1
|
Walters H, Bowden K, Limphaibool N. Reducing the carbon footprint of radiology through automatic workstation shutdown protocols. Clin Radiol 2024; 79:e1284-e1287. [PMID: 39198110 DOI: 10.1016/j.crad.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/05/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024]
Abstract
AIM Climate change poses a major threat to human health, with significant contributions from healthcare systems, with the UK National Health Service (NHS) accounting for 4% of national CO2 emissions. Radiology departments, with high energy consumption from heating, ventilation, cooling (HVAC), and scanners, also contribute significantly. Workstations, though less power-intensive than scanners, are numerous and offer an avenue for emission reduction potential. This study investigates the impact of an automatic power-off/on protocol for radiology workstations at an acute hospital trust on energy consumption, carbon emissions, and financial savings. MATERIALS AND METHODS Data from 88 reporting workstations were collected on power usage, CO2 emissions, and the associated energy cost before and after implementing an automatic shutdown protocol, which ensured workstations were turned off out of hours and over weekends. RESULTS Average weekly workstation on-time fell from 148 to 75.5 hours, resulting in an annual energy saving of 17 MWh, equivalent to a reduction of 3.4 tonnes CO2 equivalent and a financial saving of £5000. No complaints or issues with workflow disruption were reported. CONCLUSION This intervention demonstrates a significant reduction in emissions and energy costs without workflow disruption, offering an easy and replicable sustainability measure for radiology departments. While savings are modest compared to HVAC and scanner emissions, the protocol's simplicity and effectiveness in addressing human factors in power management highlight its potential. Broader application across hospital networks could yield substantial environmental and financial benefits. These findings contribute to the ongoing efforts to improve sustainability within radiology and health care.
Collapse
Affiliation(s)
- H Walters
- Oxford University Hospitals NHS Foundation Trust, UK.
| | - K Bowden
- Oxford University Hospitals NHS Foundation Trust, UK
| | - N Limphaibool
- Oxford University Hospitals NHS Foundation Trust, UK
| |
Collapse
|
2
|
Josephson CB, Aronica E, Beniczky S, Boyce D, Cavalleri G, Denaxas S, French J, Jehi L, Koh H, Kwan P, McDonald C, Mitchell JW, Rampp S, Sadleir L, Sisodiya SM, Wang I, Wiebe S, Yasuda C, Youngerman B. Big data research is everyone's research-Making epilepsy data science accessible to the global community: Report of the ILAE big data commission. Epileptic Disord 2024. [PMID: 39446076 DOI: 10.1002/epd2.20288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/24/2024] [Accepted: 09/04/2024] [Indexed: 10/25/2024]
Abstract
Epilepsy care generates multiple sources of high-dimensional data, including clinical, imaging, electroencephalographic, genomic, and neuropsychological information, that are collected routinely to establish the diagnosis and guide management. Thanks to high-performance computing, sophisticated graphics processing units, and advanced analytics, we are now on the cusp of being able to use these data to significantly improve individualized care for people with epilepsy. Despite this, many clinicians, health care providers, and people with epilepsy are apprehensive about implementing Big Data and accompanying technologies such as artificial intelligence (AI). Practical, ethical, privacy, and climate issues represent real and enduring concerns that have yet to be completely resolved. Similarly, Big Data and AI-related biases have the potential to exacerbate local and global disparities. These are highly germane concerns to the field of epilepsy, given its high burden in developing nations and areas of socioeconomic deprivation. This educational paper from the International League Against Epilepsy's (ILAE) Big Data Commission aims to help clinicians caring for people with epilepsy become familiar with how Big Data is collected and processed, how they are applied to studies using AI, and outline the immense potential positive impact Big Data can have on diagnosis and management.
