1
|
Ren Y, Chen B, Zhang H, Xu S. A cohort study reveals shared and distinct serum metabolic biomarkers for major adverse cardiovascular events in middle-aged and older adults. GeroScience 2025:10.1007/s11357-025-01544-6. [PMID: 39904969 DOI: 10.1007/s11357-025-01544-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/21/2025] [Indexed: 02/06/2025] Open
Abstract
We assessed the association of serum metabolites with the occurrence of major adverse cardiovascular events (MACE) in middle-aged and elderly individuals, explored the value of metabolomics in predicting MACE, and compared the distinctions in MACE risk-related metabolic biomarkers between middle-aged and elderly groups. Among the participants of the UK Biobank who underwent baseline assessment through nuclear magnetic resonance (NMR)-based metabolomic profiling of 168 serum metabolites and had complete covariates and clinical lipid parameters, we included those without a previous diagnosis of ischemic heart disease, cerebrovascular disease, heart failure, or cardiac arrest and not on lipid-lowering medications. Relevant covariates included sociodemographic characteristics, lifestyle factors, clinical information, and fasting time. Cox regression gave adjusted hazard ratios for metabolites, including the concentrations of various lipoprotein particles, compositional profiles of different lipoproteins, ketone bodies, amino acids, fatty acids, and additional low-molecular-weight metabolic biomarkers. The least absolute shrinkage and selection operator (LASSO) regression was applied to these metabolites to screen characteristic metabolic variables. Selected feature metabolic biomarkers were added to the established model for predicting MACE risk; risk differentiation (C-statistic) and reclassification (continuous net reclassification improvement [NRI], integrated differentiation index [IDI]) were evaluated. This study included 54,561 UK Biobank participants (34,797 middle-aged adults and 19,764 elderly adults) and was followed for a median of more than 12 years. Of these, there are 1799 middle-aged individuals and 2527 elderly individuals incident of MACE (ischemic heart disease, stroke, and cardiovascular deaths). After adjusting for relevant covariates, Cox regression yielded metabolic biomarkers associated with the occurrence of MACE in the population (false discovery rate controlled P < 0.05). In the elderly, the metabolites associated with increased MACE risk were notably diminished compared to the middle-aged; and the elderly group underscored the protective function of medium and small HDL and their constituents, docosahexaenoic acid, and glycine. The more comprehensive model, which additionally includes the feature metabolic biomarkers, demonstrated enhanced discriminatory power and predictive accuracy for MACE occurrence among middle-aged individuals, evidenced by improved C-statistics (from 0.711 [95% CI 0.699-0.722] to 0.723 [0.711-0.734]), a continuous NRI of 0.247 [0.207-0.315], and an absolute IDI of 0.005 [0.004-0.008]. Its evaluation value is superior to that in the elderly. Our study explored the association of circulating metabolites with MACE risk in middle-aged and elderly adults and made comparisons. Metabolomic insights have revealed biomarkers associated with new-onset MACE in different age populations, highlighting the value of protective metabolites in the elderly. This provides instrumental information to possibly implement precision medicine for preventing MACE.
Collapse
Affiliation(s)
- Yi Ren
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Department of Pathology and Pathophysiology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Bo Chen
- Department of Endocrinology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
- Center for Clinical Evidence-Based and Translational Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Honggang Zhang
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing, China.
- Department of Pathology and Pathophysiology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Shaoyong Xu
- Department of Endocrinology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China.
- Center for Clinical Evidence-Based and Translational Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China.
| |
Collapse
|
2
|
Chen H, Gao J, Chen Z, Gao C, Huo S, Jiang M, Pu J, Hu C. Improve myocardial strain estimation based on deformable groupwise registration with a locally low-rank dissimilarity metric. BMC Med Imaging 2024; 24:330. [PMID: 39639206 PMCID: PMC11619273 DOI: 10.1186/s12880-024-01519-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Current mainstream cardiovascular magnetic resonance-feature tracking (CMR-FT) methods, including optical flow and pairwise registration, often suffer from the drift effect caused by accumulative tracking errors. Here, we developed a CMR-FT method based on deformable groupwise registration with a locally low-rank (LLR) dissimilarity metric to improve myocardial tracking and strain estimation accuracy. METHODS The proposed method, Groupwise-LLR, performs feature tracking by iteratively updating the entire displacement field across all cardiac phases to minimize the sum of the patchwise signal ranks of the deformed movie. The method was compared with alternative CMR-FT methods including the Farneback optical flow, a sequentially pairwise registration method, and a global low rankness-based groupwise registration method via a simulated dataset (n = 20), a public cine data set (n = 100), and an in-house tagging-MRI patient dataset (n = 16). The proposed method was also compared with two general groupwise registration methods, nD + t B-Splines and pTVreg, in simulations and in vivo tracking. RESULTS On the simulated dataset, Groupwise-LLR achieved the lowest point tracking errors (p = 0.13 against pTVreg for the temporally averaged point tracking errors in the long-axis view, and p < 0.05 for all other cases), voxelwise strain errors (all p < 0.05), and global strain errors (p = 0.05 against pTVreg for the longitudinal global strain errors, and p < 0.05 for all other cases). On the public dataset, Groupwise-LLR achieved the lowest contour tracking errors (all p < 0.05), reduced the drift effect in late-diastole, and preserved similar inter-observer reproducibility as the alternative methods. On the patient dataset, Groupwise-LLR correlated better with tagging-MRI for radial strains than the other CMR-FT methods in multiple myocardial segments and levels. CONCLUSIONS The proposed Groupwise-LLR reduces the drift effect and provides more accurate myocardial tracking and strain estimation than the alternative methods. The method may thus facilitate a more accurate estimation of myocardial strains for clinical assessments of cardiac function.
Collapse
Affiliation(s)
- Haiyang Chen
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Juan Gao
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhuo Chen
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chenhao Gao
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Sirui Huo
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Meng Jiang
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Jun Pu
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Chenxi Hu
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
3
|
Yang W, Zhu L, Wu W, Jiang M, Zhang H, Zhou D, Xu J, Wang Y, Zhang Q, Sirajuddin A, Arai AE, Zhao S, Lu M. Myocardial Abnormalities Across the AHA/ACC Stages of Heart Failure in Patients With Diabetes. JACC. ASIA 2024; 4:940-952. [PMID: 39803000 PMCID: PMC11712003 DOI: 10.1016/j.jacasi.2024.08.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 01/16/2025]
Abstract
Background Cardiac magnetic resonance imaging (CMR) could serve as a robust tool for comprehensive evaluation of early changes across heart failure (HF) stages classified by the American Heart Association/American College of Cardiology guideline in diabetes mellitus (DM). Objectives The authors aimed to explore phenotypic imaging features characterizing DM participants at different HF stages by CMR. Methods DM participants with preserved ejection fraction who underwent CMR examination between January 2020 and December 2021 were evaluated. Left ventricular strain analysis and myocardial fibrosis was evaluated by CMR. Results A total of four hundred seventy-five DM participants at different HF stages (mean age 56 ± 12 years; 326 men) and 78 healthy control subjects were evaluated. Significantly decreased absolute strain values with rising HF stage were identified in DM. In addition, early diastolic strain rates were significantly lower in stage B and C HF than in stage A HF and control subjects. Myocardial extracellular volume increased with advancing HF stage in DM (stage A, 27.0% ± 2.9%; stage B, 29.1% ± 3.5%; stage C, 30.5% ± 4.1%; P < 0.05). In multivariable logistic regression analysis, early diastolic longitudinal strain rate (OR: 2.184; 95% CI: 1.378-3.461; P < 0.001) was a significant contributor that independently distinguished DM participants at stage A from control subjects, with an area under the receiver-operating characteristic curve of 0.726. For global longitudinal strain and extracellular volume, each 1% increase was associated with 1.333 and 1.300 times adjusted odds of diagnosis of stage B HF (both P < 0.05). Conclusions Subclinical dysfunction and myocardial fibrosis derived from CMR were progressively remarkable with advancing HF stage in DM. Comprehensive CMR provided sensitive tools for better delineation of DM patients with pre-HF and at risk for HF.
Collapse
Affiliation(s)
- Wenjing Yang
- Departments of Magnetic Resonance Imaging, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Leyi Zhu
- Departments of Magnetic Resonance Imaging, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weichun Wu
- Departments of Echocardiography, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengdi Jiang
- Departments of Magnetic Resonance Imaging, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huaying Zhang
- Departments of Magnetic Resonance Imaging, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Di Zhou
- Departments of Magnetic Resonance Imaging, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Xu
- Departments of Magnetic Resonance Imaging, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yining Wang
- Departments of Magnetic Resonance Imaging, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiang Zhang
- Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Arlene Sirajuddin
- Department of Health and Human Services, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Shihua Zhao
- Departments of Magnetic Resonance Imaging, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Minjie Lu
- Departments of Magnetic Resonance Imaging, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Cardiovascular Imaging (Cultivation), Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Li R, Lei F, Liu F, Cao L, Cao X, Niu M, Guo S. The transition from hypertension to hypertensive heart disease and heart failure with preserved ejection fraction: a retrospective cross-sectional study of myocardial magnetic resonance strain and tissue characteristics. Quant Imaging Med Surg 2024; 14:7684-7696. [PMID: 39429603 PMCID: PMC11485389 DOI: 10.21037/qims-24-803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/26/2024] [Indexed: 10/22/2024]
Abstract
Background Due to the variability of symptoms and signs associated with heart failure, along with the lack of specific tests for definitive diagnosis, the noninvasive diagnosis of heart failure with preserved ejection fraction (HFpEF) continues to pose significant clinical challenges. This investigation was designed to elucidate the clinical manifestations of HFpEF and to analyze cardiac magnetic resonance (CMR)-derived myocardial strain metrics and tissue characteristics in a cohort exhibiting HFpEF with hypertension (HFpEF-HTN). Methods This retrospective analysis consisted of 128 patients diagnosed HFpEF-HTN, 78 individuals with hypertensive heart disease (HHD), 89 individuals with hypertension (HTN), and 60 normotensive healthy controls and was conducted from August 2021 to February 2024. All participants were recruited from The First Hospital of Lanzhou University and underwent laboratory examinations and 3.0 T CMR. The study compared clinical features and CMR-derived structural and functional parameters across different groups. Logistic regression was employed to determine the association between CMR parameters and HFpEF-HTN. Spearman correlation coefficient analysis was used to clarify the relationship between myocardial strain parameters and left ventricular (LV) ejection fraction and right ventricular (RV) ejection fraction. Additionally, the area under the curve (AUC) from receiver operating characteristic (ROC) analysis was used to compare the diagnostic performance of different CMR parameters for HFpEF-HTN. Results Patients diagnosed with (HFpEF-HTN) were characterized by an older demographic profile, a higher prevalence of smoking history, elevated systolic and diastolic blood pressure, increased levels of N-terminal pro-brain natriuretic peptide, and more advanced New York Heart Association functional class as compared to other studied groups. In terms of myocardial deformation, individuals with HFpEF-HTN exhibited pronounced impairments in both LV and RV function, as evidenced by significantly reduced longitudinal strain (LS), circumferential strain (CS), and radial strain (RS), relative to HTN, HHD, the control cohorts (all P values <0.001). Patients with HFpEF-HTN showed significantly elevated levels of late gadolinium enhancement, native T1, and extracellular volume fraction (ECV) indicative of myocardial interstitial fibrosis as compared to patients with HHD. Additionally, as compared to ECV, LV GCS emerged as a superior diagnostic indicator, demonstrating greater diagnostic accuracy in differentiating HFpEF-HTN patients from those with HHD (AUC =0.85; P<0.001). Moreover, LVEF showed a mild correlation with CMR-derived LV GLS (R=-0.43; P<0.001), LV GCS (R=-0.42; P<0.001), and LV GRS, (R=0.56; P<0.001) in all patients. Conclusions Myocardial strain, T1 mapping, and ECV can be used for the quantitative evaluation of LV and RV ventricular remodeling, dysfunction, and tissue characteristics in patients with HFpEF-HTN and thus hold significant potential for the diagnosis of these patients.
