1
|
Zhang Y, Zheng R, Liu M, Zhang X, Sun Y, Shen H, Chen S, Cai H, Guo W, Xie X, Liu B, Huang G. Quantitative Parameters of Contrast-Enhanced Ultrasound Predicting the Response to Combined Immune Checkpoint Inhibitor and Anti-angiogenesis Therapies for Unresectable Hepatocellular Carcinoma. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:352-357. [PMID: 38072718 DOI: 10.1016/j.ultrasmedbio.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 01/23/2024]
Abstract
OBJECTIVE The aim of the work described here was to explore the value of contrast-enhanced ultrasound (CEUS) quantitative parameters in predicting the response of combined immune checkpoint inhibitor (ICI) and anti-angiogenesis therapies for unresectable hepatocellular carcinoma (HCC). METHODS Sixty-six HCC patients who underwent combined ICI and anti-angiogenesis therapies were prospectively enrolled. A CEUS examination was performed at baseline, and tumor perfusion parameters were obtained with perfusion quantification software. The differences in CEUS quantitative parameters between the responder and non-responder groups were compared, and the correlations between CEUS parameters and progression-free survival (PFS) was evaluated. RESULTS The objective response rate (ORR) was 21.2%. The values of rising time (RT) ratio, time to peak ratio, fall time ratio, peak enhancement ratio, wash-in rate ratio, wash-in perfusion index ratio and wash-out rate ratio differed significantly differed between the responder and non-responder groups (all p values < 0.05). Multivariable logistic regression analysis revealed that the RT ratio was the only independent factor associated with the ORR (odds ratio = 0.007, 95% confidence interval: 0.000-0.307, p = 0.010). The median RT ratios of the responder and non-responder groups were 36.9 and 58.9, respectively (p = 0.006). The appropriate cutoff point of the RT ratio was 80.1, determined with the X-tile program. Survival analysis indicated high PFS for the patients with a lower RT ratio (high RT ratio vs. low RT ratio = 4.4 mo vs. not reached, p = 0.001). CONCLUSION CEUS quantitative parameters may predict the efficacy of ICI and anti-angiogenesis combined therapies for HCC.
Collapse
Affiliation(s)
- Yi Zhang
- Division of Interventional Ultrasound, Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ruiying Zheng
- Division of Interventional Ultrasound, Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ming Liu
- Division of Interventional Ultrasound, Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaoer Zhang
- Division of Interventional Ultrasound, Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yueting Sun
- Division of Interventional Ultrasound, Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Hui Shen
- Division of Interventional Ultrasound, Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Song Chen
- Department of Interventional Radiology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Hongjie Cai
- Department of Interventional Radiology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Wenbo Guo
- Department of Interventional Radiology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaoyan Xie
- Division of Interventional Ultrasound, Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Baoxian Liu
- Division of Interventional Ultrasound, Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Guangliang Huang
- Division of Interventional Ultrasound, Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Department of Medical Ultrasonics, Guangxi Hospital Division of the First Affiliated Hospital, Sun Yat-Sen University, Guangxi, China.
| |
Collapse
|
2
|
Zhang J, Huang Q, Bian W, Wang J, Guan H, Niu J. Imaging Techniques and Clinical Application of the Marrow-Blood Barrier in Hematological Malignancies. Diagnostics (Basel) 2023; 14:18. [PMID: 38201327 PMCID: PMC10795601 DOI: 10.3390/diagnostics14010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
The pathways through which mature blood cells in the bone marrow (BM) enter the blood stream and exit the BM, hematopoietic stem cells in the peripheral blood return to the BM, and other substances exit the BM are referred to as the marrow-blood barrier (MBB). This barrier plays an important role in the restrictive sequestration of blood cells, the release of mature blood cells, and the entry and exit of particulate matter. In some blood diseases and tumors, the presence of immature cells in the blood suggests that the MBB is damaged, mainly manifesting as increased permeability, especially in angiogenesis. Some imaging methods have been used to monitor the integrity and permeability of the MBB, such as DCE-MRI, IVIM, ASL, BOLD-MRI, and microfluidic devices, which contribute to understanding the process of related diseases and developing appropriate treatment options. In this review, we briefly introduce the theory of MBB imaging modalities along with their clinical applications.
Collapse
Affiliation(s)
- Jianling Zhang
- Department of Medical Imaging, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, China; (J.Z.); (Q.H.); (W.B.)
| | - Qianqian Huang
- Department of Medical Imaging, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, China; (J.Z.); (Q.H.); (W.B.)
| | - Wenjin Bian
- Department of Medical Imaging, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, China; (J.Z.); (Q.H.); (W.B.)
| | - Jun Wang
- Department of Radiology, The Second Hospital of Shanxi Medical University, No. 382 Wuyi Road, Taiyuan 030001, China;
| | - Haonan Guan
- MR Research China, GE Healthcare, Beijing 100176, China;
| | - Jinliang Niu
- Department of Radiology, The Second Hospital of Shanxi Medical University, No. 382 Wuyi Road, Taiyuan 030001, China;
| |
Collapse
|
3
|
Chiang J, Sparks H, Rink JS, Meloni MF, Hao F, Sung KH, Lee EW. Dynamic Contrast-Enhanced MR Imaging Evaluation of Perfusional Changes and Ablation Zone Size after Combination Embolization and Ablation Therapy. J Vasc Interv Radiol 2023; 34:253-260. [PMID: 36368517 DOI: 10.1016/j.jvir.2022.10.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/29/2022] [Accepted: 10/28/2022] [Indexed: 11/09/2022] Open
Abstract
PURPOSE The objectives of this study were to assess the utility of dynamic contrast-enhanced magnetic resonance (MR) imaging in quantifying parenchymal perfusional changes after embolization and to characterize the association between pharmacokinetic (PK) parameters and final microwave ablation volume. MATERIALS AND METHODS PK parameters from dynamic contrast-enhanced MR imaging were used to quantify perfusional changes in the liver after transarterial embolization of the right or left lobe in a swine liver model (n = 5). Each animal subject subsequently underwent microwave ablation (60 W for 5 minutes) of the embolized and nonembolized liver lobes. Changes in PK parameters from dynamic contrast-enhanced MR imaging were correlated with their respective final microwave ablation volumes in each liver lobe. RESULTS Microwave ablation volumes of embolized liver lobes were significantly larger than those of nonembolized liver lobes (28.0 mL ± 6.2 vs 15.1 mL ± 5.2, P < .001). PK perfusion parameters were significantly lower in embolized liver lobes than in nonembolized liver lobes (Ktrans = 0.69 min-1 ± 0.15 vs 1.52 min-1 ± 0.37, P < .001; kep = 0.69 min-1 ± 0.19 vs 1.54 min-1 ± 0.42, P < .001). There was a moderate but significant correlation between normalized kep and ablation volume, with each unit increase in normalized kep corresponding to a 9.8-mL decrease in ablation volume (P = .035). CONCLUSIONS PK-derived parameters from dynamic contrast-enhanced MR imaging can be used to quantify perfusional changes after transarterial embolization and are directly inversely correlated with final ablation volume.
