1
|
Yang X, Zhang X, Zhang Y, Jiang J, Hu W. Deep Learning Protocol for Predicting Full-Spectrum Infrared and Raman Spectra of Polypeptides and Proteins Using All-Atom Models. J Phys Chem Lett 2025:2023-2028. [PMID: 39966082 DOI: 10.1021/acs.jpclett.5c00169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Infrared (IR) spectroscopy and Raman spectroscopy are powerful tools for probing protein and peptide structures due to their capability to provide molecular fingerprints. As a popular spectral simulation method, the quantum chemistry (QC) calculation is usually hampered by the high computational cost and low efficiency. In this study, we developed a comprehensive data set of IR and Raman spectra for amino acids, dipeptides, and tripeptides. Using this data set, we applied transfer learning with DetaNet (a deep equivariant tensor attention network) to simulate full-spectrum IR and Raman spectra for large polypeptides and proteins. We have demonstrated that the transfer-learned DetaNet (TL-DetaNet) model successfully simulated the vibrational spectra of proteins with thousands of atoms, far exceeding traditional QC limitations. Additionally, TL-DetaNet achieved an efficiency that was 103-105 times greater than that of QC methods. This work highlights the importance of data sets in machine learning and positions transfer learning as a transformative tool for large-scale biomolecular simulations, marking a substantial advancement in protein vibrational spectroscopy.
Collapse
Affiliation(s)
- Xiaochen Yang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong 250353, China
| | - Xun Zhang
- College of Science and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang 325060, China
| | - Yujin Zhang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong 250353, China
| | - Jun Jiang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wei Hu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong 250353, China
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
2
|
Jabbour R, Raran-Kurussi S, Agarwal V, Equbal A. Tailoring solid-state DNP methods to the study of α-synuclein LLPS. Biophys Chem 2024; 313:107303. [PMID: 39126968 DOI: 10.1016/j.bpc.2024.107303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/11/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
Dynamic Nuclear Polarization (DNP) is a technique that leverages the quantum sensing capability of electron spins to enhance the sensitivity of nuclear magnetic resonance (NMR) signals, especially for insensitive samples. Glassing agents play a crucial role in the DNP process by facilitating the transfer of polarization from the unpaired electron spins to the nuclear spins along with cryoprotection of biomolecules. DNPjuice comprising of glycerol-d8/D2O/H2O has been extensively used for this purpose over the past two decades. Polyethylene glycol (PEG), also used as a cryoprotectant, is often used as a crowding agent in experimental setups to mimic cellular conditions, particularly the invitro preparation of liquid-liquid phase separated (LLPS) condensates. In this study, we investigate the efficacy of PEG as an alternative to glycerol in the DNP juice, critical for signal enhancement. The modified DNP matrix leads to high DNP enhancement which enables direct study of LLPS condensates by solid-state DNP methods without adding any external constituents. An indirect advantage of employing PEG is that the PEG signals appear at ∼72.5 ppm and are relatively well-separated from the aliphatic region of the protein spectra. Large cross-effect DNP enhancement is attained for 13C-glycine by employing the PEG-water mixture as a glassing agent and ASYMPOL-POK as the state-of-art polarizing agent, without any deuteration. The DNP enhancement and the buildup rates are similar to results obtained with DNP juice, conforming to that PEG serves as a good candidate for both inducing crowding and glassing agent in the study of LLPS.
Collapse
Affiliation(s)
- Ribal Jabbour
- Center for Quantum and Topological Systems, New York University Abu Dhabi, United Arab Emirates; Department of Chemistry, New York University Abu Dhabi, United Arab Emirates
| | | | - Vipin Agarwal
- Tata Institute of Fundamental Research Hyderabad, Hyderabad 500046, Telangana, India.
| | - Asif Equbal
- Center for Quantum and Topological Systems, New York University Abu Dhabi, United Arab Emirates; Department of Chemistry, New York University Abu Dhabi, United Arab Emirates.
| |
Collapse
|
3
|
Yi X, Zhang L, Friesner RA, McDermott A. Predicted and Experimental NMR Chemical Shifts at Variable Temperatures: The Effect of Protein Conformational Dynamics. J Phys Chem Lett 2024; 15:2270-2278. [PMID: 38381862 DOI: 10.1021/acs.jpclett.3c02589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
NMR chemical shifts provide a sensitive probe of protein structure and dynamics but remain challenging to predict and interpret. We examine the effect of protein conformational distributions on 15N chemical shifts for dihydrofolate reductase (DHFR), comparing QM/MM predicted shifts with experimental shifts in solution as well as frozen distributions. Representative snapshots from MD trajectories exhibit variation in predicted 15N chemical shifts of up to 25 ppm. The average over the fluctuations is in significantly better agreement with room temperature solution experimental values than the prediction for any single optimal conformations. Meanwhile, solid-state NMR (SSNMR) measurements of frozen solutions at 105 K exhibit broad lines whose widths agree well with the widths of distributions of predicted shifts for samples from the trajectory. The backbone torsion angle ψi-1 varies over 60° on the picosecond time scale, compensated by φi. These fluctuations can explain much of the shift variation.
Collapse
Affiliation(s)
- Xu Yi
- Department of Chemistry, Columbia University, New York, New York 10025, United States
| | - Lichirui Zhang
- Department of Chemistry, Columbia University, New York, New York 10025, United States
| | - Richard A Friesner
- Department of Chemistry, Columbia University, New York, New York 10025, United States
| | - Ann McDermott
- Department of Chemistry, Columbia University, New York, New York 10025, United States
| |
Collapse
|
4
|
Yi X, Zhang L, Friesner RA, McDermott A. Predicted and Experimental NMR Chemical Shifts at Variable Temperatures: The Effect of Protein Conformational Dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.525502. [PMID: 36747635 PMCID: PMC9900828 DOI: 10.1101/2023.01.25.525502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
NMR chemical shifts provide a sensitive probe of protein structure and dynamics. Prediction of shifts, and therefore interpretation of shifts, particularly for the frequently measured amidic 15 N sites, remains a tall challenge. We demonstrate that protein 15 N chemical shift prediction from QM/MM predictions can be improved if conformational variation is included via MD sampling, focusing on the antibiotic target, E. coli Dihydrofolate reductase (DHFR). Variations of up to 25 ppm in predicted 15 N chemical shifts are observed over the trajectory. For solution shifts the average of fluctuations on the low picosecond timescale results in a superior prediction to a single optimal conformation. For low temperature solid state measurements, the histogram of predicted shifts for locally minimized snapshots with specific solvent arrangements sampled from the trajectory explains the heterogeneous linewidths; in other words, the conformations and associated solvent are 'frozen out' at low temperatures and result in inhomogeneously broadened NMR peaks. We identified conformational degrees of freedom that contribute to chemical shift variation. Backbone torsion angles show high amplitude fluctuations during the trajectory on the low picosecond timescale. For a number of residues, including I60, ψ varies by up to 60º within a conformational basin during the MD simulations, despite the fact that I60 (and other sites studied) are in a secondary structure element and remain well folded during the trajectory. Fluctuations in ψ appear to be compensated by other degrees of freedom in the protein, including φ of the succeeding residue, resulting in "rocking" of the amide plane with changes in hydrogen bonding interactions. Good agreement for both room temperature and low temperature NMR spectra provides strong support for the specific approach to conformational averaging of computed chemical shifts.
Collapse
|
5
|
Becker N, Frieg B, Gremer L, Kupreichyk T, Gardon L, Freiburg P, Neudecker P, Willbold D, Gohlke H, Heise H. Atomic Resolution Insights into pH Shift Induced Deprotonation Events in LS-Shaped Aβ(1-42) Amyloid Fibrils. J Am Chem Soc 2023; 145:2161-2169. [PMID: 36653015 PMCID: PMC9896559 DOI: 10.1021/jacs.2c09231] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Alzheimer's disease is a neurodegenerative disorder associated with the deposition of misfolded aggregates of the amyloid-β protein (Aβ). Aβ(1-42) is one of the most aggregation-prone components in senile plaques of AD patients. We demonstrated that relatively homogeneous Aβ(1-42) fibrils with one predominant fold visible in solid-state NMR spectra can be obtained at acidic pH. The structure of these fibrils differs remarkably from some other polymorphs obtained at neutral pH. In particular, the entire N-terminal region is part of the rigid fibril core. Here, we investigate the effects of a pH shift on the stability and the fold of these fibrils at higher pH values. Fibril bundling at neutral pH values renders cryo-EM studies impractical, but solid-state NMR spectroscopy, molecular dynamics simulations, and biophysical methods provide residue-specific structural information under these conditions. The LS-fold of the Aβ(1-42) fibrils does not change over the complete pH range from pH 2 to pH 7; in particular, the N-terminus remains part of the fibril core. We observe changes in the protonation state of charged residues starting from pH 5 on a residue-specific level. The deprotonation of the C-terminal carboxyl group of A42 in the intermolecular salt bridge with D1 and K28 is slow on the NMR time scale, with a local pKa of 5.4, and local conformations of the involved residues are affected by deprotonation of A42. Thus, we demonstrate that this fibril form is stable at physiological pH values.