Collapse
Affiliation(s)
- Rui Li
- Department of Radiology, The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Feng Lei
- Department of Radiology, The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Feng Liu
- Department of Radiology, The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Liang Cao
- Department of Radiology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xu Cao
- Department of Pulmonology, Baiyin Central Hospital of Gansu Province, Baiyin, China
| | - Meng Niu
- Department of Radiology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Shunlin Guo
- Department of Radiology, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
5
|
Zhuang B, Li S, Wang H, Chen W, Ren Y, Zhang H, Sun Z, Xu L. Incremental prognostic value of cardiovascular magnetic resonance imaging in patients with severe LV dysfunction undergoing coronary artery bypass grafting. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2024; 40:2057-2068. [PMID: 39093366 DOI: 10.1007/s10554-024-03198-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Coronary artery disease (CAD) remains a significant global health issue, particularly when complicated by left ventricular ejection fraction (LVEF) < 35%. Although coronary artery bypass grafting (CABG) is recommended for such cases, the unclear prognosis necessitates further investigation. METHOD This retrospective study aimed to determine whether cardiovascular magnetic resonance (CMR) imaging provides additional prognostic value in guiding effective clinical management. The study included patients with CAD and LVEF < 35% who underwent CABG surgery after enhanced CMR between March 2016 and March 2023. CMR was performed using a 3.0T scanner with steady-state free precession and phase-sensitive inversion recovery sequences. Prognostic analysis of clinical and CMR data was conducted, with the endpoint defined as cardiovascular death, revascularization, hospitalization for heart failure, or stroke. Statistical analysis included Student's t-test, chi-squared test, univariate and multivariate Cox regression analysis, receiver operating characteristic analysis, Harrell C statistical analysis, integrated discrimination improvement (IDI), and net reclassification improvement (NRI) analysis. RESULT The study included 152 patients (mean age 58.6 ± 9.7 years; 138 men). During a mean follow-up of 2.0 years, 8 patients experienced cardiovascular death, while 1 case had revascularization, 13 had hospitalization for heart failure, and 11 had a stroke. Left atrial diameter index (LADi) (hazard ratio [HR], 1.08 [95% confidence interval (CI): 1.02-1.15]; P = 0.04) and late gadolinium enhancement (LGE) mass (HR, 1.03 [95% CI: 1.01-1.06]; P < 0.001) were associated with the endpoint, even after adjusting for multiple clinical variables. Adding LADi and LGE mass improved risk prediction for adverse events, as indicated by the C-index (0.738, p < 0.01), IDI (0.36), and NRI (0.13). CONCLUSION Left atrial diameter index (LADi) and scar burden are valuable prognostic indicators in patients with LVEF < 35% undergoing CABG. They offer enhanced risk stratification beyond traditional clinical factors, highlighting their importance in guiding clinical management.
Collapse
Affiliation(s)
- Baiyan Zhuang
- Department of Radiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Beijing, China
| | - Shuang Li
- Department of Radiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Beijing, China
| | - Hui Wang
- Department of Radiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Beijing, China
| | - Wei Chen
- Department of Radiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Beijing, China
| | - Yue Ren
- Department of Radiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Beijing, China
| | - Hongkai Zhang
- Department of Radiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Beijing, China
| | - Zhonghua Sun
- Discipline of Medical Radiation Science, Curtin Medical School, Curtin University, Perth, Australia
| | - Lei Xu
- Department of Radiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Beijing, China.
| |
Collapse
|
6
|
Roscani MG. Advanced Heart Failure and Onset of New Prognostic Markers: Where are We? Arq Bras Cardiol 2024; 121:e20240453. [PMID: 39319881 PMCID: PMC11495803 DOI: 10.36660/abc.20240453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 09/26/2024] Open
Affiliation(s)
- Meliza Goi Roscani
- Universidade Federal de São CarlosDepartamento MédicoDivisão de CardiologiaSão CarlosSPBrasilDivisão de Cardiologia do Departamento Médico da Universidade Federal de São Carlos, São Carlos, SP - Brasil
| |
Collapse
|
7
|
Yang S, Zhu C, Wang J, Liu L, Li C, Chen X, Zhao K, Lu M, Wang S, Zhao S. Preoperative Left Atrial Strain Predicts Outcome in Patients With Hypertrophic Obstructive Cardiomyopathy after Myectomy. JACC Cardiovasc Imaging 2024; 17:997-999. [PMID: 38661610 DOI: 10.1016/j.jcmg.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 12/26/2023] [Accepted: 02/29/2024] [Indexed: 04/26/2024]
|
8
|
Yan C, Liu Y, Wang C, Fan W, Zhu Y. Accelerated cardiac cine magnetic resonance imaging using deep low-rank plus sparse network: validation in patients. Quant Imaging Med Surg 2024; 14:5131-5143. [PMID: 39022294 PMCID: PMC11250298 DOI: 10.21037/qims-24-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024]
Abstract
Background Accurate and reproducible assessment of left ventricular (LV) volumes is important in managing various cardiac conditions. However, patients are required to hold their breath multiple times during data acquisition, which may result in discomfort and restrict cardiac motion, potentially compromising the accuracy of the detected results. Accelerated imaging techniques can help reduce the number of breath holds needed, potentially improving patient comfort and the reliability of the LV assessment. This study aimed to prospectively evaluate the feasibility and accuracy of LV assessment with a model-based low-rank plus sparse network (L+S-Net) for accelerated magnetic resonance (MR) cine imaging. Methods Fourty-one patients with different cardiac conditions were recruited in this study. Both accelerated MR cine imaging with L+S-Net and traditional electrocardiogram (ECG)-gated segmented cine were performed for each patient. Subjective image quality (IQ) score and quantitative LV volume function parameters were measured and compared between L+S-Net and traditional standards. The IQ score and LV volume measurements of cardiovascular magnetic resonance (CMR) images reconstructed by L+S-Net and standard cine were compared by paired t-test. The acquisition time of the two methods was also calculated. Results In a quantitative analysis, L+S-Net and standard cine yielded similar measurements for all parameters of LV function (ejection fraction: 35±22 for standard vs. 33±23 for L+S-Net), although L+S-Net had slightly lower IQ scores than standard cine CMR (4.2±0.5 for L+S-Net vs. 4.8±0.4 for standard cine; P<0.001). The mean acquisition time of L+S-Net and standard cine was 0.83±0.08 vs. 6.35±0.78 s per slice (P<0.001). Conclusions Assessment of LV function with L+S-Net at 3.0 T yields comparable results to the reference standard, albeit with a reduced acquisition time. This feature enhances the clinical applicability of the L+S-Net approach, helping alleviate patient discomfort and motion artifacts that may arise due to prolonged acquisition time.
Collapse
Affiliation(s)
- Chenyuan Yan
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yuanyuan Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Che Wang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Weixiong Fan
- Department of Magnetic Resonance, Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People’s Hospital, Meizhou, China
| | - Yanjie Zhu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
9
|
Cadour F, Sourdon J, Rapacchi S. Editorial for "Biventricular Dysfunction and Ventricular Interdependence in Patients With Pulmonary Hypertension: A 3.0-T Cardiac MRI Feature Tracking Study". J Magn Reson Imaging 2024; 60:363-364. [PMID: 37905953 DOI: 10.1002/jmri.29092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 11/02/2023] Open
Affiliation(s)
- Farah Cadour
- Department of Medical Imaging, University of Toronto, University Medical Imaging Toronto, Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
10
|
Zhu X, Tian Y, Shi Y, Lian J, Shen H, Li L, Wu H, Liu P. The Feasibility of Left Ventricular Strain and Strain Rate for Evaluating Hypertrophic Cardiomyopathy with Risk Factors of Sudden Cardiac Death by Feature-Tracking CMR. Am J Cardiol 2024; 222:51-57. [PMID: 38642869 DOI: 10.1016/j.amjcard.2024.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/26/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
Sudden cardiac death (SCD) represents the most severe complication of hypertrophic cardiomyopathy (HCM). However, the relation between strain, strain rate (SR), and risk factors in SCD risk stratification remains elusive. The study aimed to assess the attenuation of strain and SR in HCM by feature tracking cardiac magnetic resonance. All strain and SRs were obtained automatically by feature tracking, with manual adjustment of endocardial and epicardial borders. Strain indicators included left ventricular global longitudinal, circumferential, global radial strain (GRS), peak diastolic-longitudinal, circumferential, and radial SR. Patients were categorized into high-risk and low-risk groups for SCD based on the 2020 American Heart Association/American College HCM risk-SCD model. The correlation between strain/SR and SCD risk factors was assessed through Spearman correlation analysis. Furthermore, a multivariate logistic regression analysis was conducted to explore the factors that influence SCD risk in HCM patients. A total of 105 HCM patients were analyzed in this study, including 38 patients in the high-risk group, and 67 patients in the low-risk group. Compared with the low-risk group, the high-risk group exhibited significantly worse strain and SR (p <0.001). Furthermore, both circumferential and GRS and SR exhibited meaningful associations with risk factors for SCD. Additionally, GRS emerged as an independent risk factor for predicting heightened SCD risk in HCM patients (p <0.001). In conclusion, left ventricular strain and SR based on feature tracking-cardiac magnetic resonance can be evaluated for SCD risk and are strongly associated with SCD risk factors.
Collapse
Affiliation(s)
- Xinyu Zhu
- Department of Magnetic Resonance, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuan Tian
- Department of Magnetic Resonance, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ying Shi
- Department of Magnetic Resonance, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jianxiu Lian
- Clinical & Technical Support, Philips Healthcare, Beijing, China
| | - Honghu Shen
- Department of Magnetic Resonance, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lulu Li
- Department of Magnetic Resonance, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haishan Wu
- Department of Magnetic Resonance, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Pengfei Liu
- Department of Magnetic Resonance, the First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
11
|
He J, Yang W, Wu W, Yin G, Zhuang B, Xu J, Zhou D, Zhang J, Wang Y, Zhu L, Sun X, Sirajuddin A, Teng Z, Kureshi F, Arai AE, Zhao S, Lu M. Heart Failure with Normal Natriuretic Peptide Levels and Preserved Ejection Fraction: A Prospective Clinical and Cardiac MRI Study. Radiol Cardiothorac Imaging 2024; 6:e230281. [PMID: 38695743 PMCID: PMC11211949 DOI: 10.1148/ryct.230281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/20/2024] [Accepted: 03/20/2024] [Indexed: 06/16/2024]
Abstract
Purpose To describe the clinical presentation, comprehensive cardiac MRI characteristics, and prognosis of individuals with predisposed heart failure with preserved ejection fraction (HFpEF). Materials and Methods This prospective cohort study (part of MISSION-HFpEF [Multimodality Imaging in the Screening, Diagnosis, and Risk Stratification of HFpEF]; NCT04603404) was conducted from January 1, 2019, to September 30, 2021, and included individuals with suspected HFpEF who underwent cardiac MRI. Participants who had primary cardiomyopathy and primary valvular heart disease were excluded. Participants were split into a predisposed HFpEF group, defined as HFpEF with normal natriuretic peptide levels based on an HFA-PEFF (Heart Failure Association Pretest Assessment, Echocardiography and Natriuretic Peptide, Functional Testing, and Final Etiology) score of 4 from the latest European Society of Cardiology guidelines, and an HFpEF group (HFA-PEFF score of ≥ 5). An asymptomatic control group without heart failure was also included. Clinical and cardiac MRI-based characteristics and outcomes were compared between groups. The primary end points were death, heart failure hospitalization, or stroke. Results A total of 213 participants with HFpEF, 151 participants with predisposed HFpEF, and 100 participants in the control group were analyzed. Compared with the control group, participants with predisposed HFpEF had worse left ventricular remodeling and function and higher systemic inflammation. Compared with participants with HFpEF, those with predisposed HFpEF, whether obese or not, were younger and had higher plasma volume, lower prevalence of atrial fibrillation, lower left atrial volume index, and less impaired left ventricular global longitudinal strain (-12.2% ± 2.8 vs -13.9% ± 3.1; P < .001) and early-diastolic global longitudinal strain rate (eGLSR, 0.52/sec ± 0.20 vs 0.57/sec ± 0.15; P = .03) but similar prognosis. Atrial fibrillation occurrence (hazard ratio [HR] = 3.90; P = .009), hemoglobin level (HR = 0.94; P = .001), and eGLSR (per 0.2-per-second increase, HR = 0.28; P = .002) were independently associated with occurrence of primary end points in participants with predisposed HFpEF. Conclusion Participants with predisposed HFpEF showed relatively unique clinical and cardiac MRI features, warranting greater clinical attention. eGLSR should be considered as a prognostic factor in participants with predisposed HFpEF. Keywords: Heart Failure with Preserved Ejection Fraction, Normal Natriuretic Peptide Levels, Cardiovascular Magnetic Resonance, Myocardial Strain, Prognosis Clinical trial registration no. NCT04603404 Supplemental material is available for this article. © RSNA, 2024.
Collapse
Affiliation(s)
- Jian He
- From the Department of Magnetic Resonance Imaging (J.H., W.Y., G.Y.,
B.Z., J.X., D.Z., Y.W., L.Z., S.Z., M.L.), Department of Echocardiography
(W.W.), Heart Failure Center (J.Z.), and Department of Nuclear Medicine (X.S.),
Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of
Medical Sciences and Peking Union Medical College, Beijing, China; Department of
Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing,
China (J.H.); National Heart, Lung, and Blood Institute, National Institutes of
Health, Department of Health and Human Services, Bethesda, Md (A.S., A.E.A.);
Andrew Arai Consulting, Kensington, Md (A.E.A.); Department of Radiology,
University of Cambridge, Cambridge, UK (Z.T.); Axis Cardiovascular and Axis
Cardiovascular Advanced Imaging, St David’s Healthcare, Austin, Tex
(F.K.); and Key Laboratory of Cardiovascular Imaging (Cultivation), Chinese
Academy of Medical Sciences, Peking Union Medical College, Beilishi Road No.
167, Xicheng District, Beijing 100037, China (W.W., G.Y., X.S., M.L.)
| | - Wenjing Yang
- From the Department of Magnetic Resonance Imaging (J.H., W.Y., G.Y.,
B.Z., J.X., D.Z., Y.W., L.Z., S.Z., M.L.), Department of Echocardiography
(W.W.), Heart Failure Center (J.Z.), and Department of Nuclear Medicine (X.S.),
Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of
Medical Sciences and Peking Union Medical College, Beijing, China; Department of
Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing,
China (J.H.); National Heart, Lung, and Blood Institute, National Institutes of
Health, Department of Health and Human Services, Bethesda, Md (A.S., A.E.A.);
Andrew Arai Consulting, Kensington, Md (A.E.A.); Department of Radiology,
University of Cambridge, Cambridge, UK (Z.T.); Axis Cardiovascular and Axis
Cardiovascular Advanced Imaging, St David’s Healthcare, Austin, Tex
(F.K.); and Key Laboratory of Cardiovascular Imaging (Cultivation), Chinese
Academy of Medical Sciences, Peking Union Medical College, Beilishi Road No.