Collapse
Affiliation(s)
- Colin B Josephson
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Alberta, Canada
- O'Brien Institute for Public Health, University of Calgary, Calgary, Alberta, Canada
- Centre for Health Informatics, University of Calgary, Calgary, Alberta, Canada
- Institute for Health Informatics, University College London, London, UK
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| | - Sandor Beniczky
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- Department of Neurophysiology, Danish Epilepsy Center, Dianalund, Denmark
- Department of Clinical Medicine, Aarhus University and Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
| | - Danielle Boyce
- Tufts University School of Medicine, Boston, Massachusetts, USA
- Johns Hopkins University Biomedical Informatics and Data Science Section, Baltimore, Maryland, USA
- West Chester University Department of Public Policy and Administration, West Chester, Pennsylvania, USA
| | - Gianpiero Cavalleri
- School of Pharmacy and Biomolecular Sciences, The Royal College of Surgeons in Ireland, Dublin, Ireland
- FutureNeuro SFI Research Centre, The Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Spiros Denaxas
- Institute for Health Informatics, University College London, London, UK
- British Heart Foundation Data Science Center, Health Data Research UK, London, UK
| | - Jacqueline French
- Department of Neurology, Grossman School of Medicine, New York University, New York, New York, USA
| | - Lara Jehi
- Epilepsy Center, Cleveland Clinic, Cleveland, Ohio, USA
- Center for Computational Life Sciences, Cleveland, Ohio, USA
| | - Hyunyong Koh
- Harvard Brain Science Initiative, Harvard University, Boston, Massachusetts, USA
| | - Patrick Kwan
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- Department of Neurology, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Carrie McDonald
- Department of Radiation Medicine and Applied Sciences & Psychiatry, University of California, San Diego, California, USA
| | - James W Mitchell
- Institute of Systems, Molecular and Integrative Biology (ISMIB), University of Liverpool, Liverpool, UK
- Department of Neurology, The Walton Cetnre NHS Foundation Trust, Liverpool, UK
| | - Stefan Rampp
- Department of Neurosurgery and Department of Neuroradiology, University Hospital Erlangen, Department of Neurosurgery, University Hospital Halle (Saale), Halle (Saale), Germany
| | - Lynette Sadleir
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG and Chalfont Centre for Epilepsy, London, UK
| | - Irene Wang
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Samuel Wiebe
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Alberta, Canada
- O'Brien Institute for Public Health, University of Calgary, Calgary, Alberta, Canada
- Clinical Research Unit, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Clarissa Yasuda
- Department of Neurology, University of Campinas, Campinas, Brazil
| | - Brett Youngerman
- Department of Neurological Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
3
|
Hernandez AM, Alizadeh R, Ghatpande O, Van Sant A, Jung Y. A semi-automatic analytical methodology for characterizing the energy consumption of MRI systems using load duration curves. Med Phys 2024; 51:7127-7139. [PMID: 39078045 DOI: 10.1002/mp.17327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND AND PURPOSE Magnetic resonance imaging (MRI) scanners are a major contributor to greenhouse gas emissions from the healthcare sector, and efforts to improve energy efficiency and reduce energy consumption rely on quantification of the characteristics of energy consumption. The purpose of this work was to develop a semi-automatic analytical methodology for the characterization of the energy consumption of MRI systems using only the load duration curve (LDC). LDCs are a fundamental tool used across various fields to analyze and understand the behavior of loads over time. METHODS An electric current transformer sensor and data logger were installed on two 3T MRI scanners from two vendors, termed M1 (outpatient scanner) and M2 (inpatient/emergency scanner). Data was collected for 1 month (7/11/2023 to 8/11/2023). Active power was calculated, assuming a balanced three-phase system, using the average current measured across all three phases, a 480 V reference voltage for both machines, and vendor-provided power factors. An LDC was constructed for each system by sorting the active power values in descending order and computing the cumulative time (in units of percentage) for each data point. The first derivative of the LDC was then computed (LDC'), smoothed by convolution with a window function (sLDC'), and used to detect transitions between different system modes including (in descending power levels): scan, prepared-to-scan, idle, low-power, and off. The final, segmented LDC was used to measure time (% total time), total energy (kWh), and mean power (kW) for each system mode on both scanners. The method was validated by comparing mean power values, computed using the segmented 1-month LDC, for each nonproductive system mode (i.e., prepared-to-scan, idle, lower-power, and off) against power levels measured after a deliberate system shutdown was performed for each scanner (1 day worth of data). RESULTS The validation revealed differences in mean power values <1.4% for all nonproductive modes and both scanners. In the scan system mode, the mean power values ranged from 29.8 to 37.2 kW and the total energy consumed for 1 month ranged from 11 106 to 14 466 kWh depending on the scanner. Over the course of 1 month, the portion of time the scanners were in nonproductive modes ranged from 76% to 80% across scanners and the nonproductive energy consumption ranged from 8010 to 6722 kWh depending on the scanner. The M1 (outpatient) scanner consumed 99.9 and 183.9 kWh/day in idle mode for weekdays and weekends, respectively, because the scanner spent 23% more time proportionally in idle mode on the weekends. CONCLUSIONS A semi-automatic method for quantifying energy consumption characteristics of MRI scanners was introduced and validated. This method is relatively simple to implement as it requires only power data from the scanners and avoids the technical challenges associated with extracting and processing scanner log files. The methodology enables quantitative evaluation of the power, time, and energy characteristics of MRI scanners in scan and nonproductive system modes, providing baseline data and the capability of identifying potential opportunities for enhancing the energy efficiency of MRI scanners.
