1
|
Weis J, Babos M, Estrada S, Selvaraju RK. Assessment of spectral ghost artifacts in echo-planar spectroscopic micro-imaging with flyback readout. Sci Rep 2024; 14:22015. [PMID: 39317713 PMCID: PMC11422506 DOI: 10.1038/s41598-024-73391-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024] Open
Abstract
In this work, echo-planar spectroscopic imaging (EPSI) with flyback readout gradient-echo train was implemented in a preclinical MR scanner. The aim of this study is to visualize and quantify the ghost spectral lines produced by two, three and four interleaved echo trains with different amplitudes of the readout gradients, and to investigate the feasibility of the flyback data acquisition in micro-imaging of small animals. Applied multi-slice EPSI sequence utilizes asymmetric gradient-echo train that combines the shortest possible rewind gradients with readout gradients. It simplifies data processing because all echoes are acquired with the same polarity of the readout gradient. The approach with four interleaved gradient-echo trains and with four echoes in each train provides broad spectral bandwidth in combination with narrow receiver bandwidth and a good water-fat signal separation. It improves signal-to-noise ratio without the undesired consequence of water-fat shift artifacts that are eliminated during data processing. Position, number, and intensity of the ghost spectral lines can be controlled by the suitable choice of spectral bandwidth, number of echo train interleaves, and the number of echoes in each interleave. This study demonstrates that high-spatial resolution EPSI with interleaved flyback readout gradient-echo trains is feasible on standard preclinical scanners.
Collapse
Affiliation(s)
- Jan Weis
- Department of Medical Physics, Uppsala University Hospital, Uppsala, Sweden.
| | - Magor Babos
- Mediso Medical Imaging Systems, Budapest, Hungary
| | - Sergio Estrada
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
2
|
Medved M, Vicari M, Karczmar GS. Characterization of Effects of Compressed Sensing on High Spectral and Spatial Resolution (HiSS) MRI with Comparison to SENSE. Tomography 2023; 9:693-705. [PMID: 36961014 PMCID: PMC10037569 DOI: 10.3390/tomography9020055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 03/25/2023] Open
Abstract
High Spectral and Spatial resolution (HiSS) MRI shows high diagnostic performance in the breast. Acceleration methods based on k-space undersampling could allow stronger T2*-based image contrast and/or higher spectral resolution, potentially increasing diagnostic performance. An agar/oil phantom was prepared with water-fat boundaries perpendicular to the readout and phase encoding directions in a breast coil. HiSS MRI was acquired at 3T, at sensitivity encoding (SENSE) acceleration factors R of up to 10, and the R = 1 dataset was used to simulate corresponding compressed sensing (CS) accelerations. Image quality was evaluated by quantifying noise and artifact levels. Effective spatial resolution was determined via modulation transfer function analysis. Dispersion vs. absorption (DISPA) analysis and full width at half maximum (FWHM) quantified spectral lineshape changes. Noise levels remained constant with R for CS but amplified with SENSE. SENSE preserved the spatial resolution of HiSS MRI, while CS reduced it in the phase encoding direction. SENSE showed no effect on FWHM or DISPA markers, while CS increased FWHM. Thus, CS might perform better in noise-limited or geometrically constrained applications, but in geometric configurations specific to breast MRI, spectral analysis might be compromised, decreasing the diagnostic performance of HiSS MRI.
Collapse
Affiliation(s)
- Milica Medved
- Department of Radiology, University of Chicago, Chicago, IL 60637, USA
| | - Marco Vicari
- Fraunhofer Institute for Digital Medicine MEVIS, 28359 Bremen, Germany
- Philips Research, 5656 AE Eindhoven, The Netherlands
| | | |
Collapse
|
3
|
Medved M, Chatterjee A, Devaraj A, Harmath C, Lee G, Yousuf A, Antic T, Oto A, Karczmar GS. High spectral and spatial resolution MRI of prostate cancer: a pilot study. Magn Reson Med 2021; 86:1505-1513. [PMID: 33963782 PMCID: PMC8887834 DOI: 10.1002/mrm.28802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 11/09/2022]
Abstract
PURPOSE High spectral and spatial resolution (HiSS) MRI is a spectroscopic imaging method focusing on water and fat resonances that has good diagnostic utility in breast imaging. The purpose of this work was to assess the feasibility and potential utility of HiSS MRI for the diagnosis of prostate cancer. METHODS HiSS MRI was acquired at 3 T from six patients who underwent prostatectomy, yielding a train of 127 phase-coherent gradient echo (GRE) images. In the temporal domain, changes in voxel intensity were analyzed and linear (R) and quadratic (R1, R2) quantifiers of signal logarithm decay were calculated. In the spectral domain, three signal scaling-independent parameters were calculated: water resonance peak width (PW), relative peak asymmetry (PRA), and relative peak distortion from ideal Lorentzian shape (PRD). Seven cancer and five normal tissue regions of interest were identified in correlation with pathology and compared. RESULTS HiSS-derived quantifiers, except R2, showed high reproducibility (coefficients of variation, 5%-14%). Spectral domain quantifiers performed better than temporal domain quantifiers, with receiver operator characteristic areas under the curve ranging from of 0.83 to 0.91. For temporal domain parameters, the range was 0.74 to 0.91. Low absolute values of the coefficients of correlation between monoexponential decay markers (R, PW) and resonance shape markers (PRA, PRD) were observed (range, 0.23-0.38). CONCLUSION The feasibility and potential diagnostic utility of HiSS MRI in the prostate at 3 T without an endorectal coil was confirmed. Weak correlation between well-performing markers indicates that complementary information could be leveraged to further improve diagnostic accuracy.