167, Xicheng District, Beijing 100037, China (W.W., G.Y., X.S., M.L.)
| | - Weichun Wu
- From the Department of Magnetic Resonance Imaging (J.H., W.Y., G.Y.,
B.Z., J.X., D.Z., Y.W., L.Z., S.Z., M.L.), Department of Echocardiography
(W.W.), Heart Failure Center (J.Z.), and Department of Nuclear Medicine (X.S.),
Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of
Medical Sciences and Peking Union Medical College, Beijing, China; Department of
Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing,
China (J.H.); National Heart, Lung, and Blood Institute, National Institutes of
Health, Department of Health and Human Services, Bethesda, Md (A.S., A.E.A.);
Andrew Arai Consulting, Kensington, Md (A.E.A.); Department of Radiology,
University of Cambridge, Cambridge, UK (Z.T.); Axis Cardiovascular and Axis
Cardiovascular Advanced Imaging, St David’s Healthcare, Austin, Tex
(F.K.); and Key Laboratory of Cardiovascular Imaging (Cultivation), Chinese
Academy of Medical Sciences, Peking Union Medical College, Beilishi Road No.
167, Xicheng District, Beijing 100037, China (W.W., G.Y., X.S., M.L.)
| | - Gang Yin
- From the Department of Magnetic Resonance Imaging (J.H., W.Y., G.Y.,
B.Z., J.X., D.Z., Y.W., L.Z., S.Z., M.L.), Department of Echocardiography
(W.W.), Heart Failure Center (J.Z.), and Department of Nuclear Medicine (X.S.),
Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of
Medical Sciences and Peking Union Medical College, Beijing, China; Department of
Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing,
China (J.H.); National Heart, Lung, and Blood Institute, National Institutes of
Health, Department of Health and Human Services, Bethesda, Md (A.S., A.E.A.);
Andrew Arai Consulting, Kensington, Md (A.E.A.); Department of Radiology,
University of Cambridge, Cambridge, UK (Z.T.); Axis Cardiovascular and Axis
Cardiovascular Advanced Imaging, St David’s Healthcare, Austin, Tex
(F.K.); and Key Laboratory of Cardiovascular Imaging (Cultivation), Chinese
Academy of Medical Sciences, Peking Union Medical College, Beilishi Road No.
167, Xicheng District, Beijing 100037, China (W.W., G.Y., X.S., M.L.)
| | - Baiyan Zhuang
- From the Department of Magnetic Resonance Imaging (J.H., W.Y., G.Y.,
B.Z., J.X., D.Z., Y.W., L.Z., S.Z., M.L.), Department of Echocardiography
(W.W.), Heart Failure Center (J.Z.), and Department of Nuclear Medicine (X.S.),
Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of
Medical Sciences and Peking Union Medical College, Beijing, China; Department of
Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing,
China (J.H.); National Heart, Lung, and Blood Institute, National Institutes of
Health, Department of Health and Human Services, Bethesda, Md (A.S., A.E.A.);
Andrew Arai Consulting, Kensington, Md (A.E.A.); Department of Radiology,
University of Cambridge, Cambridge, UK (Z.T.); Axis Cardiovascular and Axis
Cardiovascular Advanced Imaging, St David’s Healthcare, Austin, Tex
(F.K.); and Key Laboratory of Cardiovascular Imaging (Cultivation), Chinese
Academy of Medical Sciences, Peking Union Medical College, Beilishi Road No.
167, Xicheng District, Beijing 100037, China (W.W., G.Y., X.S., M.L.)
| | - Jing Xu
- From the Department of Magnetic Resonance Imaging (J.H., W.Y., G.Y.,
B.Z., J.X., D.Z., Y.W., L.Z., S.Z., M.L.), Department of Echocardiography
(W.W.), Heart Failure Center (J.Z.), and Department of Nuclear Medicine (X.S.),
Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of
Medical Sciences and Peking Union Medical College, Beijing, China; Department of
Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing,
China (J.H.); National Heart, Lung, and Blood Institute, National Institutes of
Health, Department of Health and Human Services, Bethesda, Md (A.S., A.E.A.);
Andrew Arai Consulting, Kensington, Md (A.E.A.); Department of Radiology,
University of Cambridge, Cambridge, UK (Z.T.); Axis Cardiovascular and Axis
Cardiovascular Advanced Imaging, St David’s Healthcare, Austin, Tex
(F.K.); and Key Laboratory of Cardiovascular Imaging (Cultivation), Chinese
Academy of Medical Sciences, Peking Union Medical College, Beilishi Road No.
167, Xicheng District, Beijing 100037, China (W.W., G.Y., X.S., M.L.)
| | - Di Zhou
- From the Department of Magnetic Resonance Imaging (J.H., W.Y., G.Y.,
B.Z., J.X., D.Z., Y.W., L.Z., S.Z., M.L.), Department of Echocardiography
(W.W.), Heart Failure Center (J.Z.), and Department of Nuclear Medicine (X.S.),
Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of
Medical Sciences and Peking Union Medical College, Beijing, China; Department of
Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing,
China (J.H.); National Heart, Lung, and Blood Institute, National Institutes of
Health, Department of Health and Human Services, Bethesda, Md (A.S., A.E.A.);
Andrew Arai Consulting, Kensington, Md (A.E.A.); Department of Radiology,
University of Cambridge, Cambridge, UK (Z.T.); Axis Cardiovascular and Axis
Cardiovascular Advanced Imaging, St David’s Healthcare, Austin, Tex
(F.K.); and Key Laboratory of Cardiovascular Imaging (Cultivation), Chinese
Academy of Medical Sciences, Peking Union Medical College, Beilishi Road No.
167, Xicheng District, Beijing 100037, China (W.W., G.Y., X.S., M.L.)
| | - Jian Zhang
- From the Department of Magnetic Resonance Imaging (J.H., W.Y., G.Y.,
B.Z., J.X., D.Z., Y.W., L.Z., S.Z., M.L.), Department of Echocardiography
(W.W.), Heart Failure Center (J.Z.), and Department of Nuclear Medicine (X.S.),
Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of
Medical Sciences and Peking Union Medical College, Beijing, China; Department of
Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing,
China (J.H.); National Heart, Lung, and Blood Institute, National Institutes of
Health, Department of Health and Human Services, Bethesda, Md (A.S., A.E.A.);
Andrew Arai Consulting, Kensington, Md (A.E.A.); Department of Radiology,
University of Cambridge, Cambridge, UK (Z.T.); Axis Cardiovascular and Axis
Cardiovascular Advanced Imaging, St David’s Healthcare, Austin, Tex
(F.K.); and Key Laboratory of Cardiovascular Imaging (Cultivation), Chinese
Academy of Medical Sciences, Peking Union Medical College, Beilishi Road No.
167, Xicheng District, Beijing 100037, China (W.W., G.Y., X.S., M.L.)
| | - Yining Wang
- From the Department of Magnetic Resonance Imaging (J.H., W.Y., G.Y.,
B.Z., J.X., D.Z., Y.W., L.Z., S.Z., M.L.), Department of Echocardiography
(W.W.), Heart Failure Center (J.Z.), and Department of Nuclear Medicine (X.S.),
Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of
Medical Sciences and Peking Union Medical College, Beijing, China; Department of
Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing,
China (J.H.); National Heart, Lung, and Blood Institute, National Institutes of
Health, Department of Health and Human Services, Bethesda, Md (A.S., A.E.A.);
Andrew Arai Consulting, Kensington, Md (A.E.A.); Department of Radiology,
University of Cambridge, Cambridge, UK (Z.T.); Axis Cardiovascular and Axis
Cardiovascular Advanced Imaging, St David’s Healthcare, Austin, Tex
(F.K.); and Key Laboratory of Cardiovascular Imaging (Cultivation), Chinese
Academy of Medical Sciences, Peking Union Medical College, Beilishi Road No.
167, Xicheng District, Beijing 100037, China (W.W., G.Y., X.S., M.L.)
| | - Leyi Zhu
- From the Department of Magnetic Resonance Imaging (J.H., W.Y., G.Y.,
B.Z., J.X., D.Z., Y.W., L.Z., S.Z., M.L.), Department of Echocardiography
(W.W.), Heart Failure Center (J.Z.), and Department of Nuclear Medicine (X.S.),
Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of
Medical Sciences and Peking Union Medical College, Beijing, China; Department of
Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing,
China (J.H.); National Heart, Lung, and Blood Institute, National Institutes of
Health, Department of Health and Human Services, Bethesda, Md (A.S., A.E.A.);
Andrew Arai Consulting, Kensington, Md (A.E.A.); Department of Radiology,
University of Cambridge, Cambridge, UK (Z.T.); Axis Cardiovascular and Axis
Cardiovascular Advanced Imaging, St David’s Healthcare, Austin, Tex
(F.K.); and Key Laboratory of Cardiovascular Imaging (Cultivation), Chinese
Academy of Medical Sciences, Peking Union Medical College, Beilishi Road No.
167, Xicheng District, Beijing 100037, China (W.W., G.Y., X.S., M.L.)
| | - Xiaoxin Sun
- From the Department of Magnetic Resonance Imaging (J.H., W.Y., G.Y.,
B.Z., J.X., D.Z., Y.W., L.Z., S.Z., M.L.), Department of Echocardiography
(W.W.), Heart Failure Center (J.Z.), and Department of Nuclear Medicine (X.S.),
Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of
Medical Sciences and Peking Union Medical College, Beijing, China; Department of
Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing,
China (J.H.); National Heart, Lung, and Blood Institute, National Institutes of
Health, Department of Health and Human Services, Bethesda, Md (A.S., A.E.A.);
Andrew Arai Consulting, Kensington, Md (A.E.A.); Department of Radiology,
University of Cambridge, Cambridge, UK (Z.T.); Axis Cardiovascular and Axis
Cardiovascular Advanced Imaging, St David’s Healthcare, Austin, Tex
(F.K.); and Key Laboratory of Cardiovascular Imaging (Cultivation), Chinese
Academy of Medical Sciences, Peking Union Medical College, Beilishi Road No.
167, Xicheng District, Beijing 100037, China (W.W., G.Y., X.S., M.L.)
| | - Arlene Sirajuddin
- From the Department of Magnetic Resonance Imaging (J.H., W.Y., G.Y.,
B.Z., J.X., D.Z., Y.W., L.Z., S.Z., M.L.), Department of Echocardiography
(W.W.), Heart Failure Center (J.Z.), and Department of Nuclear Medicine (X.S.),
Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of
Medical Sciences and Peking Union Medical College, Beijing, China; Department of
Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing,
China (J.H.); National Heart, Lung, and Blood Institute, National Institutes of
Health, Department of Health and Human Services, Bethesda, Md (A.S., A.E.A.);
Andrew Arai Consulting, Kensington, Md (A.E.A.); Department of Radiology,
University of Cambridge, Cambridge, UK (Z.T.); Axis Cardiovascular and Axis
Cardiovascular Advanced Imaging, St David’s Healthcare, Austin, Tex
(F.K.); and Key Laboratory of Cardiovascular Imaging (Cultivation), Chinese
Academy of Medical Sciences, Peking Union Medical College, Beilishi Road No.
167, Xicheng District, Beijing 100037, China (W.W., G.Y., X.S., M.L.)
| | - Zhongzhao Teng
- From the Department of Magnetic Resonance Imaging (J.H., W.Y., G.Y.,
B.Z., J.X., D.Z., Y.W., L.Z., S.Z., M.L.), Department of Echocardiography
(W.W.), Heart Failure Center (J.Z.), and Department of Nuclear Medicine (X.S.),
Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of
Medical Sciences and Peking Union Medical College, Beijing, China; Department of
Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing,
China (J.H.); National Heart, Lung, and Blood Institute, National Institutes of
Health, Department of Health and Human Services, Bethesda, Md (A.S., A.E.A.);
Andrew Arai Consulting, Kensington, Md (A.E.A.); Department of Radiology,
University of Cambridge, Cambridge, UK (Z.T.); Axis Cardiovascular and Axis
Cardiovascular Advanced Imaging, St David’s Healthcare, Austin, Tex
(F.K.); and Key Laboratory of Cardiovascular Imaging (Cultivation), Chinese
Academy of Medical Sciences, Peking Union Medical College, Beilishi Road No.
167, Xicheng District, Beijing 100037, China (W.W., G.Y., X.S., M.L.)
| | - Faraz Kureshi
- From the Department of Magnetic Resonance Imaging (J.H., W.Y., G.Y.,
B.Z., J.X., D.Z., Y.W., L.Z., S.Z., M.L.), Department of Echocardiography
(W.W.), Heart Failure Center (J.Z.), and Department of Nuclear Medicine (X.S.),
Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of
Medical Sciences and Peking Union Medical College, Beijing, China; Department of
Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing,
China (J.H.); National Heart, Lung, and Blood Institute, National Institutes of
Health, Department of Health and Human Services, Bethesda, Md (A.S., A.E.A.);
Andrew Arai Consulting, Kensington, Md (A.E.A.); Department of Radiology,
University of Cambridge, Cambridge, UK (Z.T.); Axis Cardiovascular and Axis
Cardiovascular Advanced Imaging, St David’s Healthcare, Austin, Tex
(F.K.); and Key Laboratory of Cardiovascular Imaging (Cultivation), Chinese
Academy of Medical Sciences, Peking Union Medical College, Beilishi Road No.