Collapse
Affiliation(s)
- Nina Becker
- Institute
of Biological Information Processing (IBI-7: Structural Biochemistry)
and JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany,Physikalische
Biologie, Heinrich-Heine-Universität
Düsseldorf, 40225 Düsseldorf, Germany
| | - Benedikt Frieg
- Institute
of Biological Information Processing (IBI-7: Structural Biochemistry)
and JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany,John
von Neumann Institute for Computing (NIC), Jülich Supercomputing
Centre (JSC), Forschungszentrum Jülich
GmbH, 52425 Jülich, Germany
| | - Lothar Gremer
- Institute
of Biological Information Processing (IBI-7: Structural Biochemistry)
and JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany,Physikalische
Biologie, Heinrich-Heine-Universität
Düsseldorf, 40225 Düsseldorf, Germany
| | - Tatsiana Kupreichyk
- Institute
of Biological Information Processing (IBI-7: Structural Biochemistry)
and JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany,Physikalische
Biologie, Heinrich-Heine-Universität
Düsseldorf, 40225 Düsseldorf, Germany
| | - Luis Gardon
- Institute
of Biological Information Processing (IBI-7: Structural Biochemistry)
and JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany,Physikalische
Biologie, Heinrich-Heine-Universität
Düsseldorf, 40225 Düsseldorf, Germany
| | - Patrick Freiburg
- Physikalische
Biologie, Heinrich-Heine-Universität
Düsseldorf, 40225 Düsseldorf, Germany
| | - Philipp Neudecker
- Institute
of Biological Information Processing (IBI-7: Structural Biochemistry)
and JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany,Physikalische
Biologie, Heinrich-Heine-Universität
Düsseldorf, 40225 Düsseldorf, Germany
| | - Dieter Willbold
- Institute
of Biological Information Processing (IBI-7: Structural Biochemistry)
and JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany,Physikalische
Biologie, Heinrich-Heine-Universität
Düsseldorf, 40225 Düsseldorf, Germany
| | - Holger Gohlke
- Institute
of Biological Information Processing (IBI-7: Structural Biochemistry)
and JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany,John
von Neumann Institute for Computing (NIC), Jülich Supercomputing
Centre (JSC), Forschungszentrum Jülich
GmbH, 52425 Jülich, Germany,Institute
for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany,
| | - Henrike Heise
- Institute
of Biological Information Processing (IBI-7: Structural Biochemistry)
and JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany,Physikalische
Biologie, Heinrich-Heine-Universität
Düsseldorf, 40225 Düsseldorf, Germany,
| |
Collapse
|
6
|
Borges R, Colby SM, Das S, Edison AS, Fiehn O, Kind T, Lee J, Merrill AT, Merz KM, Metz TO, Nunez JR, Tantillo DJ, Wang LP, Wang S, Renslow RS. Quantum Chemistry Calculations for Metabolomics. Chem Rev 2021; 121:5633-5670. [PMID: 33979149 PMCID: PMC8161423 DOI: 10.1021/acs.chemrev.0c00901] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Indexed: 02/07/2023]
Abstract
A primary goal of metabolomics studies is to fully characterize the small-molecule composition of complex biological and environmental samples. However, despite advances in analytical technologies over the past two decades, the majority of small molecules in complex samples are not readily identifiable due to the immense structural and chemical diversity present within the metabolome. Current gold-standard identification methods rely on reference libraries built using authentic chemical materials ("standards"), which are not available for most molecules. Computational quantum chemistry methods, which can be used to calculate chemical properties that are then measured by analytical platforms, offer an alternative route for building reference libraries, i.e., in silico libraries for "standards-free" identification. In this review, we cover the major roadblocks currently facing metabolomics and discuss applications where quantum chemistry calculations offer a solution. Several successful examples for nuclear magnetic resonance spectroscopy, ion mobility spectrometry, infrared spectroscopy, and mass spectrometry methods are reviewed. Finally, we consider current best practices, sources of error, and provide an outlook for quantum chemistry calculations in metabolomics studies. We expect this review will inspire researchers in the field of small-molecule identification to accelerate adoption of in silico methods for generation of reference libraries and to add quantum chemistry calculations as another tool at their disposal to characterize complex samples.
Collapse
Affiliation(s)
- Ricardo
M. Borges
- Walter
Mors Institute of Research on Natural Products, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Sean M. Colby
- Biological
Science Division, Pacific Northwest National
Laboratory, Richland, Washington 99352, United States
| | - Susanta Das
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Arthur S. Edison
- Departments
of Genetics and Biochemistry and Molecular Biology, Complex Carbohydrate
Research Center and Institute of Bioinformatics, University of Georgia, Athens, Georgia 30602, United States
| | - Oliver Fiehn
- West
Coast Metabolomics Center for Compound Identification, UC Davis Genome
Center, University of California, Davis, California 95616, United States
| | - Tobias Kind
- West
Coast Metabolomics Center for Compound Identification, UC Davis Genome
Center, University of California, Davis, California 95616, United States
| | - Jesi Lee
- West
Coast Metabolomics Center for Compound Identification, UC Davis Genome
Center, University of California, Davis, California 95616, United States
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Amy T. Merrill
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Kenneth M. Merz
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Thomas O. Metz
- Biological
Science Division, Pacific Northwest National
Laboratory, Richland, Washington 99352, United States
| | - Jamie R. Nunez
- Biological
Science Division, Pacific Northwest National
Laboratory, Richland, Washington 99352, United States
| | - Dean J. Tantillo
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Lee-Ping Wang
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Shunyang Wang
- West
Coast Metabolomics Center for Compound Identification, UC Davis Genome
Center, University of California, Davis, California 95616, United States
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Ryan S. Renslow
- Biological
Science Division, Pacific Northwest National
Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
7
|
Shi M, Jin X, Wan Z, He X. Automated fragmentation quantum mechanical calculation of 13C and 1H chemical shifts in molecular crystals. J Chem Phys 2021; 154:064502. [PMID: 33588539 DOI: 10.1063/5.0039115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this work, the automated fragmentation quantum mechanics/molecular mechanics (AF-QM/MM) approach was applied to calculate the 13C and 1H nuclear magnetic resonance (NMR) chemical shifts in molecular crystals. Two benchmark sets of molecular crystals were selected to calculate the NMR chemical shifts. Systematic investigation was conducted to examine the convergence of AF-QM/MM calculations and the impact of various density functionals with different basis sets on the NMR chemical shift prediction. The result demonstrates that the calculated NMR chemical shifts are close to convergence when the distance threshold for the QM region is larger than 3.5 Å. For 13C chemical shift calculations, the mPW1PW91 functional is the best density functional among the functionals chosen in this study (namely, B3LYP, B3PW91, M06-2X, M06-L, mPW1PW91, OB98, and OPBE), while the OB98 functional is more suitable for the 1H NMR chemical shift prediction of molecular crystals. Moreover, with the B3LYP functional, at least a triple-ζ basis set should be utilized to accurately reproduce the experimental 13C and 1H chemical shifts. The employment of diffuse basis functions will further improve the accuracy for 13C chemical shift calculations, but not for the 1H chemical shift prediction. We further proposed a fragmentation scheme of dividing the central molecule into smaller fragments. By comparing with the results of the fragmentation scheme using the entire central molecule as the core region, the AF-QM/MM calculations with the fragmented central molecule can not only achieve accurate results but also reduce the computational cost. Therefore, the AF-QM/MM approach is capable of predicting the 13C and 1H NMR chemical shifts for molecular crystals accurately and effectively, and could be utilized for dealing with more complex periodic systems such as macromolecular polymers and biomacromolecules. The AF-QM/MM program for molecular crystals is available at https://github.com/shiman1995/NMR.
Collapse
Affiliation(s)
- Man Shi
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Xinsheng Jin
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Zheng Wan
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
8
|
Chandy SK, Thapa B, Raghavachari K. Accurate and cost-effective NMR chemical shift predictions for proteins using a molecules-in-molecules fragmentation-based method. Phys Chem Chem Phys 2020; 22:27781-27799. [PMID: 33244526 DOI: 10.1039/d0cp05064d] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have developed an efficient protocol using our two-layer Molecules-in-Molecules (MIM2) fragmentation-based quantum chemical method for the prediction of NMR chemical shifts of large biomolecules. To investigate the performance of our fragmentation approach and demonstrate its applicability, MIM-NMR calculations are first calibrated on a test set of six proteins. The MIM2-NMR method yields a mean absolute deviation (MAD) from unfragmented full molecule calculations of 0.01 ppm for 1H and 0.06 ppm for 13C chemical shifts. Thus, the errors from fragmentation are only about 3% of our target accuracy of ∼0.3 ppm for 1H and 2-3 ppm for 13C chemical shifts. To compare with experimental chemical shifts, a standard protocol is first derived using two smaller proteins 2LHY (176 atoms) and 2LI1 (146 atoms) for obtaining an appropriate protein structure for NMR chemical shift calculations. The effect of the solvent environment on the calculated NMR chemical shifts is incorporated through implicit, explicit, or explicit-implicit solvation models. The expensive first solvation shell calculations are replaced by a micro-solvation model in which only the immediate interaction between the protein and the explicit solvation environment is considered. A single explicit water molecule for each amine and amide proton is found to be sufficient to yield accurate results for 1H chemical shifts. The 1H and 13C NMR chemical shifts calculated using our protocol give excellent agreement with experiments for two larger proteins, 2MC5 (the helical part with 265 atoms) and 3UMK (33 residue slice with 547 atoms). Overall, our target accuracy of ∼0.3 ppm for 1H and ∼2-3 ppm for 13C has been achieved for the larger proteins. The proposed MIM-NMR method is accurate and computationally cost-effective and should be applicable to study a wide range of large proteins.
Collapse
Affiliation(s)
- Sruthy K Chandy
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA.
| | | | | |
Collapse
|
9
|
Fritz M, Quinn CM, Wang M, Hou G, Lu X, Koharudin LMI, Struppe J, Case DA, Polenova T, Gronenborn AM. Determination of accurate backbone chemical shift tensors in microcrystalline proteins by integrating MAS NMR and QM/MM. Phys Chem Chem Phys 2018; 20:9543-9553. [PMID: 29577158 PMCID: PMC5892194 DOI: 10.1039/c8cp00647d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chemical shifts are highly sensitive probes of local conformation and overall structure. Both isotropic shifts and chemical shift tensors are readily accessible from NMR experiments but their quantum mechanical calculations remain challenging. In this work, we report and compare accurately measured and calculated 15NH and 13Cα chemical shift tensors in proteins, using the microcrystalline agglutinin from Oscillatoria agardhii (OAA). Experimental 13Cα and 15NH chemical tensors were obtained by solid-state NMR spectroscopy, employing tailored recoupling sequences, and for their quantum mechanics/molecular mechanics (QM/MM) calculations different sets of functionals were evaluated. We show that 13Cα chemical shift tensors are primarily determined by backbone dihedral angles and dynamics, while 15NH tensors mainly depend on local electrostatic contributions from solvation and hydrogen bonding. In addition, the influence of including crystallographic waters, the molecular mechanics geometry optimization protocol, and the level of theory on the accuracy of the calculated chemical shift tensors is discussed. Specifically, the power of QM/MM calculations in accurately predicting the unusually upfield shifted 1HN G26 and G93 resonances is highlighted. Our integrated approach is expected to benefit structure refinement of proteins and protein assemblies.