Collapse
Affiliation(s)
- Milica Medved
- Department of Radiology, University of Chicago, Chicago, Illinois, USA,Sanford J. Grossman Center of Excellence in Prostate Imaging and Image Guided Therapy, University of Chicago, Chicago, Illinois, USA
| | - Aritrick Chatterjee
- Department of Radiology, University of Chicago, Chicago, Illinois, USA,Sanford J. Grossman Center of Excellence in Prostate Imaging and Image Guided Therapy, University of Chicago, Chicago, Illinois, USA
| | - Ajit Devaraj
- Philips Research NA, Cambridge, Massachusetts, USA
| | - Carla Harmath
- Department of Radiology, University of Chicago, Chicago, Illinois, USA
| | - Grace Lee
- Department of Radiology, University of Chicago, Chicago, Illinois, USA
| | - Ambereen Yousuf
- Department of Radiology, University of Chicago, Chicago, Illinois, USA,Sanford J. Grossman Center of Excellence in Prostate Imaging and Image Guided Therapy, University of Chicago, Chicago, Illinois, USA
| | - Tatjana Antic
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
| | - Aytekin Oto
- Department of Radiology, University of Chicago, Chicago, Illinois, USA,Sanford J. Grossman Center of Excellence in Prostate Imaging and Image Guided Therapy, University of Chicago, Chicago, Illinois, USA
| | - Gregory S. Karczmar
- Department of Radiology, University of Chicago, Chicago, Illinois, USA,Sanford J. Grossman Center of Excellence in Prostate Imaging and Image Guided Therapy, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
4
|
Medved M, Li H, Abe H, Sheth D, Newstead GM, Olopade OI, Giger ML, Karczmar GS. Fast bilateral breast coverage with high spectral and spatial resolution (HiSS) MRI at 3T. J Magn Reson Imaging 2017; 46:1341-1348. [PMID: 28263425 DOI: 10.1002/jmri.25658] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 01/23/2017] [Indexed: 01/04/2023] Open
Abstract
PURPOSE To develop and assess a full-coverage, sensitivity encoding (SENSE)-accelerated breast high spatial and spectral resolution (HiSS) magnetic resonance imaging (MRI) within clinically reasonable times as a potential nonenhanced MRI protocol for breast density measurement or breast cancer screening. MATERIALS AND METHODS Sixteen women with biopsy-proven cancer or suspicious lesions, and 13 women who were healthy volunteers or were screened for breast cancer, received 3T breast MRI exams, including SENSE-accelerated HiSS MRI, which was implemented as a submillimeter spatial resolution echo-planar spectroscopic imaging (EPSI) sequence. In postprocessing, fat and water resonance peak height and integral images were generated from EPSI data. The postprocessing software was custom-designed, and new algorithms were developed to enable processing of whole-coverage axial HiSS datasets. Water peak height HiSS images were compared to pre- and postcontrast T1 -weighted images. Fat suppression was quantified as parenchymal-to-suppressed-fat signal ratio in HiSS water peak height and nonenhanced T1 -weighted images, and artifact levels were scored. RESULTS Approximately a 4-fold decrease in acquisition speed, with a concurrent 2.5-fold decrease in voxel size, was achieved, with low artifact levels, and with spectral signal-to-noise ratio (SNR) of 45:1. Fat suppression was 1.9 times more effective (P < 0.001) in HiSS images than in T1 -weighted images (SPAIR), and HiSS images showed higher SNR in the axilla. HiSS MRI visualized 10 of 13 malignant lesions identified on dynamic contrast-enhanced (DCE)-MRI, and did not require skin removal in postprocessing to generate maximum intensity projection images. CONCLUSION We demonstrate full-coverage, SENSE-accelerated breast HiSS MRI within clinically reasonable times, as a potential protocol for breast density measurement or breast cancer screening. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2017;46:1341-1348.
Collapse
Affiliation(s)
- Milica Medved
- Department of Radiology, University of Chicago, Chicago, Illinois, USA
| | - Hui Li
- Department of Radiology, University of Chicago, Chicago, Illinois, USA
| | - Hiroyuki Abe
- Department of Radiology, University of Chicago, Chicago, Illinois, USA
| | - Deepa Sheth
- Department of Radiology, University of Chicago, Chicago, Illinois, USA
| | | | | | - Maryellen L Giger
- Department of Radiology, University of Chicago, Chicago, Illinois, USA
| | | |
Collapse
|
5
|
Weiss WA, Medved M, Karczmar GS, Giger ML. Residual analysis of the water resonance signal in breast lesions imaged with high spectral and spatial resolution (HiSS) MRI: a pilot study. Med Phys 2014; 41:012303. [PMID: 24387524 DOI: 10.1118/1.4851615] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE High spectral and spatial resolution magnetic resonance imaging (HiSS MRI) yields information on the local environment of suspicious lesions. Previous work has demonstrated the advantages of HiSS (complete fat-suppression, improved image contrast, no required contrast agent, etc.), leading to initial investigations of water resonance lineshape for the purpose of breast lesion classification. The purpose of this study is to investigate a quantitative imaging biomarker, which characterizes non-Lorentzian components of the water resonance in HiSS MRI datasets, for computer-aided diagnosis (CADx). METHODS The inhomogeneous broadening and non-Lorentzian or "off-peak" components seen in the water resonance of proton spectra of breast HiSS images are analyzed by subtracting a Lorentzian fit from the water peak spectra and evaluating the difference spectrum or "residual." The maxima of these residuals (referred to hereafter as "off-peak components") tend to be larger in magnitude in malignant lesions, indicating increased broadening in malignant lesions. The authors considered only those voxels with the highest magnitude off-peak components in each lesion, with the number of selected voxels dependent on lesion size. Our voxel-based method compared the magnitudes and frequencies of off-peak components of all voxels from all lesions in a database that included 15 malignant and 8 benign lesions (yielding ≈ 3900 voxels) based on the lesions' biopsy-confirmed diagnosis. Lesion classification was accomplished by comparing the average off-peak component magnitudes and frequencies in malignant and benign lesions. The area under the ROC curve (AUC) was used as a figure of merit for both the voxel-based and lesion-based methods. RESULTS In the voxel-based task of distinguishing voxels from malignant and benign lesions, off-peak magnitude yielded an AUC of 0.88 (95% confidence interval [0.84, 0.91]). In the lesion-based task of distinguishing malignant and benign lesions, average off-peak magnitude yielded an AUC 0.83 (95% confidence interval [0.61, 0.98]). CONCLUSIONS These promising AUC values suggest that analysis of the water-resonance in each HiSS image voxel using "residual analysis" could have high diagnostic utility and could be used to enhance current CADx methods and allow detection of breast cancer without the need to inject contrast agents.