167, Xicheng District, Beijing 100037, China (W.W., G.Y., X.S., M.L.)
| | - Andrew E. Arai
- From the Department of Magnetic Resonance Imaging (J.H., W.Y., G.Y.,
B.Z., J.X., D.Z., Y.W., L.Z., S.Z., M.L.), Department of Echocardiography
(W.W.), Heart Failure Center (J.Z.), and Department of Nuclear Medicine (X.S.),
Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of
Medical Sciences and Peking Union Medical College, Beijing, China; Department of
Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing,
China (J.H.); National Heart, Lung, and Blood Institute, National Institutes of
Health, Department of Health and Human Services, Bethesda, Md (A.S., A.E.A.);
Andrew Arai Consulting, Kensington, Md (A.E.A.); Department of Radiology,
University of Cambridge, Cambridge, UK (Z.T.); Axis Cardiovascular and Axis
Cardiovascular Advanced Imaging, St David’s Healthcare, Austin, Tex
(F.K.); and Key Laboratory of Cardiovascular Imaging (Cultivation), Chinese
Academy of Medical Sciences, Peking Union Medical College, Beilishi Road No.
167, Xicheng District, Beijing 100037, China (W.W., G.Y., X.S., M.L.)
| | - Shihua Zhao
- From the Department of Magnetic Resonance Imaging (J.H., W.Y., G.Y.,
B.Z., J.X., D.Z., Y.W., L.Z., S.Z., M.L.), Department of Echocardiography
(W.W.), Heart Failure Center (J.Z.), and Department of Nuclear Medicine (X.S.),
Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of
Medical Sciences and Peking Union Medical College, Beijing, China; Department of
Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing,
China (J.H.); National Heart, Lung, and Blood Institute, National Institutes of
Health, Department of Health and Human Services, Bethesda, Md (A.S., A.E.A.);
Andrew Arai Consulting, Kensington, Md (A.E.A.); Department of Radiology,
University of Cambridge, Cambridge, UK (Z.T.); Axis Cardiovascular and Axis
Cardiovascular Advanced Imaging, St David’s Healthcare, Austin, Tex
(F.K.); and Key Laboratory of Cardiovascular Imaging (Cultivation), Chinese
Academy of Medical Sciences, Peking Union Medical College, Beilishi Road No.
167, Xicheng District, Beijing 100037, China (W.W., G.Y., X.S., M.L.)
| | - Minjie Lu
- From the Department of Magnetic Resonance Imaging (J.H., W.Y., G.Y.,
B.Z., J.X., D.Z., Y.W., L.Z., S.Z., M.L.), Department of Echocardiography
(W.W.), Heart Failure Center (J.Z.), and Department of Nuclear Medicine (X.S.),
Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of
Medical Sciences and Peking Union Medical College, Beijing, China; Department of
Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing,
China (J.H.); National Heart, Lung, and Blood Institute, National Institutes of
Health, Department of Health and Human Services, Bethesda, Md (A.S., A.E.A.);
Andrew Arai Consulting, Kensington, Md (A.E.A.); Department of Radiology,
University of Cambridge, Cambridge, UK (Z.T.); Axis Cardiovascular and Axis
Cardiovascular Advanced Imaging, St David’s Healthcare, Austin, Tex
(F.K.); and Key Laboratory of Cardiovascular Imaging (Cultivation), Chinese
Academy of Medical Sciences, Peking Union Medical College, Beilishi Road No.
167, Xicheng District, Beijing 100037, China (W.W., G.Y., X.S., M.L.)
| |
Collapse
|
12
|
Huang X, Li Y, Zheng H, Xu Y. Sudden Cardiac Death Risk Stratification in Heart Failure With Preserved Ejection Fraction. Cardiol Rev 2024:00045415-990000000-00279. [PMID: 38814094 DOI: 10.1097/crd.0000000000000728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Heart failure with preserved ejection fraction (HFpEF) poses a significant clinical challenge, with sudden cardiac death (SCD) emerging as one of the leading causes of mortality. Despite advancements in cardiovascular medicine, predicting and preventing SCD in HFpEF remains complex due to multifactorial pathophysiological mechanisms and patient heterogeneity. Unlike heart failure with reduced ejection fraction, where impaired contractility and ventricular remodeling predominate, HFpEF pathophysiology involves heavy burden of comorbidities such as hypertension, obesity, and diabetes. Diverse mechanisms, including diastolic dysfunction, microvascular abnormalities, and inflammation, also contribute to distinct disease and SCD risk profiles. Various parameters such as clinical factors and electrocardiogram features have been proposed in SCD risk assessment. Advanced imaging modalities and biomarkers offer promise in risk prediction, yet comprehensive risk stratification models specific to HFpEF ar0e lacking. This review offers recent evidence on SCD risk factors and discusses current therapeutic strategies aimed at reducing SCD risk in HFpEF.
Collapse
Affiliation(s)
- Xu Huang
- From the Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | | | | | | |
Collapse
|
13
|
Zhu X, Shi Y, Lian J, Shen H, Li L, Wu H, Tian Y, Liu P. Left atrial and left ventricular strain in feature-tracking cardiac magnetic resonance for predicting patients at high risk of sudden cardiac death in hypertrophic cardiomyopathy. Quant Imaging Med Surg 2024; 14:3544-3556. [PMID: 38720852 PMCID: PMC11074751 DOI: 10.21037/qims-23-1615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/13/2024] [Indexed: 05/12/2024]
Abstract
Background Sudden cardiac death (SCD) represents the most severe complication of hypertrophic cardiomyopathy (HCM). The risk stratification of SCD in patients with HCM remains a subject of ongoing debate, and the utility of left atrial (LA) and left ventricular (LV) myocardial strain for risk stratification of also SCD remains uncertain. Through use of feature-tracking cardiac magnetic resonance (FT-CMR), this study aimed to investigate the attenuation of LA and LV strain in HCM and to assess their predictive value in SCD. Methods This retrospective and cross-sectional study included patients with HCM who underwent 3.0 T cardiac magnetic resonance (CMR) at a single institution. Feature-tracking strain analysis was conducted to obtain the strain rate (SR) and LV strain and to evaluate LV function. LA strain was measured during different functional phases including left atrial reservoir strain (LARS), LA conduit strain (LACS), and LA booster strain. All patients were categorized into high- and low-risk groups for SCD as defined by the 2020 American Heart Association/American College HCM implantable cardioverter defibrillator class of recommendation algorithm. Comparison between the two groups was conducted using the independent samples t test and the nonparametric rank sum test. Multivariate logistic regression analysis was performed to further identify the factors influencing SCD risk in HCM. Results Compared with those in the low-risk group, patients in the high-risk group had lower left ventricular ejection fraction (LVEF), LV stroke volume index (LVSVI), and LA stroke volume index (LASVI) but a higher LV end-systolic volume index (LVESVI), LV maximum wall thickness, and late gadolinium enhancement (LGE) (P<0.001). LV strain, SR, and LA strain all showed significant differences between the high- and low-risk groups (LARS: P=0.04; LACS: P=0.02; all other P values <0.001). The LV global circumferential strain (LVGCS) had a strong negative correlation with LVEF in patients with HCM (r=-0.76; P<0.001). Multivariate analysis showed that LV global radial strain (LVGRS) and LARS could be used for categorizing the patients into the high-risk group [LVGRS: odds ratio (OR) =0.69; 95% confidence interval (CI): 0.55-0.87, P<0.001; LARS: OR =1.39; 95% CI: 1.02-1.90, P=0.03]. The combined LVGRS-LARS model exhibited a superior diagnostic value for high risk of SCD [area under the curve (AUC) =0.95; 95% CI: 0.90-1.00; P<0.001] compared to LARS alone (AUC =0.63; 95% CI: 0.51-0.76; P=0.04). Conclusions LA and LV strain measured by FT-CMR can accurately identify those patients with HCM at a high risk of SCD. This approach may prove considerably value in guiding early therapeutic intervention with implantable cardioverter-defibrillators (ICDs) to prevent adverse clinical outcomes.
Collapse
Affiliation(s)
- Xinyu Zhu
- Department of Magnetic Resonance, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ying Shi
- Department of Magnetic Resonance, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | - Honghu Shen
- Department of Magnetic Resonance, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lulu Li
- Department of Magnetic Resonance, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haishan Wu
- Department of Magnetic Resonance, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuan Tian
- Department of Magnetic Resonance, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Pengfei Liu
- Department of Magnetic Resonance, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
14
|
崔 佳, 刘 文, 闫 非, 赵 亚, 陈 伟, 罗 春, 张 兴, 李 涛. [Predictive value of cardiac magnetic resonance imaging for adverse left ventricular remodeling after acute ST-segment elevation myocardial infarction]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:553-562. [PMID: 38597447 PMCID: PMC11006702 DOI: 10.12122/j.issn.1673-4254.2024.03.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Indexed: 04/11/2024]
Abstract
OBJECTIVE To assess the value of cardiac magnetic resonance (CMR) imaging for predicting adverse left ventricular remodeling in patients with ST-segment elevation myocardial infarction (STEMI). METHODS We retrospectively analyzed the clinical data and serial CMR (cine and LGE sequences) images of 86 STEMI patients within 1 week and 5 months after percutaneous coronary intervention (PCI), including 25 patients with adverse LV remodeling and 61 without adverse LV remodeling, defined as an increase of left ventricular end-systolic volume (LVESV) over 15% at the second CMR compared to the initial CMR. The CMR images were analyzed for LV volume, infarct characteristics, and global and infarct zone myocardial function. The independent predictors of adverse LV remodeling following STEMI were analyzed using univariate and multivariate Logistic regression methods. RESULTS The initial CMR showed no significant differences in LV volume or LV ejection fraction (LVEF) between the two groups, but the infarct mass and microvascular obstructive (MVO) mass were significantly greater in adverse LV remodeling group (P < 0.05). Myocardial injury and cardiac function of the patients recovered over time in both groups. At the second CMR, the patients with adverse LV remodeling showed a significantly lower LVEF, a larger left ventricular end-systolic volume index (LVESVI) and a greater extent of infarct mass (P < 0.001) with lower global peak strains and strain rates in the radial, circumferential, and longitudinal directions (P < 0.05), infarct zone peak strains in the 3 directions, and infarct zone peak radial and circumferential strain rates (P < 0.05). The independent predictors for adverse LV remodeling following STEMI included the extent of infarct mass (AUC=0.793, 95% CI: 0.693-0.873; cut-off value: 30.67%), radial diastolic peak strain rate (AUC=0.645, 95% CI: 0.534-0.745; cut-off value: 0.58%), and RAAS inhibitor (AUC= 0.699, 95% CI: 0.590-0.793). CONCLUSION The extent of infarct mass, peak radial diastolic strain rate, and RAAS inhibitor are independent predictors of adverse LV remodeling following STEMI.
Collapse
Affiliation(s)
- 佳宁 崔
- 中国人民解放军总医院第一医学中心放射诊断科,北京 100853Department of Radiology, First Medical Center, PLA General Hospital, Beijing 100853, China
- 首都医科大学附属北京积水潭医院放射科,北京 100035Department of Radiology, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China
| | - 文佳 刘
- 中国人民解放军总医院第一医学中心放射诊断科,北京 100853Department of Radiology, First Medical Center, PLA General Hospital, Beijing 100853, China
| | - 非 闫
- 中国人民解放军总医院第一医学中心放射诊断科,北京 100853Department of Radiology, First Medical Center, PLA General Hospital, Beijing 100853, China
| | - 亚男 赵
- 中国人民解放军总医院第一医学中心放射诊断科,北京 100853Department of Radiology, First Medical Center, PLA General Hospital, Beijing 100853, China
| | - 伟杰 陈
- 中国人民解放军联勤保障部队第九八五医院放射科,山西 太原 030001Department of Radiology, 985th Hospital of Joint Logistics Support Force, Taiyuan 030001, China
| | - 春材 罗
- 中国人民解放军总医院第一医学中心放射诊断科,北京 100853Department of Radiology, First Medical Center, PLA General Hospital, Beijing 100853, China
| | - 兴华 张
- 中国人民解放军总医院第一医学中心放射诊断科,北京 100853Department of Radiology, First Medical Center, PLA General Hospital, Beijing 100853, China
| | - 涛 李
- 中国人民解放军总医院第一医学中心放射诊断科,北京 100853Department of Radiology, First Medical Center, PLA General Hospital, Beijing 100853, China
| |
Collapse
|
15
|
Wang H, Deng W, Zhang Y, Yang J, Wang Z, Liu B, Han Y, Yu Y, Zhao R, Xiaohu Li. Changes in subclinical cardiac abnormalities 1 Year after recovering from COVID-19 in patients without clinical cardiac findings. Heliyon 2024; 10:e27380. [PMID: 38495174 PMCID: PMC10943378 DOI: 10.1016/j.heliyon.2024.e27380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/19/2024] Open
Abstract
Aim To evaluate the subclinical cardiac involvement in COVID-19 patients without clinical cardiac evidence using cardiac MR imaging. Material and methods Participants recovered from COVID-19 without cardiac symptoms and no cardiovascular medical history were enrolled in a prospective cohort study. They underwent baseline cardiac MR and follow-up cardiac MR > 300 days after discharge (n = 20). The study also included healthy controls (n = 20). Extracellular volume fraction (ECV), native T1, and 2D strain data were assessed and compared. Results The ECV values of participants at baseline [30.0% (28.3%-32.5%)] and at follow-up [31.0% (28.0%-32.8%)] were increased compared to the healthy control group [27.0% (25.3%-28.0%)] (both p < 0.001). However, the ECV increase from baseline cardiac MR to follow-up cardiac MR was not significant (p = 0.378). There was a statistically significant difference in global native T1 between baseline [1140 (1108.3-1192.0) ms] and follow-up [1176.0 (1113.0-1206.3) ms] (p = 0.016). However, no native T1 difference was found between the healthy controls [1160.7 (1119.6-1195.4) ms] and the baseline (p = 0.394) or follow-up group (p = 0.168). The global T2 was 41(40-42) ms at follow-up which was within the normal range. In addition, We found a recovery in 2D GLS among COVID-19 participants between baseline and follow-up [-12.4(-11.7 to -14.3)% vs. -17.2(-16.2 to -18.3)%; p<0.001]. Conclusion Using cardiac MR myocardial tissue and strain imaging parameters, 35% of people without cardiac symptoms or clinical evidence of myocardial injury still had subclinical myocardial tissue characteristic abnormalities at 300 days, but 2D GLS had recovered.