Collapse
Affiliation(s)
- Andrew M Hernandez
- Department of Radiology, University of California Davis Health, Sacramento, California, USA
| | - Ramsey Alizadeh
- Department of Radiology, University of California Davis Health, Sacramento, California, USA
| | - Omkar Ghatpande
- Building Technologies and Science Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Amy Van Sant
- Building Technologies and Science Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Youngkyoo Jung
- Department of Radiology, University of California Davis Health, Sacramento, California, USA
| |
Collapse
|
4
|
Palm V, Wucherpfennig L, Do TD, Fink MA, von Stackelberg O, Schwaiger BJ, Kauczor HU. Nationwide Survey - What is important for a sustainable radiology? ROFO-FORTSCHR RONTG 2024. [PMID: 39293464 DOI: 10.1055/a-2378-6366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Radiology departments with the large diagnostic devices CT and MRI contribute significantly to the overall energy consumption of health facilities. However, there is a lack of systematic knowledge about the opinions of radiological staff on the most relevant aspects of sustainability. For this reason, we conducted a comprehensive survey for radiology employees on sentiment and experiences regarding sustainability in radiology.In collaboration with the Sustainability Network of the German Roentgen Society (DRG), we developed a questionnaire on various dimensions of sustainability in radiology. We conducted a nationwide online survey of radiology employees between July 1st, 2023 and November 30th, 2023. The absolute and percentage distributions were then determined.From 109 participants, mainly doctors (67/109; 62%) from university hospitals (48/109; 44.0%), 81 out of 109 rated sustainability in professional environment (74.3%) as important or very important. However, only 38 out of 109 (38%) of the respondents were able to name specific sustainable procedures in their institute. The most important topics for a sustainable radiology were waste management (26/109, 22.6%), energy reduction (19/109, 16.5%), conscious behaviour (15/109, 13%) and reduction of obsolete examinations (14/109, 12.2%). In addition, a lack of qualifications (16%), finances (21%) and compliance (21%) were named as challenges for the implementation of sustainable actions in radiology. The perceived importance of specific, sustainable measures in radiology is generally higher than the amount of already established actions.Radiology has significant, yet untapped, potential for sustainable optimization. There is a need for qualified and sensitized health care workers in radiology who are committed to sustainability in everyday clinical practice. Among other things, in this study the respondents demand a more critical indication for diagnostic workup, including avoiding redundant examinations, and a technological progress towards energy-efficient devices, which requires a dynamic exchange between radiology, industry and health care facilities. · Of 109 respondents from radiology departments, 74.3% consider sustainability to be important or very important in a professional context.. · Waste management (22.6%), energy reduction (16.5%), conscious behaviour (13%) and reduction of obsolete or redundant examinations (12.2%) are, according to those surveyed, most important for a more sustainable radiology.. · Sustainability initiatives have been institutionally established among 38% of participants. However, key challenges to the implementation of sustainable practices in radiology include insufficient compliance from staff and patients (21%), limited access to funding (21%), and a lack of necessary qualifications (16%).. · The perceived importance of specific measures for sustainability in radiology is generally higher than the previously established measures.. · Technology & energy efficiency (59.6%), energy contracting (46.8%) and waste management (34.9%) are the areas of interest with the highest priority.. · Palm V, Wucherpfennig L, Do TD et al. Nationwide Survey - What is important for a sustainable radiology?. Fortschr Röntgenstr 2024; DOI 10.1055/a-2378-6366.