Collapse
Affiliation(s)
- William A Weiss
- Department of Radiology, The University of Chicago, 5841 South Maryland Avenue, Chicago, Illinois 60637
| | - Milica Medved
- Department of Radiology, The University of Chicago, 5841 South Maryland Avenue, Chicago, Illinois 60637
| | - Gregory S Karczmar
- Department of Radiology, The University of Chicago, 5841 South Maryland Avenue, Chicago, Illinois 60637
| | - Maryellen L Giger
- Department of Radiology, The University of Chicago, 5841 South Maryland Avenue, Chicago, Illinois 60637
| |
Collapse
|
6
|
Bhooshan N, Giger M, Medved M, Li H, Wood A, Yuan Y, Lan L, Marquez A, Karczmar G, Newstead G. Potential of computer-aided diagnosis of high spectral and spatial resolution (HiSS) MRI in the classification of breast lesions. J Magn Reson Imaging 2013; 39:59-67. [PMID: 24023011 DOI: 10.1002/jmri.24145] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 03/01/2013] [Indexed: 11/05/2022] Open
Abstract
PURPOSE To compare the performance of computer-aided diagnosis (CADx) analysis of precontrast high spectral and spatial resolution (HiSS) MRI to that of clinical dynamic contrast-enhanced MRI (DCE-MRI) in the diagnostic classification of breast lesions. MATERIALS AND METHODS Thirty-four malignant and seven benign lesions were scanned using two-dimensional (2D) HiSS and clinical 4D DCE-MRI protocols. Lesions were automatically segmented. Morphological features were calculated for HiSS, whereas both morphological and kinetic features were calculated for DCE-MRI. After stepwise feature selection, Bayesian artificial neural networks merged selected features, and receiver operating characteristic (ROC) analysis evaluated the performance with leave-one-lesion-out validation. RESULTS AUC (area under the ROC curve) values of 0.92 ± 0.06 and 0.90 ± 0.05 were obtained using CADx on HiSS and DCE-MRI, respectively, in the task of classifying benign and malignant lesions. While we failed to show that the higher HiSS performance was significantly better than DCE-MRI, noninferiority testing confirmed that HiSS was not worse than DCE-MRI. CONCLUSION CADx of HiSS (without contrast) performed similarly to CADx on clinical DCE-MRI; thus, computerized analysis of HiSS may provide sufficient information for diagnostic classification. The results are clinically important for patients in whom contrast agent is contra-indicated. Even in the limited acquisition mode of 2D single slice HiSS, by using quantitative image analysis to extract characteristics from the HiSS images, similar performance levels were obtained as compared with those from current clinical 4D DCE-MRI. As HiSS acquisitions become possible in 3D, CADx methods can also be applied. Because HiSS and DCE-MRI are based on different contrast mechanisms, the use of the two protocols in combination may increase diagnostic accuracy.
Collapse
Affiliation(s)
- Neha Bhooshan
- The University of Chicago, Department of Radiology, Chicago, Illinois, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Wood AM, Medved M, Bacchus ID, Al-Hallaq HA, Shimauchi A, Newstead GM, Olopade OI, Venkataraman SS, Ivancevic MK, Karczmar GS. Classification of breast lesions pre-contrast injection using water resonance lineshape analysis. NMR IN BIOMEDICINE 2013; 26:569-577. [PMID: 23165988 PMCID: PMC4244530 DOI: 10.1002/nbm.2893] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Revised: 09/25/2012] [Accepted: 10/24/2012] [Indexed: 06/01/2023]
Abstract
Inhomogeneously broadened, non-Lorentzian water resonances have been observed in small image voxels of breast tissue. The non-Lorentzian components of the water resonance are probably produced by bulk magnetic susceptibility shifts caused by dense, deoxygenated tumor blood vessels (the 'blood oxygenation level-dependent' effect), but can also be produced by other characteristics of local anatomy and physiology, including calcifications and interfaces between different types of tissue. Here, we tested the hypothesis that the detection of non-Lorentzian components of the water resonance with high spectral and spatial resolution (HiSS) MRI allows the classification of breast lesions without the need to inject contrast agent. Eighteen malignant lesions and nine benign lesions were imaged with HiSS MRI at 1.5 T. A new algorithm was developed to detect non-Lorentzian (or off-peak) components of the water resonance. After a Lorentzian fit had been subtracted from the data, the largest peak in the residual spectrum in each voxel was identified as the major off-peak component of the water resonance. The difference in frequency between these off-peak components and the main water peaks, and their amplitudes, were measured in malignant lesions, benign lesions and breast fibroglandular tissue. Off-peak component frequencies were significantly different between malignant and benign lesions (p < 0.001). Receiver operating characteristic (ROC) analysis was used to assess the diagnostic performance of HiSS off-peak component analysis compared with dynamic contrast-enhanced (DCE) MRI parameters. The areas under the ROC curves for the 'DCE rapid uptake fraction', 'DCE washout fraction', 'off-peak component amplitude' and 'off-peak component frequency' were 0.75, 0.83, 0.50 and 0.86, respectively. These results suggest that water resonance lineshape analysis performs well in the classification of breast lesions without contrast injection and could improve the diagnostic accuracy of clinical breast MR examinations. In addition, this approach may provide an alternative to DCE MRI in women who are at risk for adverse reactions to contrast media.
Collapse
Affiliation(s)
- Abbie M. Wood
- Department of Radiology, University of Chicago, Chicago, IL 60637
| | - Milica Medved
- Department of Radiology, University of Chicago, Chicago, IL 60637
| | - Ian D. Bacchus
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637
| | - Hania A. Al-Hallaq
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637
| | - Akiko Shimauchi
- Department of Radiology, University of Chicago, Chicago, IL 60637
| | | | | | | | | | - Greg S. Karczmar
- Department of Radiology, University of Chicago, Chicago, IL 60637
| |
Collapse
|
8
|
Duyn J. MR susceptibility imaging. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 229:198-207. [PMID: 23273840 PMCID: PMC3602381 DOI: 10.1016/j.jmr.2012.11.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 11/14/2012] [Accepted: 11/15/2012] [Indexed: 05/23/2023]
Abstract
This work reviews recent developments in the use of magnetic susceptibility contrast for human MRI, with a focus on the study of brain anatomy. The increase in susceptibility contrast with modern high field scanners has led to novel applications and insights into the sources and mechanism contributing to this contrast in brain tissues. Dedicated experiments have demonstrated that in most of healthy brain, iron and myelin dominate tissue susceptibility variations, although their relative contribution varies substantially. Local variations in these compounds can affect both amplitude and frequency of the MRI signal. In white matter, the myelin sheath introduces an anisotropic susceptibility that has distinct effects on the water compartments inside the axons, between the myelin sheath, and the axonal space, and renders their signals dependent on the angle between the axon and the magnetic field. This offers opportunities to derive tissue properties specific to these cellular compartments.