Collapse
Affiliation(s)
- Jason Chiang
- Department of Radiology, Ronald Reagan UCLA Medical Center, Los Angeles, California.
| | - Hiro Sparks
- Department of Radiology, Ronald Reagan UCLA Medical Center, Los Angeles, California
| | - Johann S Rink
- Department of Clinical Radiology and Nuclear Medicine, University Hospital Mannheim, Mannheim, Germany
| | - M Franca Meloni
- Casa di Cura Igea Milano, Inteventional Radiology, Department of Radiology, Casa di Cura Igea, Milan, Italy
| | - Frank Hao
- Department of Radiology, Ronald Reagan UCLA Medical Center, Los Angeles, California
| | - Kyung H Sung
- Department of Radiology, Ronald Reagan UCLA Medical Center, Los Angeles, California
| | - Edward W Lee
- Department of Radiology, Ronald Reagan UCLA Medical Center, Los Angeles, California
| |
Collapse
|
4
|
Sheng R, Jin K, Sun W, Gao S, Zhang Y, Wu D, Zeng M. Prediction of therapeutic response of advanced hepatocellular carcinoma to combined targeted immunotherapy by MRI. Magn Reson Imaging 2023; 96:1-7. [PMID: 36270416 DOI: 10.1016/j.mri.2022.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022]
Abstract
PURPOSE To assess the value of pre-treatment MRI in predicting treatment response to combined targeted immunotherapy in advanced hepatocellular carcinoma (HCC). METHODS Totally 35 HCC participants who underwent pre-treatment contrast-enhanced MRI and received combined tyrosine kinase inhibitor (TKI) and anti-PD-1 antibody treatment were enrolled. Univariable and multivariable logistic regression analyses were carried out for comparing clinical and MRI characteristics between patients with therapeutic response and those without. A predictive model based on MRI data and the corresponding nomogram were developed using data generated by multivariate analysis, and the diagnostic performance was evaluated. A cutoff for the combined index was measured by receiver operating characteristic curve analysis, and progression-free survival (PFS) rates were compared between cases with high and low combined index values. RESULTS Fifteen (42.86%) cases achieved overall response during treatment. Multivariable analysis revealed that homogeneous signal (odds ratio [OR] = 13.51, P = 0.010) and no arterial peritumoral enhancement (APE; OR = 10.29, P = 0.024) independently predicted treatment response. The combined model including both significant MRI parameters showed a satisfactory predictive performance with the largest area under the curve of 0.837 (95%CI 0.673-0.939), and both sensitivity and specificity of 80.0%. HCCs with high-combined index had higher PFS rate compared with those showing a low value (P = 0.034). CONCLUSION The combination of pre-treatment MRI features of homogeneous signal and no APE could be used for predicting treatment response to combined targeted immunotherapy in advanced HCC.
Collapse
Affiliation(s)
- Ruofan Sheng
- Department of Radiology, Zhongshan Hospital (Xiamen), Fudan University, Fujian 361006, China; Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Kaipu Jin
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Medical Imaging, 200032 Shanghai, China
| | - Wei Sun
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Medical Imaging, 200032 Shanghai, China
| | - Shanshan Gao
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Medical Imaging, 200032 Shanghai, China
| | - Yunfei Zhang
- Shanghai Institute of Medical Imaging, 200032 Shanghai, China; Central Research Institute, United Imaging Healthcare, 201807 Shanghai, China
| | - Dong Wu
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Medical Imaging, 200032 Shanghai, China.
| | - Mengsu Zeng
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Medical Imaging, 200032 Shanghai, China; Department of Cancer Center, Zhongshan Hospital, Fudan University, 200032 Shanghai, China.
| |
Collapse
|
5
|
Wu Y, Liu J, White GM, Deng J. Image-based motion artifact reduction on liver dynamic contrast enhanced MRI. Phys Med 2023; 105:102509. [PMID: 36565556 DOI: 10.1016/j.ejmp.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/13/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Liver MRI images often suffer from degraded quality due to ghosting or blurring artifacts caused by patient respiratory or bulk motion. In this study, we developed a two-stage deep learning model to reduce motion artifact on dynamic contrast enhanced (DCE) liver MRIs. The stage-I network utilized a deep residual network with a densely connected multi-resolution block (DRN-DCMB) network to remove most motion artifacts. The stage-II network applied the generative adversarial network (GAN) and perceptual loss compensation to preserve image structural features. The stage-I network served as the generator of GAN and its pretrained parameters in stage-I were further updated via backpropagation during stage-II training. The stage-I network was trained using small image patches with simulated motion artifacts including image-space rotational and translational motion, and K-space based centric and interleaved linear motion, sinusoidal, and rotational motion to mimic liver motion patterns. The stage-II network training used full-size images with the same types of simulated motion. The liver DCE-MRI image volumes without obvious motion artifacts in 10 patients were used for the training process, of which 1020 images of 8 patients were used for training and 240 images of 2 patients for validation. Finally, the whole two-stage deep learning model was tested with simulated motion images (312 clean images from 5 test patients) and patient images with real motion artifacts (28 motion images from 12 patients). The resulted images after two-stage processing demonstrated reduced motion artifacts while preserved anatomic details without image blurriness, with SSIM of 0.935 ± 0.092, MSE of 60.7 ± 9.0 × 10-3, and PSNR of 32.054 ± 2.219.
Collapse
Affiliation(s)
- Yunan Wu
- Department of Electrical Computer Engineering, Northwestern University, 633 Clark Street, Evanston, IL 60208, USA; Department of Diagnostic Radiology, Rush University Medical Center, 1653 W. Congress Pkwy, Jelke Ste 181, Chicago, IL 60612, USA.
| | - Junchi Liu
- Medical Imaging Research Center and Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA.
| | - Gregory M White
- Department of Diagnostic Radiology, Rush University Medical Center, 1653 W. Congress Pkwy, Jelke Ste 181, Chicago, IL 60612, USA.
| | - Jie Deng
- Department of Diagnostic Radiology, Rush University Medical Center, 1653 W. Congress Pkwy, Jelke Ste 181, Chicago, IL 60612, USA; Department of Radiation Oncology, UT Southwestern Medical Center, 2280 Inwood Rd, Dallas, TX 75235, USA.
| |
Collapse
|
6
|
Chartampilas E, Rafailidis V, Georgopoulou V, Kalarakis G, Hatzidakis A, Prassopoulos P. Current Imaging Diagnosis of Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14163997. [PMID: 36010991 PMCID: PMC9406360 DOI: 10.3390/cancers14163997] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary The role of imaging in the management of hepatocellular carcinoma (HCC) has significantly evolved and expanded beyond the plain radiological confirmation of the tumor based on the typical appearance in a multiphase contrast-enhanced CT or MRI examination. The introduction of hepatobiliary contrast agents has enabled the diagnosis of hepatocarcinogenesis at earlier stages, while the application of ultrasound contrast agents has drastically upgraded the role of ultrasound in the diagnostic algorithms. Newer quantitative techniques assessing blood perfusion on CT and MRI not only allow earlier diagnosis and confident differentiation from other lesions, but they also provide biomarkers for the evaluation of treatment response. As distinct HCC subtypes are identified, their correlation with specific imaging features holds great promise for estimating tumor aggressiveness and prognosis. This review presents the current role of imaging and underlines its critical role in the successful management of patients with HCC. Abstract Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer related death worldwide. Radiology has traditionally played a central role in HCC management, ranging from screening of high-risk patients to non-invasive diagnosis, as well as the evaluation of treatment response and post-treatment follow-up. From liver ultrasonography with or without contrast to dynamic multiple phased CT and dynamic MRI with diffusion protocols, great progress has been achieved in the last decade. Throughout the last few years, pathological, biological, genetic, and immune-chemical analyses have revealed several tumoral subtypes with diverse biological behavior, highlighting the need for the re-evaluation of established radiological methods. Considering these changes, novel methods that provide functional and quantitative parameters in addition to morphological information are increasingly incorporated into modern diagnostic protocols for HCC. In this way, differential diagnosis became even more challenging throughout the last few years. Use of liver specific contrast agents, as well as CT/MRI perfusion techniques, seem to not only allow earlier detection and more accurate characterization of HCC lesions, but also make it possible to predict response to treatment and survival. Nevertheless, several limitations and technical considerations still exist. This review will describe and discuss all these imaging modalities and their advances in the imaging of HCC lesions in cirrhotic and non-cirrhotic livers. Sensitivity and specificity rates, method limitations, and technical considerations will be discussed.
