1
|
Zheng H, Zhang H, Zhu Y, Wei X, Liu S, Ren W. Value of blood oxygenation level-dependent magnetic resonance imaging in early evaluation of the response and prognosis of esophageal squamous cell carcinoma treated with definitive chemoradiotherapy: a preliminary study. BMC Med Imaging 2024; 24:18. [PMID: 38216885 PMCID: PMC10787410 DOI: 10.1186/s12880-024-01193-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/04/2024] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND To find a useful hypoxia non-invasive biomarker for evaluating early treatment response and prognosis to definitive chemoradiotherapy (dCRT) in patients with esophageal squamous cell carcinoma (ESCC), using blood oxygenation level-dependent (BOLD) magnetic resonance imaging (MRI). METHODS The R2* values were obtained pre- and 2-3 weeks post-dCRT in 28 patients with ESCC using BOLD MRI. Independent samples t-test (normality) or Mann-Whitney U test (non-normality) was used to compare the differences of R2*-related parameters between the complete response (CR) and the non-CR groups. Diagnostic performance of parameters in predicting response was tested with receiver operating characteristic (ROC) curve analysis. The 3-year overall survival (OS) was evaluated using Kaplan Meier curve, log rank test, and Cox proportional hazards regression analysis. RESULTS The post-R2*, ∆R2*, and ∆%R2* in the CR group were significantly higher than those in the non-CR group (P = 0.002, 0.003, and 0.006, respectively). The R2*-related parameters showed good prediction of tumor response, with AUC ranging from 0.813 to 0.829. The 3-year OS rate in patients with ∆R2* >-7.54 s- 1 or CR were significantly longer than those with ∆R2* ≤ -7.54 s- 1 (72.37% vs. 0.00%; Hazard ratio, HR = 0.196; 95% confidence interval, 95% CI = 0.047-0.807; P = 0.024) or non-CR (76.47% vs. 29.27%; HR = 0.238, 95% CI = 0.059-0.963; P = 0.044). CONCLUSIONS The preliminary results demonstrated that the R2* value might be a useful hypoxia non-invasive biomarker for assessing response and prognosis of ESCC treated with dCRT. BOLD MRI might be used as a potential tool for evaluating tumor oxygenation metabolism, which is routinely applied in clinical practice and beneficial to clinical decision-making. A large sample size was needed for further follow-up studies to confirm the findings.
Collapse
Affiliation(s)
- Huanhuan Zheng
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Hailong Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Yan Zhu
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Xiaolei Wei
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Song Liu
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, China.
| | - Wei Ren
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
2
|
Knuth F, Tohidinezhad F, Winter RM, Bakke KM, Negård A, Holmedal SH, Ree AH, Meltzer S, Traverso A, Redalen KR. Quantitative MRI-based radiomics analysis identifies blood flow feature associated to overall survival for rectal cancer patients. Sci Rep 2024; 14:258. [PMID: 38167665 PMCID: PMC10762039 DOI: 10.1038/s41598-023-50966-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024] Open
Abstract
Radiomics objectively quantifies image information through numerical metrics known as features. In this study, we investigated the stability of magnetic resonance imaging (MRI)-based radiomics features in rectal cancer using both anatomical MRI and quantitative MRI (qMRI), when different methods to define the tumor volume were used. Second, we evaluated the prognostic value of stable features associated to 5-year progression-free survival (PFS) and overall survival (OS). On a 1.5 T MRI scanner, 81 patients underwent diagnostic MRI, an extended diffusion-weighted sequence with calculation of the apparent diffusion coefficient (ADC) and a multiecho dynamic contrast sequence generating both dynamic contrast-enhanced and dynamic susceptibility contrast (DSC) MR, allowing quantification of Ktrans, blood flow (BF) and area under the DSC curve (AUC). Radiomic features were extracted from T2w images and from ADC, Ktrans, BF and AUC maps. Tumor volumes were defined with three methods; machine learning, deep learning and manual delineations. The interclass correlation coefficient (ICC) assessed the stability of features. Internal validation was performed on 1000 bootstrap resamples in terms of discrimination, calibration and decisional benefit. For each combination of image and volume definition, 94 features were extracted. Features from qMRI contained higher prognostic potential than features from anatomical MRI. When stable features (> 90% ICC) were compared with clinical parameters, qMRI features demonstrated the best prognostic potential. A feature extracted from the DSC MRI parameter BF was associated with both PFS (p = 0.004) and OS (p = 0.004). In summary, stable qMRI-based radiomics features was identified, in particular, a feature based on BF from DSC MRI was associated with both PFS and OS.
Collapse
Affiliation(s)
- Franziska Knuth
- Department of Physics, Norwegian University of Science and Technology, Høgskoleringen 5, 7491, Trondheim, Norway
| | - Fariba Tohidinezhad
- Department of Radiation Oncology (Maastro Clinic), School for Oncology and Developmental Biology (GROW), Maastricht University Medical Center, Maastricht, The Netherlands
| | - René M Winter
- Department of Physics, Norwegian University of Science and Technology, Høgskoleringen 5, 7491, Trondheim, Norway
| | - Kine Mari Bakke
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anne Negård
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Radiology, Akershus University Hospital, Lørenskog, Norway
| | - Stein H Holmedal
- Department of Radiology, Akershus University Hospital, Lørenskog, Norway
| | - Anne Hansen Ree
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Sebastian Meltzer
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
| | - Alberto Traverso
- Department of Radiation Oncology (Maastro Clinic), School for Oncology and Developmental Biology (GROW), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Kathrine Røe Redalen
- Department of Physics, Norwegian University of Science and Technology, Høgskoleringen 5, 7491, Trondheim, Norway.
| |
Collapse
|
3
|
Zhao R, Du S, Gao S, Shi J, Zhang L. Time Course Changes of Synthetic Relaxation Time During Neoadjuvant Chemotherapy in Breast Cancer: The Optimal Parameter for Treatment Response Evaluation. J Magn Reson Imaging 2023; 58:1290-1302. [PMID: 36621982 DOI: 10.1002/jmri.28597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Synthetic MRI (syMRI) has enabled quantification of multiple relaxation parameters (T1/T2 relaxation time [T1/T2], proton density [PD]), and their longitudinal change during neoadjuvant chemotherapy (NAC) promises to be valuable parameters for treatment response evaluation in breast cancer. PURPOSE To investigate the time course changes of syMRI parameters during NAC and evaluate their value as predictors for pathological complete response (pCR) in breast cancer. STUDY TYPE Retrospective, longitudinal. POPULATION A total of 129 women (median age, 50 years; range, 28-69 years) with locally advanced breast cancer who underwent NAC; all performed multiple conventional breast MRI examinations with added syMRI during NAC. FIELD STRENGTH/SEQUENCE A 3.0 T, T1-weighted dynamic contrast enhanced and syMRI acquired by a multiple-dynamic, multiple-echo sequence. ASSESSMENT Breast MRI was set at four time-points: baseline, after one cycle, after three or four cycles of NAC and preoperation. SyMRI parameters and tumor diameters were measured and their changes from baseline were calculated. All parameters were compared between pCR and non-pCR. Interaction between syMRI parameters and clinicopathological features was analyzed. STATISTICAL TESTS Mann-Whitney U tests, random effects model of repeated measurement, receiver operating characteristic (ROC) analysis, interaction analysis. RESULTS Median synthetic T1/T2/PD and tumor diameter generally decreased throughout NAC. Absolute T1 at early-NAC, T1, and PD at mid-NAC were significantly lower in the pCR group. After early-NAC, the T1 change was significantly higher in the pCR (median ± IQR, 18.17 ± 11.33) than the non-pCR group (median ± IQR, 10.90 ± 10.03), with the highest area under the ROC curves (AUC) of 0.769 (95% CI, 0.684-0.838). Interaction analysis showed that histological grade III patients had higher odds ratio (OR) (OR = 1.206) compared to grade II patients (OR = 1.067). DATA CONCLUSION Synthetic T1 changes after one cycle of NAC maybe useful for early evaluating NAC response in breast cancer during whole treatment cycles. However, its discriminative ability is significantly affected by histological grade. EVIDENCE LEVEL 4 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Ruimeng Zhao
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Siyao Du
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Si Gao
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Jing Shi
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Lina Zhang
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
4
|
Knuth F, Groendahl AR, Winter RM, Torheim T, Negård A, Holmedal SH, Bakke KM, Meltzer S, Futsæther CM, Redalen KR. Semi-automatic tumor segmentation of rectal cancer based on functional magnetic resonance imaging. Phys Imaging Radiat Oncol 2022; 22:77-84. [PMID: 35602548 PMCID: PMC9114680 DOI: 10.1016/j.phro.2022.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 11/25/2022] Open
Abstract
Machine learning on magnetic resonance images (MRI) was used for tumor segmentation. Voxelwise machine learning with morphological post-processing achieved good segmentation results. Combining T2-weighted with functional MRI improved semi-automatic tumor segmentation. Dynamic contrast enhanced MRI was the most valuable functional MRI information. Tumor volume and interobserver variation were linked to measured segmentation quality.
Background and purpose Tumor delineation is required both for radiotherapy planning and quantitative imaging biomarker purposes. It is a manual, time- and labor-intensive process prone to inter- and intraobserver variations. Semi or fully automatic segmentation could provide better efficiency and consistency. This study aimed to investigate the influence of including and combining functional with anatomical magnetic resonance imaging (MRI) sequences on the quality of automatic segmentations. Materials and methods T2-weighted (T2w), diffusion weighted, multi-echo T2*-weighted, and contrast enhanced dynamic multi-echo (DME) MR images of eighty-one patients with rectal cancer were used in the analysis. Four classical machine learning algorithms; adaptive boosting (ADA), linear and quadratic discriminant analysis and support vector machines, were trained for automatic segmentation of tumor and normal tissue using different combinations of the MR images as input, followed by semi-automatic morphological post-processing. Manual delineations from two experts served as ground truth. The Sørensen-Dice similarity coefficient (DICE) and mean symmetric surface distance (MSD) were used as performance metric in leave-one-out cross validation. Results Using T2w images alone, ADA outperformed the other algorithms, yielding a median per patient DICE of 0.67 and MSD of 3.6 mm. The performance improved when functional images were added and was highest for models based on either T2w and DME images (DICE: 0.72, MSD: 2.7 mm) or all four MRI sequences (DICE: 0.72, MSD: 2.5 mm). Conclusion Machine learning models using functional MRI, in particular DME, have the potential to improve automatic segmentation of rectal cancer relative to models using T2w MRI alone.
Collapse
|
5
|
Kazama T, Takahara T, Hashimoto J. Breast Cancer Subtypes and Quantitative Magnetic Resonance Imaging: A Systemic Review. Life (Basel) 2022; 12:life12040490. [PMID: 35454981 PMCID: PMC9028183 DOI: 10.3390/life12040490] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/20/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022] Open
Abstract
Magnetic resonance imaging (MRI) is the most sensitive imaging modality for breast cancer detection. This systematic review investigated the role of quantitative MRI features in classifying molecular subtypes of breast cancer. We performed a literature search of articles published on the application of quantitative MRI features in invasive breast cancer molecular subtype classification in PubMed from 1 January 2002 to 30 September 2021. Of the 1275 studies identified, 106 studies with a total of 12,989 patients fulfilled the inclusion criteria. Bias was assessed based using the Quality Assessment of Diagnostic Studies. All studies were case-controlled and research-based. Most studies assessed quantitative MRI features using dynamic contrast-enhanced (DCE) kinetic features and apparent diffusion coefficient (ADC) values. We present a summary of the quantitative MRI features and their correlations with breast cancer subtypes. In DCE studies, conflicting results have been reported; therefore, we performed a meta-analysis. Significant differences in the time intensity curve patterns were observed between receptor statuses. In 10 studies, including a total of 1276 lesions, the pooled difference in proportions of type Ⅲ curves (wash-out) between oestrogen receptor-positive and -negative cancers was not significant (95% confidence interval (CI): [−0.10, 0.03]). In nine studies, including a total of 1070 lesions, the pooled difference in proportions of type 3 curves between human epidermal growth factor receptor 2-positive and -negative cancers was significant (95% CI: [0.01, 0.14]). In six studies including a total of 622 lesions, the pooled difference in proportions of type 3 curves between the high and low Ki-67 groups was significant (95% CI: [0.17, 0.44]). However, the type 3 curve itself is a nonspecific finding in breast cancer. Many studies have examined the relationship between mean ADC and breast cancer subtypes; however, the ADC values overlapped significantly between subtypes. The heterogeneity of ADC using kurtosis or difference, diffusion tensor imaging parameters, and relaxation time was reported recently with promising results; however, current evidence is limited, and further studies are required to explore these potential applications.
