1
|
Ciceri T, De Luca A, Agarwal N, Arrigoni F, Peruzzo D. A framework for optimizing the acquisition protocol multishell diffusion-weighted imaging for multimodel assessment. NMR IN BIOMEDICINE 2024; 37:e5141. [PMID: 38520215 DOI: 10.1002/nbm.5141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/22/2023] [Accepted: 02/15/2024] [Indexed: 03/25/2024]
Abstract
Complementary aspects of tissue microstructure can be studied with diffusion-weighted imaging (DWI). However, there is no consensus on how to design a diffusion acquisition protocol for multiple models within a clinically feasible time. The purpose of this study is to provide a flexible framework that is able to optimize the shell acquisition protocol given a set of DWI models. Eleven healthy subjects underwent an extensive DWI acquisition protocol, including 15 candidate shells, ranging from 10 to 3500 s/mm2. The proposed framework aims to determine the optimized acquisition scheme (OAS) with a data-driven procedure minimizing the squared error of model-estimated parameters. We tested the proposed method over five heterogeneous DWI models exploiting both low and high b-values (i.e., diffusion tensor imaging [DTI], free water, intra-voxel incoherent motion [IVIM], diffusion kurtosis imaging [DKI], and neurite orientation dispersion and density imaging [NODDI]). A voxel-level and region of interest (ROI)-level analysis was conducted over the white matter and in 48 fiber bundles, respectively. Results showed that acquiring data for the five abovementioned models via OAS requires 14 min, compared with 35 min for the joint recommended acquisition protocol. The parameters derived from the reference acquisition scheme and the OAS are comparable in terms of estimated values, noise, and tissue contrast. Furthermore, the power analysis showed that the OAS retains the potential sensitivity to group-level differences in the parameters of interest, with the exception of the free water model. Overall, there is a linear correspondence (R2 = 0.91) between OAS and reference-derived parameters. In conclusion, the proposed framework optimizes the shell acquisition scheme for a given set of DWI models (i.e., DTI, free water, IVIM, DKI, and NODDI), combining low and high b-values while saving acquisition time.
Collapse
Affiliation(s)
- Tommaso Ciceri
- Neuroimaging Unit, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Italy
- Department of Information Engineering, University of Padua, Padua, Italy
| | - Alberto De Luca
- Image Sciences Institute, Division Imaging and Oncology, UMC Utrecht, Utrecht, The Netherlands
- Neurology Department, UMC Utrecht Brain Center, UMC Utrecht, Utrecht, The Netherlands
| | - Nivedita Agarwal
- Diagnostic Imaging and Neuroradiology Unit, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Filippo Arrigoni
- Pediatric Radiology and Neuroradiology Department, V. Buzzi Children's Hospital, Milan, Italy
| | - Denis Peruzzo
- Neuroimaging Unit, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Italy
| |
Collapse
|
2
|
Chen S, Chu ML, Liang L, Liu YJ, Chen NK, Wang H, Juan CJ, Chang HC. Highly accelerated multi-shot intravoxel incoherent motion diffusion-weighted imaging in brain enabled by parametric POCS-based multiplexed sensitivity encoding. NMR IN BIOMEDICINE 2024; 37:e5063. [PMID: 37871617 DOI: 10.1002/nbm.5063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/25/2023]
Abstract
Recently, intravoxel incoherent motion (IVIM) diffusion-weighted imaging (DWI) has also been demonstrated as an imaging tool for applications in neurological and neurovascular diseases. However, the use of single-shot diffusion-weighted echo-planar imaging for IVIM DWI acquisition leads to suboptimal data quality: for instance, geometric distortion and deteriorated image quality at high spatial resolution. Although the recently commercialized multi-shot acquisition methods, such as multiplexed sensitivity encoding (MUSE), can attain high-resolution and high-quality DWI with signal-to-noise ratio (SNR) performance superior to that of the conventional parallel imaging method, the prolonged scan time associated with multi-shot acquisition is impractical for routine IVIM DWI. This study proposes an acquisition and reconstruction framework based on parametric-POCSMUSE to accelerate the four-shot IVIM DWI with 70% reduction of total scan time (13 min 8 s versus 4 min 8 s). First, the four-shot IVIM DWI scan with 17 b values was accelerated by acquiring only one segment per b value except for b values of 0 and 600 s/mm2 . Second, an IVIM-estimation scheme was integrated into the parametric-POCSMUSE to enable joint reconstruction of multi-b images from under-sampled four-shot IVIM DWI data. In vivo experiments on both healthy subjects and patients show that the proposed framework successfully produced multi-b DW images with significantly higher SNRs and lower reconstruction errors than did the conventional acceleration method based on parallel imaging. In addition, the IVIM quantitative maps estimated from the data produced by the proposed framework showed quality comparable to that of fully sampled MUSE-reconstructed images, suggesting that the proposed framework can enable highly accelerated multi-shot IVIM DWI without sacrificing data quality. In summary, the proposed framework can make multi-shot IVIM DWI feasible in a routine MRI examination, with reasonable scan time and improved geometric fidelity.
Collapse
Affiliation(s)
- Shihui Chen
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
- Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Mei-Lan Chu
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Liyuan Liang
- Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yi-Jui Liu
- Department of Automatic Control Engineering, Feng Chia University, Taichung, Taiwan
| | - Nan-Kuei Chen
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, USA
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina, USA
| | - He Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Chun-Jung Juan
- Department of Medical Imaging, China Medical University Hsinchu Hospital, Hsinchu, Taiwan
- Department of Radiology, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Imaging, China Medical University Hospital, Taichung, Taiwan
| | - Hing-Chiu Chang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
- Multi-Scale Medical Robotics Center, Shatin, Hong Kong
| |
Collapse
|
3
|
van der Thiel MM, van der Knaap N, Freeze WM, Postma AA, Ariës MJH, Backes WH, Jansen JFA. The dependence of cerebral interstitial fluid on diffusion-sensitizing directions: A multi-b-value diffusion MRI study in a memory clinic sample. Magn Reson Imaging 2023; 104:97-104. [PMID: 37820977 DOI: 10.1016/j.mri.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/08/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
Three-component intravoxel incoherent motion (3C-IVIM) imaging with spectral analysis provides a proxy for interstitial fluid (ISF) (e.g., in perivascular spaces (PVS), granting a potential marker for altered cerebral clearance. When 3C-IVIM images are acquired with three orthogonal diffusion-sensitizing directions, these are often averaged into the Trace image. This may result in loss of valuable direction-specific information, particularly in PVS-rich regions (basal ganglia (BG) and centrum semiovale (CSO)). This study assessed the dependence of individual diffusion-sensitizing directions to the ISF fraction in PVS-rich regions. Additionally, we explored the value of diffusion direction-specific information on ISF characteristics in distinguishing thirty-one patients with cognitive impairment (CI) (Alzheimer's disease (n = 15) or Mild Cognitive Impairment (n = 16)) from thirty cognitively healthy elderly controls (CON). Multi-b-value diffusion-weighted images were acquired in three orthogonal directions (L-R (left-right), A-P (anterior-posterior) and S-I (superior-inferior)) at 3 T. Voxel-based spectral analysis using non-negative least squares was conducted to independently analyze the L-R, A-P, S-I, and Trace images. 3C-IVIM measures were first compared between diffusion-sensitizing directions and the Trace within the BG using repeated measures ANOVA. Subsequently, the 3C-IVIM measures were compared per direction between the CI and CSO group in the BG and CSO with multivariable linear regression. Our results show that the ISF fraction significantly differs between all diffusion-sensitizing directions and Trace in the BG, with the highest ISF fraction detected using S-I. Solely using S-I, a higher ISF fraction was identified in CI compared to CON in the BG (p = .020) and CSO (p = .046). Thereby, this study found that the measured ISF fraction depends on the acquired diffusion-sensitizing direction, where S-I is most sensitive to detect ISF and differences between CI and CON. The Trace approach is not always sensitive enough to ISF characteristics. Solely acquiring S-I may offer an alternative to reduce scanning time.
Collapse
Affiliation(s)
- Merel M van der Thiel
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; School for Mental Health & Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Psychiatry & Neuropsychology, Maastricht University, Maastricht, the Netherlands.
| | - Noa van der Knaap
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; School for Mental Health & Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Intensive Care, Maastricht University Medical Center, Maastricht, the Netherlands.
| | - Whitney M Freeze
- Department of Psychiatry & Neuropsychology, Maastricht University, Maastricht, the Netherlands; Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Alida A Postma
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; School for Mental Health & Neuroscience, Maastricht University, Maastricht, the Netherlands.
| | - Marcel J H Ariës
- School for Mental Health & Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Intensive Care, Maastricht University Medical Center, Maastricht, the Netherlands.
| | - Walter H Backes
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; School for Mental Health & Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Psychiatry & Neuropsychology, Maastricht University, Maastricht, the Netherlands.
| | - Jacobus F A Jansen
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; School for Mental Health & Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
4
|
Liu M, Saadat N, Jeong Y, Roth S, Niekrasz M, Giurcanu M, Carroll T, Christoforidis G. Quantitative perfusion and water transport time model from multi b-value diffusion magnetic resonance imaging validated against neutron capture microspheres. J Med Imaging (Bellingham) 2023; 10:063501. [PMID: 38090645 PMCID: PMC10711680 DOI: 10.1117/1.jmi.10.6.063501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/10/2023] [Accepted: 11/13/2023] [Indexed: 12/20/2023] Open
Abstract
Purpose Quantification of perfusion in ml/100 g/min, rather than comparing relative values side-to-side, is critical at the clinical and research levels for large longitudinal and multi-center trials. Intravoxel incoherent motion (IVIM) is a non-contrast magnetic resonance imaging diffusion-based scan that uses a multitude of b -values to measure various speeds of molecular perfusion and diffusion, sidestepping inaccuracy of arterial input functions or bolus kinetics. Questions remain as to the original of the signal and whether IVIM returns quantitative and accurate perfusion in a pathology setting. This study tests a novel method of IVIM perfusion quantification compared with neutron capture microspheres. Approach We derive an expression for the quantification of capillary blood flow in ml/100 g/min by solving the three-dimensional Gaussian probability distribution and defining water transport time (WTT) as when 50% of the original water remains in the tissue of interest. Calculations were verified in a six-subject pre-clinical canine model of normocapnia, CO 2 induced hypercapnia, and middle cerebral artery occlusion (ischemic stroke) and compared with quantitative microsphere perfusion. Results Linear regression analysis of IVIM and microsphere perfusion showed agreement (slope = 0.55, intercept = 52.5, R 2 = 0.64 ) with a Bland-Altman mean difference of - 11.8 [ - 78,54 ] ml / 100 g / min . Linear regression between dynamic susceptibility contrast mean transit time and IVIM WTT asymmetry in infarcted tissue was excellent (slope = 0.59 , intercept = 0.3, R 2 = 0.93 ). Strong linear agreement was found between IVIM and reference standard infarct volume (slope = 1.01, R 2 = 0.79 ). The simulation of cerebrospinal fluid (CSF) suppression via inversion recovery returned a blood signal reduced by 82% from combined T1 and T2 effects. Conclusions The accuracy and sensitivity of IVIM provides evidence that observed signal changes reflect cytotoxic edema and tissue perfusion and can be quantified with WTT. Partial volume contamination of CSF may be better removed during post-processing rather than with inversion recovery.
Collapse
Affiliation(s)
- Mira Liu
- University of Chicago, Committee on Medical Physics, Department of Radiology, Chicago, Illinois, United States
| | - Niloufar Saadat
- University of Chicago, Committee on Medical Physics, Department of Radiology, Chicago, Illinois, United States
| | - Yong Jeong
- University of Chicago, Committee on Medical Physics, Department of Radiology, Chicago, Illinois, United States
| | - Steven Roth
- University of Illinois, Department of Anesthesiology, Chicago, Illinois, United States
| | - Marek Niekrasz
- University of Chicago, Committee on Medical Physics, Department of Radiology, Chicago, Illinois, United States
| | - Mihai Giurcanu
- University of Chicago, Department of Statistics, Chicago, Illinois, United States
| | - Timothy Carroll
- University of Chicago, Committee on Medical Physics, Department of Radiology, Chicago, Illinois, United States
| | - Gregory Christoforidis
- University of Chicago, Committee on Medical Physics, Department of Radiology, Chicago, Illinois, United States
| |
Collapse
|
5
|
Zhang Q, Sui C, Cho J, Yang L, Chen T, Guo B, Gillen KM, Li J, Guo L, Wang Y. Assessing Cerebral Oxygen Metabolism Changes in Patients With Preeclampsia Using Voxel-Based Morphometry of Oxygen Extraction Fraction Maps in Magnetic Resonance Imaging. Korean J Radiol 2023; 24:324-337. [PMID: 36907593 PMCID: PMC10067693 DOI: 10.3348/kjr.2022.0652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/02/2023] [Accepted: 01/28/2023] [Indexed: 03/14/2023] Open
Abstract
OBJECTIVE The objective of this study was to analyze the different brain oxygen metabolism statuses in preeclampsia using magnetic resonance imaging and investigate the factors that affect cerebral oxygen metabolism in preeclampsia. MATERIALS AND METHODS Forty-nine women with preeclampsia (mean age 32.4 years; range, 18-44 years), 22 pregnant healthy controls (PHCs) (mean age 30.7 years; range, 23-40 years), and 40 non-pregnant healthy controls (NPHCs) (mean age 32.5 years; range, 20-42 years) were included in this study. Brain oxygen extraction fraction (OEF) values were computed using quantitative susceptibility mapping (QSM) plus quantitative blood oxygen level-dependent magnitude-based OEF mapping (QSM + quantitative blood oxygen level-dependent imaging or QQ) obtained with a 1.5-T scanner. Voxel-based morphometry (VBM) was used to investigate the differences in OEF values in the brain regions among the groups. RESULTS Among the three groups, the average OEF values were significantly different in multiple brain areas, including the parahippocampus, multiple gyri of the frontal lobe, calcarine, cuneus, and precuneus (all P-values were less than 0.05, after correcting for multiple comparisons). The average OEF values of the preeclampsia group were higher than those of the PHC and NPHC groups. The bilateral superior frontal gyrus/bilateral medial superior frontal gyrus had the largest size of the aforementioned brain regions, and the OEF values in this area were 24.2 ± 4.6, 21.3 ± 2.4, and 20.6 ± 2.8 in the preeclampsia, PHC, and NPHC groups, respectively. In addition, the OEF values showed no significant differences between NPHC and PHC. Correlation analysis revealed that the OEF values of some brain regions (mainly involving the frontal, occipital, and temporal gyrus) were positively correlated with age, gestational week, body mass index, and mean blood pressure in the preeclampsia group (r = 0.361-0.812). CONCLUSION Using whole-brain VBM analysis, we found that patients with preeclampsia had higher OEF values than controls.