Collapse
Affiliation(s)
- Jeff Duyn
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
9
|
Medved M, Fan X, Abe H, Newstead GM, Wood AM, Shimauchi A, Kulkarni K, Ivancevic MK, Pesce LL, Olopade OI, Karczmar GS. Non-contrast enhanced MRI for evaluation of breast lesions: comparison of non-contrast enhanced high spectral and spatial resolution (HiSS) images versus contrast enhanced fat-suppressed images. Acad Radiol 2011; 18:1467-74. [PMID: 21962476 DOI: 10.1016/j.acra.2011.07.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 07/27/2011] [Accepted: 07/28/2011] [Indexed: 11/26/2022]
Abstract
RATIONALE AND OBJECTIVES The aims of this study were to evaluate high spectral and spatial resolution (HiSS) magnetic resonance imaging (MRI) for the diagnosis of breast cancer without the injection of contrast media by comparing the performance of precontrast HiSS images to that of conventional contrast-enhanced, fat-suppressed, T1-weighted images on the basis of image quality and in the task of classifying benign and malignant breast lesions. MATERIALS AND METHODS Ten benign and 44 malignant lesions were imaged at 1.5 T with HiSS (precontrast administration) and conventional fat-suppressed imaging (3-10 minutes after contrast administration). This set of 108 images, after randomization, was evaluated by three experienced radiologists blinded to the imaging technique. Breast Imaging Reporting and Data System morphologic criteria (lesion shape, lesion margin, and internal signal intensity pattern) and final assessment were used to measure reader performance. Image quality was evaluated on the basis of boundary delineation and quality of fat suppression. An overall probability of malignancy was assigned to each lesion for HiSS and conventional images separately. RESULTS On boundary delineation and quality of fat suppression, precontrast HiSS scored similarly to conventional postcontrast MRI. On benign versus malignant lesion separation, there was no statistically significant difference in receiver-operating characteristic performance between HiSS and conventional MRI, and HiSS met a reasonable noninferiority condition. CONCLUSIONS Precontrast HiSS imaging is a promising approach for showing lesion morphology without blooming and other artifacts caused by contrast agents. HiSS images could be used to guide subsequent dynamic contrast-enhanced MRI scans to maximize spatial and temporal resolution in suspicious regions. HiSS MRI without contrast agent injection may be particularly important for patients at risk for contrast-induced nephrogenic systemic fibrosis or allergic reactions.
Collapse
|
10
|
Fischer RF, Baltes C, Weiss K, Pazhenkottil A, Rudin M, Boesiger P, Kozerke S. Linear Response Equilibrium versus echo-planar encoding for fast high-spatial resolution 3D chemical shift imaging. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2011; 211:80-88. [PMID: 21612961 DOI: 10.1016/j.jmr.2011.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 03/19/2011] [Accepted: 04/22/2011] [Indexed: 05/30/2023]
Abstract
In this work Linear Response Equilibrium (LRE) and Echo-planar spectroscopic imaging (EPSI) are compared in terms of sensitivity per unit time and power deposition. In addition an extended dual repetition time scheme to generate broad stopbands for improved inherent water suppression in LRE is presented. The feasibility of LRE and EPSI for assessing cholesterol esters in human carotid plaques with high spatial resolution of 1.95×1.15×1.15 mm(3) on a clinical 3T MR system is demonstrated. In simulations and phantom experiments it is shown that LRE has comparable but lower sensitivity per unit time relative to EPSI despite stronger signal generated. This relates to the lower sampling efficiency in LRE relative to EPSI as a result of limited gradient performance on clinical MR systems. At the same time, power deposition of LRE is significantly reduced compared to EPSI making it an interesting niche application for in vivo high field spectroscopic imaging of metabolites within a limited bandwidth.
Collapse
Affiliation(s)
- Rudolf Fritz Fischer
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
11
|
Medved M, Ivancevic MK, Olopade OI, Newstead GM, Karczmar GS. Echo-planar spectroscopic imaging (EPSI) of the water resonance structure in human breast using sensitivity encoding (SENSE). Magn Reson Med 2010; 63:1557-63. [PMID: 20512859 DOI: 10.1002/mrm.22332] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
High spectral and spatial resolution MRI, based on echo-planar spectroscopic imaging, has been applied successfully in diagnostic breast imaging, but acquisition times are long. One way of increasing acquisition speed is to apply the sensitivity encoding algorithm for complex high spectral and spatial resolution data. We demonstrate application of a complex sensitivity encoding algorithm to high spectral and spatial resolution MRI data, in a phantom and human breast, with 7- and 16-channel dedicated breast phased-array coils. Very low g factors are obtained using the breast coils, and the signal-to-noise ratio (SNR) penalty for water resonance peak height and water resonance asymmetry images is small at acceleration factors of up to 6 and 4, respectively, as evidenced by high Pearson correlation factors between fully sampled and accelerated data. This is the first application of the sensitivity encoding algorithm to characterize the structure of the water resonance at high spatial resolution.