Collapse
Affiliation(s)
- Toshiki Kazama
- Department of Diagnostic Radiology, Tokai University School of Medicine, Isehara 259-1193, Japan;
- Correspondence: ; Tel.: +81-463-93-1121
| | - Taro Takahara
- Department of Biomedical Engineering, Tokai University School of Engineering, Hiratsuka 259-1207, Japan;
| | - Jun Hashimoto
- Department of Diagnostic Radiology, Tokai University School of Medicine, Isehara 259-1193, Japan;
| |
Collapse
|
6
|
Kousi E, Messiou C, Miah A, Orton M, Haas R, Thway K, Hopkinson G, Zaidi S, Smith M, Barquin E, Moskovic E, Fotiadis N, Strauss D, Hayes A, Schmidt MA. Descriptive analysis of MRI functional changes occurring during reduced dose radiotherapy for myxoid liposarcomas. Br J Radiol 2021; 94:20210310. [PMID: 34545764 PMCID: PMC9328045 DOI: 10.1259/bjr.20210310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES Myxoid liposarcomas (MLS) show enhanced response to radiotherapy due to their distinctive vascular pattern and therefore could be effectively treated with lower radiation doses. This is a descriptive study to explore the use of functional MRI to identify response in a uniform cohort of MLS patients treated with reduced dose radiotherapy. METHODS 10 patients with MLS were imaged pre-, during, and post-radiotherapy receiving reduced dose radiotherapy and the response to treatment was histopathologically assessed post-radiotherapy. Apparent diffusion coefficient (ADC), T2* relaxation time, volume transfer constant (Ktrans), initial area under the gadolinium curve over 60 s (IAUGC60) and (Gd) were estimated for a central tumour volume. RESULTS All parameters showed large inter- and intrasubject variabilities. Pre-treatment (Gd), IAUGC60 and Ktrans were significantly different between responders and non-responders. Post-radiotherapy reductions from baseline were demonstrated for T2*, (Gd), IAUGC60 and Ktrans for responders. No statistically significant ADC differences were demonstrated between the two response groups. Significantly greater early tumour volume reductions were observed for responders. CONCLUSIONS MLS are heterogenous lesions, characterised by a slow gradual contrast-agent uptake. Pre-treatment vascular parameters, early changes to tumour volume, vascular parameters and T2* have potential in identifying response to treatment. The delayed (Gd) is a suitable descriptive parameter, relying simply on T1 measurements. Volume changes precede changes in MLS functionality and could be used to identify early response. ADVANCES IN KNOWLEDGE MLS are are characterised by slow gradual contrast-agent uptake. Measurement of the delayed contrast-agent uptake (Gd) is simple to implement and able to discriminate response.
Collapse
Affiliation(s)
- Evanthia Kousi
- MRI unit, The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research, London, UK
| | - Christina Messiou
- Radiology department, The Royal Marsden NHS Foundation Trust, London, UK
| | - Aisha Miah
- Sarcoma Unit, The Royal Marsden NHS Foundation Trust, London, UK
| | - Matthew Orton
- MRI unit, The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research, London, UK
| | - Rick Haas
- Sarcoma Unit, Department of Radiotherapy, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Radiotherapy, Leiden University Medical Center, Leiden, The Netherlands
| | - Khin Thway
- Molecular pathology, The Royal Marsden NHS Foundation Trust, London, UK
| | - Georgina Hopkinson
- MRI unit, The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research, London, UK
| | - Shane Zaidi
- Sarcoma Unit, The Royal Marsden NHS Foundation Trust, London, UK
| | - Myles Smith
- Sarcoma Unit, The Royal Marsden NHS Foundation Trust, London, UK
| | | | - Eleanor Moskovic
- Radiology department, The Royal Marsden NHS Foundation Trust, London, UK
| | - Nicos Fotiadis
- Department of Interventional Radiology, The Royal Marsden NHS Foundation trust, London, UK
| | - Dirk Strauss
- Sarcoma/Melanoma Unit, The Royal Marsden NHS Foundation Trust, London, UK
| | - Andrew Hayes
- Sarcoma/Melanoma Unit, The Royal Marsden NHS Foundation Trust, London, UK
| | - Maria A Schmidt
- MRI unit, The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research, London, UK
| |
Collapse
|
7
|
Stadlbauer A, Zimmermann M, Bennani-Baiti B, Helbich TH, Baltzer P, Clauser P, Kapetas P, Bago-Horvath Z, Pinker K. Development of a Non-invasive Assessment of Hypoxia and Neovascularization with Magnetic Resonance Imaging in Benign and Malignant Breast Tumors: Initial Results. Mol Imaging Biol 2020; 21:758-770. [PMID: 30478507 DOI: 10.1007/s11307-018-1298-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
PURPOSE To develop a novel magnetic resonance imaging (MRI) approach for the noninvasive assessment of hypoxia and neovascularization in breast tumors. PROCEDURES In this IRB-approved prospective study, 20 patients with suspicious breast lesions (BI-RADS 4/5) underwent multiparametric breast MRI including quantitative BOLD (qBOLD) and vascular architecture mapping (VAM). Custom-made in-house MatLab software was used for qBOLD and VAM data postprocessing and calculation of quantitative MRI biomarker maps of oxygen extraction fraction (OEF), metabolic rate of oxygen (MRO2), and mitochondrial oxygen tension (mitoPO2) to measure tissue hypoxia and neovascularization including vascular architecture including microvessel radius (VSI), density (MVD), and type (MTI). Histopathology was used as standard of reference. Appropriate statistics were performed to assess and compare correlations between MRI biomarkers for hypoxia and neovascularization. RESULTS qBOLD and VAM data with good quality were obtained from all patients with 13 invasive ductal carcinoma (IDC) and 7 benign breast tumors with a lesion diameter of at least 10 mm in all spatial directions. MRI biomarker maps of oxygen metabolism and neovascularization demonstrated intratumoral spatial heterogeneity with a broad range of biomarker values. Bulk tumor neovasculature consisted of draining venous microvasculature with slow flowing blood. High OEF and low mitoPO2 were associated with low MVD and vice versa. The heterogeneous pattern of MRO2 values showed spatial congruence with VSI. IDCs showed significantly higher MRO2 (P = 0.007), lower mitoPO2 (P = 0.021), higher MVD (P = 0.005), and lower (i.e., more pathologic) MTI (P = 0.001) compared with benign breast tumors. These results indicate that IDCs consume more oxygen and are more hypoxic and neovascularized than benign tumors. CONCLUSIONS We developed a novel MRI approach for the noninvasive assessment of hypoxia and neovascularization in benign and malignant breast tumors that can be easily integrated in a diagnostic MRI protocol and provides insight into intratumoral heterogeneity.
Collapse
Affiliation(s)
- Andreas Stadlbauer
- Institute of Medical Radiology, University Clinic of St. Pölten, Propst-Führer-Straße 4, St. Pölten, 3100, Austria.,Department of Neurosurgery, University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen, 91054, Germany
| | - Max Zimmermann
- Department of Neurosurgery, University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen, 91054, Germany
| | - Barbara Bennani-Baiti
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Thomas H Helbich
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Pascal Baltzer
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Paola Clauser
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Panagiotis Kapetas
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Zsuzsanna Bago-Horvath
- Department of Pathology, Medical University of Vienna, Weahringer Guertel 18-20, Vienna, 1090, Austria
| | - Katja Pinker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria. .,Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66th St, New York, NY, 10065, USA.
| |
Collapse
|
8
|
Kousi E, O'Flynn EAM, Borri M, Morgan VA, deSouza NM, Schmidt MA. Pre-treatment functional MRI of breast cancer: T2* evaluation at 3 T and relationship to dynamic contrast-enhanced and diffusion-weighted imaging. Magn Reson Imaging 2018; 52:53-61. [PMID: 29859948 DOI: 10.1016/j.mri.2018.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/30/2018] [Accepted: 05/30/2018] [Indexed: 12/11/2022]
Abstract
PURPOSE Baseline T2* relaxation time has been proposed as an imaging biomarker in cancer, in addition to Dynamic Contrast-Enhanced (DCE) MRI and diffusion-weighted imaging (DWI) parameters. The purpose of the current work is to investigate sources of error in T2* measurements and the relationship between T2* and DCE and DWI functional parameters in breast cancer. METHODS Five female volunteers and thirty-two women with biopsy proven breast cancer were scanned at 3 T, with Research Ethics Committee approval. T2* values of the normal breast were acquired from high-resolution, low-resolution and fat-suppressed gradient-echo sequences in volunteers, and compared. In breast cancer patients, pre-treatment T2*, DCE MRI and DWI were performed at baseline. Pathologically complete responders at surgery and non-responders were identified and compared. Principal component analysis (PCA) and cluster analysis (CA) were performed. RESULTS There were no significant differences between T2* values from high-resolution, low-resolution and fat-suppressed datasets (p > 0.05). There were not significant differences between baseline functional parameters in responders and non-responders (p > 0.05). However, there were differences in the relationship between T2* and contrast-agent uptake in responders and non-responders. Voxels of similar characteristics were grouped in 5 clusters, and large intra-tumoural variations of all parameters were demonstrated. CONCLUSION Breast T2* measurements at 3 T are robust, but spatial resolution should be carefully considered. T2* of breast tumours at baseline is unrelated to DCE and DWI parameters and contribute towards describing functional heterogeneity of breast tumours.