Collapse
Affiliation(s)
- Viktoria Palm
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg University, Heidelberg, Germany
- Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik am Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Lena Wucherpfennig
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg University, Heidelberg, Germany
- Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik am Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Thuy Duong Do
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik am Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Matthias Alexander Fink
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg University, Heidelberg, Germany
- Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik am Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Oyunbileg von Stackelberg
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg University, Heidelberg, Germany
- Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik am Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Benedikt Jakob Schwaiger
- Department of Neuroradiology, School of Medicine and Health, Technical University of Munich, Munchen, Germany
| | - Hans-Ulrich Kauczor
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg University, Heidelberg, Germany
- Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik am Universitätsklinikum Heidelberg, Heidelberg, Germany
| |
Collapse
|
5
|
Afat S, Wohlers J, Herrmann J, Brendlin AS, Gassenmaier S, Almansour H, Werner S, Brendel JM, Mika A, Scherieble C, Notohamiprodjo M, Gatidis S, Nikolaou K, Küstner T. Reducing energy consumption in musculoskeletal MRI using shorter scan protocols, optimized magnet cooling patterns, and deep learning sequences. Eur Radiol 2024:10.1007/s00330-024-11056-0. [PMID: 39242400 DOI: 10.1007/s00330-024-11056-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/25/2024] [Accepted: 08/14/2024] [Indexed: 09/09/2024]
Abstract
OBJECTIVES The unprecedented surge in energy costs in Europe, coupled with the significant energy consumption of MRI scanners in radiology departments, necessitates exploring strategies to optimize energy usage without compromising efficiency or image quality. This study investigates MR energy consumption and identifies strategies for improving energy efficiency, focusing on musculoskeletal MRI. We assess the potential savings achievable through (1) optimizing protocols, (2) incorporating deep learning (DL) accelerated acquisitions, and (3) optimizing the cooling system. MATERIALS AND METHODS Energy consumption measurements were performed on two MRI scanners (1.5-T Aera, 1.5-T Sola) in practices in Munich, Germany, between December 2022 and March 2023. Three levels of energy reduction measures were implemented and compared to the baseline. Wilcoxon signed-rank test with Bonferroni correction was conducted to evaluate the impact of sequence scan times and energy consumption. RESULTS Our findings showed significant energy savings by optimizing protocol settings and implementing DL technologies. Across all body regions, the average reduction in energy consumption was 72% with DL and 31% with economic protocols, accompanied by time reductions of 71% (DL) and 18% (economic protocols) compared to baseline. Optimizing the cooling system during the non-scanning time showed a 30% lower energy consumption. CONCLUSION Implementing energy-saving strategies, including economic protocols, DL accelerated sequences, and optimized magnet cooling, can significantly reduce energy consumption in MRI scanners. Radiology departments and practices should consider adopting these strategies to improve energy efficiency and reduce costs. CLINICAL RELEVANCE STATEMENT MRI scanner energy consumption can be substantially reduced by incorporating protocol optimization, DL accelerated acquisition, and optimized magnetic cooling into daily practice, thereby cutting costs and environmental impact. KEY POINTS Optimization of protocol settings reduced energy consumption by 31% and imaging time by 18%. DL technologies led to a 72% reduction in energy consumption of and a 71% reduction in time, compared to the standard MRI protocol. During non-scanning times, activating Eco power mode (EPM) resulted in a 30% reduction in energy consumption, saving 4881 € ($5287) per scanner annually.
Collapse
Affiliation(s)
- Saif Afat
- Department of Radiology, Tuebingen University Hospital, University of Tuebingen, Tuebingen, Germany
| | - Julian Wohlers
- Department of Magnetic Resonance Product Management, Siemens Healthineers, Erlangen, Germany
| | - Judith Herrmann
- Department of Radiology, Tuebingen University Hospital, University of Tuebingen, Tuebingen, Germany
| | - Andreas S Brendlin
- Department of Radiology, Tuebingen University Hospital, University of Tuebingen, Tuebingen, Germany
| | - Sebastian Gassenmaier
- Department of Radiology, Tuebingen University Hospital, University of Tuebingen, Tuebingen, Germany
| | - Haidara Almansour
- Department of Radiology, Tuebingen University Hospital, University of Tuebingen, Tuebingen, Germany
| | - Sebastian Werner
- Department of Radiology, Tuebingen University Hospital, University of Tuebingen, Tuebingen, Germany
| | - Jan M Brendel
- Department of Radiology, Tuebingen University Hospital, University of Tuebingen, Tuebingen, Germany
| | - Alexander Mika