Collapse
Affiliation(s)
- Qihao Zhang
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| | - Chaofan Sui
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Junghun Cho
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, New York, NY, USA
| | - Linfeng Yang
- Department of Radiology, Jinan Maternity and Child Care Hospital, Jinan, Shandong, China
| | - Tao Chen
- Department of Clinical Laboratory, Jinan Maternity and Child Care Hospital, Jinan, Shandong, China
| | - Bin Guo
- Department of Radiology, Jinan Maternity and Child Care Hospital, Jinan, Shandong, China
| | | | - Jing Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Lingfei Guo
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| | - Yi Wang
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
6
|
Yamashita K, Sugimori H, Nakamizo A, Amano T, Kuwashiro T, Watanabe T, Kawamata K, Furuya K, Harada S, Kamei R, Maehara J, Okada Y, Noguchi T. Different hemodynamics of basal ganglia between moyamoya and non-moyamoya diseases using intravoxel incoherent motion imaging and single-photon emission computed tomography. Acta Radiol 2023; 64:769-775. [PMID: 35466686 DOI: 10.1177/02841851221092895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Moyamoya disease (MMD) and non-MMD have different pathogenesis, clinical presentation, and treatment policy. PURPOSE To identify differences in hemodynamics between MMD and non-MMD using intravoxel incoherent motion (IVIM) magnetic resonance imaging (MRI) and single-photon emission computed tomography (SPECT). MATERIAL AND METHODS Patients who had undergone 99mTc-ECD or 123I-IMP SPECT, and IVIM imaging were retrospectively studied. IVIM imaging was acquired using six different b-values. Cerebral blood flow ratio (CBFR) in the basal ganglia was calculated using a standardized volume-of-interest template. The cerebellum was used as a reference region. IVIM perfusion fraction (f) was obtained using a two-step fitting algorithm. Elliptical regions of interest were placed in bilateral basal ganglia on the IVIM f map. Patients were classified into MMD and non-MMD groups. The correlation between CBFR and mean IVIM f (fmean) in the basal ganglia was evaluated using Spearman's rank correlation coefficient. RESULTS In total, 20 patients with MMD and 28 non-MMD patients were analyzed. No significant differences in fmean were observed among MMD, affected hemisphere with non-MMD (non-MMDaff), and unaffected hemispheres with non-MMD (non-MMDunaff). A negative correlation was seen between fmean and CBFR in the MMD group (r = -0.40, P = 0.0108), but not in the non-MMD group (non-MMDaff, r = 0.07, P = 0.69; non-MMDunaff, r = -0.22, P = 0.29). No significant differences were found among MMD and non-MMD patients, irrespective of SPECT tracers. CONCLUSION The combination of IVIM MRI and SPECT appears to allow non-invasive identification of differences in hemodynamics between MMD and non-MMD.
Collapse
Affiliation(s)
- Koji Yamashita
- Department of Radiology, Clinical Research Institute, 37085National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Hiroshi Sugimori
- Department of Cerebrovascular Medicine and Neurology, Clinical Research Institute, 37085National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Akira Nakamizo
- Department of Neurosurgery, Clinical Research Institute, 37085National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Toshiyuki Amano
- Department of Neurosurgery, Clinical Research Institute, 37085National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Takahiro Kuwashiro
- Department of Cerebrovascular Medicine and Neurology, Clinical Research Institute, 37085National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Takeharu Watanabe
- Department of Medical Technology, Division of Radiology, 37085National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Keisuke Kawamata
- Department of Medical Technology, Division of Radiology, 37085National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Kiyomi Furuya
- Department of Radiology, Clinical Research Institute, 37085National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Shino Harada
- Department of Radiology, Clinical Research Institute, 37085National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Ryotaro Kamei
- Department of Radiology, Clinical Research Institute, 37085National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Junki Maehara
- Department of Radiology, Clinical Research Institute, 37085National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Yasushi Okada
- Department of Cerebrovascular Medicine and Neurology, Clinical Research Institute, 37085National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Tomoyuki Noguchi
- Department of Radiology, Clinical Research Institute, 37085National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| |
Collapse
|
7
|
Jiang B, Mackay MT, Stence N, Domi T, Dlamini N, Lo W, Wintermark M. Neuroimaging in Pediatric Stroke. Semin Pediatr Neurol 2022; 43:100989. [PMID: 36344022 DOI: 10.1016/j.spen.2022.100989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022]
Abstract
Pediatric stroke is unfortunately not a rare condition. It is associated with severe disability and mortality because of the complexity of potential clinical manifestations, and the resulting delay in seeking care and in diagnosis. Neuroimaging plays an important role in the multidisciplinary response for pediatric stroke patients. The rapid development of adult endovascular thrombectomy has created a new momentum in health professionals caring for pediatric stroke patients. Neuroimaging is critical to make decisions of identifying appropriate candidates for thrombectomy. This review article will review current neuroimaging techniques, imaging work-up strategies and special considerations in pediatric stroke. For resources limited areas, recommendation of substitute imaging approaches will be provided. Finally, promising new techniques and hypothesis-driven research protocols will be discussed.
Collapse
Affiliation(s)
- Bin Jiang
- Department of Radiology, Neuroradiology Section, Stanford University, Stanford, CA.
| | - Mark T Mackay
- Murdoch Children's Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Victoria, Australia.
| | - Nicholas Stence
- Department of Radiology, pediatric Neuroradiology Section, University of Colorado School of Medicine, Aurora, CO
| | - Trish Domi
- Department of Neurology, Hospital for Sick Children, Toronto, Canada.
| | - Nomazulu Dlamini
- Department of Neurology, Hospital for Sick Children, Toronto, Canada.
| | - Warren Lo
- Department of Pediatrics and Neurology, The Ohio State University & Nationwide Children's Hospital, Columbus, OH.
| | - Max Wintermark
- Department of Neuroradiology, University of Texas MD Anderson Center, Houston, TX.
| |
Collapse
|
8
|
Lee W, Choi G, Lee J, Park H. Registration and quantification network (RQnet) for IVIM-DKI analysis in MRI. Magn Reson Med 2022; 89:250-261. [PMID: 36121205 DOI: 10.1002/mrm.29454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 11/08/2022]
Abstract
PURPOSE A deep learning method is proposed for aligning diffusion weighted images (DWIs) and estimating intravoxel incoherent motion-diffusion kurtosis imaging parameters simultaneously. METHODS We propose an unsupervised deep learning method that performs 2 tasks: registration and quantification for intravoxel incoherent motion-diffusion kurtosis imaging analysis. A common registration method in diffusion MRI is based on minimizing dissimilarity between various DWIs, which may result in registration errors due to different contrasts in different DWIs. We designed a novel unsupervised deep learning method for both accurate registration and quantification of various diffusion parameters. In order to generate motion-simulated training data and test data, 17 volunteers were scanned without moving their heads, and 4 volunteers moved their heads during the scan in a 3 Tesla MRI. In order to investigate the applicability of the proposed method to other organs, kidney images were also obtained. We compared the registration accuracy of the proposed method, statistical parametric mapping, and a deep learning method with a normalized cross-correlation loss. In the quantification part of the proposed method, a deep learning method that considered the diffusion gradient direction was used. RESULTS Simulations and experimental results showed that the proposed method accurately performed registration and quantification for intravoxel incoherent motion-diffusion kurtosis imaging analysis. The registration accuracy of the proposed method was high for all b values. Furthermore, quantification performance was analyzed through simulations and in vivo experiments, where the proposed method showed the best performance among the compared methods. CONCLUSION The proposed method aligns the DWIs and accurately quantifies the intravoxel incoherent motion-diffusion kurtosis imaging parameters.
Collapse
Affiliation(s)
- Wonil Lee
- Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Giyong Choi
- Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jongyeon Lee
- Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - HyunWook Park
- Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| |
Collapse
|
9
|
Retinal microvascular function is associated with the cerebral microcirculation as determined by intravoxel incoherent motion MRI. J Neurol Sci 2022; 440:120359. [DOI: 10.1016/j.jns.2022.120359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/29/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022]
|
10
|
Yamashita K, Kamei R, Sugimori H, Kuwashiro T, Tokunaga S, Kawamata K, Furuya K, Harada S, Maehara J, Okada Y, Noguchi T. Interobserver Reliability on Intravoxel Incoherent Motion Imaging in Patients with Acute Ischemic Stroke. AJNR Am J Neuroradiol 2022; 43:696-700. [PMID: 35450854 PMCID: PMC9089262 DOI: 10.3174/ajnr.a7486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/11/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND PURPOSE Noninvasive perfusion-weighted imaging with short scanning time could be advantageous in order to determine presumed penumbral regions and subsequent treatment strategy for acute ischemic stroke (AIS). Our aim was to evaluate interobserver agreement and the clinical utility of intravoxel incoherent motion MR imaging in patients with acute ischemic stroke. MATERIALS AND METHODS We retrospectively studied 29 patients with AIS (17 men, 12 women; mean age, 75.2 [SD, 12.0 ] years; median, 77 years). Each patient underwent intravoxel incoherent motion MR imaging using a 1.5T MR imaging scanner. Diffusion-sensitizing gradients were applied sequentially in the x, y, and z directions with 6 different b-values (0, 50, 100, 150, 200, and 1000 seconds/mm2). From the intravoxel incoherent motion MR imaging data, diffusion coefficient, perfusion fraction, and pseudodiffusion coefficient maps were obtained using a 2-step fitting algorithm based on the Levenberg-Marquardt method. The presence of decreases in the intravoxel incoherent motion perfusion fraction and pseudodiffusion coefficient values compared with the contralateral normal-appearing brain was graded on a 2-point scale by 2 independent neuroradiologists. Interobserver agreement on the rating scale was evaluated using the κ statistic. Clinical characteristics of patients with a nondecreased intravoxel incoherent motion perfusion fraction and/or pseudodiffusion coefficient rated by the 2 observers were also assessed. RESULTS Interobserver agreement was shown for the intravoxel incoherent motion perfusion fraction (κ = 0.854) and pseudodiffusion coefficient (κ = 0.789) maps, which indicated almost perfect and substantial agreement, respectively. Patients with a nondecreased intravoxel incoherent motion perfusion fraction tended to show recanalization of the occluded intracranial arteries more frequently than patients with a decreased intravoxel incoherent motion perfusion fraction. CONCLUSIONS Intravoxel incoherent motion MR imaging could be performed in < 1 minute in addition to routine DWI. Intravoxel incoherent motion parameters noninvasively provide feasible, qualitative perfusion-related information for assessing patients with acute ischemic stroke.
Collapse
Affiliation(s)
- K Yamashita
- From the Departments of Radiology (K.Y., R.K., K.F., S.H., J.M., T.N.)
| | - R Kamei
- From the Departments of Radiology (K.Y., R.K., K.F., S.H., J.M., T.N.)
| | - H Sugimori
- Cerebrovascular Medicine and Neurology (H.S., T.K., Y.O.)
| | - T Kuwashiro
- Cerebrovascular Medicine and Neurology (H.S., T.K., Y.O.)
| | - S Tokunaga
- Neuroendovascular Therapy (S.T.), Clinical Research Institute
| | - K Kawamata
- Medical Technology (K.K.), Division of Radiology, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - K Furuya
- From the Departments of Radiology (K.Y., R.K., K.F., S.H., J.M., T.N.)
| | - S Harada
- From the Departments of Radiology (K.Y., R.K., K.F., S.H., J.M., T.N.)
| | - J Maehara
- From the Departments of Radiology (K.Y., R.K., K.F., S.H., J.M., T.N.)
| | - Y Okada
- Cerebrovascular Medicine and Neurology (H.S., T.K., Y.O.)
| | - T Noguchi
- From the Departments of Radiology (K.Y., R.K., K.F., S.H., J.M., T.N.)
| |
Collapse
|
11
|
Gao F, Zhao W, Zheng Y, Duan Y, Ji M, Lin G, Zhu Z. Intravoxel Incoherent Motion Magnetic Resonance Imaging Used in Preoperative Screening of High-Risk Patients With Moyamoya Disease Who May Develop Postoperative Cerebral Hyperperfusion Syndrome. Front Neurosci 2022; 16:826021. [PMID: 35310102 PMCID: PMC8924456 DOI: 10.3389/fnins.2022.826021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/26/2022] [Indexed: 11/16/2022] Open
Abstract
Objective This study aimed to investigate the feasibility of preoperative intravoxel incoherent motion (IVIM) MRI for the screening of high-risk patients with moyamoya disease (MMD) who may develop postoperative cerebral hyperperfusion syndrome (CHS). Methods This study composed of two parts. In the first part 24 MMD patients and 24 control volunteers were enrolled. IVIM-MRI was performed. The relative pseudo-diffusion coefficient, perfusion fraction, apparent diffusion coefficient, and diffusion coefficient (rD*, rf, rADC, and rD) values of the IVIM sequence were compared according to hemispheres between MMD patient and healthy control groups. In the second part, 98 adult patients (124 operated hemispheres) with MMD who underwent surgery were included. Preoperative IVIM-MRI was performed. The rD*, rf, rADC, rD, and rfD* values of the IVIM sequence were calculated and analyzed. Operated hemispheres were divided into CHS and non-CHS groups. Patients’ age, sex, Matsushima type, Suzuki stage, and IVIM-MRI examination results were compared between CHS and non-CHS groups. Results Only the rf value was significantly higher in the healthy control group than in the MMD group (P < 0.05). Out of 124 operated hemispheres, 27 were assigned to the CHS group. Patients with clinical presentation of Matsushima types I–V were more likely to develop CHS after surgery (P < 0.05). The rf values of the ipsilateral hemisphere were significantly higher in the CHS group than in the non-CHS group (P < 0.05). The rfD* values of the ACA and MCA supply areas of the ipsilateral hemisphere were significantly higher in the CHS group than in the non-CHS group (P < 0.05). Only the rf value of the anterior cerebral artery supply area in the contralateral hemisphere was higher in the CHS group than in the non-CHS group (P < 0.05). The rf values of the middle and posterior cerebral artery supply areas and the rD, rD*, and rADC values of the both hemispheres were not significantly different between the CHS and non-CHS groups (P > 0.05). Conclusion Preoperative non-invasive IVIM-MRI analysis, particularly the f-value of the ipsilateral hemisphere, may be helpful in predicting CHS in adult patients with MMD after surgery. MMD patients with ischemic onset symptoms are more likely to develop CHS after surgery.