Collapse
Affiliation(s)
- Evanthia Kousi
- CR-UK and EPSRC Cancer Imaging Centre, Royal Marsden NHS Foundation Trust and Institute of Cancer Research, Sutton, Surrey SM2 5PT, United Kingdom.
| | - Elizabeth A M O'Flynn
- CR-UK and EPSRC Cancer Imaging Centre, Royal Marsden NHS Foundation Trust and Institute of Cancer Research, Sutton, Surrey SM2 5PT, United Kingdom
| | - Marco Borri
- CR-UK and EPSRC Cancer Imaging Centre, Royal Marsden NHS Foundation Trust and Institute of Cancer Research, Sutton, Surrey SM2 5PT, United Kingdom
| | - Veronica A Morgan
- CR-UK and EPSRC Cancer Imaging Centre, Royal Marsden NHS Foundation Trust and Institute of Cancer Research, Sutton, Surrey SM2 5PT, United Kingdom
| | - Nandita M deSouza
- CR-UK and EPSRC Cancer Imaging Centre, Royal Marsden NHS Foundation Trust and Institute of Cancer Research, Sutton, Surrey SM2 5PT, United Kingdom
| | - Maria A Schmidt
- CR-UK and EPSRC Cancer Imaging Centre, Royal Marsden NHS Foundation Trust and Institute of Cancer Research, Sutton, Surrey SM2 5PT, United Kingdom
| |
Collapse
|
9
|
Schmeel FC, Luetkens JA, Feißt A, Enkirch SJ, Endler CHJ, Wagenhäuser PJ, Schmeel LC, Träber F, Schild HH, Kukuk GM. Quantitative evaluation of T2* relaxation times for the differentiation of acute benign and malignant vertebral body fractures. Eur J Radiol 2018; 108:59-65. [PMID: 30396672 DOI: 10.1016/j.ejrad.2018.09.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 09/17/2018] [Indexed: 12/27/2022]
Abstract
OBJECTIVES The aim of this prospective study was to evaluate the diagnostic performance of T2*-weighted magnetic resonance imaging (MRI) to differentiate between acute benign and neoplastic vertebral compression fractures (VCFs). MATERIALS AND METHODS Thirty-seven consecutive patients with a total of 52 VCFs were prospectively enrolled in this IRB approved study. All VCFs were categorized as either benign or malignant according to direct bone biopsy and histopathologic confirmation. In addition to routine clinical spine MRI including at least sagittal T1-weighted, T2-weighted and T2 spectral attenuated inversion recovery (SPAIR)-weighted sequences, all patients underwent an additional sagittal six-echo modified Dixon gradient-echo sequence of the spine at 3.0-T. Intravertebral T2* and T2*ratio (fracture T2*/normal vertebrae T2*) for acute benign and malignant VCFs were calculated using region-of-interest analysis and compared between both groups. Additional receiver operating characteristic analyses were performed. Five healthy subjects were scanned three times to determine the short-term reproducibility of vertebral T2* measurements. RESULTS There were 27 acute benign and 25 malignant VCFs. Both T2* and T2*ratio of malignant VCFs were significantly higher compared to acute benign VCFs (T2*, 30 ± 11 vs. 19 ± 11 ms [p = 0.001]; T2*ratio, 2.9 ± 1.6 vs. 1.2 ± 0.7 [p < 0.001]). The areas under the curve were 0.77 for T2* and 0.88 for T2*ratio, yielding an accuracy of 73% and 89% for distinguishing acute benign from malignant VCFs. The root mean square absolute precision error was 0.44 ms as a measure for the T2* short-term reproducibility. CONCLUSION Quantitative assessment of vertebral bone marrow T2* relaxation times provides good diagnostic accuracy for the differentiation of acute benign and malignant VCFs.
Collapse
Affiliation(s)
- Frederic Carsten Schmeel
- Department of Radiology and Radiation Oncology, University Hospital Bonn, Rheinische-Friedrich-Wilhelms-Universität Bonn, Bonn, Germany.
| | - Julian Alexander Luetkens
- Department of Radiology and Radiation Oncology, University Hospital Bonn, Rheinische-Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Andreas Feißt
- Department of Radiology and Radiation Oncology, University Hospital Bonn, Rheinische-Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Simon Jonas Enkirch
- Department of Radiology and Radiation Oncology, University Hospital Bonn, Rheinische-Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Christoph Hans-Jürgen Endler
- Department of Radiology and Radiation Oncology, University Hospital Bonn, Rheinische-Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Peter Johannes Wagenhäuser
- Department of Radiology and Radiation Oncology, University Hospital Bonn, Rheinische-Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Leonard Christopher Schmeel
- Department of Radiology and Radiation Oncology, University Hospital Bonn, Rheinische-Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Frank Träber
- Department of Radiology and Radiation Oncology, University Hospital Bonn, Rheinische-Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Hans Heinz Schild
- Department of Radiology and Radiation Oncology, University Hospital Bonn, Rheinische-Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Guido Matthias Kukuk
- Department of Radiology and Radiation Oncology, University Hospital Bonn, Rheinische-Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
10
|
Multi-parameter MRI to investigate vasculature modulation and photo-thermal ablation combination therapy against cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:2179-2189. [PMID: 30048816 DOI: 10.1016/j.nano.2018.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 07/03/2018] [Accepted: 07/16/2018] [Indexed: 01/25/2023]
Abstract
Nanotransducer-mediated photothermal therapy (PTT) has emerged as an attractive therapy modality against cancer, but its efficacy is often limited by the amount of nanoparticles delivered to tumors. Previous studies showed a vasculature modulation treatment, which dilates or prunes tumor blood vessels, may enhance tumor uptake of nanoparticles. However, exploiting these approaches for improved PTT has seldom been studied. In this study, we investigated the impact of mild hyperthermia or anti-angiogenesis therapy on PTT. Briefly, we gave tumor-bearing balb/c mice low doses of sunitinib or submerged tumors in a 42 °C water bath. Next, we injected PEGylated reduced graphene oxide (RGO-PEG) and irradiated the tumors to induce PTT. We then followed up the treatment with multi-parameter MRI. Contrary to expectation, both vessel modulation strategies led to diminished PTT efficacy. Our results show that vessel modulation does not warrant improved PTT, and should be carefully gauged when used in combination with PTT.
Collapse
|
11
|
Dregely I, Prezzi D, Kelly‐Morland C, Roccia E, Neji R, Goh V. Imaging biomarkers in oncology: Basics and application to MRI. J Magn Reson Imaging 2018; 48:13-26. [PMID: 29969192 PMCID: PMC6587121 DOI: 10.1002/jmri.26058] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/26/2018] [Indexed: 12/12/2022] Open
Abstract
Cancer remains a global killer alongside cardiovascular disease. A better understanding of cancer biology has transformed its management with an increasing emphasis on a personalized approach, so-called "precision cancer medicine." Imaging has a key role to play in the management of cancer patients. Imaging biomarkers that objectively inform on tumor biology, the tumor environment, and tumor changes in response to an intervention complement genomic and molecular diagnostics. In this review we describe the key principles for imaging biomarker development and discuss the current status with respect to magnetic resonance imaging (MRI). LEVEL OF EVIDENCE 5 TECHNICAL EFFICACY: Stage 5 J. Magn. Reson. Imaging 2018;48:13-26.
Collapse
Affiliation(s)
- Isabel Dregely
- Biomedical Engineering, School of Biomedical Engineering & Imaging SciencesKing's Health Partners, St Thomas' HospitalLondon, UK
| | - Davide Prezzi
- Cancer Imaging, School of Biomedical Engineering & Imaging Sciences King's College London, King's Health Partners, St Thomas' Hospital, LondonUK
- RadiologyGuy's & St Thomas' NHS Foundation TrustLondonUK
| | - Christian Kelly‐Morland
- Cancer Imaging, School of Biomedical Engineering & Imaging Sciences King's College London, King's Health Partners, St Thomas' Hospital, LondonUK
- RadiologyGuy's & St Thomas' NHS Foundation TrustLondonUK
| | - Elisa Roccia
- Biomedical Engineering, School of Biomedical Engineering & Imaging SciencesKing's Health Partners, St Thomas' HospitalLondon, UK
| | - Radhouene Neji
- Biomedical Engineering, School of Biomedical Engineering & Imaging SciencesKing's Health Partners, St Thomas' HospitalLondon, UK
- MR Research CollaborationsSiemens HealthcareFrimleyUK
| | - Vicky Goh
- Cancer Imaging, School of Biomedical Engineering & Imaging Sciences King's College London, King's Health Partners, St Thomas' Hospital, LondonUK
- RadiologyGuy's & St Thomas' NHS Foundation TrustLondonUK
| |
Collapse
|
12
|
Marino MA, Helbich T, Baltzer P, Pinker-Domenig K. Multiparametric MRI of the breast: A review. J Magn Reson Imaging 2017. [DOI: 10.1002/jmri.25790] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Maria Adele Marino
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging; Medical University of Vienna; Austria
- Department of Biomedical Sciences and Morphologic and Functional Imaging, Policlinico Universitario G. Martino; University of Messina; Messina Italy
| | - Thomas Helbich
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging; Medical University of Vienna; Austria
| | - Pascal Baltzer
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging; Medical University of Vienna; Austria
| | - Katja Pinker-Domenig
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging; Medical University of Vienna; Austria
- Department of Radiology; Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center; New York New York USA
| |
Collapse
|
13
|
|
14
|
Seo M, Ryu JK, Jahng GH, Sohn YM, Rhee SJ, Oh JH, Won KY. Estimation of T2* Relaxation Time of Breast Cancer: Correlation with Clinical, Imaging and Pathological Features. Korean J Radiol 2017; 18:238-248. [PMID: 28096732 PMCID: PMC5240483 DOI: 10.3348/kjr.2017.18.1.238] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/20/2016] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE The purpose of this study was to estimate the T2* relaxation time in breast cancer, and to evaluate the association between the T2* value with clinical-imaging-pathological features of breast cancer. MATERIALS AND METHODS Between January 2011 and July 2013, 107 consecutive women with 107 breast cancers underwent multi-echo T2*-weighted imaging on a 3T clinical magnetic resonance imaging system. The Student's t test and one-way analysis of variance were used to compare the T2* values of cancer for different groups, based on the clinical-imaging-pathological features. In addition, multiple linear regression analysis was performed to find independent predictive factors associated with the T2* values. RESULTS Of the 107 breast cancers, 92 were invasive and 15 were ductal carcinoma in situ (DCIS). The mean T2* value of invasive cancers was significantly longer than that of DCIS (p = 0.029). Signal intensity on T2-weighted imaging (T2WI) and histologic grade of invasive breast cancers showed significant correlation with T2* relaxation time in univariate and multivariate analysis. Breast cancer groups with higher signal intensity on T2WI showed longer T2* relaxation time (p = 0.005). Cancer groups with higher histologic grade showed longer T2* relaxation time (p = 0.017). CONCLUSION The T2* value is significantly longer in invasive cancer than in DCIS. In invasive cancers, T2* relaxation time is significantly longer in higher histologic grades and high signal intensity on T2WI. Based on these preliminary data, quantitative T2* mapping has the potential to be useful in the characterization of breast cancer.
Collapse
Affiliation(s)
- Mirinae Seo
- Department of Radiology, Kyung Hee University Hospital, College of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Jung Kyu Ryu
- Department of Radiology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul 05278, Korea
| | - Geon-Ho Jahng
- Department of Radiology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul 05278, Korea
| | - Yu-Mee Sohn
- Department of Radiology, Kyung Hee University Hospital, College of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Sun Jung Rhee
- Department of Radiology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul 05278, Korea
| | - Jang-Hoon Oh
- Department of Radiology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul 05278, Korea
| | - Kyu-Yeoun Won
- Department of Pathology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul 05278, Korea
| |
Collapse
|
15
|
Pinker K, Helbich TH, Morris EA. The potential of multiparametric MRI of the breast. Br J Radiol 2016; 90:20160715. [PMID: 27805423 DOI: 10.1259/bjr.20160715] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
MRI is an essential tool in breast imaging, with multiple established indications. Dynamic contrast-enhanced MRI (DCE-MRI) is the backbone of any breast MRI protocol and has an excellent sensitivity and good specificity for breast cancer diagnosis. DCE-MRI provides high-resolution morphological information, as well as some functional information about neoangiogenesis as a tumour-specific feature. To overcome limitations in specificity, several other functional MRI parameters have been investigated and the application of these combined parameters is defined as multiparametric MRI (mpMRI) of the breast. MpMRI of the breast can be performed at different field strengths (1.5-7 T) and includes both established (diffusion-weighted imaging, MR spectroscopic imaging) and novel MRI parameters (sodium imaging, chemical exchange saturation transfer imaging, blood oxygen level-dependent MRI), as well as hybrid imaging with positron emission tomography (PET)/MRI and different radiotracers. Available data suggest that multiparametric imaging using different functional MRI and PET parameters can provide detailed information about the underlying oncogenic processes of cancer development and progression and can provide additional specificity. This article will review the current and emerging functional parameters for mpMRI of the breast for improved diagnostic accuracy in breast cancer.