Collapse
Affiliation(s)
- Haitao Wang
- Department of Radiology, No.2 People's Hospital of Fuyang City, Fuyang, Anhui, China
| | - Wei Deng
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui Province, No. 218 Jixi Road, Hefei, 230022, China
| | - Yang Zhang
- Department of Radiology, Fuyang People's Hospital, Fuyang, 236015, Anhui Province, China
| | - Jinxiu Yang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui Province, No. 218 Jixi Road, Hefei, 230022, China
| | - Zhen Wang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui Province, No. 218 Jixi Road, Hefei, 230022, China
| | - Bin Liu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui Province, No. 218 Jixi Road, Hefei, 230022, China
| | - Yuchi Han
- Cardiovascular Division, Wexner Medical Center, College of Medicine, The Ohio State University Medical Center, Columbus, OH, USA
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui Province, No. 218 Jixi Road, Hefei, 230022, China
| | - Ren Zhao
- Department of Cardiology The First Affiliated Hospital of Anhui Medical University,Anhui, China
| | - Xiaohu Li
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui Province, No. 218 Jixi Road, Hefei, 230022, China
| |
Collapse
|
16
|
Xu J, Zhuang B, Cui C, Yang W, He J, Wang X, Duan X, Zhou D, Wang Y, Zhu L, Sirajuddin A, Zhao S, Lu M. Adenosine Triphosphate Stress Myocardial Strain in Ischemic Heart Disease: An Animal Study with Histological Validation. Acad Radiol 2024; 31:221-232. [PMID: 37330355 DOI: 10.1016/j.acra.2023.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/17/2023] [Accepted: 05/20/2023] [Indexed: 06/19/2023]
Abstract
RATIONALE AND OBJECTIVES It is still challenging for cardiac magnetic resonance (CMR) to detect ischemic heart disease (IHD) without the use of gadolinium contrast. We aimed to evaluate the potential value of adenosine triphosphate (ATP) stress myocardial strain derived from feature tracking (FT) as a novel method for detecting IHD in a swine model. MATERIALS AND METHODS CMR cines, myocardial perfusion imaging at rest and during ATP stress, and late gadolinium enhancement were obtained in both control and IHD swine. Normal, remote, ischemic, and infarcted myocardium were analyzed. The diagnostic accuracy of myocardial strain for infarction and ischemia was assessed using coronary angiography and pathology as reference. RESULTS Eleven IHD swine and five healthy control swine were enrolled in this study. Strain parameters, even at rest, were associated with myocardial ischemia and infarction(all p < 0.05). The area under receiver operating characteristic curve (AUC) values of all strain parameters for detecting infarcted myocardium exceeded 0.900 (all p < 0.05). The AUC values for detecting ischemic myocardium were as follows: 0.906 and 0.847 for stress and rest radial strain, 0.763 and 0.716 for stress and rest circumferential strain, 0.758 and 0.663 for stress and rest longitudinal strain (all p < 0.001). Heat maps demonstrated that all strain parameters showed mild to moderate correlations with the stress myocardial blood flow and myocardial perfusion reserve (all p < 0.05). CONCLUSION CMR-FT-derived ATP stress myocardial strain shows promise as a noninvasive method for detecting myocardial ischemia and infarction in an IHD swine model, with rest strain parameters offering potential as a needle-free diagnostic option.
Collapse
Affiliation(s)
- Jing Xu
- Department of Magnetic Resonance Imaging, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (J.X., B.Z., C.C., W.Y., J.H., D.Z., Y.W., L.Z., S.Z., M.L.)
| | - Baiyan Zhuang
- Department of Magnetic Resonance Imaging, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (J.X., B.Z., C.C., W.Y., J.H., D.Z., Y.W., L.Z., S.Z., M.L.)
| | - Chen Cui
- Department of Magnetic Resonance Imaging, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (J.X., B.Z., C.C., W.Y., J.H., D.Z., Y.W., L.Z., S.Z., M.L.)
| | - Wenjing Yang
- Department of Magnetic Resonance Imaging, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (J.X., B.Z., C.C., W.Y., J.H., D.Z., Y.W., L.Z., S.Z., M.L.)
| | - Jian He
- Department of Magnetic Resonance Imaging, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (J.X., B.Z., C.C., W.Y., J.H., D.Z., Y.W., L.Z., S.Z., M.L.)
| | - Xin Wang
- Department of Animal Experimental Center, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.W.)
| | - Xuejing Duan
- Department of Pathology, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.D.)
| | - Di Zhou
- Department of Magnetic Resonance Imaging, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (J.X., B.Z., C.C., W.Y., J.H., D.Z., Y.W., L.Z., S.Z., M.L.)
| | - Yining Wang
- Department of Magnetic Resonance Imaging, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (J.X., B.Z., C.C., W.Y., J.H., D.Z., Y.W., L.Z., S.Z., M.L.)
| | - Leyi Zhu
- Department of Magnetic Resonance Imaging, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (J.X., B.Z., C.C., W.Y., J.H., D.Z., Y.W., L.Z., S.Z., M.L.)
| | - Arlene Sirajuddin
- Department of Health and Human Services, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland (A.S.)
| | - Shihua Zhao
- Department of Magnetic Resonance Imaging, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (J.X., B.Z., C.C., W.Y., J.H., D.Z., Y.W., L.Z., S.Z., M.L.)
| | - Minjie Lu
- Department of Magnetic Resonance Imaging, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (J.X., B.Z., C.C., W.Y., J.H., D.Z., Y.W., L.Z., S.Z., M.L.); Key Laboratory of Cardiovascular Imaging (Cultivation), Chinese Academy of Medical Sciences, Beijing, China (M.L.).
| |
Collapse
|
17
|
Zhang HK, Du Y, Shi CY, Zhang N, Gao HQ, Zhong YL, Wang MZ, Zhou Z, Gao XL, Li S, Yang L, Liu T, Fan ZM, Sun ZH, Xu L. Prognostic Value of Left Ventricular Longitudinal Function and Myocardial Fibrosis in Patients With Ischemic and Non-Ischemic Dilated Cardiomyopathy Concomitant With Type 2 Diabetes Mellitus: A 3.0 T Cardiac MR Study. J Magn Reson Imaging 2024; 59:164-176. [PMID: 37013673 DOI: 10.1002/jmri.28723] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Poorly controlled type 2 diabetes mellitus (T2DM) is known to result in left ventricular (LV) dysfunction, myocardial fibrosis, and ischemic/nonischemic dilated cardiomyopathy (ICM/NIDCM). However, less is known about the prognostic value of T2DM on LV longitudinal function and late gadolinium enhancement (LGE) assessed with cardiac MRI in ICM/NIDCM patients. PURPOSE To measure LV longitudinal function and myocardial scar in ICM/NIDCM patients with T2DM and to determine their prognostic values. STUDY TYPE Retrospective cohort. POPULATION Two hundred thirty-five ICM/NIDCM patients (158 with T2DM and 77 without T2DM). FIELD STRENGTH/SEQUENCE 3T; steady-state free precession cine; phase-sensitive inversion recovery segmented gradient echo LGE sequences. ASSESSMENT Global peak longitudinal systolic strain rate (GLPSSR) was evaluated to LV longitudinal function with feature tracking. The predictive value of GLPSSR was determined with ROC curve. Glycated hemoglobin (HbA1c) was measured. The primary adverse cardiovascular endpoint was follow up every 3 months. STATISTICAL TESTS Mann-Whitney U test or student's t-test; Intra and inter-observer variabilities; Kaplan-Meier method; Cox proportional hazards analysis (threshold = 5%). RESULTS ICM/NIDCM patients with T2DM exhibited significantly lower absolute value of GLPSSR (0.39 ± 0.14 vs. 0.49 ± 0.18) and higher proportion of LGE positive (+) despite similar LV ejection fraction, compared to without T2DM. LV GLPSSR was able to predict primary endpoint (AUC 0.73) and optimal cutoff point was 0.4. ICM/NIDCM patients with T2DM (GLPSSR < 0.4) had more markedly impaired survival. Importantly, this group (GLPSSR < 0.4, HbA1c ≥ 7.8%, or LGE (+)) exhibited the worst survival. In multivariate analysis, GLPSSR, HbA1c, and LGE (+) significantly predicted primary adverse cardiovascular endpoint in overall ICM/NIDCM and ICM/NIDCM patients with T2DM. CONCLUSIONS T2DM has an additive deleterious effect on LV longitudinal function and myocardial fibrosis in ICM/NIDCM patients. Combining GLPSSR, HbA1c, and LGE could be promising markers in predicting outcomes in ICM/NIDCM patients with T2DM. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: 5.
Collapse
Affiliation(s)
- Hong-Kai Zhang
- Department of Radiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung, and Vascular Diseases, Capital Medical University, Beijing, China
| | - Yu Du
- Department of Cardiology, Clinical Center for Coronary Heart Disease, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Chun-Yan Shi
- Department of Radiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung, and Vascular Diseases, Capital Medical University, Beijing, China
| | - Nan Zhang
- Department of Radiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung, and Vascular Diseases, Capital Medical University, Beijing, China
| | - Hui-Qiang Gao
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Vascular Diseases, Capital Medical University, Beijing, China
| | - Yong-Liang Zhong
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Vascular Diseases, Capital Medical University, Beijing, China
| | - Mao-Zhou Wang
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Vascular Diseases, Capital Medical University, Beijing, China
| | - Zhen Zhou
- Department of Radiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung, and Vascular Diseases, Capital Medical University, Beijing, China
| | - Xue-Lian Gao
- Department of Radiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung, and Vascular Diseases, Capital Medical University, Beijing, China
| | - Shuang Li
- Department of Radiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung, and Vascular Diseases, Capital Medical University, Beijing, China
| | - Lin Yang
- Department of Radiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung, and Vascular Diseases, Capital Medical University, Beijing, China
| | - Tong Liu
- Department of Cardiology, Clinical Center for Coronary Heart Disease, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Zhan-Ming Fan
- Department of Radiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung, and Vascular Diseases, Capital Medical University, Beijing, China
| | - Zhong-Hua Sun
- Discipline of Medical Radiation Science, Curtin Medical School, Curtin University, Perth, Western Australia, Australia
| | - Lei Xu
- Department of Radiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung, and Vascular Diseases, Capital Medical University, Beijing, China
| |
Collapse
|
18
|
Morales MA, Yoon S, Fahmy A, Ghanbari F, Nakamori S, Rodriguez J, Yue J, Street JA, Herzka DA, Manning WJ, Nezafat R. Highly accelerated free-breathing real-time myocardial tagging for exercise cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2023; 25:56. [PMID: 37784153 PMCID: PMC10544487 DOI: 10.1186/s12968-023-00961-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/11/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND Exercise cardiovascular magnetic resonance (Ex-CMR) myocardial tagging would enable quantification of myocardial deformation after exercise. However, current electrocardiogram (ECG)-segmented sequences are limited for Ex-CMR. METHODS We developed a highly accelerated balanced steady-state free-precession real-time tagging technique for 3 T. A 12-fold acceleration was achieved using incoherent sixfold random Cartesian sampling, twofold truncated outer phase encoding, and a deep learning resolution enhancement model. The technique was tested in two prospective studies. In a rest study of 27 patients referred for clinical CMR and 19 healthy subjects, a set of ECG-segmented for comparison and two sets of real-time tagging images for repeatability assessment were collected in 2-chamber and short-axis views with spatiotemporal resolution 2.0 × 2.0 mm2 and 29 ms. In an Ex-CMR study of 26 patients with known or suspected cardiac disease and 23 healthy subjects, real-time images were collected before and after exercise. Deformation was quantified using measures of short-axis global circumferential strain (GCS). Two experienced CMR readers evaluated the image quality of all real-time data pooled from both studies using a 4-point Likert scale for tagline quality (1-excellent; 2-good; 3-moderate; 4-poor) and artifact level (1-none; 2-minimal; 3-moderate; 4-significant). Statistical evaluation included Pearson correlation coefficient (r), intraclass correlation coefficient (ICC), and coefficient of variation (CoV). RESULTS In the rest study, deformation was successfully quantified in 90% of cases. There was a good correlation (r = 0.71) between ECG-segmented and real-time measures of GCS, and repeatability was good to excellent (ICC = 0.86 [0.71, 0.94]) with a CoV of 4.7%. In the Ex-CMR study, deformation was successfully quantified in 96% of subjects pre-exercise and 84% of subjects post-exercise. Short-axis and 2-chamber tagline quality were 1.6 ± 0.7 and 1.9 ± 0.8 at rest and 1.9 ± 0.7 and 2.5 ± 0.8 after exercise, respectively. Short-axis and 2-chamber artifact level was 1.2 ± 0.5 and 1.4 ± 0.7 at rest and 1.3 ± 0.6 and 1.5 ± 0.8 post-exercise, respectively. CONCLUSION We developed a highly accelerated real-time tagging technique and demonstrated its potential for Ex-CMR quantification of myocardial deformation. Further studies are needed to assess the clinical utility of our technique.