- Radiologische, Strahlentherapeutische und Nuklearmedizinische Partnerschaftsgesellschaft Muenchen, DIE RADIOLOGIE, Munich, Germany
| | - Christoph Scherieble
- Radiologische, Strahlentherapeutische und Nuklearmedizinische Partnerschaftsgesellschaft Muenchen, DIE RADIOLOGIE, Munich, Germany
| | - Mike Notohamiprodjo
- Radiologische, Strahlentherapeutische und Nuklearmedizinische Partnerschaftsgesellschaft Muenchen, DIE RADIOLOGIE, Munich, Germany
| | - Sergios Gatidis
- Department of Radiology, Tuebingen University Hospital, University of Tuebingen, Tuebingen, Germany
| | - Konstantin Nikolaou
- Department of Radiology, Tuebingen University Hospital, University of Tuebingen, Tuebingen, Germany
| | - Thomas Küstner
- Department of Radiology, Tuebingen University Hospital, University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
6
|
Woernle A, Moore CM, Allen C, Giganti F. Footprints in the scan: reducing the carbon footprint of diagnostic tools in urology. Curr Opin Urol 2024; 34:390-395. [PMID: 38847801 PMCID: PMC11309339 DOI: 10.1097/mou.0000000000001196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
PURPOSE OF REVIEW There is an ever-growing focus on climate change and its impact on our society. With healthcare contributing a sizeable proportion of carbon emissions, the sector has a duty to address its environmental impact. We highlight the recent progress, current challenges, and future prospects for reducing the carbon footprint in diagnostic urology, specifically for imaging, without compromising patient care. RECENT FINDINGS The review is separated into four key areas of recent research: the design of a green radiology department, considering both infrastructural as well as behavioural changes that promote sustainability; individual scanners, where we provide an update on recent technological advancements and changes in behaviour that may enhance sustainable use; responsible resource allocation, where it is important to derive the maximal benefit for patients through the smallest use of resources; the recent research regarding single versus reusable urologic endoscopes as a case example. SUMMARY We offer an overview of the present sustainability landscape in diagnostic urology with the aim of encouraging additional research in areas where existing practices may be challenged. To protect the environment, attention is drawn to both more simple steps that can be taken as well as some more complex and expensive ones.
Collapse
Affiliation(s)
- Alexandre Woernle
- Faculty of Medical Sciences
- Division of Surgery & Interventional Science, Faculty of Medical Sciences, University College London
| | - Caroline M. Moore
- Division of Surgery & Interventional Science, Faculty of Medical Sciences, University College London
- Department of Urology
| | - Clare Allen
- Department of Radiology, University College London Hospital NHS Foundation Trust, London, UK
| | - Francesco Giganti
- Division of Surgery & Interventional Science, Faculty of Medical Sciences, University College London
- Department of Radiology, University College London Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
7
|
Vosshenrich J, Koerzdoerfer G, Fritz J. Modern acceleration in musculoskeletal MRI: applications, implications, and challenges. Skeletal Radiol 2024; 53:1799-1813. [PMID: 38441617 DOI: 10.1007/s00256-024-04634-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 08/09/2024]
Abstract
Magnetic resonance imaging (MRI) is crucial for accurately diagnosing a wide spectrum of musculoskeletal conditions due to its superior soft tissue contrast resolution. However, the long acquisition times of traditional two-dimensional (2D) and three-dimensional (3D) fast and turbo spin-echo (TSE) pulse sequences can limit patient access and comfort. Recent technical advancements have introduced acceleration techniques that significantly reduce MRI times for musculoskeletal examinations. Key acceleration methods include parallel imaging (PI), simultaneous multi-slice acquisition (SMS), and compressed sensing (CS), enabling up to eightfold faster scans while maintaining image quality, resolution, and safety standards. These innovations now allow for 3- to 6-fold accelerated clinical musculoskeletal MRI exams, reducing scan times to 4 to 6 min for joints and spine imaging. Evolving deep learning-based image reconstruction promises even faster scans without compromising quality. Current research indicates that combining acceleration techniques, deep learning image reconstruction, and superresolution algorithms will eventually facilitate tenfold accelerated musculoskeletal MRI in routine clinical practice. Such rapid MRI protocols can drastically reduce scan times by 80-90% compared to conventional methods. Implementing these rapid imaging protocols does impact workflow, indirect costs, and workload for MRI technologists and radiologists, which requires careful management. However, the shift from conventional to accelerated, deep learning-based MRI enhances the value of musculoskeletal MRI by improving patient access and comfort and promoting sustainable imaging practices. This article offers a comprehensive overview of the technical aspects, benefits, and challenges of modern accelerated musculoskeletal MRI, guiding radiologists and researchers in this evolving field.