Collapse
Affiliation(s)
- Matthew Fritz
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Caitlin M. Quinn
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Mingzhang Wang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Guangjin Hou
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| | - Xingyu Lu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Leonardus M. I. Koharudin
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Jochem Struppe
- Bruker Biospin Corporation, 15 Fortune Drive, Billerica, MA, United States
| | - David A. Case
- Department of Chemistry and Chemical Biology, Rutgers University, 174 Frelinghuysen Road, Piscataway, NJ 08854-8087, United States
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Angela M. Gronenborn
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| |
Collapse
|
10
|
Dahanayake JN, Kasireddy C, Ellis JM, Hildebrandt D, Hull OA, Karnes JP, Morlan D, Mitchell-Koch KR. Evaluating electronic structure methods for accurate calculation of 19 F chemical shifts in fluorinated amino acids. J Comput Chem 2017; 38:2605-2617. [PMID: 28833293 DOI: 10.1002/jcc.24919] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/16/2017] [Accepted: 08/03/2017] [Indexed: 01/17/2023]
Abstract
The ability of electronic structure methods (11 density functionals, HF, and MP2 calculations; two basis sets and two solvation models) to accurately calculate the 19 F chemical shifts of 31 structures of fluorinated amino acids and analogues with known experimental 19 F NMR spectra has been evaluated. For this task, BHandHLYP, ωB97X, and Hartree-Fock with scaling factors (provided within) are most accurate. Additionally, the accuracy of methods to calculate relative changes in fluorine shielding across 23 sets of structural variants, such as zwitterionic amino acids versus side chains only, was also determined. This latter criterion may be a better indicator of reliable methods for the ultimate goal of assigning and interpreting chemical shifts of fluorinated amino acids in proteins. It was found that MP2 and M062X calculations most accurately assess changes in shielding among analogues. These results serve as a guide for computational developments to calculate 19 F chemical shifts in biomolecular environments. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jayangika N Dahanayake
- Department of Chemistry, Wichita State University, 1845 Fairmount Street, Wichita, Kansas, 67260-0051
| | - Chandana Kasireddy
- Department of Chemistry, Wichita State University, 1845 Fairmount Street, Wichita, Kansas, 67260-0051
| | - Jonathan M Ellis
- Department of Chemistry, Wichita State University, 1845 Fairmount Street, Wichita, Kansas, 67260-0051
| | - Derek Hildebrandt
- Department of Chemistry, Wichita State University, 1845 Fairmount Street, Wichita, Kansas, 67260-0051
| | - Olivia A Hull
- Department of Chemistry, Wichita State University, 1845 Fairmount Street, Wichita, Kansas, 67260-0051
| | - Joseph P Karnes
- Department of Chemistry, Wichita State University, 1845 Fairmount Street, Wichita, Kansas, 67260-0051
| | - Dylan Morlan
- Department of Chemistry, Wichita State University, 1845 Fairmount Street, Wichita, Kansas, 67260-0051
| | - Katie R Mitchell-Koch
- Department of Chemistry, Wichita State University, 1845 Fairmount Street, Wichita, Kansas, 67260-0051
| |
Collapse
|
11
|
Unraveling the meaning of chemical shifts in protein NMR. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1564-1576. [PMID: 28716441 DOI: 10.1016/j.bbapap.2017.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/29/2017] [Accepted: 07/07/2017] [Indexed: 12/14/2022]
Abstract
Chemical shifts are among the most informative parameters in protein NMR. They provide wealth of information about protein secondary and tertiary structure, protein flexibility, and protein-ligand binding. In this report, we review the progress in interpreting and utilizing protein chemical shifts that has occurred over the past 25years, with a particular focus on the large body of work arising from our group and other Canadian NMR laboratories. More specifically, this review focuses on describing, assessing, and providing some historical context for various chemical shift-based methods to: (1) determine protein secondary and super-secondary structure; (2) derive protein torsion angles; (3) assess protein flexibility; (4) predict residue accessible surface area; (5) refine 3D protein structures; (6) determine 3D protein structures and (7) characterize intrinsically disordered proteins. This review also briefly covers some of the methods that we previously developed to predict chemical shifts from 3D protein structures and/or protein sequence data. It is hoped that this review will help to increase awareness of the considerable utility of NMR chemical shifts in structural biology and facilitate more widespread adoption of chemical-shift based methods by the NMR spectroscopists, structural biologists, protein biophysicists, and biochemists worldwide. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman.
Collapse
|
12
|
Babaei M, Jones IC, Dayal K, Mauter MS. Computing the Diamagnetic Susceptibility and Diamagnetic Anisotropy of Membrane Proteins from Structural Subunits. J Chem Theory Comput 2017; 13:2945-2953. [PMID: 28418668 DOI: 10.1021/acs.jctc.6b01251] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The behavior of large, complex molecules in the presence of magnetic fields is experimentally challenging to measure and computationally intensive to predict. This work proposes a novel, mixed-methods approach for efficiently computing the principal magnetic susceptibilities and diamagnetic anisotropy of membrane proteins. The hierarchical primary (amino acid), secondary (α helical and β sheet), and tertiary (α helix and β barrel) structure of transmembrane proteins enables analysis of a complex molecule using discrete subunits of varying size and resolution. The proposed method converts the magnetic susceptibility tensor for all protein subunits to a unit coordinate system and sums them to build the magnetic susceptibility tensor for the membrane protein. Using this approach, we calculate the diamagnetic anisotropy for all transmembrane proteins of known structure and investigate the effect of different subunit resolutions on the resulting predictions of diamagnetic anisotropy. We demonstrate that amino acid residues with aromatic side groups exhibit higher diamagnetic anisotropies. On average, high percentages of aromatic amino acid subunits, a β barrel tertiary structure, and a small volume are correlated with high volumetric diamagnetic anisotropy. Finally, we demonstrate that accounting for the spatial position of the residues with respect to one another is critical to accurately computing the magnetic properties of the complex protein molecule.
Collapse
Affiliation(s)
- Mahnoush Babaei
- Department of Civil and Environmental Engineering, Carnegie Mellon University , 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213, United States
| | - Isaac C Jones
- Department of Civil and Environmental Engineering, Carnegie Mellon University , 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213, United States
| | - Kaushik Dayal
- Department of Civil and Environmental Engineering, Carnegie Mellon University , 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213, United States
| | - Meagan S Mauter
- Department of Civil and Environmental Engineering, Carnegie Mellon University , 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213, United States.,Department of Engineering and Public Policy, Carnegie Mellon University , 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
13
|
Jose KVJ, Raghavachari K. Fragment-Based Approach for the Evaluation of NMR Chemical Shifts for Large Biomolecules Incorporating the Effects of the Solvent Environment. J Chem Theory Comput 2017; 13:1147-1158. [DOI: 10.1021/acs.jctc.6b00922] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- K. V. Jovan Jose
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Krishnan Raghavachari
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
14
|
Olejniczak M, Bast R, Pereira Gomes AS. On the calculation of second-order magnetic properties using subsystem approaches in a relativistic framework. Phys Chem Chem Phys 2017; 19:8400-8415. [DOI: 10.1039/c6cp08561j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The implementation of second-order magnetic properties in a frozen density embedding scheme in a four component relativistic framework is outlined and applied to model H2X–H2O systems (X = Se, Te, Po).
Collapse
Affiliation(s)
- Małgorzata Olejniczak
- Université de Lille
- CNRS
- UMR 8523 – PhLAM – Physique des Lasers
- Atomes et Molécules
- F-59000 Lille
| | - Radovan Bast
- High Performance Computing Group
- UiT The Arctic University of Norway
- N-9037 Tromsø
- Norway
| | | |
Collapse
|
15
|
Trautwein M, Fredriksson K, Möller HM, Exner TE. Automated assignment of NMR chemical shifts based on a known structure and 4D spectra. JOURNAL OF BIOMOLECULAR NMR 2016; 65:217-236. [PMID: 27484442 DOI: 10.1007/s10858-016-0050-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/28/2016] [Indexed: 06/06/2023]
Abstract
Apart from their central role during 3D structure determination of proteins the backbone chemical shift assignment is the basis for a number of applications, like chemical shift perturbation mapping and studies on the dynamics of proteins. This assignment is not a trivial task even if a 3D protein structure is known and needs almost as much effort as the assignment for structure prediction if performed manually. We present here a new algorithm based solely on 4D [(1)H,(15)N]-HSQC-NOESY-[(1)H,(15)N]-HSQC spectra which is able to assign a large percentage of chemical shifts (73-82 %) unambiguously, demonstrated with proteins up to a size of 250 residues. For the remaining residues, a small number of possible assignments is filtered out. This is done by comparing distances in the 3D structure to restraints obtained from the peak volumes in the 4D spectrum. Using dead-end elimination, assignments are removed in which at least one of the restraints is violated. Including additional information from chemical shift predictions, a complete unambiguous assignment was obtained for Ubiquitin and 95 % of the residues were correctly assigned in the 251 residue-long N-terminal domain of enzyme I. The program including source code is available at https://github.com/thomasexner/4Dassign .