Collapse
Affiliation(s)
- Manuel A Morales
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave., Boston, MA, 02215, USA
| | - Siyeop Yoon
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave., Boston, MA, 02215, USA
| | - Ahmed Fahmy
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave., Boston, MA, 02215, USA
| | - Fahime Ghanbari
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave., Boston, MA, 02215, USA
| | - Shiro Nakamori
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave., Boston, MA, 02215, USA
| | - Jennifer Rodriguez
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave., Boston, MA, 02215, USA
| | - Jennifer Yue
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave., Boston, MA, 02215, USA
| | - Jordan A Street
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave., Boston, MA, 02215, USA
| | | | - Warren J Manning
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave., Boston, MA, 02215, USA
- Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, USA
| | - Reza Nezafat
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave., Boston, MA, 02215, USA.
| |
Collapse
|
19
|
Tamura Y, Tamura Y. Usefulness of Longitudinal Strain to Assess Cancer Therapy-Related Cardiac Dysfunction and Immune Checkpoint Inhibitor-Induced Myocarditis. Pharmaceuticals (Basel) 2023; 16:1297. [PMID: 37765105 PMCID: PMC10535915 DOI: 10.3390/ph16091297] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Longitudinal strain (LS) measured by echocardiography has been reported to be useful not only for the diagnosis and risk stratification of various cardiac diseases, but also in cardio-oncology. Most previous studies have been conducted on patients undergoing treatment with anthracyclines and human epidermal growth factor receptor 2-targeted therapies. Existing guidelines recommend that global LS (GLS) should be measured before and after the administration of cancer drugs. This recommendation is based on many reports showing that a decline in GLS is indicative of early or mild cancer therapy-related cardiac dysfunction. The main purpose of this article is to provide insight into the importance of LS in patients undergoing cancer treatment and highlight the role of LS evaluation in patients undergoing immune checkpoint inhibitor (ICI) treatment, which is being used with increasing frequency. Among cancer drug therapies, immune checkpoint inhibitors (ICIs) have an important place in cancer treatment and are used for the treatment of many types of cancer. Although the efficacy of ICIs in cancer treatment has been reported, immune-related adverse events (irAEs) have also been reported. Among these irAEs, cardiovascular complications, although rare, are recognized as important adverse events that may result in ICI treatment discontinuation. Myocarditis is one severe adverse event associated with ICIs, and it is important to standardize diagnostic and therapeutic approaches to it. Several studies have reported a relationship between LS and cardiac complications associated with ICIs which may contribute to the early diagnosis of ICI-induced cardiac complications.
Collapse
Affiliation(s)
- Yudai Tamura
- Cardiovascular Center, International University of Health and Welfare Mita Hospital, Tokyo 108-8329, Japan;
- Department of Cardiology, International University of Health and Welfare School of Medicine, Narita 286-8686, Japan
| | - Yuichi Tamura
- Cardiovascular Center, International University of Health and Welfare Mita Hospital, Tokyo 108-8329, Japan;
- Department of Cardiology, International University of Health and Welfare School of Medicine, Narita 286-8686, Japan
| |
Collapse
|
20
|
Zhao H, Huang R, Jiang M, Wang W, Chai Y, Liu Q, Zhang W, Han Y, Yan F, Lu Q, Tao Z, Wu Q, Yue J, Ma J, Pu J. Myocardial Tissue-Level Characteristics of Adults With Metabolically Healthy Obesity. JACC Cardiovasc Imaging 2023; 16:889-901. [PMID: 37052557 DOI: 10.1016/j.jcmg.2023.01.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 04/14/2023]
Abstract
BACKGROUND It remains unclear whether adults with metabolically healthy obesity (MHO) have altered myocardial tissue-level characteristics. OBJECTIVES This study aims to assess the subclinical myocardial tissue-level characteristics of adults with MHO. METHODS The EARLY-MYO-OBESITY (EARLY Assessment of MYOcardial Tissue Characteristics in OBESITY; NCT05277779) registry was a prospective, 3-center, cardiac imaging study of obese nondiabetic individuals without cardiac symptoms who underwent cardiac magnetic resonance. Myocardial tissue-level characteristics, including extracellular volume fraction (ECV) and native T2 values, were measured as indicators of myocardial fibrosis and edema. Global longitudinal peak systolic strain and early diastolic longitudinal strain rate were assessed by tissue tracking analysis to detect subclinical systolic and diastolic dysfunction. RESULTS A total of 120 participants were included: MHO (n = 32; mean age, 38 years; 41% men), metabolically healthy controls without obesity (n = 32; mean age: 37 years; 41% men), and metabolically unhealthy obesity (MUHO) (n = 56; mean age: 37 years; 55% men). The MHO group had higher ECV and native T2 values than healthy controls (both P < 0.001); furthermore, the ECV was higher in the MUHO group than in the MHO group (P = 0.002). The prevalence of myocardial fibrosis was 44% (14 of 32) in the MHO group and 71% (40 of 56) in the MUHO group. Although there was no intergroup difference in left ventricular ejection fraction, the MHO group had reduced global longitudinal peak systolic and early diastolic longitudinal strain rates, indicating subclinical systolic and diastolic dysfunction. Multivariate regression analysis identified increased body mass index to be an independent risk factor for myocardial fibrosis (OR: 6.28 [95% CI: 3.17-12.47]; P < 0.001). CONCLUSIONS This study provides the first evidence of subclinical myocardial tissue-level remodeling in adults with obesity, regardless of metabolic health. Early identification of cardiac impairment may facilitate preventive strategies against heart failure in the MHO population. (EARLY Assessment of MYOcardial Tissue Characteristics in OBESITY [EARLY-MYO-OBESITY]; NCT05277779).
Collapse
Affiliation(s)
- Hang Zhao
- Division of Cardiology, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Rong Huang
- Department of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Meng Jiang
- Division of Cardiology, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Wei Wang
- Division of Cardiology, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yezi Chai
- Division of Cardiology, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiming Liu
- Division of Cardiology, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Zhang
- Division of Cardiology, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuchi Han
- Cardiovascular Division, The Ohio State Wexner Medical Center, Columbus, Ohio, USA
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qifan Lu
- Division of Cardiology, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhengyu Tao
- Division of Cardiology, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qizhen Wu
- Division of Cardiology, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiang Yue
- Department of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Ma
- Department of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Jun Pu
- Division of Cardiology, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
21
|
Li S, Wang Y, Yang W, Zhou D, Zhuang B, Xu J, He J, Yin G, Fan X, Wu W, Sharma P, Sirajuddin A, Arai AE, Zhao S, Lu M. Cardiac MRI Risk Stratification for Dilated Cardiomyopathy with Left Ventricular Ejection Fraction of 35% or Higher. Radiology 2023; 306:e213059. [PMID: 36318031 PMCID: PMC9968772 DOI: 10.1148/radiol.213059] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 08/05/2022] [Accepted: 09/22/2022] [Indexed: 02/22/2023]
Abstract
Background Studies over the past 15 years have demonstrated that a considerable number of patients with dilated cardiomyopathy (DCM) who died from sudden cardiac death (SCD) had a left ventricular (LV) ejection fraction (LVEF) of 35% or higher. Purpose To identify clinical and cardiac MRI risk factors for adverse events in patients with DCM and LVEF of 35% or higher. Materials and Methods In this retrospective study, consecutive patients with DCM and LVEF of 35% or higher who underwent cardiac MRI between January 2010 and December 2017 were included. The primary end point was a composite of SCD or aborted SCD. The secondary end point was a composite of all-cause mortality, heart transplant, or hospitalization for heart failure. The risk factors for the primary and secondary end points were identified with multivariable Cox analysis. Results A total of 466 patients with DCM and LVEF of 35% or higher (mean age, 44 years ± 14 [SD]; 358 men) were included. During a mean follow-up of 79 months ± 30 (SD) (range, 7-143 months), 40 patients reached the primary end point and 61 reached the secondary end point. In the adjusted analysis, age (hazard ratio [HR], 1.03 per year [95% CI: 1.00, 1.05]; P = .04), family history of SCD (HR, 3.4 [95% CI: 1.3, 8.8]; P = .01), New York Heart Association (NYHA) class III or IV (HR vs NYHA class I or II, 2.1 [95% CI: 1.1, 3.9]; P = .02), and myocardial scar at late gadolinium enhancement (LGE) MRI greater than or equal to 7.1% of the LV mass (HR, 4.4 [95% CI: 2.4, 8.3]; P < .001) were associated with SCD or aborted SCD. For the composite secondary end point, LGE greater than or equal to 7.1% of the LV mass (HR vs LGE <7.1%, 2.0 [95% CI: 1.2, 3.4]; P = .01), left atrial maximum volume index, and reduced global longitudinal strain were independent predictors. Conclusion For patients with dilated cardiomyopathy and left ventricular (LV) ejection fraction of 35% or higher, cardiac MRI-defined myocardial scar greater than or equal to 7.1% of the LV mass was associated with sudden cardiac death (SCD) or aborted SCD. © RSNA, 2022 Online supplemental material is available for this article.
Collapse
Affiliation(s)
| | | | - Wenjing Yang
- From the Department of Magnetic Resonance Imaging (S.L., Y.W., W.Y.,
D.Z., B.Z., J.X., J.H., G.Y., S.Z., M.L.), Cardiac Arrhythmia Center (X.F.), and
Department of Echocardiography (W.W.), Fuwai Hospital, State Key Laboratory of
Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese
Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi
Rd, Beijing 100037, China; Department of Medicine, Saint James School of
Medicine, Park Ridge, Ill (P.S.); Department of Health and Human Services,
Radiology and Imaging Sciences, National Institutes of Health, Bethesda, Md
(A.S.); Kensington, Md (A.E.A.); and Key Laboratory of Cardiovascular Imaging
(Cultivation), Chinese Academy of Medical Sciences, Beijing, China (G.Y., W.W.,
M.L.)
| | - Di Zhou
- From the Department of Magnetic Resonance Imaging (S.L., Y.W., W.Y.,
D.Z., B.Z., J.X., J.H., G.Y., S.Z., M.L.), Cardiac Arrhythmia Center (X.F.), and
Department of Echocardiography (W.W.), Fuwai Hospital, State Key Laboratory of
Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese
Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi
Rd, Beijing 100037, China; Department of Medicine, Saint James School of
Medicine, Park Ridge, Ill (P.S.); Department of Health and Human Services,
Radiology and Imaging Sciences, National Institutes of Health, Bethesda, Md
(A.S.); Kensington, Md (A.E.A.); and Key Laboratory of Cardiovascular Imaging
(Cultivation), Chinese Academy of Medical Sciences, Beijing, China (G.Y., W.W.,
M.L.)
| | - Baiyan Zhuang
- From the Department of Magnetic Resonance Imaging (S.L., Y.W., W.Y.,
D.Z., B.Z., J.X., J.H., G.Y., S.Z., M.L.), Cardiac Arrhythmia Center (X.F.), and
Department of Echocardiography (W.W.), Fuwai Hospital, State Key Laboratory of
Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese
Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi
Rd, Beijing 100037, China; Department of Medicine, Saint James School of
Medicine, Park Ridge, Ill (P.S.); Department of Health and Human Services,
Radiology and Imaging Sciences, National Institutes of Health, Bethesda, Md
(A.S.); Kensington, Md (A.E.A.); and Key Laboratory of Cardiovascular Imaging
(Cultivation), Chinese Academy of Medical Sciences, Beijing, China (G.Y., W.W.,
M.L.)
| | - Jing Xu
- From the Department of Magnetic Resonance Imaging (S.L., Y.W., W.Y.,
D.Z., B.Z., J.X., J.H., G.Y., S.Z., M.L.), Cardiac Arrhythmia Center (X.F.), and
Department of Echocardiography (W.W.), Fuwai Hospital, State Key Laboratory of
Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese
Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi
Rd, Beijing 100037, China; Department of Medicine, Saint James School of
Medicine, Park Ridge, Ill (P.S.); Department of Health and Human Services,
Radiology and Imaging Sciences, National Institutes of Health, Bethesda, Md
(A.S.); Kensington, Md (A.E.A.); and Key Laboratory of Cardiovascular Imaging
(Cultivation), Chinese Academy of Medical Sciences, Beijing, China (G.Y., W.W.,
M.L.)
