optimization procedures yields the same experimental result: increase in the emission efficiency upon excitation by a phase modulated pulse in a two-photon transition. More detailed studies, which include power dependence, spectral response, one and two color pump-probe and pump-pump experiments show that while for one chromophore phase modulation leads to spectral matching between the two-photon cross section and the second order power spectrum for the other it provides a tool to manipulate the wavepacket dynamics in the excited state.
Collapse
Affiliation(s)
- D G Kuroda
- Department of Chemistry, Chemical Physics Center, University of Florida, Gainesville, Florida, USA
| | | | | | | |
Collapse
|
44
|
Affiliation(s)
- Dave Townsend
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom, and Steacie Institute for Molecular Sciences, National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario, K1A 0R6, Canada
| | - Benjamin J. Sussman
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom, and Steacie Institute for Molecular Sciences, National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario, K1A 0R6, Canada
| | - Albert Stolow
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom, and Steacie Institute for Molecular Sciences, National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario, K1A 0R6, Canada
| |
Collapse
|
45
|
Umapathy S, Mallick B, Lakshmanna A. Mode-dependent dispersion in Raman line shapes: Observation and implications from ultrafast Raman loss spectroscopy. J Chem Phys 2010; 133:024505. [DOI: 10.1063/1.3464332] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
46
|
Kondorskiy A, Nanbu S, Teranishi Y, Nakamura H. Control of Chemical Dynamics by Lasers: Theoretical Considerations. J Phys Chem A 2010; 114:6171-87. [DOI: 10.1021/jp911579h] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alexey Kondorskiy
- Institute for Molecular Science, National Institutes of Natural Sciences, Myodaiji, Okazaki 444-8585, Japan
| | - Shinkoh Nanbu
- Institute for Molecular Science, National Institutes of Natural Sciences, Myodaiji, Okazaki 444-8585, Japan
| | - Yoshiaki Teranishi
- Institute for Molecular Science, National Institutes of Natural Sciences, Myodaiji, Okazaki 444-8585, Japan
| | - Hiroki Nakamura
- Institute for Molecular Science, National Institutes of Natural Sciences, Myodaiji, Okazaki 444-8585, Japan
| |
Collapse
|
47
|
Penfold TJ, Worth GA, Meier C. Local control of multidimensional dynamics. Phys Chem Chem Phys 2010; 12:15616-27. [DOI: 10.1039/c003768k] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Gelin MF, Egorova D, Domcke W. Manipulating electronic couplings and nonadiabatic nuclear dynamics with strong laser pulses. J Chem Phys 2009; 131:124505. [DOI: 10.1063/1.3236577] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
49
|
|
50
|
Rego LG, Santos LF, Batista VS. Coherent Control of Quantum Dynamics with Sequences of Unitary Phase-Kick Pulses. Annu Rev Phys Chem 2009; 60:293-320. [DOI: 10.1146/annurev.physchem.040808.090409] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Coherent-optical-control schemes exploit the coherence of laser pulses to change the phases of interfering dynamical pathways and manipulate dynamical processes. These active control methods are closely related to dynamical decoupling techniques, popularized in the field of quantum information. Inspired by nuclear magnetic resonance spectroscopy, dynamical decoupling methods apply sequences of unitary operations to modify the interference phenomena responsible for the system dynamics thus also belonging to the general class of coherent-control techniques. This article reviews related developments in the fields of coherent optical control and dynamical decoupling, emphasizing the control of tunneling and decoherence in general model systems. Considering recent experimental breakthroughs in the demonstration of active control of a variety of systems, we anticipate that the reviewed coherent-control scenarios and dynamical-decoupling methods should raise significant experimental interest.
Collapse
Affiliation(s)
- Luis G.C. Rego
- Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900 Brazil
| | - Lea F. Santos
- Department of Physics, Yeshiva University, New York, New York 10016
| | - Victor S. Batista
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107
| |
Collapse
|