Collapse
Affiliation(s)
- Matthias Trautwein
- Institute of Pharmacy, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Kai Fredriksson
- Institute of Pharmacy, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Heiko M Möller
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam OT Golm, Germany
| | - Thomas E Exner
- Institute of Pharmacy, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany.
| |
Collapse
|
16
|
Isley WC, Urick AK, Pomerantz WCK, Cramer CJ. Prediction of 19F NMR Chemical Shifts in Labeled Proteins: Computational Protocol and Case Study. Mol Pharm 2016; 13:2376-86. [DOI: 10.1021/acs.molpharmaceut.6b00137] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- William C. Isley
- Department of Chemistry,
Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Andrew K. Urick
- Department of Chemistry,
Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - William C. K. Pomerantz
- Department of Chemistry,
Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Christopher J. Cramer
- Department of Chemistry,
Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
17
|
Shaghaghi H, Ebrahimi HP, Fathi F, Bahrami Panah N, Jalali-Heravi M, Tafazzoli M. A simple graphical approach to predict local residue conformation using NMR chemical shifts and density functional theory. J Comput Chem 2016; 37:1296-305. [DOI: 10.1002/jcc.24323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 11/25/2015] [Accepted: 01/17/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Hoora Shaghaghi
- Department of Radiology; University of Pennsylvania; Philadelphia Pennsylvania 19104
| | - Hossein Pasha Ebrahimi
- Department of Biochemistry and National Magnetic Resonance Facility at Madison; University of Wisconsin-Madison; Wisconsin
| | - Fariba Fathi
- Department of Chemistry; Sharif University of Technology; Tehran Iran
| | | | - Mehdi Jalali-Heravi
- Department of Chemistry and Biochemistry; California State University; Los Angeles California
| | - Mohsen Tafazzoli
- Department of Chemistry; Sharif University of Technology; Tehran Iran
| |
Collapse
|
18
|
Kasireddy C, Bann JG, Mitchell-Koch KR. Demystifying fluorine chemical shifts: electronic structure calculations address origins of seemingly anomalous (19)F-NMR spectra of fluorohistidine isomers and analogues. Phys Chem Chem Phys 2015; 17:30606-12. [PMID: 26524669 PMCID: PMC4643390 DOI: 10.1039/c5cp05502d] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Fluorine NMR spectroscopy is a powerful tool for studying biomolecular structure, dynamics, and ligand binding, yet the origins of (19)F chemical shifts are not well understood. Herein, we use electronic structure calculations to describe the changes in (19)F chemical shifts of 2F- and 4F-histidine/(5-methyl)-imidazole upon acid titration. While the protonation of the 2F species results in a deshielded chemical shift, protonation of the 4F isomer results in an opposite, shielded chemical shift. The deshielding of 2F-histidine/(5-methyl)-imidazole upon protonation can be rationalized by concomitant decreases in charge density on fluorine and a reduced dipole moment. These correlations do not hold for 4F-histidine/(5-methyl)-imidazole, however. Molecular orbital calculations reveal that for the 4F species, there are no lone pair electrons on the fluorine until protonation. Analysis of a series of 4F-imidazole analogues, all with delocalized fluorine electron density, indicates that the deshielding of (19)F chemical shifts through substituent effects correlates with increased C-F bond polarity. In summary, the delocalization of fluorine electrons in the neutral 4F species, with gain of a lone pair upon protonation may help explain the difficulty in developing a predictive framework for fluorine chemical shifts. Ideas debated by chemists over 40 years ago, regarding fluorine's complex electronic effects, are shown to have relevance for understanding and predicting fluorine NMR spectra.
Collapse
Affiliation(s)
- Chandana Kasireddy
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260-0051, USA.
| | - James G Bann
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260-0051, USA.
| | - Katie R Mitchell-Koch
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260-0051, USA.
| |
Collapse
|
19
|
Zhu T, Zhang JZH, He X. Quantum calculation of protein NMR chemical shifts based on the automated fragmentation method. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 827:49-70. [PMID: 25387959 DOI: 10.1007/978-94-017-9245-5_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The performance of quantum mechanical methods on the calculation of protein NMR chemical shifts is reviewed based on the recently developed automatic fragmentation quantum mechanics/molecular mechanics (AF-QM/MM) approach. By using the Poisson-Boltzmann (PB) model and first solvation water molecules, the influence of solvent effect is also discussed. Benefiting from the fragmentation algorithm, the AF-QM/MM approach is computationally efficient, linear-scaling with a low pre-factor, and thus can be applied to routinely calculate the ab initio NMR chemical shifts for proteins of any size. The results calculated using Density Functional Theory (DFT) show that when the solvent effect is included, this method can accurately reproduce the experimental ¹H NMR chemical shifts, while the ¹³C NMR chemical shifts are less affected by the solvent. However, although the inclusion of solvent effect shows significant improvement for ¹⁵N chemical shifts, the calculated values still have large deviations from the experimental observations. Our study further demonstrates that AF-QM/MM calculated results accurately reflect the dependence of ¹³C(α) NMR chemical shifts on the secondary structure of proteins, and the calculated ¹H chemical shift can be utilized to discriminate the native structure of proteins from decoys.
Collapse
Affiliation(s)
- Tong Zhu
- State Key Laboratory of Precision Spectroscopy and Department of Physics, Institute of Theoretical and Computational Science, East China Normal University, Shanghai, China
| | | | | |
Collapse
|
20
|
Pandey MK, Malon M, Ramamoorthy A, Nishiyama Y. Composite-180° pulse-based symmetry sequences to recouple proton chemical shift anisotropy tensors under ultrafast MAS solid-state NMR spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 250:45-54. [PMID: 25497846 PMCID: PMC4301976 DOI: 10.1016/j.jmr.2014.11.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/03/2014] [Accepted: 11/04/2014] [Indexed: 05/17/2023]
Abstract
There is considerable interest in the measurement of proton ((1)H) chemical shift anisotropy (CSA) tensors to obtain deeper insights into H-bonding interactions which find numerous applications in chemical and biological systems. However, the presence of strong (1)H/(1)H dipolar interaction makes it difficult to determine small size (1)H CSAs from the homogeneously broadened NMR spectra. Previously reported pulse sequences for (1)H CSA recoupling are prone to the effects of radio frequency field (B1) inhomogeneity. In the present work we have carried out a systematic study using both numerical and experimental approaches to evaluate γ-encoded radio frequency (RF) pulse sequences based on R-symmetries that recouple (1)H CSA in the indirect dimension of a 2D (1)H/(1)H anisotropic/isotropic chemical shift correlation experiment under ultrafast magic angle spinning (MAS) frequencies. The spectral resolution and sensitivity can be significantly improved in both frequency dimensions of the 2D (1)H/(1)H correlation spectrum without decoupling (1)H/(1)H dipolar couplings but by using ultrafast MAS rates up to 70 kHz. We successfully demonstrate that with a reasonable RF field requirement (<200 kHz) a set of symmetry-based recoupling sequences, with a series of phase-alternating 270°0-90°180 composite-180° pulses, are more robust in combating B1 inhomogeneity effects. In addition, our results show that the new pulse sequences render remarkable (1)H CSA recoupling efficiency and undistorted CSA lineshapes. Experimental results on citric acid and malonic acid comparing the efficiencies of these newly developed pulse sequences with that of previously reported CSA recoupling pulse sequences are also reported under ultrafast MAS conditions.
Collapse
Affiliation(s)
| | - Michal Malon
- CLST NMR Facility, RIKEN, Yokohama, Kanagawa 230-0045, Japan; JEOL RESONANCE Inc., Musashino, Akishima, Tokyo 196-8558, Japan
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Yusuke Nishiyama
- CLST NMR Facility, RIKEN, Yokohama, Kanagawa 230-0045, Japan; JEOL RESONANCE Inc., Musashino, Akishima, Tokyo 196-8558, Japan.
| |
Collapse
|
21
|
Victora A, Möller HM, Exner TE. Accurate ab initio prediction of NMR chemical shifts of nucleic acids and nucleic acids/protein complexes. Nucleic Acids Res 2014; 42:e173. [PMID: 25404135 PMCID: PMC4267612 DOI: 10.1093/nar/gku1006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
NMR chemical shift predictions based on empirical methods are nowadays indispensable tools during resonance assignment and 3D structure calculation of proteins. However, owing to the very limited statistical data basis, such methods are still in their infancy in the field of nucleic acids, especially when non-canonical structures and nucleic acid complexes are considered. Here, we present an ab initio approach for predicting proton chemical shifts of arbitrary nucleic acid structures based on state-of-the-art fragment-based quantum chemical calculations. We tested our prediction method on a diverse set of nucleic acid structures including double-stranded DNA, hairpins, DNA/protein complexes and chemically-modified DNA. Overall, our quantum chemical calculations yield highly/very accurate predictions with mean absolute deviations of 0.3–0.6 ppm and correlation coefficients (r2) usually above 0.9. This will allow for identifying misassignments and validating 3D structures. Furthermore, our calculations reveal that chemical shifts of protons involved in hydrogen bonding are predicted significantly less accurately. This is in part caused by insufficient inclusion of solvation effects. However, it also points toward shortcomings of current force fields used for structure determination of nucleic acids. Our quantum chemical calculations could therefore provide input for force field optimization.
Collapse
Affiliation(s)
- Andrea Victora
- Department of Chemistry and Zukunftskolleg, Universität Konstanz, 78457 Konstanz, Germany
| | - Heiko M Möller
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam OT Golm, Germany
| | - Thomas E Exner
- Department of Chemistry and Zukunftskolleg, Universität Konstanz, 78457 Konstanz, Germany Institute of Pharmacy, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| |
Collapse
|
22
|
Pandey MK, Vivekanandan S, Ahuja S, Huang R, Im SC, Waskell L, Ramamoorthy A. Cytochrome-P450-cytochrome-b5 interaction in a membrane environment changes 15N chemical shift anisotropy tensors. J Phys Chem B 2013; 117:13851-60. [PMID: 24107224 DOI: 10.1021/jp4086206] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It has been well realized that the dependence of chemical shift anisotropy (CSA) tensors on the amino acid sequence, secondary structure, dynamics, and electrostatic interactions can be utilized in the structural and dynamic studies of proteins by NMR spectroscopy. In addition, CSA tensors could also be utilized to measure the structural interactions between proteins in a protein-protein complex. To this end, we report the experimentally measured backbone amide-(15)N CSA tensors for a membrane-bound 16.7 kDa full-length rabbit cytochrome-b5 (cytb5), in complexation with a 55.8 kDa microsomal rabbit cytochrome P450 2B4 (cytP4502B4). The (15)N-CSAs, determined using the (15)N CSA/(15)N-(1)H dipolar coupling transverse cross-correlated rates, for free cytb5 are compared with those for the cytb5 bound to cytP4502B4. An overall increase in backbone amide-(15)N transverse cross-correlated rates for the cytb5 residues in the cytb5-cytP450 complex is observed as compared to the free cytb5 residues. Due to fast spin-spin relaxation (T2) and subsequent broadening of the signals in the complex, we could measure amide-(15)N CSAs only for 48 residues of cytb5 as compared to 84 residues of free cytb5. We observed a change in (15)N CSA for most residues of cytb5 in the complex, as compared to free cytb5, suggesting a dynamic interaction between the oppositely charged surfaces of anionic cytb5 and cationic cytP450. The mean values of (15)N CSA determined for residues in helical, sheet, and turn regions of cytb5 in the complex are -184.5, -146.8, and -146.2 ppm, respectively, with an overall average value of -165.5 ppm (excluding the values from residues in more flexible termini). The measured CSA value for residues in helical conformation is slightly larger as compared to previously reported values. This may be attributed to the paramagnetic effect from Fe(III) of the heme in cytb5, which is similar to our previously reported values for the free cytb5.