Collapse
Affiliation(s)
- Milica Medved
- Department of Radiology, University of Chicago, Chicago, Illinois 60637, USA.
| | | | | | | | | |
Collapse
|
12
|
Medved M, Newstead GM, Fan X, Du YP, Olopade OI, Shimauchi A, Zamora MA, Karczmar GS. Fourier component imaging of water resonance in the human breast provides markers for malignancy. Phys Med Biol 2009; 54:5767-79. [PMID: 19741276 DOI: 10.1088/0031-9155/54/19/007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The purpose of this paper is to demonstrate that voxels with inhomogeneously broadened water resonances, as revealed by high spectral and spatial resolution (HiSS) MRI, correlate with underlying tumor pathology findings, and thus carry diagnostically useful information. Thirty-four women with mammographically suspicious breast lesions were imaged at 1.5 T, using high-resolution echo-planar spectroscopic imaging. Fourier component images (FCIs) of the off-peak spectral signal were generated, and clusters of voxels with significant inhomogeneous broadening (broadened clusters) were identified and correlated to biopsy results. Inhomogeneously broadened clusters were found significantly more frequently in malignant than in benign lesions. A larger percentage of broadened cluster voxels were found inside the malignant versus benign lesions. The high statistical significance for separation of benign and malignant lesions was robust over a large range of post-processing parameters, with a maximum ROC area under curve of 0.83. In the human breast, an inhomogeneously broadened water resonance can serve as a correlate marker for malignancy and is likely to reflect the underlying anatomy or physiology.
Collapse
Affiliation(s)
- Milica Medved
- Department of Radiology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Medved M, Newstead GM, Abe H, Olopade OI, Shimauchi A, Zamora MA, Karczmar GS. Clinical implementation of a multislice high spectral and spatial resolution-based MRI sequence to achieve unilateral full-breast coverage. Magn Reson Imaging 2009; 28:16-21. [PMID: 19628350 DOI: 10.1016/j.mri.2009.05.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2008] [Revised: 03/17/2009] [Accepted: 05/11/2009] [Indexed: 11/17/2022]
Abstract
High-resolution, single-slice, high spatial and spectral resolution (HiSS) breast magnetic resonance imaging (MRI) provides improved lesion conspicuity, margin definition and internal definition, as compared to conventional clinical MRI - and thus may provide better lesion characterization and increase breast MRI specificity. Volumetric HiSS imaging is highly desirable, but was considered to be time-prohibitive. Specifically, the concern was that faster acquisition times -- necessitating a lower spectral resolution -- could compromise established advantages of HiSS imaging. In this pilot study, we demonstrate for the first time a fast, clinically practical, HiSS-based sequence that achieves full unilateral breast coverage, while preserving essential qualities of full-spectral resolution HiSS imaging. We imaged five patients of varying breast sizes at 1.5 T, with HiSS acquisitions performed after the standard clinical protocol, and lasting an average of 8.5 min. Maximum intensity projection (MIP) images of HiSS data were constructed and compared to MIPs of conventional clinical images. Single-slice images through three lesions were also compared. HiSS images achieved better fat suppression than the clinical fat-saturated sequence (fat signal SNR was reduced by 50% in HiSS images) as well as increased conspicuity, as assessed qualitatively by an experienced radiologist. Thus, we show that volumetric HiSS imaging can conserve the advantages of single-slice HiSS imaging and that further technical development of volumetric HiSS is desirable.
Collapse
Affiliation(s)
- Milica Medved
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Foxley S, Fan X, Jansen SA, Zamora M, Markiewicz E, Al-Ahmadie H, Karczmar GS. High spectral and spatial resolution MRI of age-related changes in murine prostate. Magn Reson Med 2009; 60:575-81. [PMID: 18727042 DOI: 10.1002/mrm.21641] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The purpose of this work was to evaluate high-resolution echo-planar spectroscopic MRI of normal and precancerous prostatic changes in a transgenic mouse line. Simian virus large T-antigen transgenic male mice (N = 7, age = 34 +/- 3.7 weeks) with prostatic hyperplasia and intraepithelial neoplasia (PIN) were studied. High spectral and spatial resolution (HiSS) MRI of the water proton signal was compared to the free induction decay (FID) integral image and conventional gradient-echo and spin-echo imaging. Water peak-height images of the prostate produced from HiSS datasets showed improved contrast-to-noise ratio (CNR) (P < 0.03), and greater morphological detail (P < 0.004) based on texture analysis. Despite the high spectral resolution of the HiSS datasets, signal-to-noise ratio (SNR) compared favorably with that of the FID integral and conventional images. Lobular features in HiSS images of older mice were consistent with hyperplasia seen on histology. A partially deuterated water-filled catheter was inserted in the mouse rectum for susceptibility matching between the colon interior and exterior to minimize image artifacts. These preliminary results suggest that HiSS MRI provides detailed morphology of the murine prostate and can detect early changes associated with the development of cancer. HiSS MRI of patients may have similar advantages.
Collapse
Affiliation(s)
- Sean Foxley
- Department of Radiology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Jansen SA, Conzen SD, Fan X, Krausz T, Zamora M, Foxley S, River J, Newstead GM, Karczmar GS. Detection of in situ mammary cancer in a transgenic mouse model: in vitro and in vivo MRI studies demonstrate histopathologic correlation. Phys Med Biol 2008; 53:5481-93. [PMID: 18780960 PMCID: PMC4251813 DOI: 10.1088/0031-9155/53/19/014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Improving the prevention and detection of preinvasive ductal carcinoma in situ (DCIS) is expected to lower both morbidity and mortality from breast cancer. Transgenic mouse models can be used as a 'test bed' to develop new imaging methods and to evaluate the efficacy of candidate preventive therapies. We hypothesized that despite its microscopic size, early murine mammary cancer, including DCIS, might be accurately detected by MRI. C3(1) SV40 TAg female mice (n=23) between 10 and 18 weeks of age were selected for study. Eleven mice were subjected to in vitro imaging using a T(2)-weighted spin echo sequence and 12 mice were selected for in vivo imaging using a T(1)-weighted gradient echo, a T(2)-weighted spin echo and high spectral and spatial resolution imaging sequences. The imaged glands were carefully dissected, formalin fixed and paraffin embedded, and then H&E stained sections were obtained. The ratio of image-detected versus histologically detected cancers was obtained by reviewing the MR images and H&E sections independently and using histology as the gold standard. MR images were able to detect 12/12 intramammary lymph nodes, 1/1 relatively large (approximately 5 mm) tumor, 17/18 small (approximately 1 mm) tumors and 13/16 ducts distended with DCIS greater than 300 microm. Significantly, there were no false positives--i.e., image detection always corresponded to a histologically detectable cancer in this model. These results indicate that MR imaging can reliably detect both preinvasive in situ and early invasive mammary cancers in mice with high sensitivity. This technology is an important step toward the more effective use of non-invasive imaging in pre-clinical studies of breast cancer prevention, detection and treatment.