Collapse
Affiliation(s)
- Evangelos Chartampilas
- Radiology Department, AHEPA University Hospital, Medical School, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
- Correspondence:
| | - Vasileios Rafailidis
- Radiology Department, AHEPA University Hospital, Medical School, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Vivian Georgopoulou
- Radiology Department, Ippokratio General Hospital of Thessaloniki, 54642 Thessaloniki, Greece
| | - Georgios Kalarakis
- Department of Diagnostic Radiology, Karolinska University Hospital, 14152 Stockholm, Sweden
- Department of Clinical Science, Division of Radiology, Intervention and Technology (CLINTEC), Karolinska Institutet, 14152 Stockholm, Sweden
- Department of Radiology, Medical School, University of Crete, 71500 Heraklion, Greece
| | - Adam Hatzidakis
- Radiology Department, AHEPA University Hospital, Medical School, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Panos Prassopoulos
- Radiology Department, AHEPA University Hospital, Medical School, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| |
Collapse
|
7
|
Immunotherapy-Based Treatments of Hepatocellular Carcinoma: AJR Expert Panel Narrative Review. AJR Am J Roentgenol 2022; 219:533-546. [PMID: 35506555 DOI: 10.2214/ajr.22.27633] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The advent of immunotherapy for patients with hepatocellular carcinoma (HCC) has changed the treatment landscape and conferred survival benefit for patients with advanced HCC who typically have a very poor prognosis. The most pronounced improvements in response, as documented by standardized response criteria based on CT or MRI, have been achieved when immunotherapy is combined with other systemic or locoregional therapies. Immune checkpoint inhibitor treatments result in unique patterns on CT and MRI that challenge the application of conventional response criteria such as RECIST, modified RECIST, and European Association for the Study of the Liver criteria. Thus, newer criteria have been developed to gauge therapy response or disease progression for patients on immunotherapy, including immune-related RECIST (iRECIST) and immune-modified RECIST (imRECIST), though these remain unvalidated. In this review, we describe the current landscape of immunotherapeutic agents used for HCC, summarize results of published studies, review pathobiological mechanisms that provide a rationale for the use of these agents, and report on the status of response assessment for immunotherapy, either alone or in combination with other treatment options. Finally, consensus statements are provided to inform radiologists on essential considerations in the era of a rapidly changing treatment paradigm for patients with HCC.
Collapse
|
8
|
Murase K, Kashiwagi N, Tomiyama N. Quantitative evaluation of simultaneous spatial and temporal regularization in dynamic contrast-enhanced MRI of the liver using Gd-EOB-DTPA. Magn Reson Imaging 2022; 88:25-37. [PMID: 35007694 DOI: 10.1016/j.mri.2022.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 02/07/2023]
Abstract
The purpose of this study was to quantitatively evaluate the usefulness of simultaneous spatial and temporal regularization using total variation (TV), total generalized variation (TGV), a combination of low-rank decomposition (LRD) and TV (LRD+TV), a combination of LRD and TGV (LRD+TGV), and nuclear norm (NN) when applied to dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in rats with concanavalin A (ConA)-induced acute hepatic injury. The rats were divided into three groups: normal control (NC) (n = 10), ConA10 (n = 8), and ConA20 (n = 7). Rats in the ConA10 and ConA20 groups were intravenously injected with 10 and 20 mg/kg of ConA, respectively; those in the NC group were intravenously injected with the same volume of saline. DCE-MRI studies were performed using gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA; 0.025 mmol Gd/kg) as a contrast agent (CA), 24 h after the ConA or saline injection. After the DCE-MRI study, we generated zero-filled and undersampled k-space data from the original images using a pseudoradial sampling scheme with 4 to 64 spokes. We subsequently reconstructed images from these data using the above regularizers and calculated the signal-to-error ratio (SERimg) and structural similarity index (SSIM) using the original and reconstructed images. We also calculated the area under the curve (AUC), rate of CA washout (λw), maximum relative enhancement (REmax), and time to REmax (Tmax) from time-intensity curves using an empirical mathematical model (EMM) and the signal-to-error ratio for curve fitting (SERfit) from the original and fit curves. We also compared the parameters obtained using the pseudoradial and Cartesian sampling schemes in the NC group. When using LRD+TV and LRD+TGV, both SERimg and SSIM were greater than those for the other regularizers at all spoke numbers studied; the SERfit for TGV was the greatest. When using TGV and LRD+TGV, in the majority of cases the AUCs did not significantly differ from those obtained from the original images, whereas those for LRD+TV and NN were significantly less at several spoke numbers. The λw for NN was significantly greater at numerous spoke numbers in the NC group; the REmax values for LRD+TV and NN were significantly less at several spoke numbers in all groups. The Tmax values for TV, TGV, and LRD+TGV were significantly greater at numerous spoke numbers in the NC group. Although there were significant differences in SERimg and SSIM between the pseudoradial and Cartesian sampling schemes, the kinetic parameters obtained by the EMM did not significantly differ between the two sampling schemes, with certain exceptions. In conclusion, our results suggest that simultaneous spatial and temporal regularization using TGV or LRD+TGV is useful for accelerating DCE-MRI without significant reduction in the accuracy of the kinetic parameter estimation, even at extremely low sampling factors.
Collapse
Affiliation(s)
- Kenya Murase
- Department of Future Diagnostic Radiology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Nobuo Kashiwagi
- Department of Future Diagnostic Radiology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Noriyuki Tomiyama
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
9
|
Early Changes in DCE-MRI Biomarkers May Predict Survival Outcomes in Patients with Advanced Hepatocellular Carcinoma after Sorafenib Failure: Two Prospective Phase II Trials. Cancers (Basel) 2021; 13:cancers13194962. [PMID: 34638446 PMCID: PMC8508238 DOI: 10.3390/cancers13194962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 01/10/2023] Open
Abstract
Simple Summary In patients with advanced hepatocellular carcinoma, systemic therapy is recommended by most treatment guidelines. Sorafenib and lenvatinib are both 1st-line treatments for inoperable advanced HCC. Regorafenib, cabozantinib, and ramucirumab have been approved as 2nd-line targeted therapy in patients who show progression or do not tolerate sorafenib. However, there is a lack of imaging biomarkers for predicting survival outcomes in patients receiving 2nd-line targeted therapy after sorafenib failure. In this paper, we try to predict survival outcomes via early changes in the DCE-MRI biomarkers in participants with advanced HCC after 2nd-line targeted therapy following sorafenib failure, taking data from two different prospective clinical trials. We found that an early reduction in tumor perfusion detected by DCE-MRI biomarkers, especially on day 14, may predict survival outcomes in these participants. For the further clinical development of anti-angiogenic therapies, optimal participant selection with predictive biomarkers, such as DCE-MRI, is essential in order to improve treatment outcomes. Abstract In this paper, our main objective was to predict survival outcomes using DCE-MRI biomarkers in patients with advanced hepatocellular carcinoma (HCC) after progression from 1st-line sorafenib treatment in two prospective phase II trials. This study included 74 participants (men/women = 64/10, mean age 60 ± 11.8 years) with advanced HCC who received 2nd-line targeted therapy (n = 41 with lenalidomide in one clinical trial; n = 33 with axitinib in another clinical trial) after sorafenib failure from two prospective phase II studies. Among them, all patients underwent DCE-MRI at baseline, and on days 3 and 14 of treatment. The relative changes (Δ) in the DCE-MRI parameters, including ΔPeak, ΔAUC, and ΔKtrans, were derived from the largest hepatic tumor. The treatment response was evaluated using the Response Evaluation Criteria in Solid Tumors (RECIST 1.1). The Cox model was used to investigate the associations of the clinical variables and DCE-MRI biomarkers with progression-free survival (PFS) and overall survival (OS). The objective response rate (ORR) was 10.8% (8/74) and the disease control rate (DCR) was 58.1% (43/74). The median PFS and OS values were 1.9 and 7.8 months, respectively. On day 3 (D3), participants with high reductions in ΔPeak_D3 (hazard ratio (HR) 0.4, 95% confidence interval (CI) 0.17–0.93, p = 0.017) or ΔAUC_D3 (HR 0.51, 95% CI 0.25–1.04, p = 0.043) were associated with better PFS. On day 14, participants with high reductions in ΔPeak_D14 (HR 0.51, 95% CI 0.26–1.01, p = 0.032), ΔAUC_D14 (HR 0.54, 95% CI 0.33–0.9, p = 0.009), or ΔKtrans_D14 (HR 0.26, 95% CI 0.12–0.56, p < 0.001) had a higher PFS than those with lower reduction values. In addition, high reductions in ΔAUC_D14 (HR 0.53, 95% CI 0.32–0.9, p = 0.016) or ΔKtrans_D14 (HR 0.47, 95% CI 0.23–0.98, p = 0.038) were associated with a better OS. Among the clinical variables, ORR was associated with both PFS (p = 0.001) and OS (p = 0.005). DCR was associated with PFS (p = 0.002), but not OS (p = 0.089). Cox multivariable analysis revealed that ΔKtrans_D14 (p = 0.002) remained an independent predictor of PFS after controlling for ORR and DCR. An early reduction in tumor perfusion detected by DCE-MRI biomarkers, especially on day 14, may predict favorable survival outcomes in participants with HCC receiving 2nd-line targeted therapy after sorafenib failure.