Collapse
Affiliation(s)
- Feng Gao
- Department of Radiology, Huadong Hospital Fudan University, Shanghai, China
- *Correspondence: Feng Gao,
| | - Wei Zhao
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yu Zheng
- Department of Radiology, Chengdu Second People’s Hospital, Chengdu, China
| | - Yu Duan
- Department of Neurosurgery, Huadong Hospital Fudan University, Shanghai, China
| | - Ming Ji
- Department of Radiology, Huadong Hospital Fudan University, Shanghai, China
| | - Guangwu Lin
- Department of Radiology, Huadong Hospital Fudan University, Shanghai, China
| | - Zhenfang Zhu
- Department of Radiology, Huadong Hospital Fudan University, Shanghai, China
- Zhenfang Zhu,
| |
Collapse
|
12
|
Wang DJJ, Le Bihan D, Krishnamurthy R, Smith M, Ho ML. Noncontrast Pediatric Brain Perfusion: Arterial Spin Labeling and Intravoxel Incoherent Motion. Magn Reson Imaging Clin N Am 2021; 29:493-513. [PMID: 34717841 DOI: 10.1016/j.mric.2021.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Noncontrast magnetic resonance imaging techniques for measuring brain perfusion include arterial spin labeling (ASL) and intravoxel incoherent motion (IVIM). These techniques provide noninvasive and repeatable assessment of cerebral blood flow or cerebral blood volume without the need for intravenous contrast. This article discusses the technical aspects of ASL and IVIM with a focus on normal physiologic variations, technical parameters, and artifacts. Multiple pediatric clinical applications are presented, including tumors, stroke, vasculopathy, vascular malformations, epilepsy, migraine, trauma, and inflammation.
Collapse
Affiliation(s)
- Danny J J Wang
- USC Institute for Neuroimaging and Informatics, SHN, 2025 Zonal Avenue, Health Sciences Campus, Los Angeles, CA 90033, USA
| | - Denis Le Bihan
- NeuroSpin, Centre d'études de Saclay, Bâtiment 145, Gif-sur-Yvette 91191, France
| | - Ram Krishnamurthy
- Department of Radiology, Nationwide Children's Hospital, 700 Children's Drive - ED4, Columbus, OH 43205, USA
| | - Mark Smith
- Department of Radiology, Nationwide Children's Hospital, 700 Children's Drive - ED4, Columbus, OH 43205, USA
| | - Mai-Lan Ho
- Department of Radiology, Nationwide Children's Hospital, 700 Children's Drive - ED4, Columbus, OH 43205, USA.
| |
Collapse
|
13
|
Loução R, Oros-Peusquens AM, Langen KJ, Ferreira HA, Shah NJ. A Fast Protocol for Multiparametric Characterisation of Diffusion in the Brain and Brain Tumours. Front Oncol 2021; 11:554205. [PMID: 34621664 PMCID: PMC8490752 DOI: 10.3389/fonc.2021.554205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/26/2021] [Indexed: 11/13/2022] Open
Abstract
Multi-parametric tissue characterisation is demonstrated using a 4-minute protocol based on diffusion trace acquisitions. Three diffusion regimes are covered simultaneously: pseudo-perfusion, Gaussian, and non-Gaussian diffusion. The clinical utility of this method for fast multi-parametric mapping for brain tumours is explored. A cohort of 17 brain tumour patients was measured on a 3T hybrid MR-PET scanner with a standard clinical MRI protocol, to which the proposed multi-parametric diffusion protocol was subsequently added. For comparison purposes, standard perfusion and a full diffusion kurtosis protocol were acquired. Simultaneous amino-acid (18F-FET) PET enabled the identification of active tumour tissue. The metrics derived from the proposed protocol included perfusion fraction, pseudo-diffusivity, apparent diffusivity, and apparent kurtosis. These metrics were compared to the corresponding metrics from the dedicated acquisitions: cerebral blood volume and flow, mean diffusivity and mean kurtosis. Simulations were carried out to assess the influence of fitting methods and noise levels on the estimation of the parameters. The diffusion and kurtosis metrics obtained from the proposed protocol show strong to very strong correlations with those derived from the conventional protocol. However, a bias towards lower values was observed. The pseudo-perfusion parameters showed very weak to weak correlations compared to their perfusion counterparts. In conclusion, we introduce a clinically applicable protocol for measuring multiple parameters and demonstrate its relevance to pathological tissue characterisation.
Collapse
Affiliation(s)
- Ricardo Loução
- Institute of Neurosciences and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany.,Institute of Neurosciences and Medicine 11, INM-11, JARA, Forschungszentrum Jülich, Jülich, Germany.,Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | | | - Karl-Josef Langen
- Institute of Neurosciences and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
| | - Hugo Alexandre Ferreira
- Institute of Biophysics and Biomedical Engineering, Faculty of Sciences of the University of Lisbon, Lisbon, Portugal
| | - N Jon Shah
- Institute of Neurosciences and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany.,Institute of Neurosciences and Medicine 11, INM-11, JARA, Forschungszentrum Jülich, Jülich, Germany.,Jülich Aachen Research Alliance (JARA) - BRAIN - Translational Medicine, Aachen, Germany.,Department of Neurology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
14
|
Chen F, Dai Z, Yao L, Dong C, Shi H, Dou W, Xing W. Association of cerebral microvascular perfusion and diffusion dynamics detected by intravoxel incoherent motion-diffusion weighted imaging with initial neurological function and clinical outcome in acute ischemic stroke. PeerJ 2021; 9:e12196. [PMID: 34616631 PMCID: PMC8450009 DOI: 10.7717/peerj.12196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/31/2021] [Indexed: 11/28/2022] Open
Abstract
Background This work aimed to explore the association of cerebral microvascular perfusion and diffusion dynamics measured by intravoxel incoherent motion (IVIM) imaging with initial neurological function and clinical outcome in acute stroke. Methods In total, 39 patients were assessed with admission National Institutes of Health Stroke Scale (NIHSS) and day-90 modified Rankin Scale (mRS). The parametrical maps of IVIM were obtained, including apparent diffusion coefficient (ADC), pseudo-diffusion coefficient (D*), true diffusion coefficient (D) and perfusion fraction (f). The fD* was the product of f and D*. Moreover, the ratios of lesioned/contralateral parameters (rADC, rD, rD*, rf and rfD*) were also obtained. The differences of these parameters between the poor outcome group and good outcome group were evaluated. Partial correlation analysis was used to evaluate the correlations between the admission NIHSS/day-90 mRS and each parameter ratio, with lesion volumes controlled. Results The ADC, D, D*, f and fD* values of lesions were significantly reduced than those of the contralateral regions. The rADC and rD were significantly decreased in the poor outcome group than good outcome group (all p < 0.01). With lesion volume controlled, rADC showed a weak negative correlation (r = −0.340, p = 0.037) and a notable negative correlation (r = −0.688, p < 0.001) with admission NIHSS score and day-90 mRS score, respectively. In addition, rD showed a strong negative correlation (r = −0.731, p < 0.001) with day-90 mRS score. Conclusion Significant negative correlations were revealed between IVIM derived diffusion dynamics parameters and initial neurological function as well as clinical outcome for patients with acute ischemic stroke. IVIM can be therefore suggested as an effective non-invasive method for evaluating the acute ischemic stroke.
Collapse
Affiliation(s)
- Fei Chen
- Department of Radiology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China.,Department of Radiology, Yancheng Third People's Hospital, Yancheng, Jiangsu, China
| | - Zhenyu Dai
- Department of Radiology, Yancheng Third People's Hospital, Yancheng, Jiangsu, China
| | - Lizheng Yao
- Department of Radiology, Yancheng Third People's Hospital, Yancheng, Jiangsu, China
| | - Congsong Dong
- Department of Radiology, Yancheng Third People's Hospital, Yancheng, Jiangsu, China
| | - Haicun Shi
- Department of Neurology, Yancheng Third People's Hospital, Yancheng, Jiangsu, China
| | | | - Wei Xing
- Department of Radiology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| |
Collapse
|
15
|
Uwano I, Kobayashi M, Setta K, Ogasawara K, Yamashita F, Mori F, Matsuda T, Sasaki M. Assessment of Impaired Cerebrovascular Reactivity in Chronic Cerebral Ischemia using Intravoxel Incoherent Motion Magnetic Resonance Imaging. J Stroke Cerebrovasc Dis 2021; 30:106107. [PMID: 34562793 DOI: 10.1016/j.jstrokecerebrovasdis.2021.106107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 08/10/2021] [Accepted: 09/04/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The severity of chronic cerebral ischemia can be assessed using cerebrovascular reactivity (CVR) to acetazolamide (ACZ) challenge, which is measured by single-photon emission computed tomography (SPECT); however, this is an invasive method. We investigated whether intravoxel incoherent motion (IVIM) magnetic resonance imaging (MRI) can assess impaired CVR in preoperative patients with chronic cerebral ischemia and compared it to SPECT-CVR. METHODS Forty-seven patients with unilateral cervical carotid artery stenosis underwent diffusion-weighted MRI with 11 b-values in the range of 0-800 s/mm2 and cerebral perfusion SPECT with the ACZ challenge. The perfusion fraction (f) and diffusion coefficient (D) of the IVIM parameters were calculated using a bi-exponential model. The f and D values and these ratios of the ipsilateral middle cerebral artery territory against the contralateral side were compared with the CVR values of the affected side calculated from the SPECT data. RESULTS The IVIM-f and D values in the affected side were significantly higher than those in the unaffected side (median: 7.74% vs. 7.45%, p = 0.027; 0.816 vs. 0.801 10-3mm2/s, p < 0.001; respectively). However, there were no significant correlations between the f or D values and SPECT-CVR values in the affected side. In contrast, the f ratio showed a moderate negative correlation with the SPECT-CVR values (r = -0.40, p = 0.006) and detected impaired CVR (< 18.4%) with a sensitivity/specificity of 0.71/0.90. CONCLUSION The IVIM perfusion parameter, f, can noninvasively assess impaired CVR with high sensitivity and specificity in patients with unilateral cervical carotid artery stenosis.
Collapse
Affiliation(s)
- Ikuko Uwano
- Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, 1-1-1 Idai-dori, Yahaba, Iwate 028-3694, Japan.
| | - Masakazu Kobayashi
- Department of Neurosurgery, Iwate Medical University, Yahaba, Iwate, Japan
| | - Kengo Setta
- Department of Neurosurgery, Iwate Medical University, Yahaba, Iwate, Japan
| | - Kuniaki Ogasawara
- Department of Neurosurgery, Iwate Medical University, Yahaba, Iwate, Japan
| | - Fumio Yamashita
- Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, 1-1-1 Idai-dori, Yahaba, Iwate 028-3694, Japan
| | - Futoshi Mori
- Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, 1-1-1 Idai-dori, Yahaba, Iwate 028-3694, Japan
| | - Tsuyoshi Matsuda
- Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, 1-1-1 Idai-dori, Yahaba, Iwate 028-3694, Japan
| | - Makoto Sasaki
- Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, 1-1-1 Idai-dori, Yahaba, Iwate 028-3694, Japan
| |
Collapse
|
16
|
Scott LA, Dickie BR, Rawson SD, Coutts G, Burnett TL, Allan SM, Parker GJ, Parkes LM. Characterisation of microvessel blood velocity and segment length in the brain using multi-diffusion-time diffusion-weighted MRI. J Cereb Blood Flow Metab 2021; 41:1939-1953. [PMID: 33325766 PMCID: PMC8323340 DOI: 10.1177/0271678x20978523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Multi-diffusion-time diffusion-weighted MRI can probe tissue microstructure, but the method has not been widely applied to the microvasculature. At long diffusion-times, blood flow in capillaries is in the diffusive regime, and signal attenuation is dependent on blood velocity (v) and capillary segment length (l). It is described by the pseudo-diffusion coefficient (D*=vl/6) of intravoxel incoherent motion (IVIM). At shorter diffusion-times, blood flow is in the ballistic regime, and signal attenuation depends on v, and not l. In theory, l could be estimated using D* and v. In this study, we compare the accuracy and repeatability of three approaches to estimating v, and therefore l: the IVIM ballistic model, the velocity autocorrelation model, and the ballistic approximation to the velocity autocorrelation model. Twenty-nine rat datasets from two strains were acquired at 7 T, with b-values between 0 and 1000 smm-2 and diffusion times between 11.6 and 50 ms. Five rats were scanned twice to assess scan-rescan repeatability. Measurements of l were validated using corrosion casting and micro-CT imaging. The ballistic approximation of the velocity autocorrelation model had lowest bias relative to corrosion cast estimates of l, and had highest repeatability.
Collapse
Affiliation(s)
- Lauren A Scott
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
| | - Ben R Dickie
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
| | - Shelley D Rawson
- The Henry Royce Institute, Department of Materials, The University of Manchester, Manchester, UK
| | - Graham Coutts
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
| | - Timothy L Burnett
- The Henry Royce Institute, Department of Materials, The University of Manchester, Manchester, UK
| | - Stuart M Allan
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
| | - Geoff Jm Parker
- The Henry Royce Institute, Department of Materials, The University of Manchester, Manchester, UK.,Bioxydyn Limited, Manchester, UK
| | - Laura M Parkes
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
| |
Collapse
|
17
|
A simulation study investigating potential diffusion-based MRI signatures of microstrokes. Sci Rep 2021; 11:14229. [PMID: 34244549 PMCID: PMC8271016 DOI: 10.1038/s41598-021-93503-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Recent studies suggested that cerebrovascular micro-occlusions, i.e. microstokes, could lead to ischemic tissue infarctions and cognitive deficits. Due to their small size, identifying measurable biomarkers of these microvascular lesions remains a major challenge. This work aims to simulate potential MRI signatures combining arterial spin labeling (ASL) and multi-directional diffusion-weighted imaging (DWI). Driving our hypothesis are recent observations demonstrating a radial reorientation of microvasculature around the micro-infarction locus during recovery in mice. Synthetic capillary beds, randomly- and radially-oriented, and optical coherence tomography (OCT) angiograms, acquired in the barrel cortex of mice (n = 5) before and after inducing targeted photothrombosis, were analyzed. Computational vascular graphs combined with a 3D Monte-Carlo simulator were used to characterize the magnetic resonance (MR) response, encompassing the effects of magnetic field perturbations caused by deoxyhemoglobin, and the advection and diffusion of the nuclear spins. We quantified the minimal intravoxel signal loss ratio when applying multiple gradient directions, at varying sequence parameters with and without ASL. With ASL, our results demonstrate a significant difference (p < 0.05) between the signal-ratios computed at baseline and 3 weeks after photothrombosis. The statistical power further increased (p < 0.005) using angiograms measured at week 4. Without ASL, no reliable signal change was found. We found that higher ratios, and accordingly improved significance, were achieved at lower magnetic field strengths (e.g., B0 = 3T) and shorter echo time TE (< 16 ms). Our simulations suggest that microstrokes might be characterized through ASL-DWI sequence, providing necessary insights for posterior experimental validations, and ultimately, future translational trials.