Collapse
Affiliation(s)
- S A Jansen
- Department of Radiology, The University of Chicago, 5841 S Maryland Avenue, MC 2026, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Foxley S, Fan X, Mustafi D, Yang C, Zamora MA, Medved M, Karczmar GS. Quantitative analysis of water proton spectral lineshape: a novel source of contrast in MRI. Phys Med Biol 2008; 53:4509-22. [PMID: 18677038 DOI: 10.1088/0031-9155/53/17/003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Previous work in this laboratory has demonstrated improved anatomic and functional images produced from high spectral and spatial resolution (HiSS) MRI of the water proton signal. The present work tests the hypothesis that different Fourier components of the water resonance represent anatomically and/or physiologically distinct populations of water molecules within each small image voxel. HiSS datasets were acquired from tomatoes and rodent tumors at 4.7 T using echo-planar spectroscopic imaging (spatial and spectral resolutions were 117-150 microm and 1.5-3.1 Hz, respectively). Images of each Fourier component of the water resonance (referred to as Fourier component images, or FCIs) were produced. FCIs at frequencies offset from the peak of the water resonance ('off-peak' FCIs) were compared to images of the Fourier component with largest amplitude, i.e. the water peak-height image. Results demonstrate that off-peak FCIs differ significantly from the water peak-height image and that water resonances are often asymmetric. These results show that water signal at various frequency offsets from the peak of the water resonance come from water molecules in different anatomic/physiologic environments. Off-peak FCIs are a new source of structural and functional information and may have clinical utility.
Collapse
Affiliation(s)
- S Foxley
- Department of Radiology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Medved M, Newstead GM, Abe H, Zamora MA, Olopade OI, Karczmar GS. High spectral and spatial resolution MRI of breast lesions: preliminary clinical experience. AJR Am J Roentgenol 2006; 186:30-7. [PMID: 16357373 DOI: 10.2214/ajr.04.1704] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE In previous research, high spectral and spatial resolution (HiSS) echo-planar spectroscopic imaging (EPSI) was successfully applied to the human breast, obtaining improved contrast, anatomic detail, and sensitivity to contrast agents. To test HiSS in the clinical setting, we used HiSS MRI to image 30 women with suspicious breast lesions. SUBJECTS AND METHODS Women with suspicious breast lesions were scanned before and after contrast administration using EPSI at 1.5 T (0.63-mm in-plane resolution, 2.6-Hz spectral resolution). Images with intensity proportional to the water signal peak height in each voxel were synthesized and compared with standard clinical fat-saturated and early dynamic subtraction images. Pre- and postcontrast HiSS images were compared to assess the effect of the contrast agent on water resonance structure. RESULTS HiSS images scored significantly better than standard clinical images in lesion conspicuity, margin definition, and internal definition, even though they were acquired before contrast agent injection. Fat suppression was more complete and uniform and detail was shown on HiSS images more clearly than on conventional fat-saturation images. Thus, HiSS images often allowed easier evaluation of the lesion. Contrast agent-affected changes were often spatially and spectrally inhomogeneous. CONCLUSION HiSS scans were successfully integrated into standard clinical examinations and provided diagnostically useful images before contrast agent injection. Thus, it might be possible to characterize suspicious lesions on the basis of precontrast high-resolution spectral information. This information and information about the effect of contrast agents could potentially improve the specificity of breast MRI.
Collapse
Affiliation(s)
- Milica Medved
- Department of Radiology, The University of Chicago, 5841 S Maryland Avenue, MC 2026, Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
18
|
Fan X, Abe H, Medved M, Foxley S, Arkani S, Zamora MA, Olopade OI, Newstead GM, Karczmar GS. Fat suppression with spectrally selective inversion vs. high spectral and spatial resolution MRI of breast lesions: Qualitative and quantitative comparisons. J Magn Reson Imaging 2006; 24:1311-5. [PMID: 17096393 DOI: 10.1002/jmri.20732] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To compare conventional fat-suppressed MR images of the breast to images derived from high spectral and spatial resolution MR data. Image quality and the level of fat suppression are compared qualitatively and quantitatively. MATERIALS AND METHODS Women with suspicious breast lesions found on X-ray mammography were imaged on 1.5 Tesla GE SIGNA scanners. High spectral and spatial resolution (HiSS) data were acquired using echo-planar spectroscopic imaging. Images with intensity proportional to the water signal peak height in each voxel were synthesized. Conventional fat-suppressed images were acquired using a frequency selective inversion method. The experimental (HiSS) and conventional images were compared by experienced radiologists to evaluate the quality of fat suppression. In addition, fat suppression and image quality were evaluated quantitatively. RESULTS Fat suppression, tumor edge delineation, lesion conspicuity, and image texture were improved in the peak height images derived from HiSS data. CONCLUSION The results demonstrate that the water peak height images obtained from HiSS data potentially could improve the quality of fat suppression, detection and diagnosis of breast cancer. HiSS allowed detection of lesions and evaluation of lesion morphology prior to contrast media injection. J. Magn. Reson. Imaging 2006. (c) 2006 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Xiaobing Fan
- Department of Radiology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Leopoldino DDD, D'Ippolito G, Bezerra ASDA, Gracio TS. Aspectos técnicos da ressonância magnética de mama com meio de contraste: revisão da literatura. Radiol Bras 2005. [DOI: 10.1590/s0100-39842005000400011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Com a difusão do uso de meios de contraste, avanços na tecnologia das bobinas de superfície e desenvolvimento de protocolos rápidos de aquisição de imagens, a ressonância magnética (RM) de mama com meio de contraste tem-se mostrado importante modalidade na detecção, diagnóstico e estadiamento do câncer de mama. Apesar desses avanços, existem alguns pontos não consensuais no que diz respeito aos aspectos técnicos e critérios de interpretação de imagem da RM contrastada de mama. Neste artigo fazemos revisão bibliográfica dos parâmetros de interpretação de imagens e aspectos técnicos da RM de mama, incluindo considerações sobre a "performance" do equipamento, bobinas de radiofreqüência dedicadas, modo de utilização de contraste paramagnético, técnicas de supressão de gordura, planos de aquisição, seqüências de pulso e fontes de artefato.