Collapse
Affiliation(s)
- Katja Pinker
- 1 Department of Radiology, Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,2 Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Vienna, Austria.,3 Department of Radiology, Breast Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Thomas H Helbich
- 2 Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Vienna, Austria
| | - Elizabeth A Morris
- 3 Department of Radiology, Breast Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
16
|
Assessment of Early Therapeutic Changes to Concurrent Chemoradiotherapy in Uterine Cervical Cancer Using Blood Oxygenation Level-Dependent Magnetic Resonance Imaging. J Comput Assist Tomogr 2016; 40:730-4. [PMID: 27636125 DOI: 10.1097/rct.0000000000000424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE This study aimed to investigate blood oxygenation level-dependent magnetic resonance imaging (MRI) in assessing early therapeutic changes in cervical cancers to concurrent chemoradiotherapy (CCRT). METHODS Fifteen consecutive patients with cervical cancer treated with CCRT were evaluated with blood oxygenation level-dependent MRI at 3 T. Magnetic resonance imaging examinations were performed before treatment (preTx), 1 week after treatment (postT1) and 4 weeks after treatment (postT2). At each time, the rate of spin dephasing (R2*) values were measured in tumor and in normal uterus. RESULTS Tumor R2* increased from preTx to postT2 (P < 0.01). In pairwise comparisons of tumor R2*, postT2 was significantly higher than preTx or postT1 (P < 0.01), whereas postT1 was not significantly different from preTx (P > 0.05). A significant difference in R2* was found between the tumors and normal uterus at preTx (P = 0.001), postT1 (P < 0.001), and postT2 (P < 0.001). CONCLUSIONS Blood oxygenation level-dependent MRI may demonstrate early therapeutic changes of cervical cancers to CCRT.
Collapse
|
17
|
Abstract
Breast MR imaging has increased in popularity over the past 2 decades due to evidence of its high sensitivity for cancer detection. Current clinical MR imaging approaches rely on the use of a dynamic contrast-enhanced acquisition that facilitates morphologic and semiquantitative kinetic assessments of breast lesions. The use of more functional and quantitative parameters holds promise to broaden the utility of MR imaging and improve its specificity. Because of wide variations in approaches for measuring these parameters and the considerable technical challenges, robust multicenter data supporting their routine use are not yet available, limiting current applications of many of these tools to research purposes.
Collapse
Affiliation(s)
- Habib Rahbar
- Breast Imaging Section, Department of Radiology, Seattle Cancer Care Alliance, University of Washington, 825 Eastlake Avenue East, PO Box 19023, Seattle, WA 98109-1023, USA
| | - Savannah C Partridge
- Breast Imaging Section, Department of Radiology, Seattle Cancer Care Alliance, University of Washington, 825 Eastlake Avenue East, PO Box 19023, Seattle, WA 98109-1023, USA.
| |
Collapse
|
18
|
Prognostic Significance of Transverse Relaxation Rate (R2*) in Blood Oxygenation Level-Dependent Magnetic Resonance Imaging in Patients with Invasive Breast Cancer. PLoS One 2016; 11:e0158500. [PMID: 27384310 PMCID: PMC4934782 DOI: 10.1371/journal.pone.0158500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/15/2016] [Indexed: 11/19/2022] Open
Abstract
Objective To examine the relationship between magnetic resonance transverse relaxation rate (R2*) and prognostic factors. Materials and Methods A total of 159 women with invasive ductal carcinomas (IDCs) underwent breast magnetic resonance imaging (MRI) including blood oxygenation level-dependent (BOLD) sequence at 3 T. The distribution of the measured R2* values were analyzed, and the correlation between R2* and various prognostic factors (age, tumor size, histologic grade, lymphovascular invasion, and axillary lymph node status, as well as expression of estrogen receptor, progesterone receptor, human epidermal growth factor receptor 2, p53, and Ki-67) were retrospectively assessed using patient medical records. Results The baseline R2* values of the IDCs were very heterogeneous with wide range among the patients. The mean R2* value was (32.8 ± 14.0) Hz with a median of 29.3 Hz (range 13.5–109.4 Hz). In multivariate analysis, older age was associated with decreased R2* value (P = 0.011) and IDCs with p53-overexpression showed higher R2* values than those without p53-overexpression group (P = 0.031). Other prognostic factors were not significantly correlated with R2* value. Conclusion In this study, R2* values were significantly correlated with age and expression of p53. Further studies are necessary to determine the prognostic value of BOLD-MRI.
Collapse
|
19
|
Woolf DK, Taylor NJ, Makris A, Tunariu N, Collins DJ, Li SP, Ah-See ML, Beresford M, Padhani AR. Arterial input functions in dynamic contrast-enhanced magnetic resonance imaging: which model performs best when assessing breast cancer response? Br J Radiol 2016; 89:20150961. [PMID: 27187599 PMCID: PMC5257308 DOI: 10.1259/bjr.20150961] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 04/07/2016] [Accepted: 05/16/2016] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE To evaluate the performance of six models of population arterial input function (AIF) in the setting of primary breast cancer and neoadjuvant chemotherapy (NAC). The ability to fit patient dynamic contrast-enhanced MRI (DCE-MRI) data, provide physiological plausible data and detect pathological response was assessed. METHODS Quantitative DCE-MRI parameters were calculated for 27 patients at baseline and after 2 cycles of NAC for 6 AIFs. Pathological complete response detection was compared with change in these parameters from a reproduction cohort of 12 patients using the Bland-Altman approach and receiver-operating characteristic analysis. RESULTS There were fewer fit failures pre-NAC for all models, with the modified Fritz-Hansen having the fewest pre-NAC (3.6%) and post-NAC (18.8%), contrasting with the femoral artery AIF (19.4% and 43.3%, respectively). Median transfer constant values were greatest for the Weinmann function and also showed greatest reductions with treatment (-68%). Reproducibility (r) was the lowest for the Weinmann function (r = -49.7%), with other AIFs ranging from r = -27.8 to -39.2%. CONCLUSION Using the best performing AIF is essential to maximize the utility of quantitative DCE-MRI parameters in predicting response to NAC treatment. Applying our criteria, the modified Fritz-Hansen and cosine bolus approximated Parker AIF models performed best. The Fritz-Hansen and biexponential approximated Parker AIFs performed less well, and the Weinmann and femoral artery AIFs are not recommended. ADVANCES IN KNOWLEDGE We demonstrate that using the most appropriate AIF can aid successful prediction of response to NAC in breast cancer.
Collapse
Affiliation(s)
- David K Woolf
- Breast Cancer Research Unit, Mount Vernon Cancer Centre, Northwood, UK
| | - N Jane Taylor
- Paul Strickland Scanner Centre, Mount Vernon Hospital, Northwood, UK
| | - Andreas Makris
- Breast Cancer Research Unit, Mount Vernon Cancer Centre, Northwood, UK
| | - Nina Tunariu
- CR UK Cancer Imaging Centre, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Sutton, UK
| | - David J Collins
- CR UK Cancer Imaging Centre, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Sutton, UK
| | - Sonia P Li
- Breast Cancer Research Unit, Mount Vernon Cancer Centre, Northwood, UK
| | - Mei-Lin Ah-See
- Breast Cancer Research Unit, Mount Vernon Cancer Centre, Northwood, UK
| | | | - Anwar R Padhani
- Paul Strickland Scanner Centre, Mount Vernon Hospital, Northwood, UK
| |
Collapse
|
20
|
Cao J, An H, Huang X, Fu G, Zhuang R, Zhu L, Xie J, Zhang F. Monitoring of the tumor response to nano-graphene oxide-mediated photothermal/photodynamic therapy by diffusion-weighted and BOLD MRI. NANOSCALE 2016; 8:10152-10159. [PMID: 27121639 DOI: 10.1039/c6nr02012g] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Photothermal therapy (PTT) and photodynamic therapy (PDT) are promising cancer treatment modalities. Because each modality has its own set of advantages and limitations, there has been interest in developing methods that can co-deliver the two regimens for enhanced tumor treatment. Among the efforts, nano-graphene oxide-mediated phototherapies have recently attracted much attention. Nano-graphene oxide has a broad absorbance spectrum and can be loaded with photosensitizers, such as chlorin e6, with high efficiency. Chlorin e6-loaded and PEGylated nano-graphene (GO-PEG-Ce6) can be excited at 660 nm, 808 nm, or both, to induce PDT, PTT, or PDT/PTT combination. Despite the potential of the treatments, there is a lack of a diagnostic tool which can monitor their therapeutic response in a non-invasive and prognostic manner; such an ability is urgently needed for the transformation and translation of the technologies. In this study, we performed diffusion-weighted and blood oxygenation level dependent (BOLD) magnetic resonance imaging (MRI) after GO-PEG-Ce6-mediated PTT, PDT, or PTT/PDT. We found that after efficient PTT, there is a significant increase of the tumor apparent diffusion coefficient (ADC) value in diffusion-weighted imaging (DWI) maps; meanwhile, an efficient PDT led to an increase of in BOLD images. In both the cases, the amplitude of the increase was correlated with the treatment outcomes. More interestingly, a synergistic treatment efficacy was observed when the PTT/PDT combination was applied, and the combination was associated with a greater ADC and increase than when either modality was used alone. In particular, the PTT/PDT condition that induced the most dramatic short-term increase of the ADC value (>70%) caused the most effective tumor control in the long-run, with 60% of the treated animals being tumor-free after 60 days. These results suggest the great promise of the combination of DWI and BOLD MRI as a tool for accurate monitoring and prognosis of phototherapies, which is of great value to the future developments of the methodologies.
Collapse
Affiliation(s)
- Jianbo Cao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361005, China.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Xu J, Chen A, Xiao J, Jiang Z, Tian Y, Tang Q, Cao P, Dai Y, Krainik A, Shen J. Evaluation of tumour vascular distribution and function using immunohistochemistry and BOLD fMRI with carbogen inhalation. Clin Radiol 2016; 71:1255-1262. [PMID: 27170218 DOI: 10.1016/j.crad.2016.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 02/18/2016] [Accepted: 04/06/2016] [Indexed: 10/21/2022]
Abstract
AIM To evaluate oxygenation changes in rat subcutaneous C6 gliomas using blood-oxygen-level dependent (BOLD) functional magnetic resonance imaging (fMRI) combined with non-haemodynamic response function (non-HRF) analysis. MATERIALS AND METHODS BOLD fMRI were performed during carbogen inhalation in 20 Wistar rats bearing gliomas. Statistical maps of spatial oxygenation changes were computed by a dedicated non-HRF analysis algorithm. Three types of regions of interest (ROIs) were defined: (1) maximum re-oxygenation zone (ROImax), (2) re-oxygenation zones that were less than the maximum re-oxygenation (ROInon-max), and (3) zones without significant re-oxygenation (ROInone). The values of percent BOLD signal change (PSC), percent enhancement (ΔSI), and significant re-oxygenation (T) were extracted from each ROI. Tumours were sectioned for histology using the fMRI scan orientation and were stained with haematoxylin and eosin and CD105. The number of microvessels (MVN) in each ROI was counted. Differences and correlations among the values for T, PSC, ΔSI, and MVN were determined. RESULTS After carbogen inhalation, the PSC significantly increased in the ROImax areas (p<0.01) located in the tumour parenchyma. No changes occurred in any of the ROInone areas (20/20). Some changes occurred in a minority of the ROInon-max areas (3/60) corresponding to tumour necrosis. MVN and PSC (R=0.59, p=0.01) were significantly correlated in the ROImax areas. In the ROInon-max areas, MVN was significantly correlated with PSC (R=0.55, p=0.00) and ΔSI (R=0.37, p=0.00). CONCLUSIONS Statistical maps obtained via BOLD fMRI with non-HRF analysis can assess the re-oxygenation of gliomas.