Collapse
Affiliation(s)
- Manoj Kumar Pandey
- Biophysics and Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109-1055, United States
| | | | | | | | | | | | | |
Collapse
|
23
|
Mueller LJ, Dunn MF. NMR crystallography of enzyme active sites: probing chemically detailed, three-dimensional structure in tryptophan synthase. Acc Chem Res 2013; 46:2008-17. [PMID: 23537227 DOI: 10.1021/ar3003333] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
NMR crystallography--the synergistic combination of X-ray diffraction, solid-state NMR spectroscopy, and computational chemistry--offers unprecedented insight into three-dimensional, chemically detailed structure. Initially, researchers used NMR crystallography to refine diffraction data from organic and inorganic solids. Now we are applying this technique to explore active sites in biomolecules, where it reveals chemically rich detail concerning the interactions between enzyme site residues and the reacting substrate. Researchers cannot achieve this level of detail from X-ray, NMR,or computational methodologies in isolation. For example, typical X-ray crystal structures (1.5-2.5 Å resolution) of enzyme-bound intermediates identify possible hydrogen-bonding interactions between site residues and substrate but do not directly identify the protonation states. Solid-state NMR can provide chemical shifts for selected atoms of enzyme-substrate complexes, but without a larger structural framework in which to interpret them only empirical correlations with local chemical structure are possible. Ab initio calculations and molecular mechanics can build models for enzymatic processes, but they rely on researcher-specified chemical details. Together, however, X-ray diffraction, solid-state NMR spectroscopy, and computational chemistry can provide consistent and testable models for structure and function of enzyme active sites: X-ray crystallography provides a coarse framework upon which scientists can develop models of the active site using computational chemistry; they can then distinguish these models by comparing calculated NMR chemical shifts with the results of solid-state NMR spectroscopy experiments. Conceptually, each technique is a puzzle piece offering a generous view of the big picture. Only when correctly pieced together, however, can they reveal the big picture at the highest possible resolution. In this Account, we detail our first steps in the development of NMR crystallography applied to enzyme catalysis. We begin with a brief introduction to NMR crystallography and then define the process that we have employed to probe the active site in the β-subunit of tryptophan synthase with unprecedented atomic-level resolution. This approach has resulted in a novel structural hypothesis for the protonation state of the quinonoid intermediate in tryptophan synthase and its surprising role in directing the next step in the catalysis of L-Trp formation.
Collapse
Affiliation(s)
- Leonard J. Mueller
- Department of Chemistry and ‡Department of Biochemistry, University of California, Riverside, California 92521, United States
| | - Michael F. Dunn
- Department of Chemistry and ‡Department of Biochemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
24
|
Niks D, Hilario E, Dierkers A, Ngo H, Borchardt D, Neubauer TJ, Fan L, Mueller LJ, Dunn MF. Allostery and substrate channeling in the tryptophan synthase bienzyme complex: evidence for two subunit conformations and four quaternary states. Biochemistry 2013; 52:6396-411. [PMID: 23952479 DOI: 10.1021/bi400795e] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The allosteric regulation of substrate channeling in tryptophan synthase involves ligand-mediated allosteric signaling that switches the α- and β-subunits between open (low activity) and closed (high activity) conformations. This switching prevents the escape of the common intermediate, indole, and synchronizes the α- and β-catalytic cycles. (19)F NMR studies of bound α-site substrate analogues, N-(4'-trifluoromethoxybenzoyl)-2-aminoethyl phosphate (F6) and N-(4'-trifluoromethoxybenzenesulfonyl)-2-aminoethyl phosphate (F9), were found to be sensitive NMR probes of β-subunit conformation. Both the internal and external aldimine F6 complexes gave a single bound peak at the same chemical shift, while α-aminoacrylate and quinonoid F6 complexes all gave a different bound peak shifted by +1.07 ppm. The F9 complexes exhibited similar behavior, but with a corresponding shift of -0.12 ppm. X-ray crystal structures show the F6 and F9 CF3 groups located at the α-β subunit interface and report changes in both the ligand conformation and the surrounding protein microenvironment. Ab initio computational modeling suggests that the change in (19)F chemical shift results primarily from changes in the α-site ligand conformation. Structures of α-aminoacrylate F6 and F9 complexes and quinonoid F6 and F9 complexes show the α- and β-subunits have closed conformations wherein access of ligands into the α- and β-sites from solution is blocked. Internal and external aldimine structures show the α- and β-subunits with closed and open global conformations, respectively. These results establish that β-subunits exist in two global conformational states, designated open, where the β-sites are freely accessible to substrates, and closed, where the β-site portal into solution is blocked. Switching between these conformations is critically important for the αβ-catalytic cycle.
Collapse
Affiliation(s)
- Dimitri Niks
- Department of Biochemistry, University of California at Riverside , Riverside, California 92521, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Tanio M, Nishimura K. Intramolecular allosteric interaction in the phospholipase C-δ1 pleckstrin homology domain. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1034-43. [DOI: 10.1016/j.bbapap.2013.01.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/21/2013] [Accepted: 01/29/2013] [Indexed: 11/30/2022]
|
26
|
Zhu T, Zhang JZH, He X. Automated Fragmentation QM/MM Calculation of Amide Proton Chemical Shifts in Proteins with Explicit Solvent Model. J Chem Theory Comput 2013; 9:2104-14. [PMID: 26583557 DOI: 10.1021/ct300999w] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We have performed a density functional theory (DFT) calculation of the amide proton NMR chemical shift in proteins using a recently developed automated fragmentation quantum mechanics/molecular mechanics (AF-QM/MM) approach. Systematic investigation was carried out to examine the influence of explicit solvent molecules, cooperative hydrogen bonding effects, density functionals, size of the basis sets, and the local geometry of proteins on calculated chemical shifts. Our result demonstrates that the predicted amide proton ((1)HN) NMR chemical shift in explicit solvent shows remarkable improvement over that calculated with the implicit solvation model. The cooperative hydrogen bonding effect is also shown to improve the accuracy of (1)HN chemical shifts. Furthermore, we found that the OPBE exchange-correlation functional is the best density functional for the prediction of protein (1)HN chemical shifts among a selective set of DFT methods (namely, B3LYP, B3PW91, M062X, M06L, mPW1PW91, OB98, OPBE), and the locally dense basis set of 6-311++G**/4-31G* is shown to be sufficient for (1)HN chemical shift calculation. By taking ensemble averaging into account, (1)HN chemical shifts calculated by the AF-QM/MM approach can be used to validate the performance of various force fields. Our study underscores that the electronic polarization of protein is of critical importance to stabilizing hydrogen bonding, and the AF-QM/MM method is able to describe the local chemical environment in proteins more accurately than most widely used empirical models.
Collapse
Affiliation(s)
- Tong Zhu
- State Key Laboratory of Precision Spectroscopy and Department of Physics, Institute of Theoretical and Computational Science, East China Normal University, Shanghai, China 200062
| | - John Z H Zhang
- State Key Laboratory of Precision Spectroscopy and Department of Physics, Institute of Theoretical and Computational Science, East China Normal University, Shanghai, China 200062.,Department of Chemistry, New York University, New York, New York 10003, United States
| | - Xiao He
- State Key Laboratory of Precision Spectroscopy and Department of Physics, Institute of Theoretical and Computational Science, East China Normal University, Shanghai, China 200062
| |
Collapse
|
27
|
Lemkau LR, Comellas G, Lee SW, Rikardsen LK, Woods WS, George JM, Rienstra CM. Site-specific perturbations of alpha-synuclein fibril structure by the Parkinson's disease associated mutations A53T and E46K. PLoS One 2013; 8:e49750. [PMID: 23505409 PMCID: PMC3591419 DOI: 10.1371/journal.pone.0049750] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 10/17/2012] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease (PD) is pathologically characterized by the presence of Lewy bodies (LBs) in dopaminergic neurons of the substantia nigra. These intracellular inclusions are largely composed of misfolded α-synuclein (AS), a neuronal protein that is abundant in the vertebrate brain. Point mutations in AS are associated with rare, early-onset forms of PD, although aggregation of the wild-type (WT) protein is observed in the more common sporadic forms of the disease. Here, we employed multidimensional solid-state NMR experiments to assess A53T and E46K mutant fibrils, in comparison to our recent description of WT AS fibrils. We made de novo chemical shift assignments for the mutants, and used these chemical shifts to empirically determine secondary structures. We observe significant perturbations in secondary structure throughout the fibril core for the E46K fibril, while the A53T fibril exhibits more localized perturbations near the mutation site. Overall, these results demonstrate that the secondary structure of A53T has some small differences from the WT and the secondary structure of E46K has significant differences, which may alter the overall structural arrangement of the fibrils.
Collapse
Affiliation(s)
- Luisel R. Lemkau
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Gemma Comellas
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Shin W. Lee
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Lars K. Rikardsen
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Wendy S. Woods
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Julia M. George
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Chad M. Rienstra
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
28
|
Sahakyan AB, Vendruscolo M. Analysis of the contributions of ring current and electric field effects to the chemical shifts of RNA bases. J Phys Chem B 2013; 117:1989-98. [PMID: 23398371 DOI: 10.1021/jp3057306] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ring current and electric field effects can considerably influence NMR chemical shifts in biomolecules. Understanding such effects is particularly important for the development of accurate mappings between chemical shifts and the structures of nucleic acids. In this work, we first analyzed the Pople and the Haigh-Mallion models in terms of their ability to describe nitrogen base conjugated ring effects. We then created a database (DiBaseRNA) of three-dimensional arrangements of RNA base pairs from X-ray structures, calculated the corresponding chemical shifts via a hybrid density functional theory approach and used the results to parametrize the ring current and electric field effects in RNA bases. Next, we studied the coupling of the electric field and ring current effects for different inter-ring arrangements found in RNA bases using linear model fitting, with joint electric field and ring current, as well as only electric field and only ring current approximations. Taken together, our results provide a characterization of the interdependence of ring current and electric field geometric factors, which is shown to be especially important for the chemical shifts of non-hydrogen atoms in RNA bases.