| | - Jian He
- From the Department of Magnetic Resonance Imaging (S.L., Y.W., W.Y.,
D.Z., B.Z., J.X., J.H., G.Y., S.Z., M.L.), Cardiac Arrhythmia Center (X.F.), and
Department of Echocardiography (W.W.), Fuwai Hospital, State Key Laboratory of
Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese
Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi
Rd, Beijing 100037, China; Department of Medicine, Saint James School of
Medicine, Park Ridge, Ill (P.S.); Department of Health and Human Services,
Radiology and Imaging Sciences, National Institutes of Health, Bethesda, Md
(A.S.); Kensington, Md (A.E.A.); and Key Laboratory of Cardiovascular Imaging
(Cultivation), Chinese Academy of Medical Sciences, Beijing, China (G.Y., W.W.,
M.L.)
| | - Gang Yin
- From the Department of Magnetic Resonance Imaging (S.L., Y.W., W.Y.,
D.Z., B.Z., J.X., J.H., G.Y., S.Z., M.L.), Cardiac Arrhythmia Center (X.F.), and
Department of Echocardiography (W.W.), Fuwai Hospital, State Key Laboratory of
Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese
Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi
Rd, Beijing 100037, China; Department of Medicine, Saint James School of
Medicine, Park Ridge, Ill (P.S.); Department of Health and Human Services,
Radiology and Imaging Sciences, National Institutes of Health, Bethesda, Md
(A.S.); Kensington, Md (A.E.A.); and Key Laboratory of Cardiovascular Imaging
(Cultivation), Chinese Academy of Medical Sciences, Beijing, China (G.Y., W.W.,
M.L.)
| | - Xiaohan Fan
- From the Department of Magnetic Resonance Imaging (S.L., Y.W., W.Y.,
D.Z., B.Z., J.X., J.H., G.Y., S.Z., M.L.), Cardiac Arrhythmia Center (X.F.), and
Department of Echocardiography (W.W.), Fuwai Hospital, State Key Laboratory of
Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese
Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi
Rd, Beijing 100037, China; Department of Medicine, Saint James School of
Medicine, Park Ridge, Ill (P.S.); Department of Health and Human Services,
Radiology and Imaging Sciences, National Institutes of Health, Bethesda, Md
(A.S.); Kensington, Md (A.E.A.); and Key Laboratory of Cardiovascular Imaging
(Cultivation), Chinese Academy of Medical Sciences, Beijing, China (G.Y., W.W.,
M.L.)
| | - Weichun Wu
- From the Department of Magnetic Resonance Imaging (S.L., Y.W., W.Y.,
D.Z., B.Z., J.X., J.H., G.Y., S.Z., M.L.), Cardiac Arrhythmia Center (X.F.), and
Department of Echocardiography (W.W.), Fuwai Hospital, State Key Laboratory of
Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese
Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi
Rd, Beijing 100037, China; Department of Medicine, Saint James School of
Medicine, Park Ridge, Ill (P.S.); Department of Health and Human Services,
Radiology and Imaging Sciences, National Institutes of Health, Bethesda, Md
(A.S.); Kensington, Md (A.E.A.); and Key Laboratory of Cardiovascular Imaging
(Cultivation), Chinese Academy of Medical Sciences, Beijing, China (G.Y., W.W.,
M.L.)
| | - Piyush Sharma
- From the Department of Magnetic Resonance Imaging (S.L., Y.W., W.Y.,
D.Z., B.Z., J.X., J.H., G.Y., S.Z., M.L.), Cardiac Arrhythmia Center (X.F.), and
Department of Echocardiography (W.W.), Fuwai Hospital, State Key Laboratory of
Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese
Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi
Rd, Beijing 100037, China; Department of Medicine, Saint James School of
Medicine, Park Ridge, Ill (P.S.); Department of Health and Human Services,
Radiology and Imaging Sciences, National Institutes of Health, Bethesda, Md
(A.S.); Kensington, Md (A.E.A.); and Key Laboratory of Cardiovascular Imaging
(Cultivation), Chinese Academy of Medical Sciences, Beijing, China (G.Y., W.W.,
M.L.)
| | - Arlene Sirajuddin
- From the Department of Magnetic Resonance Imaging (S.L., Y.W., W.Y.,
D.Z., B.Z., J.X., J.H., G.Y., S.Z., M.L.), Cardiac Arrhythmia Center (X.F.), and
Department of Echocardiography (W.W.), Fuwai Hospital, State Key Laboratory of
Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese
Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi
Rd, Beijing 100037, China; Department of Medicine, Saint James School of
Medicine, Park Ridge, Ill (P.S.); Department of Health and Human Services,
Radiology and Imaging Sciences, National Institutes of Health, Bethesda, Md
(A.S.); Kensington, Md (A.E.A.); and Key Laboratory of Cardiovascular Imaging
(Cultivation), Chinese Academy of Medical Sciences, Beijing, China (G.Y., W.W.,
M.L.)
| | | | | | - Minjie Lu
- From the Department of Magnetic Resonance Imaging (S.L., Y.W., W.Y.,
D.Z., B.Z., J.X., J.H., G.Y., S.Z., M.L.), Cardiac Arrhythmia Center (X.F.), and
Department of Echocardiography (W.W.), Fuwai Hospital, State Key Laboratory of
Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese
Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi
Rd, Beijing 100037, China; Department of Medicine, Saint James School of
Medicine, Park Ridge, Ill (P.S.); Department of Health and Human Services,
Radiology and Imaging Sciences, National Institutes of Health, Bethesda, Md
(A.S.); Kensington, Md (A.E.A.); and Key Laboratory of Cardiovascular Imaging
(Cultivation), Chinese Academy of Medical Sciences, Beijing, China (G.Y., W.W.,
M.L.)
| |
Collapse
|
22
|
Ng MY, Kwan CT, Yap PM, Fung SY, Tang HS, Tse WWV, Kwan CNF, Chow YHP, Yiu NC, Lee YP, Fong AHT, Hwang S, Fong ZFW, Ren QW, Wu MZ, Wan EYF, Lee KCK, Leung CY, Li A, Montero D, Vardhanabhuti V, Hai J, Siu CW, Tse HF, Pennell DJ, Mohiaddin R, Senior R, Yiu KH. Diagnostic accuracy of cardiovascular magnetic resonance strain analysis and atrial size to identify heart failure with preserved ejection fraction. EUROPEAN HEART JOURNAL OPEN 2023; 3:oead021. [PMID: 36992915 PMCID: PMC10041670 DOI: 10.1093/ehjopen/oead021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023]
Abstract
Aims Heart failure with preserved ejection fraction (HFpEF) continues to be a diagnostic challenge. Cardiac magnetic resonance atrial measurement, feature tracking (CMR-FT), tagging has long been suggested to diagnose HFpEF and potentially complement echocardiography especially when echocardiography is indeterminate. Data supporting the use of CMR atrial measurements, CMR-FT or tagging, are absent. Our aim is to conduct a prospective case-control study assessing the diagnostic accuracy of CMR atrial volume/area, CMR-FT, and tagging to diagnose HFpEF amongst patients suspected of having HFpEF. Methods and results One hundred and twenty-one suspected HFpEF patients were prospectively recruited from four centres. Patients underwent echocardiography, CMR, and N-terminal pro-B-type natriuretic peptide (NT-proBNP) measurements within 24 h to diagnose HFpEF. Patients without HFpEF diagnosis underwent catheter pressure measurements or stress echocardiography to confirm HFpEF or non-HFpEF. Area under the curve (AUC) was determined by comparing HFpEF with non-HFpEF patients. Fifty-three HFpEF (median age 78 years, interquartile range 74-82 years) and thirty-eight non-HFpEF (median age 70 years, interquartile range 64-76 years) were recruited. Cardiac magnetic resonance left atrial (LA) reservoir strain (ResS), LA area index (LAAi), and LA volume index (LAVi) had the highest diagnostic accuracy (AUCs 0.803, 0.815, and 0.776, respectively). Left atrial ResS, LAAi, and LAVi had significantly better diagnostic accuracy than CMR-FT left ventricle (LV)/right ventricle (RV) parameters and tagging (P < 0.01). Tagging circumferential and radial strain had poor diagnostic accuracy (AUC 0.644 and 0.541, respectively). Conclusion Cardiac magnetic resonance LA ResS, LAAi, and LAVi have the highest diagnostic accuracy to identify HFpEF patients from non-HFpEF patients amongst clinically suspected HFpEF patients. Cardiac magnetic resonance feature tracking LV/RV parameters and tagging had low diagnostic accuracy to diagnose HFpEF.
Collapse
Affiliation(s)
- Ming-Yen Ng
- Department of Diagnostic Radiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong SAR, China
- Department of Medical Imaging, The University of Hong Kong-Shenzhen Hospital, 1 Haiyuan 1 Rd, Futian District, Shenzhen, Guangdong 518009, China
| | - Chi Ting Kwan
- Department of Diagnostic Radiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong SAR, China
| | - Pui Min Yap
- Department of Diagnostic Radiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong SAR, China
| | - Sau Yung Fung
- Department of Diagnostic Radiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong SAR, China
| | - Hok Shing Tang
- Department of Diagnostic Radiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong SAR, China
| | - Wan Wai Vivian Tse
- Department of Diagnostic Radiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong SAR, China
| | - Cheuk Nam Felix Kwan
- Department of Diagnostic Radiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong SAR, China
| | - Yin Hay Phoebe Chow
- Department of Diagnostic Radiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong SAR, China
| | - Nga Ching Yiu
- Department of Diagnostic Radiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong SAR, China
| | - Yung Pok Lee
- Department of Diagnostic Radiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong SAR, China
| | - Ambrose Ho Tung Fong
- Department of Diagnostic Radiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong SAR, China
| | - Subin Hwang
- Department of Diagnostic Radiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong SAR, China
| | - Zachary Fai Wang Fong
- Department of Diagnostic Radiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong SAR, China
| | - Qing-Wen Ren
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong SAR, China
| | - Mei-Zhen Wu
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong SAR, China
| | - Eric Yuk Fai Wan
- Department of Family Medicine and Primary Care, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Ap Lei Chau Clinic, 161 Main Street, Ap Lei Chau, Hong Kong SAR, China
| | - Ka Chun Kevin Lee
- Department of Medicine and Geriatrics, Ruttonjee and Tang Shiu Kin Hospitals, 266 Queen's Road East, Wan Chai, Hong Kong SAR, China
| | - Chun Yu Leung
- Department of Medicine, Tseung Kwan O Hospital, 2 Po Ning Ln, Tseung Kwan O, Hong Kong SAR, China
| | - Andrew Li
- Department of Medicine & Therapeutics, United Christian Hospital, 130 Hip Wo St, Kwun Tong, Hong Kong SAR, China
| | - David Montero
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Patrick Manson Building (North Wing), 7 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Varut Vardhanabhuti
- Department of Diagnostic Radiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong SAR, China
| | - JoJo Hai
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong SAR, China
| | - Chung-Wah Siu
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong SAR, China
| | - Hung-Fat Tse
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong SAR, China
| | - Dudley John Pennell
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, Guy’s and St Thomas’ NHS Foundation Trust, Sydney Street, London SW3 6NP, UK
| | - Raad Mohiaddin
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, Guy’s and St Thomas’ NHS Foundation Trust, Sydney Street, London SW3 6NP, UK
- National Heart and Lung Institute, Imperial College, Guy Scadding Building, Cale Street, London SW3 6LY, UK
| | - Roxy Senior
- National Heart and Lung Institute, Imperial College, Guy Scadding Building, Cale Street, London SW3 6LY, UK
- Department of Cardiology, Northwick Park Hospital, Watford Rd, Harrow HA1 3UJ, UK
- Cardiology, Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK
| | - Kai-Hang Yiu
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong SAR, China
| |
Collapse
|
23
|
Li H, Zheng Y, Peng X, Liu H, Li Y, Tian Z, Hou Y, Jin S, Huo H, Liu T. Heart failure with preserved ejection fraction in post myocardial infarction patients: a myocardial magnetic resonance (MR) tissue tracking study. Quant Imaging Med Surg 2023; 13:1723-1739. [PMID: 36915319 PMCID: PMC10006144 DOI: 10.21037/qims-22-793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/11/2022] [Indexed: 12/28/2022]
Abstract
Background This study aimed to explore the value of cardiac magnetic resonance tissue tracking (CMR-TT) technology in evaluating heart failure with preserved ejection fraction (HFpEF) in patients with chronic myocardial infarction (CMI). Methods Between June 2016 and March 2022, we included a consecutive series of 92 patients with CMI and 40 healthy controls in this retrospective study. The CMI patients enrolled were divided into different subgroups [HFpEF-CMI group (n=54) and non- heart failure (HF)-CMI group (n=38)] according to the Heart Failure Association (HFA)-PEFF (step 1: P, pre-test assessment; step 2: E, echocardiography and natriuretic peptide score; step 3: F1, functional testing; step 4: F2, final aetiology) diagnostic algorithm. CMR scan was performed at the First Hospital of China Medical University. Quantitative measurements of myocardial damage, such as myocardial strain parameters of both ventricles derived by CMR-TT and infarct size and transmurality by late gadolinium enhancement (LGE), were assessed. One-way analysis of variance, independent samples t-test, and rank sum test were used to compare myocardial impairment among groups. Pearson or Spearman correlation coefficient was used to measure correlations between left ventricular (LV) strains and clinical and functional parameters. Logistic regression analysis and receiver operating characteristic (ROC) curve were performed to identify the best parameter for diagnosing HFpEF-CMI. Results HFpEF-CMI patients demonstrated significantly impaired LV strains and strain rates in all of the three directions (radial, circumferential and longitudinal) compared to non-HF-CMI patients and healthy controls (P<0.001 for all), whereas only global longitudinal strain (GLS) was significantly impaired in HFpEF-CMI patients vs. controls for right ventricular strain parameters (P<0.001). LV strains showed moderate correlation with N-terminal pro-brain natriuretic peptide (radial, circumferential and longitudinal strain, R=-0.401, R=0.408, R=0.407, respectively, P<0.001 for all). LV strains in the three directions (radial, circumferential and longitudinal) [area under ROC curve (AUC) =0.707, 95% confidence interval (CI): 0.603-0.797; AUC =0.708, 95% CI: 0.604-0.798; AUC =0.731, 95% CI: 0.628-0.818; respectively, P<0.01 for all] were discriminators for HFpEF-CMI and non-HF-CMI. LV strains and myocardial infarction volume were independent factors in multi-logistic regression analysis after adjusting for body mass index, age, and sex (P<0.05 for all). Conclusions CMR-TT provides clinicians with useful additional imaging parameters to facilitate the assessment of CMI patients with HFpEF. LV strain parameters can detect early cardiac insufficiency in patients with HFpEF-CMI and have potential value for discriminating between HFpEF and non-HF patients post-CMI.