Collapse
Affiliation(s)
- J Xu
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - A Chen
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - J Xiao
- Department of Radiology, The Central Hospital of Wuhan, Wuhan, China
| | - Z Jiang
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China; Institute of Radiotherapy & Oncology, Soochow University, Suzhou, China.
| | - Y Tian
- Institute of Radiotherapy & Oncology, Soochow University, Suzhou, China; Suzhou Key Laboratory for Radiation Oncology, Suzhou, China
| | - Q Tang
- Department of Radiology, Wuxi People's Hospital, Wuxi, China
| | - P Cao
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Y Dai
- Magnetic Resonance Imaging Institute for Biomedical Research, Wayne State University, Detroit, MI, USA
| | - A Krainik
- Department of Neuroradiology and MRI, CHU Grenoble-IFR1, Grenoble, France
| | - J Shen
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
22
|
O'Flynn EAM, Collins D, D'Arcy J, Schmidt M, de Souza NM. Multi-parametric MRI in the early prediction of response to neo-adjuvant chemotherapy in breast cancer: Value of non-modelled parameters. Eur J Radiol 2016; 85:837-42. [PMID: 26971432 DOI: 10.1016/j.ejrad.2016.02.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/07/2016] [Accepted: 02/03/2016] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To prospectively evaluate individual functional MRI metrics for the early prediction of pathological complete response (pCR) to neo-adjuvant chemotherapy (NAC) in breast cancer. MATERIALS AND METHODS Thirty-two women (median age 52 years; range 32-71 years) with biopsy proven breast cancer due to receive neo-adjuvant anthracycline and/or taxane-based chemotherapy were prospectively recruited following local research ethics committee approval and written informed consent. Breast MRI was performed prior to and after two cycles of NAC and pCR was assessed after surgery. The enhancement fraction (EF), tumour volume, initial area under the gadolinium curve (IAUGC), pharmacokinetic parameters (K(trans), kep and ve), the apparent diffusion coefficient (ADC) and R2* values, along with the percentage change in these parameters after two cycles were evaluated according to pCR status using an independent samples t-test. The area under the receiver operating characteristics curve (AUC) was calculated for each parameter. Linear discriminant analysis (LDA) determined the most important parameter in predicting pCR. RESULTS A reduction in the EF (-41% ± 38%) and tumour volume (-80% ± 25%) after 2 cycles of NAC were significantly greater in those achieving pCR (p=0.025, p=0.011 respectively). A reduction in the EF of 7% after 2 cycles of NAC identified those more likely to achieve pCR (AUC 0.76). AUC changes in other parameters were tumour volume (0.77), IAUGC (0.64), K(trans) (0.60), kep (0.68), ve (0.58), ADC (0.69) and R2* (0.41). CONCLUSION In a multi-parametric MRI model, the decrease in a non-model based vascular parameter the enhancement fraction as well as the tumour volume are the most important early predictors of pCR in breast cancer.
Collapse
Affiliation(s)
- Elizabeth A M O'Flynn
- Clinical Magnetic Resonance Group, Cancer Research UK Cancer Imaging Centre, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT, United Kingdom.
| | - David Collins
- Clinical Magnetic Resonance Group, Cancer Research UK Cancer Imaging Centre, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT, United Kingdom.
| | - James D'Arcy
- Clinical Magnetic Resonance Group, Cancer Research UK Cancer Imaging Centre, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT, United Kingdom.
| | - Maria Schmidt
- Clinical Magnetic Resonance Group, Cancer Research UK Cancer Imaging Centre, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT, United Kingdom.
| | - Nandita M de Souza
- Clinical Magnetic Resonance Group, Cancer Research UK Cancer Imaging Centre, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT, United Kingdom.
| |
Collapse
|
23
|
Zhou Y, Sun J, Yang X. Molecular Imaging-Guided Interventional Hyperthermia in Treatment of Breast Cancer. BIOMED RESEARCH INTERNATIONAL 2015; 2015:505269. [PMID: 26491673 PMCID: PMC4605349 DOI: 10.1155/2015/505269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 08/11/2015] [Accepted: 09/02/2015] [Indexed: 12/29/2022]
Abstract
Breast cancer is the most frequent malignancy in women worldwide. Although it is commonly treated via chemotherapy, responses vary among its subtypes, some of which are relatively insensitive to chemotherapeutic drugs. Recent studies have shown that hyperthermia can enhance the effects of chemotherapy in patients with refractory breast cancer or without surgical indications. Recent advances in molecular imaging may not only improve early diagnosis but may also facilitate the development and response assessment of targeted therapies. Combining advanced techniques such as molecular imaging and hyperthermia-integrated chemotherapy should open new avenues for effective management of breast cancer.
Collapse
Affiliation(s)
- Yurong Zhou
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang 310016, China
| | - Jihong Sun
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang 310016, China
| | - Xiaoming Yang
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang 310016, China
- Image-Guided Bio-Molecular Interventions Research, Department of Radiology, University of Washington School of Medicine, 815 Mercer Street, Room S470, Seattle, WA 98109, USA
| |
Collapse
|
24
|
Woolf DK, Padhani AR, Makris A. Magnetic Resonance Imaging, Digital Mammography, and Sonography: Tumor Characteristics and Tumor Biology in Primary Setting. J Natl Cancer Inst Monogr 2015; 2015:15-20. [PMID: 26063879 DOI: 10.1093/jncimonographs/lgv013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The use of imaging in the arena of primary treatment for breast cancer is gaining importance as a technique for assessing response to chemotherapy as well as assessing the underlying tumor biology. Both mammography and ultrasound have traditionally been used, in addition to clinical evaluation, to evaluate response to treatment although they have shed little light on the underlying biological processes. Functional magnetic resonance imaging techniques have the ability to assess response to treatments in addition to providing valuable information on changes in tumor perfusion, vascular permeability, oxygenation, cellularity, proliferation, and metabolism both at baseline and after treatment. This noninvasive method of evaluating cellular function is of importance both as endpoints for clinical trials and to our understanding of the biological mechanisms of cancer.
Collapse
Affiliation(s)
- David K Woolf
- Academic Oncology Unit (DKW, AM) and Paul Strickland Scanner Centre (ARP), Mount Vernon Cancer Centre, Northwood, UK
| | - Anwar R Padhani
- Academic Oncology Unit (DKW, AM) and Paul Strickland Scanner Centre (ARP), Mount Vernon Cancer Centre, Northwood, UK
| | - Andreas Makris
- Academic Oncology Unit (DKW, AM) and Paul Strickland Scanner Centre (ARP), Mount Vernon Cancer Centre, Northwood, UK.
| |
Collapse
|
25
|
Welsh L, Panek R, McQuaid D, Dunlop A, Schmidt M, Riddell A, Koh DM, Doran S, Murray I, Du Y, Chua S, Hansen V, Wong KH, Dean J, Gulliford S, Bhide S, Leach MO, Nutting C, Harrington K, Newbold K. Prospective, longitudinal, multi-modal functional imaging for radical chemo-IMRT treatment of locally advanced head and neck cancer: the INSIGHT study. Radiat Oncol 2015; 10:112. [PMID: 25971451 PMCID: PMC4438605 DOI: 10.1186/s13014-015-0415-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 04/30/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Radical chemo-radiotherapy (CRT) is an effective organ-sparing treatment option for patients with locally advanced head and neck cancer (LAHNC). Despite advances in treatment for LAHNC, a significant minority of these patients continue to fail to achieve complete response with standard CRT. By constructing a multi-modality functional imaging (FI) predictive biomarker for CRT outcome for patients with LAHNC we hope to be able to reliably identify those patients at high risk of failing standard CRT. Such a biomarker would in future enable CRT to be tailored to the specific biological characteristics of each patients' tumour, potentially leading to improved treatment outcomes. METHODS/DESIGN The INSIGHT study is a single-centre, prospective, longitudinal multi-modality imaging study using functional MRI and FDG-PET/CT for patients with LAHNC squamous cell carcinomas receiving radical CRT. Two cohorts of patients are being recruited: one treated with, and another treated without, induction chemotherapy. All patients receive radical intensity modulated radiotherapy with concurrent chemotherapy. Patients undergo functional imaging before, during and 3 months after completion of radiotherapy, as well as at the time of relapse, should that occur within the first two years after treatment. Serum samples are collected from patients at the same time points as the FI scans for analysis of a panel of serum markers of tumour hypoxia. DISCUSSION The primary aim of the INSIGHT study is to acquire a prospective multi-parametric longitudinal data set comprising functional MRI, FDG PET/CT, and serum biomarker data from patients with LAHNC undergoing primary radical CRT. This data set will be used to construct a predictive imaging biomarker for outcome after CRT for LAHNC. This predictive imaging biomarker will be used in future studies of functional imaging based treatment stratification for patients with LAHNC. Additional objectives are: defining the reproducibility of FI parameters; determining robust methods for defining FI based biological target volumes for IMRT planning; creation of a searchable database of functional imaging data for data mining. The INSIGHT study will help to establish the role of FI in the clinical management of LAHNC. TRIAL REGISTRATION NCRI H&N CSG ID 13860.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/therapy
- Chemoradiotherapy/mortality
- Female
- Head and Neck Neoplasms/metabolism
- Head and Neck Neoplasms/pathology
- Head and Neck Neoplasms/therapy
- Humans
- Longitudinal Studies
- Magnetic Resonance Imaging/methods
- Male
- Middle Aged
- Multimodal Imaging/methods
- Neoplasm Recurrence, Local/metabolism
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/therapy
- Neoplasm Staging
- Positron-Emission Tomography/methods
- Prognosis
- Prospective Studies
- Radiotherapy Planning, Computer-Assisted/methods
- Radiotherapy, Intensity-Modulated/methods
- Tomography, X-Ray Computed/methods
- Young Adult
Collapse
Affiliation(s)
- Liam Welsh
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK.
- Clinical Research Fellow, Head and Neck Unit, Royal Marsden Hospital, Sutton, Surrey, SM2 5PT, UK.
| | - Rafal Panek
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK.
| | - Dualta McQuaid
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
| | - Alex Dunlop
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
| | - Maria Schmidt
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK.
| | - Angela Riddell
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
| | - Dow-Mu Koh
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK.
| | - Simon Doran
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK.
| | - Iain Murray
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
| | - Yong Du
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
| | - Sue Chua
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
| | - Vibeke Hansen
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
| | - Kee H Wong
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK.
| | - Jamie Dean
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK.
| | - Sarah Gulliford
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK.
| | - Shreerang Bhide
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
| | - Martin O Leach
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK.
| | - Christopher Nutting
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
| | - Kevin Harrington
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK.
| | - Kate Newbold
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
| |
Collapse
|
26
|
Heijmen L, ter Voert EEGW, Oyen WJG, Punt CJA, van Spronsen DJ, Heerschap A, de Geus-Oei LF, van Laarhoven HWM. Multimodality imaging to predict response to systemic treatment in patients with advanced colorectal cancer. PLoS One 2015; 10:e0120823. [PMID: 25831053 PMCID: PMC4382283 DOI: 10.1371/journal.pone.0120823] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 02/06/2015] [Indexed: 12/15/2022] Open
Abstract
Aim Aim of this study was to investigate the potential of 18F-FDG PET, diffusion weighted imaging (DWI) and susceptibility-weighted (T2*) MRI to predict response to systemic treatment in patients with colorectal liver metastases. The predictive values of pretreatment measurements and of early changes one week after start of therapy, were evaluated. Methods Imaging was performed prior to and one week after start of first line chemotherapy in 39 patients with colorectal liver metastases. 18F-FDG PET scans were performed on a PET/CT scanner and DWI and T2* were performed on a 1.5T MR scanner. The maximum standardized uptake values (SUV), total lesion glycolysis (TLG), apparent diffusion coefficient (ADC) and T2* value were assessed in the same lesions. Up to 5 liver metastases per patient were analyzed. Outcome measures were progression free survival (PFS), overall survival (OS) and size response. Results Pretreatment, high SUVmax, high TLG, low ADC and high T2* were associated with a shorter OS. Low pretreatment ADC value was associated with shorter PFS. After 1 week a significant drop in SUVmax and rise in ADC were observed. The drop in SUV was correlated with the rise in ADC (r=-0.58, p=0.002). Neither change in ADC nor in SUV was predictive of PFS or OS. T2* did not significantly change after start of treatment. Conclusion Pretreatment SUVmax, TLG, ADC, and T2* values in colorectal liver metastases are predictive of patient outcome. Despite sensitivity of DWI and 18F-FDG PET for early treatment effects, change in these parameters was not predictive of long term outcome.