Collapse
Affiliation(s)
- Aleksandr B Sahakyan
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | | |
Collapse
|
29
|
Pandey MK, Ramamoorthy A. Quantum chemical calculations of amide-15N chemical shift anisotropy tensors for a membrane-bound cytochrome-b5. J Phys Chem B 2013; 117:859-67. [PMID: 23268659 PMCID: PMC3564578 DOI: 10.1021/jp311116p] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is considerable interest in determining amide-(15)N chemical shift anisotropy (CSA) tensors from biomolecules and understanding their variation for structural and dynamics studies using solution and solid-state NMR spectroscopy and also by quantum chemical calculations. Due to the difficulties associated with the measurement of CSA tensors from membrane proteins, NMR-based structural studies heavily relied on the CSA tensors determined from model systems, typically single crystals of model peptides. In the present study, the principal components of backbone amide-(15)N CSA tensors have been determined using density functional theory for a 16.7 kDa membrane-bound paramagnetic heme containing protein, cytochrome-b(5) (cytb(5)). All the calculations were performed by taking residues within 5 Å distance from the backbone amide-(15)N nucleus of interest. The calculated amide-(15)N CSA spans agree less well with our solution NMR data determined for an effective internuclear distance r(N-H) = 1.023 Å and a constant angle β = 18° that the least shielded component (δ(11)) makes with the N-H bond. The variation of amide-(15)N CSA span obtained using quantum chemical calculations is found to be smaller than that obtained from solution NMR measurements, whereas the trends of the variations are found to be in close agreement. We believe that the results reported in this study will be useful in studying the structure and dynamics of membrane proteins and heme-containing proteins, and also membrane-bound protein-protein complexes such as cytochromes-b5-P450.
Collapse
Affiliation(s)
- Manoj Kumar Pandey
- Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, MI 48109-1055
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, MI 48109-1055
| |
Collapse
|
30
|
Exner TE, Frank A, Onila I, Möller HM. Toward the Quantum Chemical Calculation of NMR Chemical Shifts of Proteins. 3. Conformational Sampling and Explicit Solvents Model. J Chem Theory Comput 2012; 8:4818-27. [PMID: 26605634 DOI: 10.1021/ct300701m] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fragment-based quantum chemical calculations are able to accurately calculate NMR chemical shifts even for very large molecules like proteins. But even with systematic optimization of the level of theory and basis sets as well as the use of implicit solvents models, some nuclei like polar protons and nitrogens suffer from poor predictions. Two properties of the real system, strongly influencing the experimental chemical shifts but almost always neglected in the calculations, will be discussed here in great detail: (1) conformational averaging and (2) interactions with first-shell solvent molecules. Classical molecular dynamics simulations in explicit water were carried out for obtaining a representative ensemble including the arrangement of neighboring solvent molecules, which was then subjected to quantum chemical calculations. We could demonstrate with the small test system N-methyl acetamide (NMA) that the calculated chemical shifts show immense variations of up to 6 ppm and 50 ppm for protons and nitrogens, respectively, depending on the snapshot taken from a classical molecular dynamics simulation. Applying the same approach to the HA2 domain of the influenza virus glycoprotein hemagglutinin, a 32-amino-acid-long polypeptide, and comparing averaged values to the experiment, chemical shifts of nonpolar protons and carbon atoms in proteins were calculated with unprecedented accuracy. Additionally, the mean absolute error could be reduced by a factor of 2.43 for polar protons, and reasonable correlations were obtained for nitrogen and carbonyl carbon in contrast to all other studies published so far.
Collapse
Affiliation(s)
- Thomas E Exner
- Department of Chemistry and Zukunftskolleg, University of Konstanz, 78457 Konstanz, Germany.,Theoretical Medicinal Chemistry and Biophysics, Institute of Pharmacy, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Andrea Frank
- Department of Chemistry and Zukunftskolleg, University of Konstanz, 78457 Konstanz, Germany
| | - Ionut Onila
- Theoretical Medicinal Chemistry and Biophysics, Institute of Pharmacy, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Heiko M Möller
- Department of Chemistry and Zukunftskolleg, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
31
|
Allison JR. Assessing and refining molecular dynamics simulations of proteins with nuclear magnetic resonance data. Biophys Rev 2012; 4:189-203. [PMID: 28510078 DOI: 10.1007/s12551-012-0087-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Accepted: 06/12/2012] [Indexed: 11/28/2022] Open
Abstract
The sophistication of the force fields, algorithms and hardware used for molecular dynamics (MD) simulations of proteins is continuously increasing. No matter how advanced the methodology, however, it is essential to evaluate the appropriateness of the structures sampled in a simulation by comparison with quantitative experimental data. Solution nuclear magnetic resonance (NMR) data are particularly useful for checking the quality of protein simulations, as they provide both structural and dynamic information on a variety of temporal and spatial scales. Here, various features and implications of using NMR data to validate and bias MD simulations are outlined, including an overview of the different types of NMR data that report directly on structural properties and of relevant simulation techniques. The focus throughout is on how to properly account for conformational averaging, particularly within the context of the assumptions inherent in the relationships that link NMR data to structural properties.
Collapse
Affiliation(s)
- Jane R Allison
- Centre for Theoretical Chemistry and Physics, Institute of Natural Sciences, Massey University Albany, Albany Highway, Auckland, 0632, New Zealand.
| |
Collapse
|
32
|
Sahakyan AB. Computational studies of dielectric permittivity effects on chemical shifts of alanine dipeptide. Chem Phys Lett 2012. [DOI: 10.1016/j.cplett.2012.07.069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
33
|
Pandey MK, Vivekanandan S, Ahuja S, Pichumani K, Im SC, Waskell L, Ramamoorthy A. Determination of 15N chemical shift anisotropy from a membrane-bound protein by NMR spectroscopy. J Phys Chem B 2012; 116:7181-9. [PMID: 22620865 PMCID: PMC3381076 DOI: 10.1021/jp3049229] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chemical shift anisotropy (CSA) tensors are essential in the structural and dynamic studies of proteins using NMR spectroscopy. Results from relaxation studies in biomolecular solution and solid-state NMR experiments on aligned samples are routinely interpreted using well-characterized CSA tensors determined from model compounds. Since CSA tensors, particularly the (15)N CSA, highly depend on a number of parameters including secondary structure, electrostatic interaction, and the amino acid sequence, there is a need for accurately determined CSA tensors from proteins. In this study, we report the backbone amide-(15)N CSA tensors for a 16.7-kDa membrane-bound and paramagnetic-heme containing protein, rabbit Cytochrome b(5) (cytb(5)), determined using the (15)N CSA/(15)N-(1)H dipolar transverse cross-correlation rates. The mean values of (15)N CSA determined for residues in helical, sheet, and turn regions are -187.9, -166.0, and -161.1 ppm, respectively, with an overall average value of -171.7 ppm. While the average CSA value determined from this study is in good agreement with previous solution NMR experiments on small globular proteins, the CSA value determined for residues in helical conformation is slightly larger, which may be attributed to the paramagnetic effect from Fe(III) of the heme unit in cytb(5). However, like in previous solution NMR studies, the CSA values reported in this study are larger than the values measured from solid-state NMR experiments. We believe that the CSA parameters reported in this study will be useful in determining the structure, dynamics, and orientation of proteins, including membrane proteins, using NMR spectroscopy.
Collapse
Affiliation(s)
- Manoj Kumar Pandey
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055
| | | | - Shivani Ahuja
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055
| | - Kumar Pichumani
- Advanced Imaging Research Center, University of Texas southwestern Medical Center, 2201 Inwood Road, Dallas, Texas 75390-8568
| | - Sang-Choul Im
- Department of Anesthesiology, University of Michigan and VA Medical Center, Ann Arbor, Michigan 48105
| | - Lucy Waskell
- Department of Anesthesiology, University of Michigan and VA Medical Center, Ann Arbor, Michigan 48105
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055
| |
Collapse
|
34
|
Oh KI, Jung YS, Hwang GS, Cho M. Conformational distributions of denatured and unstructured proteins are similar to those of 20 × 20 blocked dipeptides. JOURNAL OF BIOMOLECULAR NMR 2012; 53:25-41. [PMID: 22426785 DOI: 10.1007/s10858-012-9618-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 02/24/2012] [Indexed: 05/31/2023]
Abstract
Understanding intrinsic conformational preferences of amino-acids in unfolded proteins is important for elucidating the underlying principles of their stability and re-folding on biological timescales. Here, to investigate the neighbor interaction effects on the conformational propensities of amino-acids, we carried out (1)H NMR experiments for a comprehensive set of blocked dipeptides and measured the scalar coupling constants between alpha protons and amide protons as well as their chemical shifts. Detailed inspection of these NMR properties shows that, irrespective of amino-acid side-chain properties, the distributions of the measured coupling constants and chemical shifts of the dipeptides are comparatively narrow, indicating small variances of their conformation distributions. They are further compared with those of blocked amino-acids (Ac-X-NHMe), oligopeptides (Ac-GGXGG-NH(2)), and native (lysozyme), denatured (lysozyme and outer membrane protein X from Escherichia coli), unstructured (Domain 2 of the protein 5A of Hepatitis C virus), and intrinsically disordered (hNlg3cyt: intracellular domain of human NL3) proteins. These comparative investigations suggest that the conformational preferences and local solvation environments of the blocked dipeptides are quite similar to not only those of other short oligopeptides but also those of denatured and natively unfolded proteins.