Collapse
|
10
|
Mao X, Guo Y, Wen F, Liang H, Sun W, Lu Z. Applying arterial enhancement fraction (AEF) texture features to predict the tumor response in hepatocellular carcinoma (HCC) treated with Transarterial chemoembolization (TACE). Cancer Imaging 2021; 21:49. [PMID: 34384496 PMCID: PMC8359085 DOI: 10.1186/s40644-021-00418-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022] Open
Abstract
Background To evaluate the application of Arterial Enhancement Fraction (AEF) texture features in predicting the tumor response in Hepatocellular Carcinoma (HCC) treated with Transarterial Chemoembolization (TACE) by means of texture analysis. Methods HCC patients treated with TACE in Shengjing Hospital of China Medical University from June 2018 to December 2019 were retrospectively enrolled in this study. Pre-TACE Contrast Enhanced Computed Tomography (CECT) and imaging follow-up within 6 months were both acquired. The tumor responses were categorized according to the modified RECIST (mRECIST) criteria. Based on the CECT images, Region of Interest (ROI) of HCC lesion was drawn, the AEF calculation and texture analysis upon AEF values in the ROI were performed using CT-Kinetics (C.K., GE Healthcare, China). A total of 32 AEF texture features were extracted and compared between different tumor response groups. Multi-variate logistic regression was performed using certain AEF features to build the differential models to predict the tumor response. The Receiver Operator Characteristic (ROC) analysis was implemented to assess the discriminative performance of these models. Results Forty-five patients were finally enrolled in the study. Eight AEF texture features showed significant distinction between Improved and Un-improved patients (p < 0.05). In multi-variate logistic regression, 9 AEF texture features were applied into modeling to predict “Improved” outcome, and 4 AEF texture features were applied into modeling to predict “Un-worsened” outcome. The Area Under Curve (AUC), diagnostic accuracy, sensitivity, and specificity of the two models were 0.941, 0.911, 1.000, 0.826, and 0.824, 0.711, 0.581, 1.000, respectively. Conclusions Certain AEF heterogeneous features of HCC could possibly be utilized to predict the tumor response to TACE treatment.
Collapse
Affiliation(s)
- Xiaonan Mao
- Department of Radiology, ShengJing hospital of China Medical University, 12# floor at 1# building, 39 Huaxiang Road, Shenyang City, 110000, Liaoning Province, China
| | - Yan Guo
- GE Healthcare (China), Shanghai, China
| | - Feng Wen
- Department of Radiology, ShengJing hospital of China Medical University, 12# floor at 1# building, 39 Huaxiang Road, Shenyang City, 110000, Liaoning Province, China
| | - Hongyuan Liang
- Department of Radiology, ShengJing hospital of China Medical University, 12# floor at 1# building, 39 Huaxiang Road, Shenyang City, 110000, Liaoning Province, China
| | - Wei Sun
- Department of Radiology, ShengJing hospital of China Medical University, 12# floor at 1# building, 39 Huaxiang Road, Shenyang City, 110000, Liaoning Province, China
| | - Zaiming Lu
- Department of Radiology, ShengJing hospital of China Medical University, 12# floor at 1# building, 39 Huaxiang Road, Shenyang City, 110000, Liaoning Province, China.
| |
Collapse
|
11
|
Dynamic Contrast-Enhanced and Intravoxel Incoherent Motion MRI Biomarkers Are Correlated to Survival Outcome in Advanced Hepatocellular Carcinoma. Diagnostics (Basel) 2021; 11:diagnostics11081340. [PMID: 34441274 PMCID: PMC8391260 DOI: 10.3390/diagnostics11081340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022] Open
Abstract
Objective: This study assessed dynamic contrast-enhanced (DCE)-MRI and intravoxel incoherent motion diffusion-weighted imaging (IVIM DWI) parameters to prospectively predict survival outcomes in participants with advanced hepatocellular carcinoma (HCC) who received lenalidomide, a dual antiangiogenic and immunomodulatory agent, as second-line therapy in a Phase II clinical trial. Materials and methods: Forty-four participants with advanced HCC who had progression after sorafenib as first-line treatment were prospectively enrolled. Pretreatment MRI parameters—obtained from DCE-MRI (peak, slope, AUC, Ktrans, Kep, and Ve), apparent diffusion coefficient (ADC), and IVIM DWI (pure diffusion coefficient (D), pseudodiffusion coefficient (D*), and perfusion fraction (f))—were derived from the largest hepatic tumor. The Cox model was used to investigate the associations of the parameters with progression-free survival (PFS) and overall survival (OS). Results: Median PFS and OS were 2.3 and 8.0 months, respectively. Univariate analysis showed that participants with a high slope (p = 0.024), Kep (p < 0.001), and ADC (p = 0.018) values had longer PFS than those with low values; participants with a small tumor size (p = 0.006), high slope (p = 0.01), ADC (p = 0.015), and f (p = 0.012) values had longer OS than those with low values did. Cox multivariable analysis revealed that Kep (p < 0.001) and ADC (p = 0.009) remained independent predictors of PFS; slope (p = 0.003) and ADC (p = 0.009) remained independent predictors of OS. Moreover, Kep and slope were still significant after Bonferroni correction was performed (p < 0.005). Conclusion: Both pretreatment DCE-MRI and IVIM DWI parameters, especially slope and ADC, may predict PFS and OS in participants with HCC receiving lenalidomide as second-line therapy.
Collapse
|
12
|
Lin Z, Chen B, Hung Y, Huang P, Shen Y, Shao Y, Hsu C, Cheng A, Lee R, Chao Y, Hsu C. A Multicenter Phase II Study of Second-Line Axitinib for Patients with Advanced Hepatocellular Carcinoma Failing First-Line Sorafenib Monotherapy. Oncologist 2020; 25:e1280-e1285. [PMID: 32271494 PMCID: PMC7485356 DOI: 10.1634/theoncologist.2020-0143] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/18/2020] [Indexed: 12/24/2022] Open
Abstract
LESSONS LEARNED For patients with advanced hepatocellular carcinoma after failure of first-line sorafenib monotherapy, second-line axitinib provides modest efficacy with tolerable toxicity. The discrepant tumor responses and survival outcomes in trials using axitinib as salvage therapy highlight the importance of optimal patient selection with the aid of clinical biomarkers. BACKGROUND Multikinase inhibitors have been effective treatment for hepatocellular carcinoma (HCC). This multicenter phase II study explored the efficacy and safety of second-line axitinib for advanced HCC. METHODS Patients with advanced HCC and Child-Pugh A liver function, experiencing progression on first-line sorafenib monotherapy, were eligible. Axitinib 5 mg twice daily was given continuously with allowed dose escalation. Tumor assessment was performed according to RECIST version 1.1. The primary endpoint was rate of disease control. RESULTS From April 2011 to March 2016, 45 patients were enrolled. Thirty-seven patients (82%) tested positive for hepatitis B surface antigen. The disease control rate was 62.2%, and the response rate was 6.7%, according to RECIST criteria. Median progression-free survival (PFS) and overall survival (OS) were 2.2 months and 10.1 months, respectively. Treatment-related adverse events were compatible with previous reports of axitinib. CONCLUSION Second-line axitinib has moderate activity and acceptable toxicity for patients with advanced HCC after failing the first-line sorafenib monotherapy.