Collapse
|
18
|
van der Thiel MM, Freeze WM, Verheggen ICM, Wong SM, de Jong JJA, Postma AA, Hoff EI, Gronenschild EHBM, Verhey FR, Jacobs HIL, Ramakers IHGB, Backes WH, Jansen JFA. Associations of increased interstitial fluid with vascular and neurodegenerative abnormalities in a memory clinic sample. Neurobiol Aging 2021; 106:257-267. [PMID: 34320463 DOI: 10.1016/j.neurobiolaging.2021.06.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 06/15/2021] [Accepted: 06/19/2021] [Indexed: 12/21/2022]
Abstract
The vascular and neurodegenerative processes related to clinical dementia cause cell loss which induces, amongst others, an increase in interstitial fluid (ISF). We assessed microvascular, parenchymal integrity, and a proxy of ISF volume alterations with intravoxel incoherent motion imaging in 21 healthy controls and 53 memory clinic patients - mainly affected by neurodegeneration (mild cognitive impairment, Alzheimer's disease dementia), vascular pathology (vascular cognitive impairment), and presumed to be without significant pathology (subjective cognitive decline). The microstructural components were quantified with spectral analysis using a non-negative least squares method. Linear regression was employed to investigate associations of these components with hippocampal and white matter hyperintensity (WMH) volumes. In the normal appearing white matter, a large fint (a proxy of ISF volume) was associated with a large WMH volume and low hippocampal volume. Likewise, a large fint value was associated with a lower hippocampal volume in the hippocampi. Large ISF volume (fint) was shown to be a prominent factor associated with both WMHs and neurodegenerative abnormalities in memory clinic patients and is argued to play a potential role in impaired glymphatic functioning.
Collapse
Affiliation(s)
- Merel M van der Thiel
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; School for Mental Health & Neuroscience, Alzheimer Center Limburg, Maastricht, the Netherlands
| | - Whitney M Freeze
- Department of Psychiatry &Neuropsychology, Maastricht University, Maastricht, the Netherlands; School for Mental Health & Neuroscience, Alzheimer Center Limburg, Maastricht, the Netherlands; Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Inge C M Verheggen
- Department of Psychiatry &Neuropsychology, Maastricht University, Maastricht, the Netherlands; School for Mental Health & Neuroscience, Alzheimer Center Limburg, Maastricht, the Netherlands
| | - Sau May Wong
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Joost J A de Jong
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; School for Mental Health & Neuroscience, Alzheimer Center Limburg, Maastricht, the Netherlands
| | - Alida A Postma
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; School for Mental Health & Neuroscience, Alzheimer Center Limburg, Maastricht, the Netherlands
| | - Erik I Hoff
- Department of Neurology, Zuyderland Medical Center Heerlen, Heerlen, the Netherlands
| | - Ed H B M Gronenschild
- Department of Psychiatry &Neuropsychology, Maastricht University, Maastricht, the Netherlands; School for Mental Health & Neuroscience, Alzheimer Center Limburg, Maastricht, the Netherlands
| | - Frans R Verhey
- Department of Psychiatry &Neuropsychology, Maastricht University, Maastricht, the Netherlands; School for Mental Health & Neuroscience, Alzheimer Center Limburg, Maastricht, the Netherlands
| | - Heidi I L Jacobs
- Department of Psychiatry &Neuropsychology, Maastricht University, Maastricht, the Netherlands; Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Inez H G B Ramakers
- Department of Psychiatry &Neuropsychology, Maastricht University, Maastricht, the Netherlands; School for Mental Health & Neuroscience, Alzheimer Center Limburg, Maastricht, the Netherlands
| | - Walter H Backes
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; School for Mental Health & Neuroscience, Alzheimer Center Limburg, Maastricht, the Netherlands; School for Cardiovascular Disease, Maastricht University, Maastricht, the Netherlands
| | - Jacobus F A Jansen
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; School for Mental Health & Neuroscience, Alzheimer Center Limburg, Maastricht, the Netherlands; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
19
|
Van VP, Schmid F, Spinner G, Kozerke S, Federau C. Simulation of intravoxel incoherent perfusion signal using a realistic capillary network of a mouse brain. NMR IN BIOMEDICINE 2021; 34:e4528. [PMID: 33904210 DOI: 10.1002/nbm.4528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/22/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
PURPOSE To simulate the intravoxel incoherent perfusion magnetic resonance magnitude signal from the motion of blood particles in three realistic vascular network graphs from a mouse brain. METHODS In three networks generated from the cortex of a mouse scanned by two-photon laser microscopy, blood flow in each vessel was simulated using Poiseuille's law. The trajectories, flow speeds and phases acquired by a fixed number of simulated blood particles during a Stejskal-Tanner bipolar pulse gradient scheme were computed. The resulting magnitude signal was obtained by integrating all phases and the pseudo-diffusion coefficient D* was estimated by fitting an exponential signal decay. To better understand the anatomical source of the intravoxel incoherent motion (IVIM) perfusion signal, the above was repeated restricting the simulation to various types of vessel. RESULTS The characteristics of the three microvascular networks were respectively vessel lengths (mean ± std. dev.) 67.2 ± 53.6 μm, 59.8 ± 46.2 μm and 64.5 ± 50.9 μm, diameters 6.0 ± 3.5 μm, 5.7 ± 3.6 μm and 6.1 ± 3.7 μm and simulated blood velocity 0.9 ± 1.7 μm/ms, 1.4 ± 2.5 μm/ms and 0.7 ± 2.1 μm/ms. Exponential fitting of the simulated signal decay as a function of b-value resulted in the following D*-values [10-3 mm2 /s]: 31.7, 40.4 and 33.4. The signal decay for low b-values was the largest in the larger vessels, but the smaller vessels and the capillaries accounted for more of the total volume of the networks. CONCLUSION This simulation improves the theoretical understanding of the IVIM perfusion estimation method by directly linking the MR IVIM perfusion signal to an ultra-high resolution measurement of the microvascular network and a realistic blood flow simulation.
Collapse
Affiliation(s)
| | - Franca Schmid
- Institute of Pharmacology and Toxicology, University of Zurich, Zürich, Switzerland
- Institute of Fluid Dynamics, ETH Zurich, Zurich, Switzerland
| | - Georg Spinner
- Institute for Biomedical Engineering, ETH and University of Zürich, Zürich, Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, ETH and University of Zürich, Zürich, Switzerland
| | - Christian Federau
- Institute for Biomedical Engineering, ETH and University of Zürich, Zürich, Switzerland
- AI Medical AG, Zollikon, Zürich
| |
Collapse
|
20
|
Spinner GR, Federau C, Kozerke S. Bayesian inference using hierarchical and spatial priors for intravoxel incoherent motion MR imaging in the brain: Analysis of cancer and acute stroke. Med Image Anal 2021; 73:102144. [PMID: 34261009 DOI: 10.1016/j.media.2021.102144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 06/12/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022]
Abstract
The intravoxel incoherent motion (IVIM) model allows to map diffusion (D) and perfusion-related parameters (F and D*). Parameter estimation is, however, error-prone due to the non-linearity of the signal model, the limited signal-to-noise ratio (SNR) and the small volume fraction of perfusion in the in-vivo brain. In the present work, the performance of Bayesian inference was examined in the presence of brain pathologies characterized by hypo- and hyperperfusion. In particular, a hierarchical and a spatial prior were combined. Performance was compared relative to conventional segmented least squares regression, hierarchical prior only (non-segmented and segmented data likelihoods) and a deep learning approach. Realistic numerical brain IVIM simulations were conducted to assess errors relative to ground truth. In-vivo, data of 11 central nervous system cancer patients and 9 patients with acute stroke were acquired. The proposed method yielded reduced error in simulations for both the cancer and acute stroke scenarios compared to other methods across the whole investigated SNR range. The contrast-to-noise ratio of the proposed method was better or on par compared to the other techniques in-vivo. The proposed Bayesian approach hence improves IVIM parameter estimation in brain cancer and acute stroke.
Collapse
Affiliation(s)
- Georg Ralph Spinner
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, Zurich 8092, Switzerland
| | - Christian Federau
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, Zurich 8092, Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, Zurich 8092, Switzerland.
| |
Collapse
|
21
|
Riexinger A, Laun FB, Höger SA, Wiesmueller M, Uder M, Hensel B, Forst R, Hotfiel T, Heiss R. Effect of compression garments on muscle perfusion in delayed-onset muscle soreness: A quantitative analysis using intravoxel incoherent motion MR perfusion imaging. NMR IN BIOMEDICINE 2021; 34:e4487. [PMID: 33594766 DOI: 10.1002/nbm.4487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
The aim of this prospective cohort study was to evaluate the effect of compression garments under resting conditions and after the induction of delayed-onset muscle soreness (DOMS) by MR perfusion imaging using intravoxel incoherent motion (IVIM). Magnetic resonance imaging of both lower legs of 16 volunteers was performed before and after standardized eccentric exercises that induced DOMS. A compression garment (21-22 mmHg) was worn during and for 6 h after exercise on one randomly selected leg. IVIM MR imaging, represented as total muscle perfusion D*f, perfusion fraction f and tissue diffusivity D, were compared between baseline and directly, 30 min, 6 h and 48 h after exhausting exercise with and without compression. Creatine kinase levels and T2-weighted images were acquired at baseline and after 48 h. DOMS was induced in the medial head of the gastrocnemius muscle (MGM) in all volunteers. Compression garments did not show any significant effect on IVIM perfusion parameters at any time point in the MGM or the tibialis anterior muscle (p > 0.05). Microvascular perfusion in the MGM increased significantly in both the compressed and noncompressed leg between baseline measurements and those taken directly after and 30 min after the exercise: the relative median f increased by 31.5% and 24.7% in the compressed and noncompressed leg, respectively, directly after the exercise compared with the baseline value. No significant change in tissue perfusion occurred 48 h after the induction of DOMS compared with baseline. It was concluded that compression garments (21-22 mmHg) do not alter microvascular muscle perfusion at rest, nor do they have any significant effect during the regeneration phase of DOMS. In DOMS, only a short-term effect of increased muscle perfusion (30 min after exercise) was observed, with normalization occurring during regeneration after 6-48 h. The normalization of perfusion independently of compression after 6 h may have implications for diagnostic and therapeutic strategies and for the better understanding of pathophysiological pathways in DOMS.
Collapse
Affiliation(s)
- Andreas Riexinger
- Institute of Radiology, University Hospital Erlangen, Erlangen, Germany
| | | | | | - Marco Wiesmueller
- Institute of Radiology, University Hospital Erlangen, Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Erlangen, Germany
| | - Bernhard Hensel
- Center for Medical Physics and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Raimund Forst
- Department of Orthopedic Surgery, Friedrich-Alexander-Universität Erlangen-Nuremberg, Erlangen, Germany
| | - Thilo Hotfiel
- Department of Orthopedic Surgery, Friedrich-Alexander-Universität Erlangen-Nuremberg, Erlangen, Germany
- Center for Musculoskeletal Surgery Osnabrück (OZMC), Klinikum Osnabrück, Osnabrück, Germany
| | - Rafael Heiss
- Institute of Radiology, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
22
|
Merisaari H, Laakso H, Liljenbäck H, Virtanen H, Aronen HJ, Minn H, Poutanen M, Roivainen A, Liimatainen T, Jambor I. Statistical Evaluation of Different Mathematical Models for Diffusion Weighted Imaging of Prostate Cancer Xenografts in Mice. Front Oncol 2021; 11:583921. [PMID: 34123770 PMCID: PMC8188898 DOI: 10.3389/fonc.2021.583921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 03/23/2021] [Indexed: 01/28/2023] Open
Abstract
Purpose To evaluate fitting quality and repeatability of four mathematical models for diffusion weighted imaging (DWI) during tumor progression in mouse xenograft model of prostate cancer. Methods Human prostate cancer cells (PC-3) were implanted subcutaneously in right hind limbs of 11 immunodeficient mice. Tumor growth was followed by weekly DWI examinations using a 7T MR scanner. Additional DWI examination was performed after repositioning following the fourth DWI examination to evaluate short term repeatability. DWI was performed using 15 and 12 b-values in the ranges of 0-500 and 0-2000 s/mm2, respectively. Corrected Akaike information criteria and F-ratio were used to evaluate fitting quality of each model (mono-exponential, stretched exponential, kurtosis, and bi-exponential). Results Significant changes were observed in DWI data during the tumor growth, indicated by ADCm, ADCs, and ADCk. Similar results were obtained using low as well as high b-values. No marked changes in model preference were present between the weeks 1−4. The parameters of the mono-exponential, stretched exponential, and kurtosis models had smaller confidence interval and coefficient of repeatability values than the parameters of the bi-exponential model. Conclusion Stretched exponential and kurtosis models showed better fit to DWI data than the mono-exponential model and presented with good repeatability.
Collapse
Affiliation(s)
- Harri Merisaari
- Department of Radiology, University of Turku, Turku, Finland.,Turku Brain and Mind Center, University of Turku, Turku, Finland
| | - Hanne Laakso
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, Kuopio, Finland
| | - Heidi Liljenbäck
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Helena Virtanen
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland.,Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Hannu J Aronen
- Department of Radiology, University of Turku, Turku, Finland.,Medical Imaging Centre of Southwest Finland, Turku University Hospital, Turku, Finland
| | - Heikki Minn
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland.,Department of Oncology and Radiotherapy, Turku University Hospital, Turku, Finland
| | - Matti Poutanen
- Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Anne Roivainen
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland.,Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Timo Liimatainen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, Kuopio, Finland.,Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Department of Clinical Radiology, Oulu University Hospital, Oulu, Finland.,Department of Radiology, University of Oulu, Oulu, Finland
| | - Ivan Jambor
- Department of Radiology, University of Turku, Turku, Finland.,Medical Imaging Centre of Southwest Finland, Turku University Hospital, Turku, Finland
| |
Collapse
|
23
|
Abstract
The signal acquired in vivo using a diffusion-weighted MR imaging (DWI) sequence is influenced by blood motion in the tissue. This means that perfusion information from a DWI sequence can be obtained in addition to thermal diffusion, if the appropriate sequence parameters and postprocessing methods are applied. This is commonly regrouped under the denomination intravoxel incoherent motion (IVIM) perfusion MR imaging. Of relevance, the perfusion information acquired with IVIM is essentially local, quantitative and acquired without intravenous injection of contrast media. The aim of this work is to review the IVIM method and its clinical applications.