Collapse
|
20
|
Du W, Du W, Fan X, Foxley S, Zamora M, River JN, Culp RM, Karczmar GS. Comparison of high-resolution echo-planar spectroscopic imaging with conventional MR imaging of prostate tumors in mice. NMR IN BIOMEDICINE 2005; 18:285-92. [PMID: 15973657 DOI: 10.1002/nbm.954] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
High spectral and spatial resolution (HiSS) MRI of rodent tumors has previously been performed using conventional spectroscopic imaging to obtain images with improved contrast and anatomic detail. The work described here evaluates the use of much faster echo-planar spectroscopic imaging (EPSI) to acquire HiSS data from rodent tumor models of prostate cancer. A high-resolution EPSI pulse sequence was implemented on a 4.7 T Bruker scanner. Three-dimensional EPSI data were Fourier-transformed along the k-space and temporal (free-induction decay) axes to produce detailed water and fat spectra associated with each small image voxel. The data were used to generate images of spectral parameters, e.g. peak-height images for each small voxel. Two variants of EPSI were performed; gradient-echo or spin-echo excitation with EPSI readout. These imaging methods were tested in commonly used rodent prostate cancers, including seven mice implanted with non-metastatic AT2.1 (n=3) and metastatic AT3.1 (n=4) prostate tumors on the hind leg, and 10 mice implanted with LNCaP prostate cancers in situ. The peak-height images derived from EPSI datasets provide more detailed tumor anatomy, improved signal-to-noise and contrast-to-noise ratios compared with the gradient-echo or spin-echo images at all echo times. The results suggest that HiSS MRI data from small animal models of prostate cancer can be acquired using EPSI, and that this approach improves imaging of heterogeneous tissue and vascular environments inside the tumors compared with conventional MR techniques.
Collapse
Affiliation(s)
- Weiliang Du
- Department of Radiology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Du W, Karczmar GS, Uftring SJ, Du YP. Anatomical and functional brain imaging using high-resolution echo-planar spectroscopic imaging at 1.5 Tesla. NMR IN BIOMEDICINE 2005; 18:235-241. [PMID: 15759296 DOI: 10.1002/nbm.952] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
High-resolution echo-planar spectroscopic imaging (EPSI) of water resonance (i.e. without water suppression) is proposed for anatomic and functional imaging of the human brain at 1.5 T. Water spectra with a resolution of 2.6 Hz and a bandwidth of 333 Hz were obtained in small voxels (1.7 x 1.7 x 3 mm3) across a single slice. Although water spectra appeared Lorentzian in most of the voxels in the brain, non-Lorentzian broadening of the water resonance was observed in voxels containing blood vessels. In functional experiments with a motor task, robust activation in motor cortices was observed in high-resolution T2* maps generated from the EPSI data. Shift of the water resonance frequency occurred during neuronal activation in motor cortices. The activation areas appeared to be more localized after excluding the voxels in which the lineshape of the water resonance had elevated T2* and became more non-Lorentzian during the motor task. These preliminary results suggest that high-resolution EPSI is a promising tool to study susceptibility-related effects, such as BOLD contrast, for improved anatomical and functional imaging of the brain.
Collapse
Affiliation(s)
- Weiliang Du
- Department of Radiology, University of Chicago, Chicago, IL, USA
| | | | | | | |
Collapse
|
22
|
Reichenbach JR, Hopfe J, Rauscher A, Wurdinger S, Kaiser WA. Subtraction of in-phase and opposed-phase images in dynamic MR mammography. J Magn Reson Imaging 2005; 21:565-75. [PMID: 15834904 DOI: 10.1002/jmri.20316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To develop and to evaluate an advanced image acquisition and analysis method for collecting T(1)-weighted dynamic 3D MR mammography data sets by using a combined in-phase (IP) and opposed-phase (OP) imaging procedure. MATERIALS AND METHODS 3D MR mammography data sets were acquired by applying an interleaved gradient-echo OP and IP imaging sequence during administration of contrast agent. A phantom data set, two volunteer breast data sets, and six patient breast data sets were recorded. Subtraction of dynamic in-phase magnitude images was performed for clinical assessment. In addition, the magnitude subtraction (SIPOP) as well as the complex subtraction (cSIPOP) of the IP and OP magnitude and phase images were considered. RESULTS The detection of small lesions, lesion boundaries, and tumor offshoots in fatty tissue was improved by the subtraction of IP and OP images without the risk of signal cancellation due to partial volume effects. CONCLUSION Dynamic MR mammography acquisition of IP and OP images in combination with appropriate data processing yields important supplementary information that can support routinely applied diagnostics of breast lesions that are fully embedded in fatty tissue by only marginally increasing acquisition time.
Collapse
Affiliation(s)
- Jürgen R Reichenbach
- Institute of Diagnostic and Interventional Radiology, Friedrich Schiller University, D-07743 Jena, Germany.
| | | | | | | | | |
Collapse
|
23
|
Medved M, Newstead GM, Fan X, Du W, Du YP, MacEneaney PM, Culp RM, Kelcz F, Olopade OI, Zamora MA, Karczmar GS. Fourier components of inhomogeneously broadened water resonances in breast: a new source of MRI contrast. Magn Reson Med 2004; 52:193-6. [PMID: 15236386 DOI: 10.1002/mrm.20115] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
High spectral and spatial resolution (HiSS) MR data were acquired at 1.5 T using echo-planar spectroscopic imaging from patients with suspicious breast lesions. The water resonances in small voxels are inhomogenously broadened and often have distinct components. Images were calculated with intensity proportional to the Fourier components of the water resonance in each voxel at different offsets from the peak frequency. The results demonstrate that in breast the off-peak Fourier component images of water are qualitatively different from those derived from the peak height of the water resonance. These differences most likely reflect underlying anatomy or physiology. In conventional images, the superposition of the various Fourier components of the water signal may cause loss of detail. The synthesis of water Fourier component images from high spectral and spatial resolution data may provide a new form of contrast, and increase sensitivity to subvoxel physiology and anatomy.