Collapse
Affiliation(s)
- Linda Heijmen
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- * E-mail:
| | - Edwin E. G. W. ter Voert
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Wim J. G. Oyen
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Cornelis J. A. Punt
- Department of Medical Oncology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Arend Heerschap
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lioe-Fee de Geus-Oei
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Hanneke W. M. van Laarhoven
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Medical Oncology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
27
|
Winfield JM, Payne GS, deSouza NM. Functional MRI and CT biomarkers in oncology. Eur J Nucl Med Mol Imaging 2015; 42:562-78. [PMID: 25578953 DOI: 10.1007/s00259-014-2979-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 12/15/2014] [Indexed: 02/07/2023]
Abstract
Imaging biomarkers derived from MRI or CT describe functional properties of tumours and normal tissues. They are finding increasing numbers of applications in diagnosis, monitoring of response to treatment and assessment of progression or recurrence. Imaging biomarkers also provide scope for assessment of heterogeneity within and between lesions. A wide variety of functional parameters have been investigated for use as biomarkers in oncology. Some imaging techniques are used routinely in clinical applications while others are currently restricted to clinical trials or preclinical studies. Apparent diffusion coefficient, magnetization transfer ratio and native T1 relaxation time provide information about structure and organization of tissues. Vascular properties may be described using parameters derived from dynamic contrast-enhanced MRI, dynamic contrast-enhanced CT, transverse relaxation rate (R2*), vessel size index and relative blood volume, while magnetic resonance spectroscopy may be used to probe the metabolic profile of tumours. This review describes the mechanisms of contrast underpinning each technique and the technical requirements for robust and reproducible imaging. The current status of each biomarker is described in terms of its validation, qualification and clinical applications, followed by a discussion of the current limitations and future perspectives.
Collapse
Affiliation(s)
- J M Winfield
- CRUK Imaging Centre at the Institute of Cancer Research, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Sutton, UK,
| | | | | |
Collapse
|
28
|
Yap TA, Yan L, Patnaik A, Tunariu N, Biondo A, Fearen I, Papadopoulos KP, Olmos D, Baird R, Delgado L, Tetteh E, Beckman RA, Lupinacci L, Riisnaes R, Decordova S, Heaton SP, Swales K, deSouza NM, Leach MO, Garrett MD, Sullivan DM, de Bono JS, Tolcher AW. Interrogating two schedules of the AKT inhibitor MK-2206 in patients with advanced solid tumors incorporating novel pharmacodynamic and functional imaging biomarkers. Clin Cancer Res 2014; 20:5672-85. [PMID: 25239610 PMCID: PMC4233149 DOI: 10.1158/1078-0432.ccr-14-0868] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE Multiple cancers harbor genetic aberrations that impact AKT signaling. MK-2206 is a potent pan-AKT inhibitor with a maximum tolerated dose (MTD) previously established at 60 mg on alternate days (QOD). Due to a long half-life (60-80 hours), a weekly (QW) MK-2206 schedule was pursued to compare intermittent QW and continuous QOD dosing. EXPERIMENTAL DESIGN Patients with advanced cancers were enrolled in a QW dose-escalation phase I study to investigate the safety and pharmacokinetic-pharmacodynamic profiles of tumor and platelet-rich plasma (PRP). The QOD MTD of MK-2206 was also assessed in patients with ovarian and castration-resistant prostate cancers and patients with advanced cancers undergoing multiparametric functional magnetic resonance imaging (MRI) studies, including dynamic contrast-enhanced MRI, diffusion-weighted imaging, magnetic resonance spectroscopy, and intrinsic susceptibility-weighted MRI. RESULTS A total of 71 patients were enrolled; 38 patients had 60 mg MK-2206 QOD, whereas 33 received MK-2206 at 90, 135, 150, 200, 250, and 300 mg QW. The QW MK-2206 MTD was established at 200 mg following dose-limiting rash at 250 and 300 mg. QW dosing appeared to be similarly tolerated to QOD, with toxicities including rash, gastrointestinal symptoms, fatigue, and hyperglycemia. Significant AKT pathway blockade was observed with both continuous QOD and intermittent QW dosing of MK-2206 in serially obtained tumor and PRP specimens. The functional imaging studies demonstrated that complex multiparametric MRI protocols may be effectively implemented in a phase I trial. CONCLUSIONS Treatment with MK-2206 safely results in significant AKT pathway blockade in QOD and QW schedules. The intermittent dose of 200 mg QW is currently used in phase II MK-2206 monotherapy and combination studies (NCT00670488).
Collapse
Affiliation(s)
- Timothy A Yap
- Drug Development Unit, The Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom. Division of Clinical Studies, The Institute of Cancer Research, Surrey, United Kingdom
| | - Li Yan
- Merck & Co., Inc., Whitehouse Station, New Jersey
| | - Amita Patnaik
- South Texas Accelerated Research Therapeutics, San Antonio, Texas
| | - Nina Tunariu
- CR-UK and EPSRC Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom
| | - Andrea Biondo
- Drug Development Unit, The Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom. Division of Clinical Studies, The Institute of Cancer Research, Surrey, United Kingdom
| | - Ivy Fearen
- Merck & Co., Inc., Whitehouse Station, New Jersey
| | | | - David Olmos
- Drug Development Unit, The Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom. Division of Clinical Studies, The Institute of Cancer Research, Surrey, United Kingdom
| | - Richard Baird
- Drug Development Unit, The Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom. Division of Clinical Studies, The Institute of Cancer Research, Surrey, United Kingdom
| | | | | | | | | | - Ruth Riisnaes
- Division of Clinical Studies, The Institute of Cancer Research, Surrey, United Kingdom
| | - Shaun Decordova
- Division of Clinical Studies, The Institute of Cancer Research, Surrey, United Kingdom
| | - Simon P Heaton
- Division of Clinical Studies, The Institute of Cancer Research, Surrey, United Kingdom
| | - Karen Swales
- Division of Clinical Studies, The Institute of Cancer Research, Surrey, United Kingdom
| | - Nandita M deSouza
- CR-UK and EPSRC Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom
| | - Martin O Leach
- CR-UK and EPSRC Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom
| | - Michelle D Garrett
- Division of Clinical Studies, The Institute of Cancer Research, Surrey, United Kingdom
| | | | - Johann S de Bono
- Drug Development Unit, The Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom. Division of Clinical Studies, The Institute of Cancer Research, Surrey, United Kingdom.
| | | |
Collapse
|
29
|
Emblem KE, Farrar CT, Gerstner ER, Batchelor TT, Borra RJH, Rosen BR, Sorensen AG, Jain RK. Vessel caliber--a potential MRI biomarker of tumour response in clinical trials. Nat Rev Clin Oncol 2014; 11:566-84. [PMID: 25113840 PMCID: PMC4445139 DOI: 10.1038/nrclinonc.2014.126] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Our understanding of the importance of blood vessels and angiogenesis in cancer has increased considerably over the past decades, and the assessment of tumour vessel calibre and structure has become increasingly important for in vivo monitoring of therapeutic response. The preferred method for in vivo imaging of most solid cancers is MRI, and the concept of vessel-calibre MRI has evolved since its initial inception in the early 1990s. Almost a quarter of a century later, unlike traditional contrast-enhanced MRI techniques, vessel-calibre MRI remains widely inaccessible to the general clinical community. The narrow availability of the technique is, in part, attributable to limited awareness and a lack of imaging standardization. Thus, the role of vessel-calibre MRI in early phase clinical trials remains to be determined. By contrast, regulatory approvals of antiangiogenic agents that are not directly cytotoxic have created an urgent need for clinical trials incorporating advanced imaging analyses, going beyond traditional assessments of tumour volume. To this end, we review the field of vessel-calibre MRI and summarize the emerging evidence supporting the use of this technique to monitor response to anticancer therapy. We also discuss the potential use of this biomarker assessment in clinical imaging trials and highlight relevant avenues for future research.
Collapse
Affiliation(s)
- Kyrre E Emblem
- The Intervention Centre, Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
| | - Christian T Farrar
- Department of Radiology and Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Elizabeth R Gerstner
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 100 Blossom Street, Boston, MA 02114, USA
| | - Tracy T Batchelor
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 100 Blossom Street, Boston, MA 02114, USA
| | - Ronald J H Borra
- Department of Radiology and Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Bruce R Rosen
- Department of Radiology and Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - A Gregory Sorensen
- Siemens Healthcare Health Services, 51 Valley Stream Parkway, Malvern, PA 19355, USA
| | - Rakesh K Jain
- Edwin L. Steele Laboratory of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, 100 Blossom Street, Boston, MA 02114, USA
| |
Collapse
|
30
|
Woolf DK, Padhani AR, Taylor NJ, Gogbashian A, Li SP, Beresford MJ, Ah-See ML, Stirling J, Collins DJ, Makris A. Assessing response in breast cancer with dynamic contrast-enhanced magnetic resonance imaging: are signal intensity-time curves adequate? Breast Cancer Res Treat 2014; 147:335-43. [PMID: 25129341 DOI: 10.1007/s10549-014-3072-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 07/21/2014] [Indexed: 11/28/2022]
Abstract
Quantitative DCE-MRI parameters including K(trans) (transfer constant min(-1)) can predict both response and outcome in breast cancer patients treated with neoadjuvant chemotherapy (NAC). Quantitative methods are time-consuming to calculate, requiring expensive software and interpretive expertise. For diagnostic purposes, signal intensity-time curves (SITCs) are used for tissue characterisation. In this study, we compare the ability of NAC-related changes in SITCs with K(trans) to predict response and outcomes. 73 women with primary breast cancer underwent DCE-MRI studies before and after two cycles of NAC. Patients received anthracycline and/or docetaxel-based chemotherapy. At completion of NAC, patients had local treatment with surgery & radiotherapy and further systemic treatments. SITCs for paired DCE-MRI studies were visually scored using a five-curve type classification schema encompassing wash-in and wash-out phases and correlated with K(trans) values and to the endpoints of pathological response, OS and DFS. 58 paired patients studies were evaluable. The median size by MRI measurement for 52 tumours was 38 mm (range 17-86 mm) at baseline and 26 mm (range 10-85 mm) after two cycles of NAC. Median baseline K(trans) (min(-1)) was 0.214 (range 0.085-0.469), and post-two cycles of NAC was 0.128 (range 0.013-0.603). SITC shapes were significantly related to K(trans) values both before (χ (2) = 43.3, P = 0.000) and after two cycles of NAC (χ (2) = 60.5, P = 0.000). Changes in curve shapes were significantly related to changes in K(trans) (χ (2) = 53.5, P = 0.000). Changes in curve shape were significantly correlated with clinical (P = 0.005) and pathological response (P = 0.005). Reductions in curve shape of ≥1 point were significant for overall improved survival using Kaplan-Meier analysis with a 5-year OS of 80.9 versus 68.6 % (P = 0.048). SITCs require no special software to generate and provide a useful method of assessing the effectiveness of NAC for primary breast cancer.