Collapse
Affiliation(s)
- Christian Federau
- University and ETH Zürich, Institute for Biomedical Engineering, Gloriastrasse 35, Zürich 8092, Switzerland; Ai Medical AG, Goldhaldenstr 22a, Zollikon 8702, Switzerland.
| |
Collapse
|
24
|
Buizza G, Zampini MA, Riva G, Molinelli S, Fontana G, Imparato S, Ciocca M, Iannalfi A, Orlandi E, Baroni G, Paganelli C. Investigating DWI changes in white matter of meningioma patients treated with proton therapy. Phys Med 2021; 84:72-79. [PMID: 33872972 DOI: 10.1016/j.ejmp.2021.03.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/08/2021] [Accepted: 03/23/2021] [Indexed: 12/18/2022] Open
Abstract
PURPOSE To evaluate changes in diffusion and perfusion-related properties of white matter (WM) induced by proton therapy, which is capable of a greater dose sparing to organs at risk with respect to conventional X-ray radiotherapy, and to eventually expose early manifestations of delayed neuro-toxicities. METHODS Apparent diffusion coefficient (ADC) and IVIM parameters (D, D* and f) were estimated from diffusion-weighted MRI (DWI) in 46 patients affected by meningioma and treated with proton therapy. The impact on changes in diffusion and perfusion-related WM properties of dose and time, as well as the influence of demographic and pre-treatment clinical information, were investigated through linear mixed-effects models. RESULTS Decreasing trends in ADC and D were found for WM regions hit by medium-high (30-40 Gy(RBE)) and high (>40 Gy(RBE)) doses, which are compatible with diffusion restriction due to radiation-induced cellular injury. Significant influence of dose and time on median ADC changes were observed. Also, D* showed a significant dependency on dose, whereas f consistently showed no dependency on dose and time. Age, gender and surgery extent were also found to affect changes in ADC. CONCLUSIONS These results overall agree with those from studies conducted on cohorts of mixed proton and X-ray radiotherapy patients. Future work should focus on relating our findings with clinical information of co-morbidities and thus exploiting such or more advanced imaging data to build normal tissue complication probability models to better integrate clinical and dose information.
Collapse
Affiliation(s)
- Giulia Buizza
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy.
| | - Marco Andrea Zampini
- MR Solutions Ltd., Ashbourne House, Old Portsmouth Rd., Guildford, United Kingdom.
| | - Giulia Riva
- Clinical Department, National Center of Oncological Hadrontherapy (CNAO), Strada Campeggi 53, 27100 Pavia, Italy.
| | - Silvia Molinelli
- Medical Physics Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Campeggi 53, 27100 Pavia, Italy.
| | - Giulia Fontana
- Clinical Bioengineering Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Campeggi 53, 27100 Pavia, Italy.
| | - Sara Imparato
- Radiology Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Campeggi 53, 27100 Pavia, Italy.
| | - Mario Ciocca
- Medical Physics Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Campeggi 53, 27100 Pavia, Italy.
| | - Alberto Iannalfi
- Clinical Department, National Center of Oncological Hadrontherapy (CNAO), Strada Campeggi 53, 27100 Pavia, Italy.
| | - Ester Orlandi
- Clinical Department, National Center of Oncological Hadrontherapy (CNAO), Strada Campeggi 53, 27100 Pavia, Italy.
| | - Guido Baroni
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy; Clinical Bioengineering Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Campeggi 53, 27100 Pavia, Italy.
| | - Chiara Paganelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy.
| |
Collapse
|
25
|
Gu T, Yang T, Huang J, Yu J, Ying H, Xiao X. Evaluation of gliomas peritumoral diffusion and prediction of IDH1 mutation by IVIM-DWI. Aging (Albany NY) 2021; 13:9948-9959. [PMID: 33795525 PMCID: PMC8064166 DOI: 10.18632/aging.202751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/18/2021] [Indexed: 01/24/2023]
Abstract
Glioma characterized by high morbidity and mortality, is one of the most common brain tumors. The application of intravoxel incoherent motion diffusion weighted imaging (IVIM-DWI) in differentiating glioma grading and IDH1 mutation status were poorly investigated. 78 glioma patients confirmed by pathological and imaging methods were enrolled. Glioma patients were measured using IVIM-DWI, then related parameters such as cerebral blood flow (CBF), perfusion fraction (f), pseudo diffusivity (D*), and true diffusivity (D), were derived. Receiver operating characteristic (ROC) curves were made to calculate specificity and sensitivity. The values of CBF1, CBF3, D*1, rCBF1-2, rCBF3-2, and age in group high-grade gliomas (HGG) were significantly higher than that of in group low-grade gliomas (LGG). The values of CBF1, CBF3, rCBF1-2, rCBF3-2, D*1, and age in group IDH1mut were significantly lower than that of in group IDH1wt. The levels of D1 and f1 were remarkably higher in the group IDH1mut than group IDH1wt. rCBF1-2 had a remarkably positive correlation with CBF1 (r=0.852, p<0.001). f1 showed a markedly negative correlation with CBF1 (r= -0.306, p=0.007). IVIM-DWI presented efficacy in differentiating glioma grading and IDH1 mutation status.
Collapse
Affiliation(s)
- Taifu Gu
- Medical Imaging Center, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Ting Yang
- Department of Radiology, The First Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jianglong Huang
- Medical Imaging Center, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Jianhua Yu
- Medical Imaging Center, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Hongxin Ying
- Medical Imaging Center, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Xinlan Xiao
- Medical Imaging Center, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
26
|
ADC, D, f dataset calculated through the simplified IVIM model, with MGMT promoter methylation, age, and ECOG, in 38 patients with wildtype IDH glioblastoma. Data Brief 2021; 35:106950. [PMID: 33850982 PMCID: PMC8039816 DOI: 10.1016/j.dib.2021.106950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/25/2021] [Accepted: 03/08/2021] [Indexed: 11/29/2022] Open
Abstract
Patients undergoing standard chemoradiation post-resection had MRIs at radiation planning and fractions 10 and 20 of chemoradiation. MRIs were 1.5T and 3D T2-FLAIR, pre- and post-contrast 3D T1-weighted (T1) and echo planar DWI with three b-values (0, 500, and 1000s/mm2) were acquired. T2-FLAIR was coregistered to T1C images. Non-overlapping T1 contrast-enhancing (T1C) and nonenhancing T2-FLAIR hyperintense regions were segmented, with necrotic/cystic regions, the surgical cavity, and large vessels excluded. The simplified IVIM model was used to calculate voxelwise diffusion coefficient (D) and perfusion fraction (f) maps; ADC was calculated using the natural logarithm of b = 1000 over b = 0 images. T1C and T2-FLAIR segmentations were brought into this space, and medians calculated. MGMT promoter methylation status (MGMTPMS), age at diagnosis, and Eastern Cooperative Oncology Group (ECOG) performance status were extracted from electronic medical records. The data were presented, analyzed, and described in the article, “Intravoxel incoherent motion (IVIM) modeling of diffusion MRI during chemoradiation predicts therapeutic response in IDH wildtype Glioblastoma”, published in Radiotherapy and Oncology [1].
Collapse
|
27
|
Lee W, Kim B, Park H. Quantification of intravoxel incoherent motion with optimized b-values using deep neural network. Magn Reson Med 2021; 86:230-244. [PMID: 33594783 DOI: 10.1002/mrm.28708] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE To develop a framework for quantifying intravoxel incoherent motion (IVIM) parameters, where a neural network for quantification and b-values for diffusion-weighted imaging are simultaneously optimized. METHOD A deep neural network (DNN) method is proposed for accurate quantification of IVIM parameters from multiple diffusion-weighted images. In addition, optimal b-values are selected to acquire the multiple diffusion-weighted images. The proposed framework consists of an MRI signal generation part and an IVIM parameter quantification part. Monte-Carlo (MC) simulations were performed to evaluate the accuracy of the IVIM parameter quantification and the efficacy of b-value optimization. In order to analyze the effect of noise on the optimized b-values, simulations were performed with five different noise levels. For in vivo data, diffusion images were acquired with the b-values from four b-values selection methods for five healthy volunteers at 3T MRI system. RESULTS Experiment results showed that both the optimization of b-values and the training of DNN were simultaneously performed to quantify IVIM parameters. We found that the accuracies of the perfusion coefficient (Dp ) and perfusion fraction (f) were more sensitive to b-values than the diffusion coefficient (D) was. Furthermore, when the noise level changed, the optimized b-values also changed. Therefore, noise level has to be considered when optimizing b-values for IVIM quantification. CONCLUSION The proposed scheme can simultaneously optimize b-values and train DNN to minimize quantification errors of IVIM parameters. The trained DNN can quantify IVIM parameters from the diffusion-weighted images obtained with the optimized b-values.
Collapse
Affiliation(s)
- Wonil Lee
- Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Byungjai Kim
- Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - HyunWook Park
- Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
28
|
Jabehdar Maralani P, Myrehaug S, Mehrabian H, Chan AKM, Wintermark M, Heyn C, Conklin J, Ellingson BM, Rahimi S, Lau AZ, Tseng CL, Soliman H, Detsky J, Daghighi S, Keith J, Munoz DG, Das S, Atenafu EG, Lipsman N, Perry J, Stanisz G, Sahgal A. Intravoxel incoherent motion (IVIM) modeling of diffusion MRI during chemoradiation predicts therapeutic response in IDH wildtype glioblastoma. Radiother Oncol 2021; 156:258-265. [PMID: 33418005 PMCID: PMC8186561 DOI: 10.1016/j.radonc.2020.12.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/14/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022]
Abstract
Background: Prediction of early progression in glioblastoma may provide an opportunity to personalize treatment. Simplified intravoxel incoherent motion (IVIM) MRI offers quantitative estimates of diffusion and perfusion metrics. We investigated whether these metrics, during chemoradiation, could predict treatment outcome. Methods: 38 patients with newly diagnosed IDH-wildtype glioblastoma undergoing 6-week/30-fraction chemoradiation had standardized post-operative MRIs at baseline (radiation planning), and at the 10th and 20th fractions. Non-overlapping T1-enhancing (T1C) and non-enhancing T2-FLAIR hyperintense regions were independently segmented. Apparent diffusion coefficient (ADCT1C, ADCT2-FLAIR) and perfusion fraction (fT1C, fT2-FLAIR) maps were generated with simplified IVIM modelling. Parameters associated with progression before or after 6.9 months (early vs late progression, respectively), overall survival (OS) and progression-free survival (PFS) were investigated. Results: Higher ADCT2-FLAIR at baseline [Odds Ratio (OR) = 1.06, 95% CI 1.01–1.15, p = 0.025], lower fT2-FLAIR at fraction 10 (OR = 2.11, 95% CI 1.04–4.27, p = 0.018), and lack of increase in ADCT2-FLAIR at fraction 20 compared to baseline (OR = 1.12, 95% CI 1.02–1.22, p = 0.02) were associated with early progression. Combining ADCT2-FLAIR at baseline, fT2-FLAIR at fraction 10, ECOG and MGMT promoter methylation status significantly improved AUC to 90.3% compared to a model with only ECOG and MGMT promoter methylation status (p = 0.001). Using multivariable analysis, neither IVIM metrics were associated with OS but higher fT2-FLAIR at fraction 10 (HR = 0.72, 95% CI 0.56–0.95, p = 0.018) was associated with longer PFS. Conclusion: ADCT2-FLAIR at baseline, its lack of increase from baseline to fraction 20, or fT2-FLAIR at fraction 10 significantly predicted early progression. fT2-FLAIR at fraction 10 was associated with PFS.
Collapse
Affiliation(s)
- Pejman Jabehdar Maralani
- Department of Medical Imaging, Sunnybrook Health Sciences Center, University of Toronto, Canada.
| | - Sten Myrehaug
- Department of Radiation Oncology, Sunnybrook Health Sciences Center, University of Toronto, Canada
| | - Hatef Mehrabian
- Department of Radiation Oncology, Sunnybrook Health Sciences Center, University of Toronto, Canada
| | - Aimee K M Chan
- Department of Medical Imaging, Sunnybrook Health Sciences Center, University of Toronto, Canada
| | - Max Wintermark
- Department of Radiology, Stanford University, United States
| | - Chris Heyn
- Department of Medical Imaging, Sunnybrook Health Sciences Center, University of Toronto, Canada
| | - John Conklin
- Department of Radiology, Massachusetts General Hospital, United States
| | - Benjamin M Ellingson
- Department of Radiological Sciences and Psychiatry, University of California Los Angeles, United States
| | - Saba Rahimi
- Department of Biomedical Engineering, University of Toronto, Canada
| | - Angus Z Lau
- Department of Medical Biophysics, Sunnybrook Research Institute, University of Toronto, Canada
| | - Chia-Lin Tseng
- Department of Radiation Oncology, Sunnybrook Health Sciences Center, University of Toronto, Canada
| | - Hany Soliman
- Department of Radiation Oncology, Sunnybrook Health Sciences Center, University of Toronto, Canada
| | - Jay Detsky
- Department of Radiation Oncology, Sunnybrook Health Sciences Center, University of Toronto, Canada
| | - Shadi Daghighi
- Department of Medical Imaging, Sunnybrook Health Sciences Center, University of Toronto, Canada
| | - Julia Keith
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada
| | - David G Munoz
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada
| | - Sunit Das
- Department of Surgery, Division of Neurosurgery, University of Toronto, Canada
| | | | - Nir Lipsman
- Department of Surgery, Division of Neurosurgery, University of Toronto, Canada
| | - James Perry
- Department of Medicine, Division of Neurology, University of Toronto, Canada
| | - Greg Stanisz
- Department of Medical Biophysics, Sunnybrook Research Institute, University of Toronto, Canada
| | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Health Sciences Center, University of Toronto, Canada
| |
Collapse
|
29
|
Intravoxel incoherent motion magnetic resonance imaging: basic principles and clinical applications. Pol J Radiol 2020; 85:e624-e635. [PMID: 33376564 PMCID: PMC7757509 DOI: 10.5114/pjr.2020.101476] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 06/03/2020] [Indexed: 12/26/2022] Open
Abstract
The purpose of this article was to show basic principles, acquisition, advantages, disadvantages, and clinical applications of intravoxel incoherent motion (IVIM) magnetic resonance imaging (MRI). IVIM MRI as a method was introduced in the late 1980s, but recently it started attracting more interest thanks to its applications in many fields, particularly in oncology and neuroradiology. This imaging technique has been developed with the objective of obtaining not only a functional analysis of different organs but also different types of lesions. Among many accessible tools in diagnostic imaging, IVIM MRI aroused the interest of many researchers in terms of studying its applicability in the evaluation of abdominal organs and diseases. The major conclusion of this article is that IVIM MRI seems to be a very auspicious method to investigate the human body, and that nowadays the most promising clinical application for IVIM perfusion MRI is oncology. However, due to lack of standardisation of image acquisition and analysis, further studies are needed to validate this method in clinical practice.