Collapse
Affiliation(s)
- Kwang-Im Oh
- Department of Chemistry, Korea University, Seoul 136-701, Korea
| | | | | | | |
Collapse
|
35
|
Frank A, Möller HM, Exner TE. Toward the Quantum Chemical Calculation of NMR Chemical Shifts of Proteins. 2. Level of Theory, Basis Set, and Solvents Model Dependence. J Chem Theory Comput 2012; 8:1480-92. [PMID: 26596758 DOI: 10.1021/ct200913r] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It has been demonstrated that the fragmentation scheme of our adjustable density matrix assembler (ADMA) approach for the quantum chemical calculations of very large systems is well-suited to calculate NMR chemical shifts of proteins [ Frank et al. Proteins2011, 79, 2189-2202 ]. The systematic investigation performed here on the influences of the level of theory, basis set size, inclusion or exclusion of an implicit solvent model, and the use of partial charges to describe additional parts of the macromolecule on the accuracy of NMR chemical shifts demonstrates that using a valence triple-ζ basis set leads to large improvement compared to the results given in the previous publication. Additionally, moving from the B3LYP to the mPW1PW91 density functional and including partial charges and implicit solvents gave the best results with mean absolute errors of 0.44 ppm for hydrogen atoms excluding H(N) atoms and between 1.53 and 3.44 ppm for carbon atoms depending on the size and also on the accuracy of the protein structure. Polar hydrogen and nitrogen atoms are more difficult to predict. For the first, explicit hydrogen bonds to the solvents need to be included and, for the latter, going beyond DFT to post-Hartree-Fock methods like MP2 is probably required. Even if empirical methods like SHIFTX+ show similar performance, our calculations give for the first time very reliable chemical shifts that can also be used for complexes of proteins with small-molecule ligands or DNA/RNA. Therefore, taking advantage of its ab initio nature, our approach opens new fields of application that would otherwise be largely inaccessible due to insufficient availability of data for empirical parametrization.
Collapse
Affiliation(s)
- Andrea Frank
- Department of Chemistry and Zukunftskolleg, University of Konstanz , D-78457 Konstanz, Germany
| | - Heiko M Möller
- Department of Chemistry and Zukunftskolleg, University of Konstanz , D-78457 Konstanz, Germany
| | - Thomas E Exner
- Department of Chemistry and Zukunftskolleg, University of Konstanz , D-78457 Konstanz, Germany.,Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy , Eberhard Karls University Tübingen, D-72076 Tübingen, Germany
| |
Collapse
|
36
|
Lemkau LR, Comellas G, Kloepper KD, Woods WS, George JM, Rienstra CM. Mutant protein A30P α-synuclein adopts wild-type fibril structure, despite slower fibrillation kinetics. J Biol Chem 2012; 287:11526-32. [PMID: 22334684 DOI: 10.1074/jbc.m111.306902] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
α-Synuclein (AS) is associated with both sporadic and familial forms of Parkinson disease (PD). In sporadic disease, wild-type AS fibrillates and accumulates as Lewy bodies within dopaminergic neurons of the substantia nigra. The accumulation of misfolded AS is associated with the death of these neurons, which underlies many of the clinical features of PD. In addition, a rare missense mutation in AS, A30P, is associated with highly penetrant, autosomal dominant PD, although the pathogenic mechanism is unclear. A30P AS fibrillates more slowly than the wild-type (WT) protein in vitro and has been reported to preferentially adopt a soluble, protofibrillar conformation. This has led to speculation that A30P forms aggregates that are distinct in structure compared with wild-type AS. Here, we perform a detailed comparison of the chemical shifts and secondary structures of these fibrillar species, based upon our recent characterization of full-length WT fibrils. We have assigned A30P AS fibril chemical shifts de novo and used them to determine its secondary structure empirically. Our results illustrate that although A30P forms fibrils more slowly than WT in vitro, the chemical shifts and secondary structure of the resultant fibrils are in high agreement, demonstrating a conserved β-sheet core.
Collapse
Affiliation(s)
- Luisel R Lemkau
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, USA
| | | | | | | | | | | |
Collapse
|
37
|
Dames SA, Junemann A, Sass HJ, Schönichen A, Stopschinski BE, Grzesiek S, Faix J, Geyer M. Structure, dynamics, lipid binding, and physiological relevance of the putative GTPase-binding domain of Dictyostelium formin C. J Biol Chem 2011; 286:36907-20. [PMID: 21846933 DOI: 10.1074/jbc.m111.225052] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Dictyostelium Formin C (ForC) is involved in the regulation of local actin cytoskeleton reorganization (e.g. during cellular adhesion or migration). ForC contains formin homology 2 and 3 (FH2 and -3) domains and an N-terminal putative GTPase-binding domain (GBD) but lacks a canonical FH1 region. To better understand the role of the GBD, its structure, dynamics, lipid-binding properties, and cellular functions were analyzed by NMR and CD spectroscopy and by in vivo fluorescence microscopy. Moreover, the program CS-Rosetta was tested for the structure prediction based on chemical shift data only. The ForC GBD adopts an ubiquitin-like α/β-roll fold with an unusually long loop between β-strands 1 and 2. Based on the lipid-binding data, the presence of DPC micelles induces the formation of α-helical secondary structure and a rearrangement of the tertiary structure. Lipid-binding studies with a mutant protein and a peptide suggest that the β1-β2 loop is not relevant for these conformational changes. Whereas small amounts of negatively charged phosphoinositides (1,2-dioctanoyl-sn-glycero-3-(phosphoinositol 4,5-bisphosphate) and 1,2-dihexanoyl-sn-glycero-3-(phosphoinositol 3,4,5-trisphosphate)) lower the micelle concentration necessary to induce the observed spectral changes, other negatively charged phospholipids (1,2-dihexanoyl-sn-glycero-3-(phospho-L-serine) and 1,2-dihexanoyl-sn-glycero-3-phospho-(1'-rac-glycerol)) had no such effect. Interestingly, bicelles and micelles composed of diacylphosphocholines had no effect on the GBD structure. Our data suggest a model in which part of the large positively charged surface area of the GBD mediates localization to specific membrane patches, thereby regulating interactions with signaling proteins. Our cellular localization studies show that both the GBD and the FH3 domain are required for ForC targeting to cell-cell contacts and early phagocytic cups and macropinosomes.
Collapse
Affiliation(s)
- Sonja A Dames
- Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Mallakpour S, Dinari M. Progress in Synthetic Polymers Based on Natural Amino Acids. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2011. [DOI: 10.1080/15226514.2011.586289] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
39
|
Bühl M, van Mourik T. NMR spectroscopy: quantum-chemical calculations. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2011. [DOI: 10.1002/wcms.63] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
40
|
Frank A, Onila I, Möller HM, Exner TE. Toward the quantum chemical calculation of nuclear magnetic resonance chemical shifts of proteins. Proteins 2011; 79:2189-202. [PMID: 21557322 DOI: 10.1002/prot.23041] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 03/01/2011] [Accepted: 03/13/2011] [Indexed: 11/09/2022]
Abstract
Despite the many protein structures solved successfully by nuclear magnetic resonance (NMR) spectroscopy, quality control of NMR structures is still by far not as well established and standardized as in crystallography. Therefore, there is still the need for new, independent, and unbiased evaluation tools to identify problematic parts and in the best case also to give guidelines that how to fix them. We present here, quantum chemical calculations of NMR chemical shifts for many proteins based on our fragment-based quantum chemical method: the adjustable density matrix assembler (ADMA). These results show that (13)C chemical shifts of reasonable accuracy can be obtained that can already provide a powerful measure for the structure validation. (1)H and even more (15)N chemical shifts deviate more strongly from experiment due to the insufficient treatment of solvent effects and conformational averaging.
Collapse
Affiliation(s)
- Andrea Frank
- Department of Chemistry and Zukunftskolleg, University of Konstanz, Konstanz D-78457, Germany
| | | | | | | |
Collapse
|
41
|
Navalon S, Alvaro M, Garcia H. Analysis of organic compounds in an urban wastewater treatment plant effluent. ENVIRONMENTAL TECHNOLOGY 2011; 32:295-306. [PMID: 21780698 DOI: 10.1080/09593330.2010.497501] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In the present work we fractioned the effluent water from an urban sewage treatment plant (USTP) of Ribarroja (Valencia, Spain) using the conventional protocol based on DAX8 and XAD4 resins. The fractions were analyzed by elemental analysis, FT-IR, 1H-NMR, COSY-NMR, HSQC-NMR, FAB+-MS and also by derivatization with bis(trimethylsilyl)trifluoroacetamide with 10% of trimethylchlorosilane. The four fractions obtained have common spectroscopic features and individual compounds indicating that the fractioning procedure is inefficient at separating different families of compounds. Gas chromatography/mass spectrometry (GC-MS) analysis of the derivatized fractions allowed identification of many individual compounds. The main classes of organic compounds present in the effluent are saccharides, amino acids, fatty acids, hydroxyacids, aromatic compounds and steroids. Also we were able to identify in the effluent the emerging pollutants paracetamol and ketoprofen - two best-selling antiinflammatory drugs used in humans.
Collapse
Affiliation(s)
- S Navalon
- Departamento de Química and Instituto Universitario de Tecnología Química CSIC-UPV, Universidad Politécnica de Valencia, Camino de Vera S/N, 46022, Valencia, Spain
| | | | | |
Collapse
|
42
|
Wishart DS. Interpreting protein chemical shift data. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2011; 58:62-87. [PMID: 21241884 DOI: 10.1016/j.pnmrs.2010.07.004] [Citation(s) in RCA: 191] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 07/29/2010] [Indexed: 05/12/2023]
Affiliation(s)
- David S Wishart
- Department of Biological Sciences, National Institute for Nanotechnology (NINT), Edmonton, AB, Canada T6G 2E8.
| |
Collapse
|
43
|
Rui H, Im W. Protegrin-1 orientation and physicochemical properties in membrane bilayers studied by potential of mean force calculations. J Comput Chem 2011; 31:2859-67. [PMID: 20589740 DOI: 10.1002/jcc.21580] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Protegrin-1 (PG-1) belongs to the family of antimicrobial peptides. It interacts specifically with the membrane of a pathogen and kills the pathogen by releasing its cellular contents. To fully understand the energetics governing the orientation of PG-1 in different membrane environments and its effects on the physicochemical properties of the peptide and membrane bilayers, we have performed the potential of mean force (PMF) calculations as a function of its tilt angle at four distinct rotation angles in explicit membranes composed of either DLPC (1,2-dilauroylphosphatidylcholine) or POPC (1-palmitoyl-2-oleoylphosphatidylcholine) lipid molecules. The resulting PMFs in explicit lipid bilayers were then used to search for the optimal hydrophobic thickness of the EEF1/IMM1 implicit membrane model in which a two-dimensional PMF in the tilt and rotation space was calculated. The PMFs in explicit membrane systems clearly reveal that the energetically favorable tilt angle is affected by both the membrane hydrophobic thickness and the PG-1 rotation angle. Local thinning of the membrane around PG-1 is observed upon PG-1 tilting. The thinning is caused by both hydrophobic mismatch and arginine-lipid head group interactions. The two-dimensional PMF in the implicit membrane is in good accordance with those from the explicit membrane simulations. The ensemble-averaged Val16 (15)N and (13)CO chemical shifts weighted by the two-dimensional PMF agree fairly well with the experimental values, suggesting the importance of peptide dynamics in calculating such ensemble properties for direct comparison with experimental observables.