Collapse
Affiliation(s)
- Zhong‐Zhe Lin
- Department of Medical Oncology, National Taiwan University Cancer CenterTaipeiTaiwan
- Department of Oncology, National Taiwan University HospitalTaipeiTaiwan
- Department of Internal Medicine, National Taiwan University College of MedicineTaipeiTaiwan
| | - Bang‐Bin Chen
- Department of Radiology, National Taiwan University HospitalTaipeiTaiwan
| | - Yi‐Ping Hung
- Department of Oncology, Taipei Veterans General HospitalTaipeiTaiwan
| | - Po‐Hsiang Huang
- Department of Oncology, National Taiwan University HospitalTaipeiTaiwan
| | - Ying‐Chun Shen
- Department of Medical Oncology, National Taiwan University Cancer CenterTaipeiTaiwan
- Department of Oncology, National Taiwan University HospitalTaipeiTaiwan
- Graduate Institute of Oncology, National Taiwan University College of MedicineTaipeiTaiwan
| | - Yu‐Yun Shao
- Department of Oncology, National Taiwan University HospitalTaipeiTaiwan
- Graduate Institute of Oncology, National Taiwan University College of MedicineTaipeiTaiwan
| | - Chih‐Hung Hsu
- Department of Medical Oncology, National Taiwan University Cancer CenterTaipeiTaiwan
- Department of Oncology, National Taiwan University HospitalTaipeiTaiwan
- Graduate Institute of Oncology, National Taiwan University College of MedicineTaipeiTaiwan
| | - Ann‐Lii Cheng
- Department of Medical Oncology, National Taiwan University Cancer CenterTaipeiTaiwan
- Department of Oncology, National Taiwan University HospitalTaipeiTaiwan
- Department of Internal Medicine, National Taiwan University College of MedicineTaipeiTaiwan
- Graduate Institute of Oncology, National Taiwan University College of MedicineTaipeiTaiwan
| | - Rheun‐Chuan Lee
- Department of Radiology, Taipei Veterans General HospitalTaipeiTaiwan
| | - Yee Chao
- Department of Oncology, Taipei Veterans General HospitalTaipeiTaiwan
- School of Medicine, National Yang‐Ming UniversityTaipeiTaiwan
| | - Chiun Hsu
- Department of Medical Oncology, National Taiwan University Cancer CenterTaipeiTaiwan
- Department of Oncology, National Taiwan University HospitalTaipeiTaiwan
- Graduate Institute of Oncology, National Taiwan University College of MedicineTaipeiTaiwan
| |
Collapse
|
13
|
Wáng YXJ, Wang X, Wu P, Wang Y, Chen W, Chen H, Li J. Topics on quantitative liver magnetic resonance imaging. Quant Imaging Med Surg 2019; 9:1840-1890. [PMID: 31867237 DOI: 10.21037/qims.2019.09.18] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Liver magnetic resonance imaging (MRI) is subject to continuous technical innovations through advances in hardware, sequence and novel contrast agent development. In order to utilize the abilities of liver MR to its full extent and perform high-quality efficient exams, it is mandatory to use the best imaging protocol, to minimize artifacts and to select the most adequate type of contrast agent. In this article, we review the routine clinical MR techniques applied currently and some latest developments of liver imaging techniques to help radiologists and technologists to better understand how to choose and optimize liver MRI protocols that can be used in clinical practice. This article covers topics on (I) fat signal suppression; (II) diffusion weighted imaging (DWI) and intravoxel incoherent motion (IVIM) analysis; (III) dynamic contrast-enhanced (DCE) MR imaging; (IV) liver fat quantification; (V) liver iron quantification; and (VI) scan speed acceleration.
Collapse
Affiliation(s)
- Yì Xiáng J Wáng
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
| | | | - Peng Wu
- Philips Healthcare (Suzhou) Co., Ltd., Suzhou 215024, China
| | - Yajie Wang
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Weibo Chen
- Philips Healthcare, Shanghai 200072, China.,Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Huijun Chen
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jianqi Li
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| |
Collapse
|
14
|
Eilard MS, Andersson M, Naredi P, Geronymakis C, Lindnér P, Cahlin C, Bennet W, Rizell M. A prospective clinical trial on sorafenib treatment of hepatocellular carcinoma before liver transplantation. BMC Cancer 2019; 19:568. [PMID: 31185950 PMCID: PMC6560824 DOI: 10.1186/s12885-019-5760-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 05/27/2019] [Indexed: 12/17/2022] Open
Abstract
Background Patients with hepatocellular carcinoma waiting for liver transplantation are commonly treated with locoregional treatments, such as TACE and ablation, to prevent tumor progression and dropout and to improve long-term outcome after transplantation. We wanted to prospectively assess feasibility of systemic antitumor treatment with sorafenib as neoadjuvant treatment for hepatocellular carcinoma while waiting for liver transplantation, evaluating tolerability, toxicity and posttransplant morbidity. We also wanted to evaluate perfusion CT parameters to assess tumor properties and response early after start of sorafenib treatment in patients with early hepatocellular carcinoma. Methods Twelve patients assigned for liver transplantation due to hepatocellular carcinoma, within the UCSF and who fulfilled other criteria, were included January 2012–August 2014. After baseline evaluation, sorafenib treatment was started. Treatment was evaluated by perfusion CT at 1, 4 and 12 weeks and thereafter every 8 weeks. Toxicity and quality of life was assessed at 1 and 4 weeks and every 4 weeks thereafter during treatment. Treatment was stopped when patients were prioritized on the transplantation waiting list or when intolerable side effects or tumor progress warranted other treatments. Posttransplant morbidity after 90 days was registered according to Clavien-Dindo. Results Baseline perfusion CT parameters in the tumors predicted the outcome according to RECIST/mRECIST at three months, but no change in CTp parameters was detected as a result of sorafenib. Sorafenib as neoadjuvant treatment was associated with intolerability and dose reductions. Therefore the prerequisites for evaluation of the sorafenib effect on both CT parameters and tumor response were impaired. Conclusions This study failed to show changes in CTp parameters during sorafenib treatment. Despite the curative treatment intention, tolerability of neoadjuvant sorafenib treatment before liver transplantation was inadequate in this study. Trial registration EudraCT number: 2010–024306-36 (date 2011-04-07). Electronic supplementary material The online version of this article (10.1186/s12885-019-5760-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Malin Sternby Eilard
- Transplantation Center, Sahlgrenska University Hospital, Gothenburg, 413 45, Gothenburg, Sweden. .,Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Mats Andersson
- Department of Radiology, Sahlgrenska University Hospital and Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Peter Naredi
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Charalampos Geronymakis
- Department of Radiology, Sahlgrenska University Hospital and Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Per Lindnér
- Transplantation Center, Sahlgrenska University Hospital, Gothenburg, 413 45, Gothenburg, Sweden.,Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Christian Cahlin
- Transplantation Center, Sahlgrenska University Hospital, Gothenburg, 413 45, Gothenburg, Sweden
| | - William Bennet
- Transplantation Center, Sahlgrenska University Hospital, Gothenburg, 413 45, Gothenburg, Sweden.,Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Magnus Rizell
- Transplantation Center, Sahlgrenska University Hospital, Gothenburg, 413 45, Gothenburg, Sweden.,Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
15
|
Abstract
We discuss various imaging features that have been reported to be associated with the prognosis of hepatocellular carcinoma (HCC) but not included in the current staging systems: findings related with microvascular invasion, tumor encapsulation, intratumoral fat, presence of satellite nodules, peritumoral hypointensity on hepatobiliary phase images of gadoxetic-acid enhanced MRI, restricted diffusion, and irregular rim-like hyperenhancement. Current evidence suggests that larger (> 2 cm) tumor size, presence of satellite nodules, presence of irregular rim-like hyperenhancement of a tumor, peritumoral parenchymal enhancement in the arterial phase, and peritumoral hypointensity observed on hepatobiliary phase images are independent imaging features to portend a worse prognosis in patients with hepatocellular carcinoma.