Collapse
|
30
|
Ohno N, Miyati T, Fujihara S, Gabata T, Kobayashi S. Biexponential analysis of intravoxel incoherent motion in calf muscle before and after exercise: Comparisons with arterial spin labeling perfusion and T2. Magn Reson Imaging 2020; 72:42-48. [DOI: 10.1016/j.mri.2020.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/18/2020] [Accepted: 06/09/2020] [Indexed: 12/26/2022]
|
31
|
Rapid golden-angle diffusion-weighted propeller MRI for simultaneous assessment of ADC and IVIM. Neuroimage 2020; 223:117327. [PMID: 32882379 PMCID: PMC7792631 DOI: 10.1016/j.neuroimage.2020.117327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 11/24/2022] Open
Abstract
Purpose: Golden-angle single-shot PROPLLER (GA-SS-PROP) is proposed to accelerate the PROPELLER acquisition for distortion-free diffusion-weighted (DW) imaging. Acceleration is achieved by acquiring one-shot per b-value and several b-values can be acquired along a diffusion direction, where the DW signal follows a bi-exponential decay (i.e. IVIM). Sparse reconstruction is used to reconstruct full resolution DW images. Consequently, apparent diffusion coefficient (ADC) map and IVIM maps (i.e., perfusion fraction (f) and the perfusion-free diffusion coefficient (D)) are obtained simultaneously. The performance of GA-SS-PROP was demonstrated with simulation and human experiments. Methods: A realistic numerical phantom of high-quality diffusion images of the brain was developed. The error of the reconstructed DW images and quantitative maps were compared to the ground truth. The pulse sequence was developed to acquire human brain data. For comparison, fully sampled PROPELLER and conventional single-shot echo planar imaging (SS-EPI) acquisitions were performed. Results: GA-SS-PROP was 5 times faster than conventional PROPELLER acquisition with comparable image quality. The simulation demonstrated that sparse reconstruction is effective in restoring contrast and resolution. The human experiments demonstrated that GA-SS-PROP achieved superior image fidelity compared to SS-EPI for the same acquisition time and same in-plane resolution (1 × 1 mm2). Conclusion: GA-SS-PROP offers fast, high-resolution and distortion-free DW images. The generated quantitative maps (f, D and ADC) can provide valuable information on tissue perfusion and diffusion properties simultaneously, which are desirable in many applications, especially in oncology. As a turbo spin-echo based technique, it can be applied in most challenging regions where SS-EPI is problematic.
Collapse
|
32
|
An DA, Chen BH, He J, Suo ST, Fahmy LM, Han TT, Hu J, Xu JR, Wu LM, Pu J. Diagnostic Utility of the Simplified Perfusion Fraction for Identifying Myocardial Injury in Patients With Reperfused ST-segment Elevation Myocardial Infarction. J Magn Reson Imaging 2020; 53:516-526. [PMID: 32841481 DOI: 10.1002/jmri.27310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Acute myocardial infarction (AMI) is a disease with high morbidity and mortality worldwide and the evaluation of myocardial injury and perfusion status following myocardial ischemia and reperfusion is of clinical value. PURPOSE To assess the diagnostic utility of simplified perfusion fraction (SPF) in differentiating salvage and infarcted myocardium and its predictive value for left ventricular remodeling in patients with reperfusion ST-segment elevation myocardial infarction (STEMI). STUDY TYPE Prospective. POPULATION Forty-one reperfused STEMI patients and 20 healthy volunteers. FIELD STRENGTH/SEQUENCE 3.0T MRI. The MR examination included cine, T2 -short tau inversion recovery (T2 -STIR), first pass perfusiong (FPP),phase sensitive inversion recovery (PSIR), and diffusion-weighted imaging (DWI). ASSESSMENT SPF values among different myocardium regions (infarcted, salvaged, remote, and MVO) and stages of reperfused STEMI patients as well as normal controls were measured. The diagnostic utility of SPF values in differentiating salvaged and infarcted myocardium was assessed. STATISTICAL ANALYSIS Independent t-test and the Mann-Whitney U-test. Logistic regression. RESULTS SPF values in healthy controls were not significantly different than SPF values in the remote myocardium of patients (40.09 ± 1.47% vs. 40.28 ± 1.93%, P = 0.698). In reperfusion STEMI patients, SPF values were lower in infarcted myocardium compared to remote and salvaged myocardium (32.15 ± 2.36% vs. 40.28 ± 1.93%, P < 0.001; 32.15 ± 2.36% vs. 36.68 ± 2.71%, P < 0.001). SPF values of infarcted myocardium showed a rebound increase from acute to convalescent stages (32.15 ± 2.36% vs. 34.69 ± 3.69%, P < 0.001). When differentiating infarcted and salvaged myocardium, SPF values demonstrated an area under the curve (AUC) of 0.89 (sensitivity 85.4%, specificity 80.5%, cutoff 34.42%). Lower SPF values were associated with lower odds ratio (OR = 0.304) of left ventricular remodeling after adjusting for potential confounders with a confidence interval (CI) of 0.129-0.717, P = 0.007. DATA CONCLUSION SPF might be able to differentiate salvaged and infarcted myocardium and is a strong predictor of left ventricular remodeling in reperfused STEMI patients. Level of Evidence 2 Technical Efficacy Stage 2.
Collapse
Affiliation(s)
- Dong-Aolei An
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bing-Hua Chen
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie He
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shi-Teng Suo
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lara M Fahmy
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan, USA
| | - Tong-Tong Han
- Circle Cardiovascular Imaging, Calgary, Alberta, Canada
| | - Jiani Hu
- Department of Radiology, Wayne State University, Detroit, Michigan, USA
| | - Jian-Rong Xu
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lian-Ming Wu
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Pu
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
33
|
Wang C, Dong H. Ki-67 labeling index and the grading of cerebral gliomas by using intravoxel incoherent motion diffusion-weighted imaging and three-dimensional arterial spin labeling magnetic resonance imaging. Acta Radiol 2020; 61:1057-1063. [PMID: 31830431 DOI: 10.1177/0284185119891694] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) and three-dimensional arterial spin labeling (3D-ASL) have been applied to brain tumors; however, the relationship between their parameters and the Ki-67 labeling index (Ki-67 LI) for the grading of gliomas have yet to be investigated. PURPOSE The aim of this study is to compare multiple parameters obtained from IVIM-DWI and 3D-ASL with the Ki-67 LI when grading gliomas. MATERIAL AND METHODS Fifty-two patients with pathologically confirmed gliomas had undergone magnetic resonance imaging (MRI), including IVIM-DWI and 3D-ASL imaging. Mann-Whitney U tests were conducted and receiver operating characteristic (ROC) curves were generated to determine parameters for distinguishing high-grade gliomas (HGGs) from low-grade gliomas (LGGs). These parameters included the apparent diffusion coefficient (ADC), true diffusivity (D), pseudo diffusivity (D*), perfusion fraction (f), cerebral blood flow (CBF), and their relative values (rADC, rD, rD*, rf, and rCBF). Spearman correlation analysis was used to assess the correlations of the parameters of MRI with the Ki-67 LI. RESULTS The rADC, rD, and rf were significantly lower in HGGs than in LGGs (P < 0.005 for all). The rD had a significantly greater area under the ROC curve than that of the other parameters in the differentiation of HGGs from LGGs (P < 0.05). Both the rD and rf were moderately negatively correlated with the Ki-67 LI. CONCLUSION Both the rD and rf can be used for the quantitative prediction of the Ki-67 LI. Among the extracted parameters, the rD had the significantly greatest diagnostic efficacy.
Collapse
Affiliation(s)
- Chaochao Wang
- Department of Radiology, Lihuili Hospital of Ningbo Medical Center, Ningbo, Zhejiang, PR China
| | - Haibo Dong
- Department of Radiology, Lihuili Hospital of Ningbo Medical Center, Ningbo, Zhejiang, PR China
| |
Collapse
|
34
|
Ye C, Xu D, Qin Y, Wang L, Wang R, Li W, Kuai Z, Zhu Y. Accurate intravoxel incoherent motion parameter estimation using Bayesian fitting and reduced number of low b-values. Med Phys 2020; 47:4372-4385. [PMID: 32403175 DOI: 10.1002/mp.14233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 03/02/2020] [Accepted: 04/15/2020] [Indexed: 12/28/2022] Open
Abstract
PURPOSE Intravoxel incoherent motion (IVIM) magnetic resonance imaging is a potential noninvasive technique for the diagnosis of brain tumors. However, perfusion-related parameter mapping is a persistent problem. The purpose of this paper is to investigate the IVIM parameter mapping of brain tumors using Bayesian fitting and low b-values. METHODS Bayesian shrinkage prior (BSP) fitting method and different low b-value distributions were used to estimate IVIM parameters (diffusion D, pseudo-diffusion D*, and perfusion fraction F). The results were compared to those obtained by least squares (LSQ) on both simulated and in vivo brain data. Relative error (RE) and reproducibility were used to evaluate the results. The differences of IVIM parameters between brain tumor and normal regions were compared and used to assess the performance of Bayesian fitting in the IVIM application of brain tumor. RESULTS In tumor regions, the value of D* tended to be decreased when the number of low b-values was insufficient, especially with LSQ. BSP required less low b-values than LSQ for the correct estimation of perfusion parameters of brain tumors. The IVIM parameter maps of brain tumors yielded by BSP had smaller variability, lower RE, and higher reproducibility with respect to those obtained by LSQ. Obvious differences were observed between tumor and normal regions in parameters D (P < 0.05) and F (P < 0.001), especially F. BSP generated fewer outliers than LSQ, and distinguished better tumors from normal regions in parameter F. CONCLUSIONS Intravoxel incoherent motion parameters clearly allow brain tumors to be differentiated from normal regions. Bayesian fitting yields robust IVIM parameter mapping with fewer outliers and requires less low b-values than LSQ for the parameter estimation.
Collapse
Affiliation(s)
- Chen Ye
- Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou Province, School of Computer Science and Technology, Guizhou University, Guiyang, China
| | - Daoyun Xu
- Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou Province, School of Computer Science and Technology, Guizhou University, Guiyang, China
| | - Yongbin Qin
- Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou Province, School of Computer Science and Technology, Guizhou University, Guiyang, China
| | - Lihui Wang
- Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou Province, School of Computer Science and Technology, Guizhou University, Guiyang, China
| | - Rongpin Wang
- Department of Radiology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Wuchao Li
- Department of Radiology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Zixiang Kuai
- Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuemin Zhu
- Univ Lyon, INSA Lyon, CNRS, INSERM, CREATIS UMR 5220, U1206, Lyon, F-69621, France
| |
Collapse
|
35
|
Thomas MA, Hazany S, Ellingson BM, Hu P, Nguyen KL. Pathophysiology, classification, and MRI parallels in microvascular disease of the heart and brain. Microcirculation 2020; 27:e12648. [PMID: 32640064 DOI: 10.1111/micc.12648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/12/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022]
Abstract
Diagnostic imaging technology in vascular disease has long focused on large vessels and the pathologic processes that impact them. With improved diagnostic techniques, investigators are now able to uncover many underlying mechanisms and prognostic factors for microvascular disease. In the heart and brain, these pathologic entities include coronary microvascular disease and cerebral small vessel disease, both of which have significant impact on patients, causing angina, myocardial infarction, heart failure, stroke, and dementia. In the current paper, we will discuss parallels in pathophysiology, classification, and diagnostic modalities, with a focus on the role of magnetic resonance imaging in microvascular disease of the heart and brain. Novel approaches for streamlined imaging of the cardiac and central nervous systems including the use of intravascular contrast agents such as ferumoxytol are presented, and unmet research gaps in diagnostics are summarized.
Collapse
Affiliation(s)
- Michael A Thomas
- Division of Cardiology, David Geffen School of Medicine at, UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA.,Department of Radiology, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Saman Hazany
- Department of Radiology, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA.,Department of Radiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Benjamin M Ellingson
- Department of Radiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Peng Hu
- Department of Radiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Kim-Lien Nguyen
- Division of Cardiology, David Geffen School of Medicine at, UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA.,Department of Radiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
36
|
Pyaram A, Rampilla M, Deore J, Sengupta P. Challenges and Strategies for Quantification of Drugs in the Brain: Current Scenario and Future Advancement. Crit Rev Anal Chem 2020; 52:93-105. [PMID: 32687414 DOI: 10.1080/10408347.2020.1791041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The site of action of centrally acting drugs lies inside the brain and therefore, needs to reach the brain to exert their therapeutic efficacy. Discovery and development process of such types of drugs demands their quantification in brain to establish the dose, study pharmacokinetics, pharmacodynamics, and optimize the overall efficacy. Moreover, some drugs of other categories also have potential to cross blood-brain barrier resulting in various adverse events by acting centrally. However, the collection of a matrix to analyze the amount of drugs present in brain is highly challenging. In this review, we have summarized different bioanalytical strategies to quantitate drugs inside the brain. A detailed discussion on various in vivo and in vitro techniques for monitoring drugs inside the brain has been incorporated. In addition, various sampling techniques have been discussed in brief with case studies. Therefore, this review can guide the researcher to choose appropriate bioanalytical techniques for analyzing drugs in brain depending upon the specific need and quantification threshold considering the commonly associated difficulties of the methods.
Collapse
Affiliation(s)
- Akhila Pyaram
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar - 382355, Gujarat, INDIA
| | - Madhuri Rampilla
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar - 382355, Gujarat, INDIA
| | - Jayshri Deore
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar - 382355, Gujarat, INDIA
| | - Pinaki Sengupta
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar - 382355, Gujarat, INDIA
| |
Collapse
|
37
|
Bergamino M, Nespodzany A, Baxter LC, Burke A, Caselli RJ, Sabbagh MN, Walsh RR, Stokes AM. Preliminary Assessment of Intravoxel Incoherent Motion
Diffusion‐Weighted MRI
(
IVIM‐DWI
) Metrics in Alzheimer's Disease. J Magn Reson Imaging 2020; 52:1811-1826. [DOI: 10.1002/jmri.27272] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 01/25/2023] Open
Affiliation(s)
- Maurizio Bergamino
- Division of Neuroimaging Research Barrow Neurological Institute Phoenix Arizona USA
| | - Ashley Nespodzany
- Division of Neuroimaging Research Barrow Neurological Institute Phoenix Arizona USA
| | - Leslie C. Baxter
- Division of Neuroimaging Research Barrow Neurological Institute Phoenix Arizona USA
- Department of Neurology Mayo Clinic Arizona Phoenix Arizona USA
| | - Anna Burke
- Division of Neurology Barrow Neurological Institute Phoenix Arizona USA
| | | | - Marwan N. Sabbagh
- Lou Ruvo Center for Brain Health, Cleveland Clinic Las Vegas Nevada USA
| | - Ryan R. Walsh
- Division of Neurology Barrow Neurological Institute Phoenix Arizona USA
| | - Ashley M. Stokes
- Division of Neuroimaging Research Barrow Neurological Institute Phoenix Arizona USA
| |
Collapse
|
38
|
Simplified perfusion fraction from diffusion-weighted imaging in preoperative prediction of IDH1 mutation in WHO grade II-III gliomas: comparison with dynamic contrast-enhanced and intravoxel incoherent motion MRI. Radiol Oncol 2020; 54:301-310. [PMID: 32559177 PMCID: PMC7409598 DOI: 10.2478/raon-2020-0037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/13/2020] [Indexed: 11/20/2022] Open
Abstract
Background Effect of isocitr ate dehydrogenase 1 (IDH1) mutation in neovascularization might be linked with tissue perfusion in gliomas. At present, the need of injection of contrast agent and the increasing scanning time limit the application of perfusion techniques. We used a simplified intravoxel incoherent motion (IVIM)-derived perfusion fraction (SPF) calculated from diffusion-weighted imaging (DWI) using only three b-values to quantitatively assess IDH1-linked tissue perfusion changes in WHO grade II-III gliomas (LGGs). Additionally, by comparing accuracy with dynamic contrast-enhanced (DCE) and full IVIM MRI, we tried to find the optimal imaging markers to predict IDH1 mutation status. Patients and methods Thirty patients were prospectively examined using DCE and multi-b-value DWI. All parameters were compared between the IDH1 mutant and wild-type LGGs using the Mann-Whitney U test, including the DCE MRI-derived Ktrans, ve and vp, the conventional apparen t diffusion coefficient (ADC0,1000), IVIM-de rived perfusion fraction (f), diffusion coefficient (D) and pseudo-diffusion coefficient (D*), SPF. We evaluated the diagnostic performance by receive r operating characteristic (ROC) analysis. Results Significant differences were detected between WHO grade II-III gliomas for all perfusion and diffusion parameters (P < 0.05). When compared to IDH1 mutant LGGs, IDH1 wild-type LGGs exhibited significantly higher perfusion metrics (P < 0.05) and lower diffusion metrics (P < 0.05). Among all parameters, SPF showed a higher diagnostic performance (area under the curve 0.861), with 94.4% sensitivity and 75% specificity. Conclusions DWI, DCE and IVIM MRI may noninvasively help discriminate IDH1 mutation statuses in LGGs. Specifically, simplified DWI-derived SPF showed a superior diagnostic performance.