Collapse
Affiliation(s)
- David K Woolf
- Academic Department of Oncology, Mount Vernon Cancer Centre, Northwood, UK,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
MRI and 18F-FDG PET/CT in monitoring the response to neoadjuvant chemotherapy: is it necessary to appropriately select the patients? Eur J Nucl Med Mol Imaging 2014; 41:1511-4. [DOI: 10.1007/s00259-014-2823-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
32
|
Martens MH, Lambregts DMJ, Kluza E, Beets-Tan RGH. Tumor Response to Treatment: Prediction and Assessment. CURRENT RADIOLOGY REPORTS 2014. [DOI: 10.1007/s40134-014-0062-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
33
|
Yi B, Kang DK, Yoon D, Jung YS, Kim KS, Yim H, Kim TH. Is there any correlation between model-based perfusion parameters and model-free parameters of time-signal intensity curve on dynamic contrast enhanced MRI in breast cancer patients? Eur Radiol 2014; 24:1089-96. [PMID: 24553785 DOI: 10.1007/s00330-014-3100-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 12/19/2013] [Accepted: 01/15/2014] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To find out any correlation between dynamic contrast-enhanced (DCE) model-based parameters and model-free parameters, and evaluate correlations between perfusion parameters with histologic prognostic factors. METHODS Model-based parameters (Ktrans, Kep and Ve) of 102 invasive ductal carcinomas were obtained using DCE-MRI and post-processing software. Correlations between model-based and model-free parameters and between perfusion parameters and histologic prognostic factors were analysed. RESULTS Mean Kep was significantly higher in cancers showing initial rapid enhancement (P = 0.002) and a delayed washout pattern (P = 0.001). Ve was significantly lower in cancers showing a delayed washout pattern (P = 0.015). Kep significantly correlated with time to peak enhancement (TTP) (ρ = -0.33, P < 0.001) and washout slope (ρ = 0.39, P = 0.002). Ve was significantly correlated with TTP (ρ = 0.33, P = 0.002). Mean Kep was higher in tumours with high nuclear grade (P = 0.017). Mean Ve was lower in tumours with high histologic grade (P = 0.005) and in tumours with negative oestrogen receptor status (P = 0.047). TTP was shorter in tumours with negative oestrogen receptor status (P = 0.037). CONCLUSIONS We could acquire general information about the tumour vascular physiology, interstitial space volume and pathologic prognostic factors by analyzing time-signal intensity curve without a complicated acquisition process for the model-based parameters. KEY POINTS • Kep mainly affected the initial and delayed curve pattern in time-signal intensity curve. • There is significant correlation between model-based and model-free parameters. • We acquired information about tumour vascular physiology, interstitial space volume and prognostic factors.
Collapse
Affiliation(s)
- Boram Yi
- Department of Radiology, Ajou University School of Medicine, San 5, Woncheon-dong, Yongtong-gu, Suwon, Gyeonggi-do, 442-749, South Korea
| | | | | | | | | | | | | |
Collapse
|
34
|
Liu M, Guo X, Wang S, Jin M, Wang Y, Li J, Liu J. BOLD-MRI of breast invasive ductal carcinoma: correlation of R2* value and the expression of HIF-1α. Eur Radiol 2013; 23:3221-7. [PMID: 23835924 DOI: 10.1007/s00330-013-2937-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 05/14/2013] [Accepted: 05/24/2013] [Indexed: 01/02/2023]
Abstract
OBJECTIVE To explore the reliability and feasibility of blood oxygenation level-dependent-based functional magnetic resonance imaging (BOLD-fMRI) to depict hypoxia in breast invasive ductal carcinoma. METHODS A total of 103 women with 104 invasive ductal carcinomas (IDCs) underwent breast BOLD-fMRI at 3.0 T. Histological specimens were analysed for tumour size, grade, axillary lymph nodes and expression of oestrogen receptors, progesterone receptors, human epidermal growth factor receptor 2, p53, Ki-67 and hypoxia inducible factor 1α (HIF-1α). The distribution and reliability of R2* were analysed. Correlations of the R2* value with the prognostic factors and HIF-1α were respectively analysed. RESULTS The R2* map of IDC demonstrated a relatively heterogeneous signal. The mean R2* value was (53.4 ± 18.2) Hz. The Shapiro-Wilk test (W = 0.971, P = 0.020) suggested that the sample did not follow a normal distribution. The inter-rater and intrarater correlation coefficient was 0.967 and 0.959, respectively. The R2* values of IDCs were significantly lower in patients without axillary lymph nodes metastasis. The R2* value had a weak correlation with Ki67 expression (r = 0.208, P = 0.038). The mean R2* value correlated moderately with the level of HIF-1α (r = 0.516, P = 0.000). CONCLUSION BOLD-fMRI is a simple and non-invasive technique that yields hypoxia information on breast invasive ductal carcinomas.
Collapse
Affiliation(s)
- Min Liu
- Department of Radiology, Beijing Chao Yang Hospital, Capital Medical University, Beijing, 100020, China,
| | | | | | | | | | | | | |
Collapse
|
35
|
Li X, Arlinghaus LR, Ayers GD, Chakravarthy AB, Abramson RG, Abramson VG, Atuegwu N, Farley J, Mayer IA, Kelley MC, Meszoely IM, Means-Powell J, Grau AM, Sanders M, Bhave SR, Yankeelov TE. DCE-MRI analysis methods for predicting the response of breast cancer to neoadjuvant chemotherapy: pilot study findings. Magn Reson Med 2013; 71:1592-602. [PMID: 23661583 DOI: 10.1002/mrm.24782] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 03/13/2013] [Accepted: 04/02/2013] [Indexed: 01/14/2023]
Abstract
PURPOSE The purpose of this pilot study is to determine (1) if early changes in both semiquantitative and quantitative DCE-MRI parameters, observed after the first cycle of neoadjuvant chemotherapy in breast cancer patients, show significant difference between responders and nonresponders and (2) if these parameters can be used as a prognostic indicator of the eventual response. METHODS Twenty-eight patients were examined using DCE-MRI pre-, post-one cycle, and just prior to surgery. The semiquantitative parameters included longest dimension, tumor volume, initial area under the curve, and signal enhancement ratio related parameters, while quantitative parameters included K(trans), v(e), k(ep), v(p), and τ(i) estimated using the standard Tofts-Kety, extended Tofts-Kety, and fast exchange regime models. RESULTS Our preliminary results indicated that the signal enhancement ratio washout volume and k(ep) were significantly different between pathologic complete responders from nonresponders (P < 0.05) after a single cycle of chemotherapy. Receiver operator characteristic analysis showed that the AUC of the signal enhancement ratio washout volume was 0.75, and the AUCs of k(ep) estimated by three models were 0.78, 0.76, and 0.73, respectively. CONCLUSION In summary, the signal enhancement ratio washout volume and k(ep) appear to predict breast cancer response after one cycle of neoadjuvant chemotherapy. This observation should be confirmed with additional prospective studies.
Collapse
Affiliation(s)
- Xia Li
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, Tennessee, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
The role of functional imaging in the era of targeted therapy of renal cell carcinoma. World J Urol 2013; 32:47-58. [PMID: 23588813 DOI: 10.1007/s00345-013-1074-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 04/01/2013] [Indexed: 12/23/2022] Open
Abstract
Antiangiogenic therapies interacting with tumor-specific pathways have been established for targeted therapy of renal cell carcinoma (RCC). However, evaluation of tumor response based on morphologic tumor diameter measurements has limitations, as tumor shrinkage may lag behind pathophysiological response. Functional imaging techniques such as dynamic contrast-enhanced (DCE) ultrasound (US), computed tomography (CT) and magnetic resonance imaging (MRI), unenhanced diffusion-weighted MRI (DW-MRI), and also metabolic imaging with positron emission tomography (PET) have the ability to assess physiological parameters and to predict and monitor therapy response. Assessment of changes in vascularity, cellularity, oxygenation, and glucose uptake with functional imaging during targeted therapy may correlate with progression-free survival and can predict tumor response or progression. In this review, we explore the potential of functional imaging techniques for assessing the effects of targeted therapy of RCC and as well review the reproducibility and limitations.
Collapse
|
37
|
Jiang L, Weatherall PT, McColl RW, Tripathy D, Mason RP. Blood oxygenation level-dependent (BOLD) contrast magnetic resonance imaging (MRI) for prediction of breast cancer chemotherapy response: A pilot study. J Magn Reson Imaging 2012; 37:1083-92. [DOI: 10.1002/jmri.23891] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 09/14/2012] [Indexed: 12/28/2022] Open
|
38
|
Post-embolisation susceptibility changes in giant meningiomas: multiparametric histogram analysis using non-contrast-enhanced susceptibility-weighted PRESTO, diffusion-weighted and perfusion-weighted imaging. Eur Radiol 2012; 23:551-61. [DOI: 10.1007/s00330-012-2618-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 07/14/2012] [Accepted: 07/17/2012] [Indexed: 02/08/2023]
|
39
|
Prevos R, Smidt ML, Tjan-Heijnen VCG, van Goethem M, Beets-Tan RG, Wildberger JE, Lobbes MBI. Pre-treatment differences and early response monitoring of neoadjuvant chemotherapy in breast cancer patients using magnetic resonance imaging: a systematic review. Eur Radiol 2012; 22:2607-16. [PMID: 22983282 DOI: 10.1007/s00330-012-2653-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/17/2012] [Accepted: 08/22/2012] [Indexed: 01/03/2023]
Abstract
OBJECTIVES To assess whether magnetic resonance imaging (MRI) can identify pre-treatment differences or monitor early response in breast cancer patients receiving neoadjuvant chemotherapy. METHODS PubMed, Cochrane library, Medline and Embase databases were searched for publications until January 1, 2012. After primary selection, studies were selected based on predefined inclusion/exclusion criteria. Two reviewers assessed study contents using an extraction form. RESULTS In 15 studies, which were mainly underpowered and of heterogeneous study design, 31 different parameters were studied. Most frequently studied parameters were tumour diameter or volume, K(trans), K(ep), V(e), and apparent diffusion coefficient (ADC). Other parameters were analysed in only two or less studies. Tumour diameter, volume, and kinetic parameters did not show any pre-treatment differences between responders and non-responders. In two studies, pre-treatment differences in ADC were observed between study groups. At early response monitoring significant and non-significant changes for all parameters were observed for most of the imaging parameters. CONCLUSIONS Evidence on distinguishing responders and non-responders to neoadjuvant chemotherapy using pre-treatment MRI, as well as using MRI for early response monitoring, is weak and based on underpowered study results and heterogeneous study design. Thus, the value of breast MRI for response evaluation has not yet been established. KEY POINTS Few well-validated pre-treatment MR parameters exist that identify responders and non-responders. Eligible studies showed heterogeneous study designs which hampered pooling of data. Confounders and technical variations of MRI accuracy are not studied adequately. Value of MRI for response evaluation needs to be established further.