Collapse
Affiliation(s)
- Milica Medved
- Department of Radiology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Merritt S, Gulsen G, Chiou G, Chu Y, Deng C, Cerussi AE, Durkin AJ, Tromberg BJ, Nalcioglu O. Comparison of water and lipid content measurements using diffuse optical spectroscopy and MRI in emulsion phantoms. Technol Cancer Res Treat 2004; 2:563-9. [PMID: 14640767 DOI: 10.1177/153303460300200608] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We present a quantitative comparison of lipid and water signals obtained from broadband Diffuse Optical Spectroscopy (DOS) and Magnetic Resonance Imaging (MRI). DOS and MRI measurements were performed on an identical set of emulsion phantoms that were composed of different water/soybean oil fractions. Absolute concentrations of water and lipid ranging from 35-94% and 63-6%, respectively were calculated from quantitative broadband near-infrared (NIR) absorption spectra (650-1000 nm). MR images of fat and water were separated using the three-point Dixon technique. DOS and MRI measured water and lipid were highly correlated (R(2) = 0.98 and R(2) = 0.99, respectively) suggesting that these techniques are complementary over a broad range of physiologically relevant water and lipid values. In addition, comparison of DOS derived concentrations to the MRI "gold standard" technique validates our quantitation approach and permits estimation of DOS accuracy and sensitivity in vivo.
Collapse
Affiliation(s)
- S Merritt
- Laser Microbeam and Medical Program, Beckman Laser Institute, University of California Irvine, Irvine, California 92612, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Medved M, Du W, Zamora MA, Fan X, Olopade OI, MacEneaney PM, Newstead G, Karczmar GS. The effect of varying spectral resolution on the quality of high spectral and spatial resolution magnetic resonance images of the breast. J Magn Reson Imaging 2004; 18:442-8. [PMID: 14508781 DOI: 10.1002/jmri.10378] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To evaluate the effect of varying spectral resolution on image quality of high spectral and spatial resolution (HiSS) images. MATERIALS AND METHODS Eight women with suspicious breast lesions and six healthy volunteers were scanned using echo-planar spectroscopic imaging (EPSI) at 1.5 Tesla with 0.75- to 1-mm in-plane resolution and 2.3- to 2.6-Hz spectral resolution. Time domain data were truncated to obtain proton spectra in each voxel with varying (2.6-83.3 Hz) resolution. Images with intensity proportional to water signal peak heights were synthesized. Changes in water signal line shape following contrast injection were analyzed. RESULTS Fat suppression is optimized at approximately 10-Hz spectral resolution and is significantly improved by removal of wings of the fat resonance. This was accomplished by subtracting a Lorentzian fit to the fat resonance from the proton spectrum. The water resonance is often inhomogeneously broadened, and very high spectral resolution is necessary to resolve individual components. High spectral resolution is required for optimal contrast in anatomic features with very high T(2)* (e.g., within a lesion) and for detection of often subtle effects of contrast agents on water signal line shape. CONCLUSION Despite a trade-off between the spectral resolution and signal-to-noise ratio, it is beneficial to acquire data at the highest spectral resolution currently attainable at 1.5 Tesla.
Collapse
Affiliation(s)
- Milica Medved
- Department of Radiology, The University of Chicago, Chicago, Illinois 60637, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Du W, Du YP, Fan X, Zamora MA, Karczmar GS. Reduction of spectral ghost artifacts in high-resolution echo-planar spectroscopic imaging of water and fat resonances. Magn Reson Med 2003; 49:1113-20. [PMID: 12768590 DOI: 10.1002/mrm.10485] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Echo-planar spectroscopic imaging (EPSI) can be used for fast spectroscopic imaging of water and fat resonances at high resolution to improve structural and functional imaging. Because of the use of oscillating gradients during the free induction decay (FID), spectra obtained with EPSI are often degraded by Nyquist ghost artifacts arising from the inconsistency between the odd and even echoes. The presence of the spectral ghost lines causes errors in the evaluation of the true spectral lines, and this degrades images derived from high-resolution EPSI data. A technique is described for reducing the spectral ghost artifacts in EPSI of water and fat resonances, using echo shift and zero-order phase corrections. These corrections are applied during the data postprocessing. This technique is demonstrated with EPSI data acquired from human brains and breasts at 1.5 Tesla and from a water phantom at 4.7 Tesla. Experimental results indicate that the present approach significantly reduces the intensities of spectral ghosts. This technique is most useful in conjunction with high-resolution EPSI of water and fat resonances, but is less applicable to EPSI of metabolites due to the complexity of the spectra.
Collapse
Affiliation(s)
- Weiliang Du
- Department of Radiology, University of Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
27
|
Fan X, Du W, MacEneaney P, Zamora M, Karczmar G. Structure of the water resonance in small voxels in rat brain detected with high spectral and spatial resolution MRI. J Magn Reson Imaging 2002; 16:547-52. [PMID: 12412031 DOI: 10.1002/jmri.10193] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To acquire high spectral and spatial resolution (HiSS) MR images of the water resonance in rat brain, evaluate the lineshape of the water resonance in small voxels, and compare images derived from HiSS data with conventional images. MATERIALS AND METHODS Spectroscopic images of rat brain were obtained at 4.7 Tesla using phase encoding gradients only. Spectral resolution in each voxel was approximately 8 Hz and bandwidth was 1,000 Hz. Spatial resolution was approximately 250 microns in 1-mm slices. Images were synthesized to show the water signal integral, peak height, linewidth, resonance frequency, and asymmetry. RESULTS Two or more resolved components of the water resonance were detected in approximately 14% +/- 6% of voxels in the brains of eight rats. The water resonances in approximately 20% +/- 10% of voxels (n = 8) were highly asymmetric. Images with intensity proportional to water signal peak height, T(2)*, or to selected components of the water resonance showed features that were not evident in conventional images. CONCLUSIONS The complexity of the water signal reflects the anatomy and physiology of the sub-voxelar environment, and may be a useful source of image contrast. HiSS imaging of brain provides accurate anatomic information, and may improve image contrast and delineation of subtle anatomic features.
Collapse
Affiliation(s)
- Xiaobing Fan
- Department of Radiology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|