Collapse
|
39
|
Dolgorsuren EA, Harada M, Kanazawa Y, Abe T, Otomo M, Matsumoto Y, Mizobuchi Y, Nakajima K. Correlation and Characteristics of Intravoxel Incoherent Motion and Arterial Spin Labeling Techniques Versus Multiple Parameters Obtained on Dynamic Susceptibility Contrast Perfusion MRI for Brain Tumors. THE JOURNAL OF MEDICAL INVESTIGATION 2020; 66:308-313. [PMID: 31656295 DOI: 10.2152/jmi.66.308] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Purpose : To compare data on brain tumors derived from intravoxel incoherent motion (IVIM) and arterial spin labeling (ASL) imaging with multiple parameters obtained on dynamic susceptibility contrast (DSC) perfusion MRI and to clarify the characteristics of IVIM and ASL perfusion data from the viewpoint of cerebral blood flow (CBF) analysis. Methods : ASL-CBF and IVIM techniques as well as DSC examination were performed in 24 patients with brain tumors. The IVIM data were analyzed with the two models. The relative blood flow (rBF), relative blood volume (rBV) corrected relative blood volume (crBV), mean transit time (MTT), and leakage coefficient (K2) were obtained from the DSC MRI data. Results : The ASL-CBF had the same tendency as the perfusion parameters derived from the DSC data, but the permeability from the vessels had less of an effect on the ASL-CBF. The diffusion coefficient of the fast component on IVIM contained more information on permeability than the f value. Conclusion : ASL-CBF is more suitable for the evaluation of perfusion in brain tumors than IVIM parameters. ASL-CBF and IVIM techniques should be carefully selected and the biological significance of each parameter should be understood for the correct comprehension of the pathological status of brain tumors. J. Med. Invest. 66 : 308-313, August, 2019.
Collapse
Affiliation(s)
| | - Masafumi Harada
- Department of Radiology and Radiation Oncology, Tokushima University, Tokushima, Japan
| | - Yuki Kanazawa
- Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Takashi Abe
- Department of Radiology and Radiation Oncology, Tokushima University, Tokushima, Japan
| | - Maki Otomo
- Department of Radiology and Radiation Oncology, Tokushima University, Tokushima, Japan
| | - Yuki Matsumoto
- Department of Radiology and Radiation Oncology, Tokushima University, Tokushima, Japan
| | | | - Kohhei Nakajima
- Department of Neurosurgery, Tokushima University, Tokushima, Japan
| |
Collapse
|
40
|
Fujiwara S, Mori Y, de la Mora DM, Akamatsu Y, Yoshida K, Shibata Y, Masuda T, Ogasawara K, Yoshioka Y. Feasibility of IVIM parameters from diffusion-weighted imaging at 11.7T MRI for detecting ischemic changes in common carotid artery occlusion rats. Sci Rep 2020; 10:8404. [PMID: 32439877 PMCID: PMC7242437 DOI: 10.1038/s41598-020-65310-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/01/2020] [Indexed: 12/14/2022] Open
Abstract
This study aimed to investigate whether intravoxel incoherent motion (IVIM) parameters can identify ischemic changes in the rat cerebral cortex using a preclinical ultra-high-field 11.7 Tesla magnetic resonance imaging (11.7TMRI) scanner. In nine female Wistar rats (eight weeks old), diffusion-weighted imaging (DWI) for IVIM analysis was successfully performed before (Pre) and after unilateral (UCCAO) and bilateral (BCCAO) common carotid artery occlusion. From the acquired DWI signals averaged in six regions of interest (ROI) placed on the cortex, volume fraction of perfusion compartment (F), pseudo diffusion coefficient (D*), F × D* and apparent diffusion coefficient (ADC) were determined as IVIM parameters in the following three DWI signal models: the bi-exponential, kurtosis, and tri-exponential model. For a subgroup analysis, four rats that survived two weeks after BCCAO were assigned to the long survival (LS) group, whereas the non-LS group consisted of the remaining five animals. Each IVIM parameter change among three phases (Pre, UCCAO and BCCAO) was statistically examined in each ROI. Then, the change in each rat group was also examined for subgroup analysis. All three models were able to identify cerebral ischemic change and damage as IVIM parameter change among three phases. Furthermore, the kurtosis model could identify the parameter changes in more regions than the other two models. In the subgroup analysis with the kurtosis model, ADC in non-LS group significantly decreased between UCCAO and BCCAO but not in LS group. IVIM parameters at 11.7TMRI may help us to detect the subtle ischemic change; in particular, with the kurtosis model.
Collapse
Affiliation(s)
- Shunrou Fujiwara
- Department of Neurosurgery, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate, 028-3694, Japan. .,Graduate School of Frontier Science, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Yuki Mori
- Center for Translational Neuromedicine, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | | | - Yosuke Akamatsu
- Department of Neurosurgery, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate, 028-3694, Japan
| | - Kenji Yoshida
- Department of Neurosurgery, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate, 028-3694, Japan
| | - Yuji Shibata
- Department of Pathology, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate, 028-3694, Japan
| | - Tomoyuki Masuda
- Department of Pathology, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate, 028-3694, Japan
| | - Kuniaki Ogasawara
- Department of Neurosurgery, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate, 028-3694, Japan
| | - Yoshichika Yoshioka
- Graduate School of Frontier Science, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Center for Information and Neural Networks (CiNet), NICT and Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
41
|
Perfusion and diffusion in meningioma tumors: a preliminary multiparametric analysis with Dynamic Susceptibility Contrast and IntraVoxel Incoherent Motion MRI. Magn Reson Imaging 2020; 67:69-78. [DOI: 10.1016/j.mri.2019.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 11/15/2019] [Accepted: 12/05/2019] [Indexed: 12/19/2022]
|
42
|
Federau C, Kroismayr D, Dyer L, Farshad M, Pfirrmann C. Demonstration of asymmetric muscle perfusion of the back after exercise in patients with adolescent idiopathic scoliosis using intravoxel incoherent motion (IVIM) MRI. NMR IN BIOMEDICINE 2020; 33:e4194. [PMID: 31815323 DOI: 10.1002/nbm.4194] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/31/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
The purpose of this work was to quantify muscular perfusion patterns of back muscles after exercise in patients with adolescent idiopathic scoliosis (AIS) using intravoxel incoherent motion (IVIM) MR perfusion imaging. The paraspinal muscles of eight patients with AIS (Cobb angle 35 ± 10°, range [25-47°]) and nine healthy volunteers were scanned with a 1.5 T MRI, at rest and after performing a symmetric back muscle exercise on a Roman chair. An IVIM sequence with 16 b-values from 0 to 900 s/mm2 was acquired, and the IVIM bi-exponential signal equation model was fitted in two steps. Perfusion asymmetries were evaluated using the blood flow related IVIM fD* parameter in regions of interest placed within the paraspinal muscles. Statistical significance was assessed using a Student t-test. The observed perfusion pattern after performing a Roman chair muscle exercise differed consistently in patients with AIS compared with healthy normal volunteers, and consisted of an asymmetrical increase in IVIM fD* [10-3 mm2 /s] above the lumbar convexity from 6.5 ± 5.8 to 28.8 ± 26.8 (p < 0.005), with no increase in the concavity (decrease from 6.5 ± 10.0 to 3.2 ± 1.5 (p = 0.19)), compared with a bilateral symmetric increase in the healthy volunteers (right, increase from 3.3 ± 2.1 to 10.1 ± 4.6 (p < 0.05); left, 6.7 ± 10.7 to 13.3 ± 7.0 (p < 0.05)). In conclusion, patients with AIS exhibit significant asymmetric muscle perfusion over the convexity of the scoliotic curvature after Roman chair exercise.
Collapse
Affiliation(s)
- Christian Federau
- Radiology, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, ETH Zürich und University of Zürich, Zürich, Switzerland
| | - Daniela Kroismayr
- Radiology, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Linda Dyer
- Division of Spine Surgery, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Mazda Farshad
- Division of Spine Surgery, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Christian Pfirrmann
- Radiology, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
43
|
Lévy S, Rapacchi S, Massire A, Troalen T, Feiweier T, Guye M, Callot V. Intravoxel Incoherent Motion at 7 Tesla to quantify human spinal cord perfusion: limitations and promises. Magn Reson Med 2020; 84:1198-1217. [DOI: 10.1002/mrm.28195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/16/2019] [Accepted: 01/10/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Simon Lévy
- Aix‐Marseille Univ, CNRS, CRMBM Marseille France
- APHM, Hopital Universitaire Timone, CEMEREM Marseille France
- Aix‐Marseille Univ, IFSTTAR, LBA Marseille France
- iLab‐Spine International Associated Laboratory Marseille‐Montreal France‐Canada
| | - Stanislas Rapacchi
- Aix‐Marseille Univ, CNRS, CRMBM Marseille France
- APHM, Hopital Universitaire Timone, CEMEREM Marseille France
| | - Aurélien Massire
- Aix‐Marseille Univ, CNRS, CRMBM Marseille France
- APHM, Hopital Universitaire Timone, CEMEREM Marseille France
- iLab‐Spine International Associated Laboratory Marseille‐Montreal France‐Canada
| | | | | | - Maxime Guye
- Aix‐Marseille Univ, CNRS, CRMBM Marseille France
- APHM, Hopital Universitaire Timone, CEMEREM Marseille France
| | - Virginie Callot
- Aix‐Marseille Univ, CNRS, CRMBM Marseille France
- APHM, Hopital Universitaire Timone, CEMEREM Marseille France
- iLab‐Spine International Associated Laboratory Marseille‐Montreal France‐Canada
| |
Collapse
|
44
|
Hu YC, Yan LF, Han Y, Duan SJ, Sun Q, Li GF, Wang W, Wei XC, Zheng DD, Cui GB. Can the low and high b-value distribution influence the pseudodiffusion parameter derived from IVIM DWI in normal brain? BMC Med Imaging 2020; 20:14. [PMID: 32041549 PMCID: PMC7011602 DOI: 10.1186/s12880-020-0419-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 01/30/2020] [Indexed: 12/28/2022] Open
Abstract
Background Our study aims to reveal whether the low b-values distribution, high b-values upper limit, and the number of excitation (NEX) influence the accuracy of the intravoxel incoherent motion (IVIM) parameter derived from multi-b-value diffusion-weighted imaging (DWI) in the brain. Methods This prospective study was approved by the local Ethics Committee and informed consent was obtained from each participant. The five consecutive multi-b DWI with different b-value protocols (0–3500 s/mm2) were performed in 22 male healthy volunteers on a 3.0-T MRI system. The IVIM parameters from normal white matter (WM) and gray matter (GM) including slow diffusion coefficient (D), fast perfusion coefficient (D*) and perfusion fraction (f) were compared for differences among defined groups with different IVIM protocols by one-way ANOVA. Results The D* and f value of WM or GM in groups with less low b-values distribution (less than or equal to 5 b-values) were significantly lower than ones in any other group with more low b-values distribution (all P < 0.05), but no significant differences among groups with more low b-values distribution (P > 0.05). In addition, no significant differences in the D, D* and f value of WM or GM were found between group with one and more NEX of low b-values distribution (all P > 0.05). IVIM parameters in normal WM and GM strongly depended on the choice of the high b-value upper limit. Conclusions Metrics of IVIM parameters can be affected by low and high b value distribution. Eight low b-values distribution with high b-value upper limit of 800–1000 s/mm2 may be the relatively proper set when performing brain IVIM studies.
Collapse
Affiliation(s)
- Yu-Chuan Hu
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, 710038, Shaanxi, People's Republic of China
| | - Lin-Feng Yan
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, 710038, Shaanxi, People's Republic of China
| | - Yu Han
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, 710038, Shaanxi, People's Republic of China
| | - Shi-Jun Duan
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, 710038, Shaanxi, People's Republic of China
| | - Qian Sun
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, 710038, Shaanxi, People's Republic of China
| | - Gang-Feng Li
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, 710038, Shaanxi, People's Republic of China
| | - Wen Wang
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, 710038, Shaanxi, People's Republic of China
| | - Xiao-Cheng Wei
- MR Research China, GE Healthcare China, Beijing, 100176, China
| | - Dan-Dan Zheng
- MR Research China, GE Healthcare China, Beijing, 100176, China
| | - Guang-Bin Cui
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, 710038, Shaanxi, People's Republic of China.
| |
Collapse
|
45
|
Minutoli F, Pergolizzi S, Blandino A, Mormina E, Amato E, Gaeta M. Effect of granulocyte colony-stimulating factor on bone marrow: evaluation by intravoxel incoherent motion and dynamic contrast-enhanced magnetic resonance imaging. Radiol Med 2019; 125:280-287. [PMID: 31823293 DOI: 10.1007/s11547-019-01115-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 11/15/2019] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To report our experience with the use of intravoxel incoherent motion (IVIM) magnetic resonance imaging (MRI) and dynamic contrast-enhanced (DCE)-MRI in bone marrow before and after administration of granulocyte colony-stimulating factor (GCSF). Moreover, a small series of patients with bone metastases from breast cancer have been evaluated by IVIM DW-MRI and DCE-MRI before and after GCSF administration. MATERIALS AND METHODS We studied with IVIM-MRI and DCE-MRI 14 patients with rectal or uterine cervix cancer studied before and 4-18 days after administration of GCSF; the second MR examination was obtained after three chemotherapy courses. IVIM perfusion fraction (f), pseudo-diffusion coefficient (D*), true diffusion coefficient (D) and apparent diffusion coefficient (ADC) as well area under the curve at 60 s (AUC60) were calculated for bone marrow before and after GCSF administration. Moreover, two different IVIM parametric maps (i.e., ADC and ADClow) were generated by selecting two different intervals of b values (0-1000 and 0-80, respectively). Furthermore, four patients affected by pelvic bone metastases from breast adenocarcinoma who received GCSF administration were also qualitatively evaluated for evidence of lesions on ADC maps, ADClow maps and DCE-MRI. RESULTS ADC, D, D*, f and AUC60 values were significantly higher in hyperplastic bone marrow than in untreated bone marrow (p values < 0.0001, < 0.0001, < 0.001, < 0.001, < 0.0001, respectively). All bone metastases were clearly differentiable from hyperplastic bone marrow on ADClow maps, but not on ADC maps and DCE-MRI. CONCLUSION MR functional imaging techniques, such as DW-, IVIM DW- and DCE-MRI are effective tools in assessing the response of bone marrow to the administration of growth factors. Although an overlap between signal of hyperplastic bone marrow and lytic bone metastases can occur on ADC maps and DCE-MRI, evaluation of ADClow maps by IVIM DW-MRI could permit to differentiate hyperplastic bone marrow from lytic bone metastases. Further studies are needed to confirm our data.