Collapse
Affiliation(s)
- R Prevos
- Department of Radiology, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
40
|
Early prediction of pathologic response to neoadjuvant therapy in breast cancer: systematic review of the accuracy of MRI. Breast 2012; 21:669-77. [PMID: 22863284 DOI: 10.1016/j.breast.2012.07.006] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 06/14/2012] [Accepted: 07/04/2012] [Indexed: 12/30/2022] Open
Abstract
Magnetic resonance imaging (MRI) has been proposed to have a role in predicting final pathologic response when undertaken early during neoadjuvant chemotherapy (NAC) in breast cancer. This paper examines the evidence for MRI's accuracy in early response prediction. A systematic literature search (to February 2011) was performed to identify studies reporting the accuracy of MRI during NAC in predicting pathologic response, including searches of MEDLINE, PREMEDLINE, EMBASE, and Cochrane databases. 13 studies were eligible (total 605 subjects, range 16-188). Dynamic contrast-enhanced (DCE) MRI was typically performed after 1-2 cycles of anthracycline-based or anthracycline/taxane-based NAC, and compared to a pre-NAC baseline scan. MRI parameters measured included changes in uni- or bidimensional tumour size, three-dimensional volume, quantitative dynamic contrast measurements (volume transfer constant [Ktrans], exchange rate constant [k(ep)], early contrast uptake [ECU]), and descriptive patterns of tumour reduction. Thresholds for identifying response varied across studies. Definitions of response included pathologic complete response (pCR), near-pCR, and residual tumour with evidence of NAC effect (range of response 0-58%). Heterogeneity across MRI parameters and the outcome definition precluded statistical meta-analysis. Based on descriptive presentation of the data, sensitivity/specificity pairs for prediction of pathologic response were highest in studies measuring reductions in Ktrans (near-pCR), ECU (pCR, but not near-pCR) and tumour volume (pCR or near-pCR), at high thresholds (typically >50%); lower sensitivity/specificity pairs were evident in studies measuring reductions in uni- or bidimensional tumour size. However, limitations in study methodology and data reporting preclude definitive conclusions. Methods proposed to address these limitations include: statistical comparison between MRI parameters, and MRI vs other tests (particularly ultrasound and clinical examination); standardising MRI thresholds and pCR definitions; and reporting changes in NAC based on test results. Further studies adopting these methods are warranted.
Collapse
|
41
|
Molecular imaging in the management of cervical cancer. J Formos Med Assoc 2012; 111:412-20. [PMID: 22939658 DOI: 10.1016/j.jfma.2012.02.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 01/10/2012] [Accepted: 02/17/2012] [Indexed: 12/19/2022] Open
Abstract
Positron emission tomography (PET), magnetic resonance imaging (MRI), and integrated 18-fluorodeoxyglucose ((18)F-FDG) PET/computed tomography are valuable techniques for assessing prognosis, treatment response after the completion of concurrent chemoradiation, suspicious or documented recurrence, unexplained post therapy elevations in tumor markers, and the response to salvage treatment when managing cervical cancer. However, PET plays a limited role in the primary staging of MRI-defined node-negative patients. Currently, (18)F-FDG is still the only tracer approved for routine use, but several novel targeting PET compounds, high-Tesla MRI machines, diffusion-weighted imaging without contrast, and dynamic nuclear polarized-enhanced (13)C-MR spectroscopic imaging may hold promising applications.
Collapse
|
42
|
Partovi S, Karimi S, Jacobi B, Schulte AC, Aschwanden M, Zipp L, Lyo JK, Karmonik C, Müller-Eschner M, Huegli RW, Bongartz G, Bilecen D. Clinical implications of skeletal muscle blood-oxygenation-level-dependent (BOLD) MRI. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2012; 25:251-61. [PMID: 22374263 DOI: 10.1007/s10334-012-0306-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 01/31/2012] [Accepted: 02/01/2012] [Indexed: 01/24/2023]
Abstract
Blood-oxygenation-level-dependent (BOLD) contrast in magnetic resonance (MR) imaging of skeletal muscle mainly depends on changes of oxygen saturation in the microcirculation. In recent years, an increasing number of studies have evaluated the clinical relevance of skeletal muscle BOLD MR imaging in vascular diseases, such as peripheral arterial occlusive disease, diabetes mellitus, and chronic compartment syndrome. BOLD imaging combines the advantages of MR imaging, i.e., high spatial resolution, no exposure to ionizing radiation, with functional information of local microvascular perfusion. Due to intrinsic contrast provoked via changes in hemoglobin oxygen saturation, it is a safe and easy applicable procedure on standard whole-body MR devices. Therefore, BOLD MR imaging of skeletal muscle is a potential new diagnostic tool in the clinical evaluation of vascular, inflammatory, and muscular pathologies. Our review focuses on the current evidence concerning the use of BOLD MR imaging of skeletal muscle under pathological conditions and highlights ways for future clinical and scientific applications.
Collapse
Affiliation(s)
- Sasan Partovi
- Department of Radiology, University Hospital Bruderholz, Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Lobbes M, Prevos R, Smidt M. Response monitoring of breast cancer patientsreceiving neoadjuvant chemotherapy using breast MRI – a review of current knowledge. ACTA ACUST UNITED AC 2012. [DOI: 10.7243/2049-7962-1-34] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
44
|
Li SP, Padhani AR, Makris A. Dynamic Contrast-Enhanced Magnetic Resonance Imaging and Blood Oxygenation Level-Dependent Magnetic Resonance Imaging for the Assessment of Changes in Tumor Biology With Treatment. J Natl Cancer Inst Monogr 2011; 2011:103-7. [DOI: 10.1093/jncimonographs/lgr031] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
45
|
de Bazelaire C, Calmon R, Thomassin I, Brunon C, Hamy AS, Fournier L, Balvay D, Espié M, Siauve N, Clément O, de Kerviler E, Cuénod CA. Accuracy of perfusion MRI with high spatial but low temporal resolution to assess invasive breast cancer response to neoadjuvant chemotherapy: a retrospective study. BMC Cancer 2011; 11:361. [PMID: 21854572 PMCID: PMC3173447 DOI: 10.1186/1471-2407-11-361] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 08/19/2011] [Indexed: 11/16/2022] Open
Abstract
Background To illustrate that Breast-MRI performed in high spatial resolution and low temporal resolution (1 minute) allows the measurement of kinetic parameters that can assess the final pathologic response to neoadjuvant chemotherapy in breast cancer. Methods Breast-MRI was performed in 24 women before and after treatment. Eight series of 1.11 minute-duration were acquired with a sub-millimeter spatial resolution. Transfer constant (Ktrans) and leakage space (Ve) were calculated using measured and theoretical Arterial Input Function (AIF). Changes in kinetic parameters after treatment obtained with both AIFs were compared with final pathologic response graded in non-responder (< 50% therapeutic effect), partial-responder (> 50% therapeutic effect) and complete responder. Accuracies to identify non-responders were compared with receiver operating characteristic curves. Results With measured-AIF, changes in kinetic parameters measured after treatment were in agreement with the final pathological response. Changes in Ve and Ktrans were significantly different between non-(N = 11), partial-(N = 7), and complete (N = 6) responders, (P = 0.0092 and P = 0.0398 respectively). A decrease in Ve of more than -72% and more than -84% for Ktrans resulted in 73% sensitivity for identifying non-responders (specificity 92% and 77% respectively). A decrease in Ve of more than -87% helped to identify complete responders (Sensitivity 89%, Specificity 83%). With theoretical-AIF, changes in kinetic parameters had lower accuracy. Conclusion There is a good agreement between pathological findings and changes in kinetic parameters obtained with breast-MRI in high spatial and low temporal resolution when measured-AIF is used. Further studies are necessary to confirm whether MRI contrast kinetic parameters can be used earlier as a response predictor to neoadjuvant chemotherapy.
Collapse
Affiliation(s)
- Cédric de Bazelaire
- Radiologie, Hôpital Saint-Louis - Inserm U728 - Université Paris VII, 1 Avenue Claude Vellefaux, Paris, 75010, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Patel GS, Kiuchi T, Lawler K, Ofo E, Fruhwirth GO, Kelleher M, Shamil E, Zhang R, Selvin PR, Santis G, Spicer J, Woodman N, Gillett CE, Barber PR, Vojnovic B, Kéri G, Schaeffter T, Goh V, O'Doherty MJ, Ellis PA, Ng T. The challenges of integrating molecular imaging into the optimization of cancer therapy. Integr Biol (Camb) 2011; 3:603-31. [PMID: 21541433 DOI: 10.1039/c0ib00131g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We review novel, in vivo and tissue-based imaging technologies that monitor and optimize cancer therapeutics. Recent advances in cancer treatment centre around the development of targeted therapies and personalisation of treatment regimes to individual tumour characteristics. However, clinical outcomes have not improved as expected. Further development of the use of molecular imaging to predict or assess treatment response must address spatial heterogeneity of cancer within the body. A combination of different imaging modalities should be used to relate the effect of the drug to dosing regimen or effective drug concentration at the local site of action. Molecular imaging provides a functional and dynamic read-out of cancer therapeutics, from nanometre to whole body scale. At the whole body scale, an increase in the sensitivity and specificity of the imaging probe is required to localise (micro)metastatic foci and/or residual disease that are currently below the limit of detection. The use of image-guided endoscopic biopsy can produce tumour cells or tissues for nanoscopic analysis in a relatively patient-compliant manner, thereby linking clinical imaging to a more precise assessment of molecular mechanisms. This multimodality imaging approach (in combination with genetics/genomic information) could be used to bridge the gap between our knowledge of mechanisms underlying the processes of metastasis, tumour dormancy and routine clinical practice. Treatment regimes could therefore be individually tailored both at diagnosis and throughout treatment, through monitoring of drug pharmacodynamics providing an early read-out of response or resistance.
Collapse
Affiliation(s)
- G S Patel
- Richard Dimbleby Department of Cancer Research, Randall Division & Division of Cancer Studies, King's College London, Guy's Medical School Campus, London, SE1 1UL, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
O'Flynn EAM, DeSouza NM. Functional magnetic resonance: biomarkers of response in breast cancer. Breast Cancer Res 2011; 13:204. [PMID: 21392409 PMCID: PMC3109577 DOI: 10.1186/bcr2815] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Functional magnetic resonance (MR) encompasses a spectrum of techniques that depict physiological and molecular processes before morphological changes are visible on conventional imaging. As understanding of the pathophysiological and biomolecular processes involved in breast malignancies evolves, newer functional MR techniques can be employed that define early predictive and surrogate biomarkers for monitoring response to chemotherapy. Neoadjuvant chemotherapy is increasingly used in women with primary breast malignancies to down-stage the tumour and enable successful breast conservation surgery. It also plays a role in the treatment of undetected micrometastases. Cardinal physiological features of tumours that occur as a result of interactions between cancer cells, stromal cells and secreted factors and cytokines and how they change with treatment provide the opportunity to detect changes in the tumour microenvironment prior to any morphological change. Through sequential imaging, tumour response can be assessed and non-responders can be identified early to enable alternative therapies to be considered. This review summarises the functional magnetic resonance biomarkers of response in patients with breast cancer that are currently available and under development. We describe the current state of each biomarker and explore their potential clinical uses and limitations in assessing treatment response. With the aid of selected interesting cases, biomarkers related to dynamic contrast-enhanced MRI, diffusion-weighted MRI, T2*/BOLD and MR spectroscopy are described and illustrated. The potential of newer approaches, such as MR elastography, are also reviewed.
Collapse
Affiliation(s)
- Elizabeth A M O'Flynn
- Clinical Magnetic Resonance Group, Institute of Cancer Research, Royal Marsden NHS Foundation Trust, Sutton, Surrey, SM2 5PT, UK.
| | | |
Collapse
|
48
|
Li SP, Padhani AR, Taylor NJ, Beresford MJ, Ah-See MLW, Stirling JJ, d’Arcy JA, Collins DJ, Makris A. Vascular characterisation of triple negative breast carcinomas using dynamic MRI. Eur Radiol 2011; 21:1364-73. [DOI: 10.1007/s00330-011-2061-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 11/16/2010] [Accepted: 12/07/2010] [Indexed: 12/18/2022]
|