Collapse
|
16
|
Ben RJ, Jao JC, Chang CY, Tzeng JS, Hwang LC, Chen PC. Longitudinal investigation of ischemic stroke using magnetic resonance imaging: Animal model. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2019; 27:935-947. [PMID: 31306147 DOI: 10.3233/xst-190538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
BACKGROUND Arterial embolism is a major cause of ischemic stroke. Currently, digital subtraction angiography (DSA) is the gold standard in clinical arterial embolization examinations. However, it is invasive and risky. OBJECTIVE This study aims to longitudinally assess the progression of carotid artery embolism in middle cerebral artery occlusion animal model (MCAO) using magnetic resonance imaging (MRI) techniques. METHODS Turbo spin echo (TSE), time of flight magnetic resonance angiography (TOF-MRA) and diffusion weighted magnetic resonance imaging (DWI) were used to evaluate the image characteristics of cerebral tissues at 1, 2, 3, 7, 14, 21 and 28 days after MCAO microsurgery on Sprague-Dawley (SD) rats. Quantitative analysis was performed and compared in MCAO hemisphere and contralateral normal hemisphere. Furthermore, pathologic section using triphenyl tetrazolium chloride (TTC) stain was performed as well. RESULTS TOF-MRA showed carotid signal void in the embolism side, which is evidence of artery occlusion. The used MRI techniques showed that edema gradually dissipated within one week, but there was no significant change afterwards. The time-varying signal intensity of MRI techniques in MCAO hemisphere changed significantly, but there were no significant changes in contralateral normal hemisphere. Cerebral injury was also confirmed by analysis of pathology images. CONCLUSIONS The MCAO animal model was successfully established on SD rats using the microsurgery to assess arterial embolization of intracranial tissue injury.
Collapse
Affiliation(s)
- Ren-Jy Ben
- Department of Biomedical Engineering, I-Shou University, Jiaosu Village, Yanchao District, Kaohsiung City, Taiwan, R.O.C
- Department of Electrical Engineering, I-Shou University, Dashu District, Kaohsiung City, Taiwan, R.O.C
| | - Jo-Chi Jao
- Department of Medical Imaging and Radiological Sciences, College of Health Sciences, Kaohsiung Medical University, Kaohsiung City, Taiwan, R.O.C
| | - Chiung-Yun Chang
- Department of Medical Imaging and Radiological Sciences, College of Health Sciences, Kaohsiung Medical University, Kaohsiung City, Taiwan, R.O.C
| | - Jiun-Siang Tzeng
- Department of Medical Imaging and Radiological Sciences, College of Health Sciences, Kaohsiung Medical University, Kaohsiung City, Taiwan, R.O.C
| | - Lain-Chyr Hwang
- Department of Electrical Engineering, I-Shou University, Dashu District, Kaohsiung City, Taiwan, R.O.C
| | - Po-Chou Chen
- Department of Biomedical Engineering, I-Shou University, Jiaosu Village, Yanchao District, Kaohsiung City, Taiwan, R.O.C
| |
Collapse
|
17
|
Krishan S, Dhiman RK, Kalra N, Sharma R, Baijal SS, Arora A, Gulati A, Eapan A, Verma A, Keshava S, Mukund A, Deva S, Chaudhary R, Ganesan K, Taneja S, Gorsi U, Gamanagatti S, Madhusudan KS, Puri P, Shalimar, Govil S, Wadhavan M, Saigal S, Kumar A, Thapar S, Duseja A, Saraf N, Khandelwal A, Mukhopadyay S, Gulati A, Shetty N, Verma N. Joint Consensus Statement of the Indian National Association for Study of the Liver and Indian Radiological and Imaging Association for the Diagnosis and Imaging of Hepatocellular Carcinoma Incorporating Liver Imaging Reporting and Data System. J Clin Exp Hepatol 2019; 9:625-651. [PMID: 31695253 PMCID: PMC6823668 DOI: 10.1016/j.jceh.2019.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the 6th most common cancer and the second most common cause of cancer-related mortality worldwide. There are currently no universally accepted practice guidelines for the diagnosis of HCC on imaging owing to the regional differences in epidemiology, target population, diagnostic imaging modalities, and staging and transplant eligibility. Currently available regional and national guidelines include those from the American Association for the Study of Liver Disease (AASLD), the European Association for the Study of the Liver (EASL), the Asian Pacific Association for the Study of the Liver, the Japan Society of Hepatology, the Korean Liver Cancer Study Group, Hong Kong, and the National Comprehensive Cancer Network in the United States. India with its large population and a diverse health infrastructure faces challenges unique to its population in diagnosing HCC. Recently, American Association have introduced a Liver Imaging Reporting and Data System (LIRADS, version 2017, 2018) as an attempt to standardize the acquisition, interpretation, and reporting of liver lesions on imaging and hence improve the coherence between radiologists and clinicians and provide guidance for the management of HCC. The aim of the present consensus was to find a common ground in reporting and interpreting liver lesions pertaining to HCC on imaging keeping LIRADSv2018 in mind.
Collapse
Affiliation(s)
- Sonal Krishan
- Department of Radiology, Medanta Hospital, Gurgaon, India
| | - Radha K. Dhiman
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India,Address for correspondence: Radha Krishan Dhiman, MD, DM, FACG, FRCP, FAASLD, Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| | - Navin Kalra
- Department of Radiology, Postgraduate Institute Of Medical Education and Research, Chandigarh, India
| | - Raju Sharma
- Department of Radiology, All India Institute of Medical Sciences, New Delhi, India
| | - Sanjay S. Baijal
- Department of Diagnostic and Intervention Radiology, Medanta Hospital, Gurgaon, India
| | - Anil Arora
- Institute Of Liver Gastroenterology & Pancreatico Biliary Sciences, Sir Gangaram Hospital, New Delhi, India
| | - Ajay Gulati
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Anu Eapan
- Department of Radiology, Christian Medical College, Vellore, India
| | - Ashish Verma
- Department of Radiology, Banaras Hindu University, Varanasi, India
| | - Shyam Keshava
- Department of Radiology, Christian Medical College, Vellore, India
| | - Amar Mukund
- Department of Intervention Radiology, Institute of liver and biliary Sciences, New Delhi, India
| | - S. Deva
- Department of Radiology, All India Institute of Medical Sciences, New Delhi, India
| | - Ravi Chaudhary
- Department of Radiology, Medanta Hospital, Gurgaon, India
| | | | - Sunil Taneja
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ujjwal Gorsi
- Department of Radiology, Postgraduate Institute Of Medical Education and Research, Chandigarh, India
| | | | - Kumble S. Madhusudan
- Department of Radiology, All India Institute of Medical Sciences, New Delhi, India
| | - Pankaj Puri
- Institute Of Liver Gastroenterology & Pancreatico Biliary Sciences, Sir Gangaram Hospital, New Delhi, India
| | - Shalimar
- Department of GastroEnterology, All India Institute of Medical Sciences, New Delhi, India
| | | | - Manav Wadhavan
- Institute of Digestive and Liver Diseases, BLK Hospital, Delhi, India
| | - Sanjiv Saigal
- Department of Hepatology, Medanta Hospital, Gurgaon, India
| | - Ashish Kumar
- Institute Of Liver Gastroenterology & Pancreatico Biliary Sciences, Sir Gangaram Hospital, New Delhi, India
| | - Shallini Thapar
- Department of Radiology, Institute of liver and biliary Sciences, New Delhi, India
| | - Ajay Duseja
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Neeraj Saraf
- Department of Hepatology, Medanta Hospital, Gurgaon, India
| | | | | | - Ajay Gulati
- Department of Radiology, Postgraduate Institute Of Medical Education and Research, Chandigarh, India
| | - Nitin Shetty
- Department of Radiology, Tata Memorial Hospital, Kolkata, India
| | - Nipun Verma
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
18
|
Ippolito D, Inchingolo R, Grazioli L, Drago SG, Nardella M, Gatti M, Faletti R. Recent advances in non-invasive magnetic resonance imaging assessment of hepatocellular carcinoma. World J Gastroenterol 2018; 24:2413-2426. [PMID: 29930464 PMCID: PMC6010944 DOI: 10.3748/wjg.v24.i23.2413] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/27/2018] [Accepted: 05/12/2018] [Indexed: 02/06/2023] Open
Abstract
Magnetic resonance (MR) imaging of the liver is an important tool for the detection and characterization of focal liver lesions and for assessment of diffuse liver disease, having several intrinsic characteristics, represented by high soft tissue contrast, avoidance of ionizing radiation or iodinated contrast media, and more recently, by application of several functional imaging techniques (i.e., diffusion-weighted sequences, hepatobiliary contrast agents, perfusion imaging, magnetic resonance (MR)-elastography, and radiomics analysis). MR functional imaging techniques are extensively used both in routine practice and in the field of clinical and pre-clinical research because, through a qualitative rather than quantitative approach, they can offer valuable information about tumor tissue and tissue architecture, cellular biomarkers related to the hepatocellular functions, or tissue vascularization profiles related to tumor and tissue biology. This kind of approach offers in vivo physiological parameters, capable of evaluating physiological and pathological modifications of tissues, by the analysis of quantitative data that could be used in tumor detection, characterization, treatment selection, and follow-up, in addition to those obtained from standard morphological imaging. In this review we provide an overview of recent advanced techniques in MR for the diagnosis and staging of hepatocellular carcinoma, and their role in the assessment of response treatment evaluation.