Collapse
Affiliation(s)
- Han Li
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Yue Zheng
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Xin Peng
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Hui Liu
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Yue Li
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Zhaoxin Tian
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Yang Hou
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shiqi Jin
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Huaibi Huo
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Ting Liu
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
24
|
He J, Yang W, Wu W, Sun X, Li S, Yin G, Zhuang B, Xu J, Zhou D, Zhang Y, Wang Y, Zhu L, Sharma P, Sirajuddin A, Teng Z, Kureshi F, Zhao S, Lu M. Clinical features, myocardial strain and tissue characteristics of heart failure with preserved ejection fraction in patients with obesity: A prospective cohort study. EClinicalMedicine 2023; 55:101723. [PMID: 36386034 PMCID: PMC9646878 DOI: 10.1016/j.eclinm.2022.101723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND The pathophysiology and subsequent myocardial dysfunction of heart failure with preserved ejection fraction (HFpEF) with comorbid obesity has not been extensively described. This study aimed to investigate the clinical features and cardiovascular magnetic resonance (CMR) derived myocardial strain and tissue characteristics in patients with HFpEF and comorbid obesity phenotype. METHODS In this prospective cohort study, we included consecutive patients admitted to Fuwai hospital in China who underwent CMR. Patients with HFpEF or obesity were diagnosed with demographic data, clinical presentation, laboratory test, and echocardiography or CMR imaging. The key exclusion criteria were cardiomyopathy, primary valvular heart disease, and significant coronary artery disease. Participant data were obtained from the electronic medical records database or inquiry. Comparisons of clinical features and CMR derived structural and functional parameters amongst different groups were made using one-way analysis of variance, or χ2 tests, and post hoc Bonferroni analysis where appropriate. FINDINGS Between January 1, 2019 and July 31, 2021, 280 participants (108 patients with HFpEF and obesity, 50 patients with HFpEF and normal weight, 72 patients with obesity, and 50 healthy controls) were enrolled. Compared with patients with HFpEF and normal weight, patients with HFpEF and obesity were younger males, and had higher plasma volume, uric acid and hemoglobin levels, yet less often atrial fibrillation, and lower NT-proBNP levels, and had higher left ventricular mass index, end-diastole/systole volume index, lower left atrial volume index, and worse myocardial strains (all p ≤ 0.05), but no remarkable difference in late gadolinium enhancement (LGE) presence and extracellular volume fraction (ECV). After adjusting for age, atrial fibrillation, and coronary artery disease, only global longitudinal strain (GLS, p = 0.031) and early-diastolic global longitudinal strain rate (eGLSR, p = 0.043) were considerably worse in patients with HFpEF and obesity versus patients with HFpEF and normal weight. Furthermore, early-diastolic strain rates showed no linear association with ECV in patients with HFpEF and obesity. Moreover, GLS demonstrated the highest diagnostic ability when compared with traditional CMR structural parameters and ECV to diagnose patients with HFpEF and obesity in the setting of obesity. INTERPRETATION Higher systemic inflammation, and worse GLS and eGLSR may be the distinct features of obesity-related HFpEF phenotype; strains and ECV may represent different mechanisms of HFpEF with obesity, deserving further study. FUNDING The Construction Research Project of Key Laboratory (Cultivation) of Chinese Academy of Medical Sciences (2019PT310025); National Natural Science Foundation of China (81971588); Capital's Funds for Health Improvement and Research (CFH 2020-2-4034); Youth Key Program of High-level Hospital Clinical Research (2022-GSP-QZ-5).
Collapse
Affiliation(s)
- Jian He
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenjing Yang
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weichun Wu
- Department of Echocardiography, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Cardiovascular Imaging (Cultivation), Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoxin Sun
- Department of Nuclear Medicine, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Cardiovascular Imaging (Cultivation), Chinese Academy of Medical Sciences, Beijing, China
| | - Shuang Li
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gang Yin
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Baiyan Zhuang
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Xu
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Di Zhou
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuhui Zhang
- Department of Heart Failure Centre, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yining Wang
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Leyi Zhu
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Piyush Sharma
- Saint James School of Medicine, Park Ridge, IL, 60068, USA
| | - Arlene Sirajuddin
- Department of Health and Human Services, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md, USA
| | - Zhongzhao Teng
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Faraz Kureshi
- Axis Cardiovascular and Axis Cardiovascular Advanced Imaging, St David's Healthcare, Austin, Tex, USA
| | - Shihua Zhao
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Minjie Lu
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Cardiovascular Imaging (Cultivation), Chinese Academy of Medical Sciences, Beijing, China
- Corresponding author. Fuwai Hospital, National Centre for Cardiovascular Diseases, Key Laboratory of Cardiovascular Imaging (Cultivation), Chinese Academy of Medical Sciences, Peking Union Medical College, Beilishi Road No.167, Xicheng District, Beijing 100037, China.
| |
Collapse
|
25
|
Zhu L, Wang Y, Zhao S, Lu M. Detection of myocardial fibrosis: Where we stand. Front Cardiovasc Med 2022; 9:926378. [PMID: 36247487 PMCID: PMC9557071 DOI: 10.3389/fcvm.2022.926378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Myocardial fibrosis, resulting from the disturbance of extracellular matrix homeostasis in response to different insults, is a common and important pathological remodeling process that is associated with adverse clinical outcomes, including arrhythmia, heart failure, or even sudden cardiac death. Over the past decades, multiple non-invasive detection methods have been developed. Laboratory biomarkers can aid in both detection and risk stratification by reflecting cellular and even molecular changes in fibrotic processes, yet more evidence that validates their detection accuracy is still warranted. Different non-invasive imaging techniques have been demonstrated to not only detect myocardial fibrosis but also provide information on prognosis and management. Cardiovascular magnetic resonance (CMR) is considered as the gold standard imaging technique to non-invasively identify and quantify myocardial fibrosis with its natural ability for tissue characterization. This review summarizes the current understanding of the non-invasive detection methods of myocardial fibrosis, with the focus on different techniques and clinical applications of CMR.
Collapse
Affiliation(s)
- Leyi Zhu
- State Key Laboratory of Cardiovascular Disease, Department of Magnetic Resonance Imaging, National Center for Cardiovascular Diseases, Fuwai Hospital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Yining Wang
- State Key Laboratory of Cardiovascular Disease, Department of Magnetic Resonance Imaging, National Center for Cardiovascular Diseases, Fuwai Hospital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shihua Zhao
- State Key Laboratory of Cardiovascular Disease, Department of Magnetic Resonance Imaging, National Center for Cardiovascular Diseases, Fuwai Hospital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Minjie Lu
- State Key Laboratory of Cardiovascular Disease, Department of Magnetic Resonance Imaging, National Center for Cardiovascular Diseases, Fuwai Hospital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Cardiovascular Imaging (Cultivation), Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Minjie Lu
| |
Collapse
|
26
|
Song L, Zhao X, Lv W, Zeng J, Wang Y, Gong B, Kalogeropoulos AP, Pu H, Bai Y, Peng S. Preliminary study on the diagnostic value of cardiac magnetic resonance feature tracking for malignant ventricular arrhythmias in non-ischemic dilated cardiomyopathy. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:215. [PMID: 35280384 PMCID: PMC8908127 DOI: 10.21037/atm-22-660] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/22/2022] [Indexed: 11/08/2022]
Abstract
Background Patients with nonischemic dilated cardiomyopathy (NIDCM) and malignant ventricular arrhythmia (MVA) often have a poor prognosis and a high risk of sudden cardiac death. Although the diagnosis of MVA is straightforward by electrocardiogram (ECG), the underlying abnormalities of ventricular mechanics in these patients are unknown. This study aims to preliminarily explore the value of cardiac magnetic resonance feature tracking (CMR-FT) for MVA in dilated cardiomyopathy. Methods In this retrospective study, patients with NIDCM who met inclusion criteria were divided into an MVA group and a non-MVA group (included from January 2018 to September 2021). The interobserver agreement of myocardial strain parameters, including global longitudinal strain (GLS), global circumferential strain (GCS) and global radial strain (GRS), were tested. The GLS, GCS, GRS, left ventricular ejection fraction (LVEF), Tpeak-Tend interval on ECG and brain natriuretic peptide (BNP) were compared between groups. Single-factor and multifactor receiver operating characteristic (ROC) curve analyses were conducted to calculate the area under the ROC curve (AUC), cut-off point, sensitivity, and specificity of these parameters in predicting MVA in NIDCM. Results A total of 161 NIDCM patients were included (54 in the MVA group). GLS, GCS, and GRS had good interobserver agreement (all intraclass correlation coefficients >0.80). The absolute GLS and GCS, GRS and LVEF were lower in the MVA group than the non-MVA group (P<0.001), Tpeak-Tend and BNP were higher (P<0.001). Single-factor ROC curve analysis showed that GLS, GCS and GRS had certain diagnostic value for MVA (AUC =0.795, 0.802, and 0.754, respectively). Among them, GCS had higher sensitivity and specificity (GCS 0.796/0.776, GLS 0.778/0.757, GRS 0.741/0.692). Multifactor ROC curve analysis showed the combination of GLS and GCS (AUC =0.810), the combination of GCS and GRS (AUC =0.802), the combination of GLS and GRS (AUC =0.787), the combination of GLS, GCS, and GRS (AUC =0.810). Conclusions The three-dimensional myocardial strain parameters (especially GLS and GCS) measured by CMR-FT had certain diagnostic value and could reflect the underlying abnormality of ventricular mechanics of NIDCM with MVA.
Collapse
Affiliation(s)
- Linsheng Song
- Department of Radiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinyi Zhao
- Department of Radiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Wenlong Lv
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jie Zeng
- Department of Cardiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yishuang Wang
- Department of Radiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo Gong
- Human Disease Genes Key Laboratory of Sichuan Province and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Andreas P Kalogeropoulos
- Division of Cardiology, Department of Medicine, Stony Brook University Renaissance School of Medicine, Stony Brook, New York, NY, USA
| | - Hong Pu
- Department of Radiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yifeng Bai
- Department of Oncology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Shengkun Peng
- Department of Radiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
27
|
Heart failure with preserved ejection fraction assessed by cardiac magnetic resonance: From clinical uses to emerging techniques. Trends Cardiovasc Med 2021; 33:141-147. [PMID: 34933114 DOI: 10.1016/j.tcm.2021.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/07/2021] [Accepted: 12/15/2021] [Indexed: 12/30/2022]
Abstract
Patients with heart failure with preserved ejection fraction (HFpEF) account for approximately 50% of those with heart failure (HF) and have increased morbidity and mortality when compared to those with HF with reduced ejection fraction. Currently, the pathophysiology and diagnostic criteria for HFpEF remain unclear, contributing significantly to delays in creating a beneficial and tailored treatment that can improve the prognosis of HFpEF. A multitude of studies have exclusively tested and illustrated the diagnostic value of echocardiography imaging in HFpEF; however, a widely-accepted criterion to identify HFpEF using cardiovascular magnetic resonance (CMR) imaging has not been established. As the gold standard for cardiac structural, functional measurement, and tissue characterization, CMR holds great potential for the early discovery of the pathophysiology, diagnosis, and risk stratification of HFpEF. This review aims to comprehensively discuss the diagnostic and prognostic role of CMR parameters in the setting of HFpEF through validated routine and prospective emerging techniques, and provide clinical perspectives for CMR imaging application in HFpEF.
Collapse
|