Collapse
Affiliation(s)
- Fabio Minutoli
- Department of Biomedical and Dental Sciences and of Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Stefano Pergolizzi
- Department of Biomedical and Dental Sciences and of Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Alfredo Blandino
- Department of Biomedical and Dental Sciences and of Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Enricomaria Mormina
- Department of Clinical and Experimental Medicine, Policlinico Universitario "G. Martino", University of Messina, Via Consolare Valeria, 1, 98100, Messina, Italy.
| | - Ernesto Amato
- Department of Biomedical and Dental Sciences and of Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Michele Gaeta
- Department of Biomedical and Dental Sciences and of Morphofunctional Imaging, University of Messina, Messina, Italy
| |
Collapse
|
46
|
Characterization of lower limb muscle activation patterns during walking and running with Intravoxel Incoherent Motion (IVIM) MR perfusion imaging. Magn Reson Imaging 2019; 63:12-20. [DOI: 10.1016/j.mri.2019.07.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/10/2019] [Accepted: 07/25/2019] [Indexed: 12/31/2022]
|
47
|
Chabert S, Verdu J, Huerta G, Montalba C, Cox P, Riveros R, Uribe S, Salas R, Veloz A. Impact of b-Value Sampling Scheme on Brain IVIM Parameter Estimation in Healthy Subjects. Magn Reson Med Sci 2019; 19:216-226. [PMID: 31611542 PMCID: PMC7553810 DOI: 10.2463/mrms.mp.2019-0061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Purpose: Intravoxel incoherent motion (IVIM) analysis has attracted the interest of the clinical community due to its close relationship with microperfusion. Nevertheless, there is no clear reference protocol for its implementation; one of the questions being which b-value distribution to use. This study aimed to stress the importance of the sampling scheme and to show that an optimized b-value distribution decreases the variance associated with IVIM parameters in the brain with respect to a regular distribution in healthy volunteers. Methods: Ten volunteers were included in this study; images were acquired on a 1.5T MR scanner. Two distributions of 16 b-values were used: one considered ‘regular’ due to its close association with that used in other studies, and the other considered ‘optimized’ according to previous studies. IVIM parameters were adjusted according to the bi-exponential model, using two-step method. Analysis was undertaken in ROI defined using in the Automated Anatomical Labeling atlas, and parameters distributions were compared in a total of 832 ROI. Results: Maps with fewer speckles were obtained with the ‘optimized’ distribution. Coefficients of variation did not change significantly for the estimation of the diffusion coefficient D but decreased by approximately 39% for the pseudo-diffusion coefficient estimation and by 21% for the perfusion fraction. Distributions of adjusted parameters were found significantly different in 50% of the cases for the perfusion fraction, in 80% of the cases for the pseudo-diffusion coefficient and 17% of the cases for the diffusion coefficient. Observations across brain areas show that the range of average values for IVIM parameters is smaller in the ‘optimized’ case. Conclusion: Using an optimized distribution, data are sampled in a way that the IVIM signal decay is better described and less variance is obtained in the fitted parameters. The increased precision gained could help to detect small variations in IVIM parameters.
Collapse
Affiliation(s)
- Stéren Chabert
- CINGS Centro de Investigación y Desarrollo de Ingeniería para la Salud, Universidad de Valparaíso.,Escuela de Ingenieria Civil Biomedica, Universidad de Valparaíso.,Millennium Nucleus for Cardiovascular Magnetic Resonance
| | - Jorge Verdu
- Escuela de Ingenieria Civil Biomedica, Universidad de Valparaíso.,Universidad Politécnica de Valencia
| | - Gamaliel Huerta
- Escuela de Ingenieria Civil Biomedica, Universidad de Valparaíso
| | - Cristian Montalba
- Center for Biomedical Imaging, Pontificia Universidad Católica de Chile
| | - Pablo Cox
- Servicio de Imagenología, Hospital Carlos van Buren
| | - Rodrigo Riveros
- Servicio de Imagenología, Hospital Carlos van Buren.,Facultad de Medicina, Universidad de Valparaíso
| | - Sergio Uribe
- Millennium Nucleus for Cardiovascular Magnetic Resonance.,Center for Biomedical Imaging, Pontificia Universidad Católica de Chile.,Radiology Department, Pontificia Universidad Católica de Chile
| | - Rodrigo Salas
- CINGS Centro de Investigación y Desarrollo de Ingeniería para la Salud, Universidad de Valparaíso.,Escuela de Ingenieria Civil Biomedica, Universidad de Valparaíso
| | - Alejandro Veloz
- CINGS Centro de Investigación y Desarrollo de Ingeniería para la Salud, Universidad de Valparaíso.,Escuela de Ingenieria Civil Biomedica, Universidad de Valparaíso
| |
Collapse
|
48
|
Effect of intravoxel incoherent motion on diffusion parameters in normal brain. Neuroimage 2019; 204:116228. [PMID: 31580945 DOI: 10.1016/j.neuroimage.2019.116228] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/15/2019] [Accepted: 09/25/2019] [Indexed: 02/07/2023] Open
Abstract
At very low diffusion weighting the diffusion MRI signal is affected by intravoxel incoherent motion (IVIM) caused by dephasing of magnetization due to incoherent blood flow in capillaries or other sources of microcirculation. While IVIM measurements at low diffusion weightings have been frequently used to investigate perfusion in the body as well as in malignant tissue, the effect and origin of IVIM in normal brain tissue is not completely established. We investigated the IVIM effect on the brain diffusion MRI signal in a cohort of 137 radiologically-normal patients (62 male; mean age = 50.2 ± 17.8, range = 18 to 94). We compared the diffusion tensor parameters estimated from a mono-exponential fit at b = 0 and 1000 s/mm2 versus at b = 250 and 1000 s/mm2. The asymptotic fitting method allowed for quantitative assessment of the IVIM signal fraction f* in specific brain tissue and regions. Our results show a mean (median) percent difference in the mean diffusivity of about 4.5 (4.9)% in white matter (WM), about 7.8 (8.7)% in cortical gray matter (GM), and 4.3 (4.2)% in thalamus. Corresponding perfusion fraction f* was estimated to be 0.033 (0.032) in WM, 0.066 (0.065) in cortical GM, and 0.033 (0.030) in the thalamus. The effect of f* with respect to age was found to be significant in cortical GM (Pearson correlation ρ = 0.35, p = 3*10-5) and the thalamus (Pearson correlation ρ = 0.20, p = 0.022) with an average increase in f* of 5.17*10-4/year and 3.61*10-4/year, respectively. Significant correlations between f* and age were not observed for WM, and corollary analysis revealed no effect of gender on f*. Possible origins of the IVIM effect in normal brain tissue are discussed.
Collapse
|
49
|
Chen Y, Yu Q, La Tegola L, Mei Y, Chen J, Huang W, Zhang X, Guglielmi G. Intravoxel incoherent motion MR imaging for differentiating malignant lesions in spine: A pilot study. Eur J Radiol 2019; 120:108672. [PMID: 31550637 DOI: 10.1016/j.ejrad.2019.108672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 08/22/2019] [Accepted: 09/14/2019] [Indexed: 10/26/2022]
Abstract
PURPOSE To determine the diagnostic potential of Intravoxel Incoherent Motion (IVIM) MRI for differentiating malignant spinal tumours from acute vertebral compression fractures and tuberculous spondylitis, and to compare IVIM with diffusion-weighted imaging (DWI) and chemical shift imaging (CSI). METHODS The Institutional Review Board approved this prospective study, and informed consent was obtained. IVIM MRI, DWI, and CSI at 1.5 T were performed in 25 patients with 12 acute compression fractures, 14 tuberculous spondylitis, and 18 malignant spinal tumours. The parameters of these techniques were assessed using the Kruskal-Wallis test. The diagnostic performance of the parameters was evaluated using receiver operating characteristic (ROC) analysis. RESULTS ADC, SIR, Dslow, Dfast, and f values of malignant tumours were significantly different from those of acute compression fracture (for all, p < 0.05). The mean Dslow and Dfast values of malignant spinal tumours had significant differences compared with those of tuberculous spondylitis (for all, p < 0.05). However, no significant differences were observed in any quantitative parameters between the acute compression fracture and the tuberculous spondylitis (p > 0.05). Dslow•f showed the highest AUC value of 0.980 (95%CI: 0.942-1.000) in differentiating acute compression fracture and malignant spinal tumours. Dslow showed the highest AUC value of 0.877 (95%CI: 0.713-0.966) in differentiating tuberculous spondylitis and malignant spinal tumours. CONCLUSIONS IVIM MR imaging may be helpful for differentiating malignant spinal tumours from acute vertebral compression fractures and tuberculous spondylitis.
Collapse
Affiliation(s)
- Yanjun Chen
- Department of Medical Imaging, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics. Guangdong Province), Guangzhou, China; Institute of Clinical Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Qinqin Yu
- Institute of Clinical Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Luciana La Tegola
- Università degli Studi di Foggia, Scuola di Specializzazione di Area Medica, Department of Radiology, Foggia, Italy
| | | | - Jialing Chen
- Department of Medical Imaging, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics. Guangdong Province), Guangzhou, China
| | - Wenhua Huang
- Institute of Clinical Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaodong Zhang
- Department of Medical Imaging, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics. Guangdong Province), Guangzhou, China.
| | - Giuseppe Guglielmi
- Università degli Studi di Foggia, Scuola di Specializzazione di Area Medica, Department of Radiology, Foggia, Italy
| |
Collapse
|
50
|
Zhu G, Federau C, Wintermark M, Chen H, Marcellus DG, Martin BW, Heit JJ. Comparison of MRI IVIM and MR perfusion imaging in acute ischemic stroke due to large vessel occlusion. Int J Stroke 2019; 15:332-342. [PMID: 31480940 DOI: 10.1177/1747493019873515] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE Intravoxel incoherent motion is a diffusion-weighted imaging magnetic resonance imaging technique that measures microvascular perfusion from a multi-b value sequence. Intravoxel incoherent motion microvascular perfusion has not been directly compared to conventional dynamic susceptibility contrast perfusion-weighted imaging in the context of acute ischemic stroke. We determined the degree of correlation between perfusion-weighted imaging and intravoxel incoherent motion parameter maps in patients with acute ischemic stroke. METHODS We performed a retrospective cohort study of acute ischemic stroke patients undergoing thrombectomy treatment triage by magnetic resonance imaging. Intravoxel incoherent motion perfusion fraction maps were derived using two-step voxel-by-voxel post-processing. Ischemic core, penumbra, non-ischemia, and contralateral hemisphere were delineated based upon diffusion-weighted imaging and perfusion-weighted imaging using a Tmax >6 s threshold. Signal intensity within different brain compartments were measured on intravoxel incoherent motion (IVIM f, IVIM D*, IVIM fD*) parametric maps and compared the differences using one-way ANOVA. Ischemic volumes were measured on perfusion-weighted imaging and intravoxel incoherent motion parametric maps. Bland-Altman analysis and voxel-based volumetric comparison were used to determine the agreements among ischemic volumes of perfusion-weighted imaging and intravoxel incoherent motion perfusion parameters. Inter-rater reliability on intravoxel incoherent motion maps was also assessed. Significance level was set at α < 0.05. RESULTS Twenty patients (11 males, 55%; mean age 67.1 ± 13.8 years) were included. Vessel occlusions involved the internal carotid artery (6 patients, 30%) and M1 segment of the middle cerebral artery (14, 70%). Mean pre-treatment core infarct volume was 19.07 ± 23.56 ml. Mean pre-treatment ischemic volumes on perfusion-weighted imaging were 10.90 ± 13.33 ml (CBV), 24.83 ± 23.08 ml (CBF), 58.87 ± 37.85 ml (MTT), and 47.53 ± 26.78 ml (Tmax). Mean pre-treatment ischemic volumes on corresponding IVIM parameters were 23.20 ± 25.63 ml (IVIM f), 14.01 ± 16.81 ml (IVIM D*), and 27.41 ± 40.01 ml (IVIM fD*). IVIM f, D, and fD* demonstrated significant differences (P < 0.001). The best agreement in term of ischemic volumes and voxel-based overlap was between IVIM fD* and CBF with mean volume difference of 0.5 ml and mean dice similarity coefficient (DSC) of 0.630 ± 0.136. CONCLUSION There are moderate differences in brain perfusion assessment between intravoxel incoherent motion and perfusion-weighted imaging parametric maps, and IVIM fD* and perfusion-weighted imaging CBF show excellent agreement. Intravoxel incoherent motion is promising for cerebral perfusion assessment in acute ischemic stroke patients.
Collapse
Affiliation(s)
- Guangming Zhu
- Department of Radiology, Neuroradiology Section, Stanford, CA, USA
| | - Christian Federau
- ETH Zürich Institute for Biomedical Engineering, Zürich, Switzerland.,Department of Radiology, University of Basel, Diagnostic and Interventional Neuroradiology, Basel Switzerland
| | - Max Wintermark
- Department of Radiology, Neuroradiology Section, Stanford, CA, USA
| | - Hui Chen
- Department of Radiology, Neuroradiology Section, Stanford, CA, USA.,Encephalopathy Center, Beijing Chaoyang Integrative Medicine Emergency Medical Center, Beijing, China
| | | | - Blake W Martin
- Department of Radiology, Neuroradiology Section, Stanford, CA, USA
| | - Jeremy J Heit
- Department of Radiology, Neuroradiology Section, Stanford, CA, USA
| |
Collapse
|