Collapse
Affiliation(s)
- Davide Ippolito
- School of Medicine, University of Milano-Bicocca, Milan 20126, Italy
- Department of Diagnostic Radiology, HS Gerardo Monza, Monza (MB) 20900, Italy
| | - Riccardo Inchingolo
- Division of Interventional Radiology, Department of Radiology, Madonna delle Grazie Hospital, Matera 75100, Italy
| | - Luigi Grazioli
- Department of Radiology, University of Brescia “Spedali Civili”, Brescia 25123, Italy
| | - Silvia Girolama Drago
- School of Medicine, University of Milano-Bicocca, Milan 20126, Italy
- Department of Diagnostic Radiology, HS Gerardo Monza, Monza (MB) 20900, Italy
| | - Michele Nardella
- Division of Interventional Radiology, Department of Radiology, Madonna delle Grazie Hospital, Matera 75100, Italy
| | - Marco Gatti
- Department of Surgical Sciences, Radiology Unit, University of Turin, Turin 10126, Italy
| | - Riccardo Faletti
- Department of Surgical Sciences, Radiology Unit, University of Turin, Turin 10126, Italy
| |
Collapse
|
19
|
Chen BB, Lu YS, Yu CW, Lin CH, Chen TWW, Wei SY, Cheng AL, Shih TTF. Imaging biomarkers from multiparametric magnetic resonance imaging are associated with survival outcomes in patients with brain metastases from breast cancer. Eur Radiol 2018; 28:4860-4870. [PMID: 29770848 DOI: 10.1007/s00330-018-5448-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/02/2018] [Accepted: 03/23/2018] [Indexed: 01/06/2023]
Abstract
OBJECTIVES The aim of this study is to investigate the correlation of survival outcomes with imaging biomarkers from multiparametric magnetic resonance imaging (MRI) in patients with brain metastases from breast cancer (BMBC). METHODS This study was approved by the institutional review board. Twenty-two patients with BMBC who underwent treatment involving bevacizumab on day 1, etoposide on days 2-4, and cisplatin on day 2 in 21-day cycles were prospectively enrolled for a phase II study. Three brain MRIs were performed: before the treatment, on day 1, and on day 21. Eight imaging biomarkers were derived from dynamic contrast-enhanced MRI (Peak, IAUC60, Ktrans, kep, ve), diffusion-weighted imaging [apparent diffusion coefficient (ADC)], and MR spectroscopy (choline/N-acetylaspartate and choline/creatine ratios). The relative changes (Δ) in these biomarkers were correlated with the central nervous system (CNS)-specific progression-free survival (PFS) and overall survival (OS) using the Kaplan-Meier and Cox proportional hazard models. RESULTS There were no significant differences in the survival outcomes as per the changes in the biomarkers on day 1. On day 21, those with a low ΔKtrans (p = 0.024) or ΔADC (p = 0.053) reduction had shorter CNS-specific PFS; further, those with a low ΔPeak (p = 0.012) or ΔIAUC60 (p = 0.04) reduction had shorter OS compared with those with high reductions. In multivariate analyses, ΔKtrans and ΔPeak were independent prognostic factors for CNS-specific PFS and OS, respectively, after controlling for age, size, hormone receptors, and performance status. CONCLUSIONS Multiparametric MRI may help predict the survival outcomes in patients with BMBC. KEY POINTS • Decreased angiogenesis after chemotherapy on day 21 indicated good survival outcome. • ΔK trans was an independent prognostic factors for CNS-specific PFS. • ΔPeak was an independent prognostic factors for OS. • Multiparametric MRI helps clinicians to assess patients with BMBC. • High-risk patients may benefit from more intensive follow-up or treatment strategies.
Collapse
Affiliation(s)
- Bang-Bin Chen
- Department of Radiology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Medical Imaging, National Taiwan University Hospital, No. 7, Chung-Shan South Rd, Taipei, 10016, Taiwan
| | - Yen-Shen Lu
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Wei Yu
- Department of Radiology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Medical Imaging, National Taiwan University Hospital, No. 7, Chung-Shan South Rd, Taipei, 10016, Taiwan
| | - Ching-Hung Lin
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tom Wei-Wu Chen
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shwu-Yuan Wei
- Department of Radiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ann-Lii Cheng
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tiffany Ting-Fang Shih
- Department of Radiology, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Department of Medical Imaging, National Taiwan University Hospital, No. 7, Chung-Shan South Rd, Taipei, 10016, Taiwan.
| |
Collapse
|
20
|
Chen BB, Tien YW, Chang MC, Cheng MF, Chang YT, Yang SH, Wu CH, Kuo TC, Shih IL, Yen RF, Shih TTF. Multiparametric PET/MR imaging biomarkers are associated with overall survival in patients with pancreatic cancer. Eur J Nucl Med Mol Imaging 2018; 45:1205-1217. [PMID: 29476229 DOI: 10.1007/s00259-018-3960-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/22/2018] [Indexed: 12/11/2022]
Abstract
PURPOSE To correlate the overall survival (OS) with the imaging biomarkers of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), diffusion-weighted imaging (DWI), magnetic resonance spectroscopy, and glucose metabolic activity derived from integrated fluorine 18 fluorodeoxyglucose positron emission tomography (18F-FDG PET)/MRI in patients with pancreatic cancer. METHODS This prospective study was approved by the institutional review board and informed consent was obtained from all participants. Sixty-three consecutive patients (mean age, 62.7 ± 12 y; men/women, 40/23) with pancreatic cancer underwent PET/MRI before treatment. The imaging biomarkers were comprised of DCE-MRI parameters (peak, IAUC 60 , K trans , k ep , v e ), the minimum apparent diffusion coefficient (ADCmin), choline level, standardized uptake values, metabolic tumor volume, and total lesion glycolysis (TLG) of the tumors. The relationships between these imaging biomarkers with OS were evaluated with the Kaplan-Meier and Cox proportional hazard models. RESULTS Seventeen (27%) patients received curative surgery, with the median follow-up duration being 638 days. Univariate analysis showed that patients at a low TNM stage (≦3, P = 0.041), high peak (P = 0.006), high ADCmin (P = 0.002) and low TLG (P = 0.01) had better OS. Moreover, high TLG/peak ratio was associated with poor OS (P = 0.016). Multivariate analysis indicated that ADCmin (P = 0.011) and TLG/peak ratio (P = 0.006) were independent predictors of OS after adjustment for age, gender, tumor size, and TNM stage. The TLG/peak ratio was an independent predictor of OS in a subgroup of patients who did not receive curative surgery (P = 0.013). CONCLUSION The flow-metabolism mismatch reflected by the TLG/peak ratio may better predict OS than other imaging biomarkers from PET/MRI in pancreatic cancer patients.