Collapse
Affiliation(s)
- Huan Rui
- Department of Molecular Biosciences and Center for Bioinformatics, The University of Kansas, Lawrence, Kansas 66047, USA
| | | |
Collapse
|
44
|
Chan JCC. Solid-state NMR techniques for the structural determination of amyloid fibrils. Top Curr Chem (Cham) 2011; 306:47-88. [PMID: 21630137 DOI: 10.1007/128_2011_154] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This review discusses the solid-state NMR techniques developed for the study of amyloid fibrils. Literature up to the end of 2010 has been surveyed and the materials are organized according to five categories, viz. homonuclear dipolar recoupling and polarization transfer via J-coupling, heteronuclear dipolar recoupling, correlation spectroscopy, recoupling of chemical shift anisotropy, and tensor correlation. Our emphasis is on the NMR techniques and their practical aspects. The biological implications of the results obtained for amyloid fibrils are only briefly discussed. Our main objective is to showcase the power of NMR in the study of biological unoriented solids.
Collapse
Affiliation(s)
- Jerry C C Chan
- Department of Chemistry, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
45
|
Tarasek MR, Kempf JG. Radiofrequency quadrupolar NMR stark spectroscopy: steady state response calibration and tensorial mapping. J Phys Chem A 2010; 114:10634-45. [PMID: 20839890 DOI: 10.1021/jp107920x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Radiofrequency electric (E) fields oscillating at twice the usual NMR frequency (2ω(0)) can induce double-quantum transitions in quadrupolar nuclei, an NMR Stark effect. Characterization of such is of interest to aid understanding of electrostatic effects in NMR spectra. Calibration of Stark responses to an applied electric field may also be used to assess native fields within molecules and materials. We present high-field (14.1 T), room-temperature NMR experiments to calibrate the 2ω(0) Stark response in crystalline GaAs. This system presents an important test of current techniques and conditions, as historical studies at low field (500-900 mT) and low temperature (77 K) provide a basis for comparison. Our measurements of steady state response reveal the quadrupolar Stark tuning rate for (69)Ga in this material. The value, β(Q) = (11.5 ± 0.1) × 10(12) m(-1), is 3.6 times larger than the most-reliable prior result. In the process, we also uncovered a previously unobserved double-quantum steady state coherence. It appears as a completely separable dispersive signal component in quadrature-detected presaturation spectra versus offset from 2ω(0). The new component may eventually afford an independent route to calibrating β(Q). Finally, we demonstrated exceptional agreement with theory of the orientation-dependent Stark response for rotation of the sample relative to B(0) over a range of 90° and for E-field amplitudes from 30-180 V/cm.
Collapse
Affiliation(s)
- Matthew R Tarasek
- Department of Chemistry and Chemical Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | | |
Collapse
|
46
|
Nicholas MP, Eryilmaz E, Ferrage F, Cowburn D, Ghose R. Nuclear spin relaxation in isotropic and anisotropic media. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2010; 57:111-158. [PMID: 20633361 PMCID: PMC4015737 DOI: 10.1016/j.pnmrs.2010.04.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 04/13/2010] [Indexed: 05/28/2023]
Affiliation(s)
- Matthew P. Nicholas
- New York Structural Biology Center, 89 Convent Avenue, Park
Building at 133rd St., New York, New York, 10027, USA
| | - Ertan Eryilmaz
- Department of Chemistry, City College of the City University
of New York, New York 10031, U.S.A
- Graduate Center of the City University of New York, New York
10016, U.S.A
| | - Fabien Ferrage
- New York Structural Biology Center, 89 Convent Avenue, Park
Building at 133rd St., New York, New York, 10027, USA
- Département de Chimie, Ecole Normale
Supérieure, and CNRS, UMR 7203; 24 rue Lhomond, 75231 Paris cedex 05,
France
| | - David Cowburn
- New York Structural Biology Center, 89 Convent Avenue, Park
Building at 133rd St., New York, New York, 10027, USA
| | - Ranajeet Ghose
- Department of Chemistry, City College of the City University
of New York, New York 10031, U.S.A
- Graduate Center of the City University of New York, New York
10016, U.S.A
| |
Collapse
|
47
|
Costa FLP, de Albuquerque ACF, dos Santos FM, de Amorim MB. GIAO-HDFT scaling factor for 13
C NMR chemical shifts calculation. J PHYS ORG CHEM 2010. [DOI: 10.1002/poc.1749] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
48
|
Sperling LJ, Berthold DA, Sasser TL, Jeisy-Scott V, Rienstra CM. Assignment strategies for large proteins by magic-angle spinning NMR: the 21-kDa disulfide-bond-forming enzyme DsbA. J Mol Biol 2010; 399:268-82. [PMID: 20394752 PMCID: PMC2880403 DOI: 10.1016/j.jmb.2010.04.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 04/04/2010] [Indexed: 01/08/2023]
Abstract
We present strategies for chemical shift assignments of large proteins by magic-angle spinning solid-state NMR, using the 21-kDa disulfide-bond-forming enzyme DsbA as prototype. Previous studies have demonstrated that complete de novo assignments are possible for proteins up to approximately 17 kDa, and partial assignments have been performed for several larger proteins. Here we show that combinations of isotopic labeling strategies, high field correlation spectroscopy, and three-dimensional (3D) and four-dimensional (4D) backbone correlation experiments yield highly confident assignments for more than 90% of backbone resonances in DsbA. Samples were prepared as nanocrystalline precipitates by a dialysis procedure, resulting in heterogeneous linewidths below 0.2 ppm. Thus, high magnetic fields, selective decoupling pulse sequences, and sparse isotopic labeling all improved spectral resolution. Assignments by amino acid type were facilitated by particular combinations of pulse sequences and isotopic labeling; for example, transferred echo double resonance experiments enhanced sensitivity for Pro and Gly residues; [2-(13)C]glycerol labeling clarified Val, Ile, and Leu assignments; in-phase anti-phase correlation spectra enabled interpretation of otherwise crowded Glx/Asx side-chain regions; and 3D NCACX experiments on [2-(13)C]glycerol samples provided unique sets of aromatic (Phe, Tyr, and Trp) correlations. Together with high-sensitivity CANCOCA 4D experiments and CANCOCX 3D experiments, unambiguous backbone walks could be performed throughout the majority of the sequence. At 189 residues, DsbA represents the largest monomeric unit for which essentially complete solid-state NMR assignments have so far been achieved. These results will facilitate studies of nanocrystalline DsbA structure and dynamics and will enable analysis of its 41-kDa covalent complex with the membrane protein DsbB, for which we demonstrate a high-resolution two-dimensional (13)C-(13)C spectrum.
Collapse
Affiliation(s)
- Lindsay J. Sperling
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801
| | - Deborah A. Berthold
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801
| | - Terry L. Sasser
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801
| | - Victoria Jeisy-Scott
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801
| | - Chad M. Rienstra
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801
| |
Collapse
|
49
|
Vulpetti A, Landrum G, Rüdisser S, Erbel P, Dalvit C. 19F NMR chemical shift prediction with fluorine fingerprint descriptor. J Fluor Chem 2010. [DOI: 10.1016/j.jfluchem.2009.12.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
50
|
Gortari ID, Portella G, Salvatella X, Bajaj VS, van der Wel PCA, Yates JR, Segall MD, Pickard CJ, Payne MC, Vendruscolo M. Time Averaging of NMR Chemical Shifts in the MLF Peptide in the Solid State. J Am Chem Soc 2010; 132:5993-6000. [DOI: 10.1021/ja9062629] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Itzam De Gortari
- TCM Group, Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE, United Kingdom, Computational Biomolecular Dynamics Group, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom, and Department of Chemistry, Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Boston Massachusetts 02139
| | - Guillem Portella
- TCM Group, Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE, United Kingdom, Computational Biomolecular Dynamics Group, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom, and Department of Chemistry, Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Boston Massachusetts 02139
| | - Xavier Salvatella
- TCM Group, Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE, United Kingdom, Computational Biomolecular Dynamics Group, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom, and Department of Chemistry, Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Boston Massachusetts 02139
| | - Vikram S. Bajaj
- TCM Group, Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE, United Kingdom, Computational Biomolecular Dynamics Group, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom, and Department of Chemistry, Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Boston Massachusetts 02139
| | - Patrick C. A. van der Wel
- TCM Group, Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE, United Kingdom, Computational Biomolecular Dynamics Group, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom, and Department of Chemistry, Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Boston Massachusetts 02139
| | - Jonathan R. Yates
- TCM Group, Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE, United Kingdom, Computational Biomolecular Dynamics Group, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom, and Department of Chemistry, Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Boston Massachusetts 02139
| | - Matthew D. Segall
- TCM Group, Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE, United Kingdom, Computational Biomolecular Dynamics Group, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom, and Department of Chemistry, Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Boston Massachusetts 02139
| | - Chris J. Pickard
- TCM Group, Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE, United Kingdom, Computational Biomolecular Dynamics Group, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom, and Department of Chemistry, Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Boston Massachusetts 02139
| | - Mike C. Payne
- TCM Group, Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE, United Kingdom, Computational Biomolecular Dynamics Group, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom, and Department of Chemistry, Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Boston Massachusetts 02139
| | - Michele Vendruscolo
- TCM Group, Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE, United Kingdom, Computational Biomolecular Dynamics Group, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom, and Department of Chemistry, Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Boston Massachusetts 02139
| |
Collapse
|