Collapse
Affiliation(s)
- Bang-Bin Chen
- Department of Medical Imaging and Radiology, National Taiwan University College of Medicine and Hospital, No 7, Chung-Shan South Rd, Taipei, 10016, Taiwan
| | - Yu-Wen Tien
- Department of Surgery, National Taiwan University College of Medicine and Hospital, No 7, Chung-Shan South Rd, Taipei, 10016, Taiwan
| | - Ming-Chu Chang
- Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, No 7, Chung-Shan South Rd, Taipei, 10016, Taiwan
| | - Mei-Fang Cheng
- Department of Nuclear Medicine and Radiology, National Taiwan University College of Medicine and Hospital, No 7, Chung-Shan South Rd, Taipei, 10016, Taiwan
| | - Yu-Ting Chang
- Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, No 7, Chung-Shan South Rd, Taipei, 10016, Taiwan
| | - Shih-Hung Yang
- Department of Oncology, National Taiwan University College of Medicine and Hospital, No 7, Chung-Shan South Rd, Taipei, 10016, Taiwan
| | - Chih-Horng Wu
- Department of Medical Imaging and Radiology, National Taiwan University College of Medicine and Hospital, No 7, Chung-Shan South Rd, Taipei, 10016, Taiwan
| | - Ting-Chun Kuo
- Department of Surgery, National Taiwan University College of Medicine and Hospital, No 7, Chung-Shan South Rd, Taipei, 10016, Taiwan
| | - I-Lun Shih
- Department of Medical Imaging and Radiology, National Taiwan University College of Medicine and Hospital, No 7, Chung-Shan South Rd, Taipei, 10016, Taiwan
| | - Ruoh-Fang Yen
- Department of Nuclear Medicine and Radiology, National Taiwan University College of Medicine and Hospital, No 7, Chung-Shan South Rd, Taipei, 10016, Taiwan
| | - Tiffany Ting-Fang Shih
- Department of Medical Imaging and Radiology, National Taiwan University College of Medicine and Hospital, No 7, Chung-Shan South Rd, Taipei, 10016, Taiwan.
| |
Collapse
|
21
|
Fan G, Liang X, He Y, Ren H, Zhao J, Liang T, Wei J, Wang T, Zhang F. Brucine Sensitizes HepG2 Human Liver Cancer Cells to 5-fluorouracil via Fas/FasL Apoptotic Pathway. INT J PHARMACOL 2017. [DOI: 10.3923/ijp.2017.323.331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
22
|
Xiong XX, Qiu XY, Hu DX, Chen XQ. Advances in Hypoxia-Mediated Mechanisms in Hepatocellular Carcinoma. Mol Pharmacol 2017; 92:246-255. [PMID: 28242743 DOI: 10.1124/mol.116.107706] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/21/2017] [Indexed: 12/21/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common and the third most deadly malignant tumor worldwide. Hypoxia and related oxidative stress are heavily involved in the process of HCC development and its therapies. However, direct and accurate measurement of oxygen concentration and evaluation of hypoxic effects in HCC prove difficult. Moreover, the hypoxia-mediated mechanisms in HCC remain elusive. Here, we summarize recent major evidence of hypoxia in HCC lesions shown by measuring partial pressure of oxygen (pO2), the clinical importance of hypoxic markers in HCC, and recent advances in hypoxia-related mechanisms and therapies in HCC. For the mechanisms, we focus mainly on the roles of oxygen-sensing proteins (i.e., hypoxia-inducible factor and neuroglobin) and hypoxia-induced signaling proteins (e.g., matrix metalloproteinases, high mobility group box 1, Beclin 1, glucose metabolism enzymes, and vascular endothelial growth factor). With respect to therapies, we discuss mainly YQ23, sorafenib, 2-methoxyestradiol, and celastrol. This review focuses primarily on the results of clinical and animal studies.
Collapse
Affiliation(s)
- Xin Xin Xiong
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Yao Qiu
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Dian Xing Hu
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Qian Chen
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
23
|
Chen BB, Hsu CY, Yu CW, Liang PC, Hsu C, Hsu CH, Cheng AL, Shih TTF. Early perfusion changes within 1 week of systemic treatment measured by dynamic contrast-enhanced MRI may predict survival in patients with advanced hepatocellular carcinoma. Eur Radiol 2016; 27:3069-3079. [PMID: 27957638 DOI: 10.1007/s00330-016-4670-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 11/15/2016] [Accepted: 11/21/2016] [Indexed: 12/13/2022]
Abstract
OBJECTIVES To correlate early changes in the parameters of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) within 1 week of systemic therapy with overall survival (OS) in patients with advanced hepatocellular carcinoma (HCC). METHODS Eighty-nine patients with advanced HCC underwent DCE-MRI before and within 1 week following systemic therapy. The relative changes of six DCE-MRI parameters (Peak, Slope, AUC, Ktrans, Kep and Ve) of the tumours were correlated with OS using the Kaplan-Meier model and the double-sided log-rank test. RESULTS All patients died and the median survival was 174 days. Among the six DCE-MRI parameters, reductions in Peak, AUC, and Ktrans, were significantly correlated with one another. In addition, patients with a high Peak reduction following treatment had longer OS (P = 0.023) compared with those with a low Peak reduction. In multivariate analysis, a high Peak reduction was an independent favourable prognostic factor in all patients [hazard ratio (HR), 0.622; P = 0.038] after controlling for age, sex, treatment methods, tumour size and stage, and Eastern Cooperative Oncology Group performance status. CONCLUSIONS Early perfusion changes within 1 week following systemic therapy measured by DCE-MRI may aid in the prediction of the clinical outcome in patients with advanced HCC. KEY POINTS • DCE-MRI is helpful to evaluate perfusion changes of HCC after systemic treatment. • Early perfusion changes within 1 week after treatment may predict overall survival. • High Peak reduction was an independent favourable prognostic factor after systemic treatment.
Collapse
Affiliation(s)
- Bang-Bin Chen
- Department of Medical Imaging and Radiology, National Taiwan University College of Medicine and Hospital, Taipei City, Taiwan
| | - Chao-Yu Hsu
- Department of Medical Imaging and Radiology, National Taiwan University College of Medicine and Hospital, Taipei City, Taiwan.,Department of Radiology, Taipei Hospital, Ministry of Health and Welfare, New Taipei City, Taiwan
| | - Chih-Wei Yu
- Department of Medical Imaging and Radiology, National Taiwan University College of Medicine and Hospital, Taipei City, Taiwan
| | - Po-Chin Liang
- Department of Medical Imaging and Radiology, National Taiwan University College of Medicine and Hospital, Taipei City, Taiwan
| | - Chiun Hsu
- Department of Oncology, National Taiwan University College of Medicine and Hospital, Taipei City, Taiwan
| | - Chih-Hung Hsu
- Department of Oncology, National Taiwan University College of Medicine and Hospital, Taipei City, Taiwan
| | - Ann-Lii Cheng
- Department of Oncology, National Taiwan University College of Medicine and Hospital, Taipei City, Taiwan
| | - Tiffany Ting-Fang Shih
- Department of Medical Imaging and Radiology, National Taiwan University College of Medicine and Hospital, Taipei City, Taiwan. .,Department of Medical Imaging, Taipei City Hospital, Taipei City, Taiwan. .,Department of Medical Imaging, National Taiwan University Hospital, No 7, Chung-Shan South Rd, Taipei, 10016, Taiwan.
| |
Collapse
|
24
|
Clinical Advancements in the Targeted Therapies against Liver Fibrosis. Mediators Inflamm 2016; 2016:7629724. [PMID: 27999454 PMCID: PMC5143744 DOI: 10.1155/2016/7629724] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 10/11/2016] [Accepted: 10/19/2016] [Indexed: 12/11/2022] Open
Abstract
Hepatic fibrosis, characterized by excessive accumulation of extracellular matrix (ECM) proteins leading to liver dysfunction, is a growing cause of mortality worldwide. Hepatocellular damage owing to liver injury leads to the release of profibrotic factors from infiltrating inflammatory cells that results in the activation of hepatic stellate cells (HSCs). Upon activation, HSCs undergo characteristic morphological and functional changes and are transformed into proliferative and contractile ECM-producing myofibroblasts. Over recent years, a number of therapeutic strategies have been developed to inhibit hepatocyte apoptosis, inflammatory responses, and HSCs proliferation and activation. Preclinical studies have yielded numerous targets for the development of antifibrotic therapies, some of which have entered clinical trials and showed improved therapeutic efficacy and desirable safety profiles. Furthermore, advancements have been made in the development of noninvasive markers and techniques for the accurate disease assessment and therapy responses. Here, we focus on the clinical developments attained in the field of targeted antifibrotics for the treatment of liver fibrosis, for example, small molecule drugs, antibodies, and targeted drug conjugate. We further briefly highlight different noninvasive diagnostic technologies and will provide an overview about different therapeutic targets, clinical trials, endpoints, and translational efforts that have been made to halt or reverse the progression of liver fibrosis.
Collapse
|