Collapse
Affiliation(s)
- Jan Vosshenrich
- Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Department of Radiology, University Hospital Basel, Basel, Switzerland
| | | | - Jan Fritz
- Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
8
|
Woolen S, Hanneman K. Radiology's Role in the Climate Crisis: Why It Matters- AJR Podcast Series on Sustainability, Episode 1. AJR Am J Roentgenol 2024; 223:e2431682. [PMID: 38958265 DOI: 10.2214/ajr.24.31682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Affiliation(s)
- Sean Woolen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 505 Parnassus Ave, San Francisco, CA 94143
| | - Kate Hanneman
- Department of Medical Imaging, University Medical Imaging Toronto, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Hanneman K, Szava-Kovats A, Burbridge B, Leswick D, Nadeau B, Islam O, Lee EJY, Harris A, Hamel C, Brown MJ. Canadian Association of Radiologists Statement on Environmental Sustainability in Medical Imaging. Can Assoc Radiol J 2024:8465371241260013. [PMID: 39080832 DOI: 10.1177/08465371241260013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024] Open
Abstract
Immediate and strategic action is needed to improve environmental sustainability and reduce the detrimental effects of climate change. Climate change is already adversely affecting the health of Canadians related to worsening air pollution and wildfire smoke, increasing frequency and intensity of extreme weather events, and expansion of vector-borne and infectious illnesses. On one hand, radiology contributes to the climate crisis by generating greenhouse gas emissions and waste during the production, manufacture, transportation, and use of medical imaging equipment and supplies. On the other hand, radiology departments are also susceptible to equipment and infrastructure damage from flooding, extreme temperatures, and power failures, as well as workforce shortages due to injury and illness, potentially disrupting radiology services and increasing costs. The Canadian Association of Radiologists' (CAR) advocacy for environmentally sustainable radiology in Canada encompasses both minimizing the detrimental effects that delivery of radiology services has on the environment and optimizing the resilience of radiology departments to increasing health needs and changing patterns of disease on imaging related to climate change. This statement provides specific recommendations and pathways to help guide radiologists, medical imaging leadership teams, industry partners, governments, and other key stakeholders to transition to environmentally sustainable, net-zero, and climate-resilient radiology organizations. Specific consideration is given to unique aspects of medical imaging in Canada. Finally, environmentally sustainable radiology programs, policies, and achievements in Canada are highlighted.
Collapse
Affiliation(s)
- Kate Hanneman
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
- University Medical Imaging Toronto, Joint Department of Medical Imaging, University Health Network (UHN), Toronto, ON, Canada
| | | | - Brent Burbridge
- Department of Medical Imaging, University of Saskatchewan, Saskatoon, SK, Canada
| | - David Leswick
- Department of Medical Imaging, University of Saskatchewan, Saskatoon, SK, Canada
| | - Brandon Nadeau
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, AB, Canada
| | - Omar Islam
- Department of Diagnostic Radiology, Queen's University, Kingston, ON, Canada
| | - Emil J Y Lee
- Department of Medical Imaging, Fraser Health Authority, Vancouver, BC, Canada
| | - Alison Harris
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Candyce Hamel
- Canadian Association of Radiologists, Ottawa, ON, Canada
| | - Maura J Brown
- Diagnostic Imaging, BC Cancer, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
10
|
Bwanga O, Chinene B, Mudadi L, Kafwimbi S, Nyawani P, Matika W, Mushosho EY, Mutandiro L, Ohene-Botwe B. Environmental sustainability in radiography in low-resource settings: A qualitative study of awareness, practices, and challenges among Zimbabwean and Zambian radiographers. Radiography (Lond) 2024; 30 Suppl 1:35-42. [PMID: 38875974 DOI: 10.1016/j.radi.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/06/2024] [Accepted: 05/20/2024] [Indexed: 06/16/2024]
Abstract
INTRODUCTION Evidence suggests that radiography activities have a significant impact on the environment. With growing awareness of the negative environmental consequences of radiography services, there is an increasing call for radiographers to adopt sustainable practices. However, little is known about the levels of awareness, current practices, and challenges faced by radiographers working in low-resource settings on this subject. Therefore, this study aimed to explore the awareness, practices, and challenges among Zimbabwean and Zambian radiographers about environmental sustainability in radiography. METHODS An exploratory descriptive qualitative research design was used in this study. Two focus group discussions (FGDs) were conducted with 19 purposively sampled participants (N = 8 and N = 11) in Zimbabwe and Zambia, respectively. The audio recordings were transcribed verbatim and analysed using Braun and Clarke's thematic analysis six-phase framework. RESULTS Following thematic data analysis three main themes emerged: awareness of the concept of sustainability among radiographers, sustainability practices in radiography, and challenges of implementing sustainability in radiography. The study found that some radiology departments continue to rely on film-screen imaging systems due to insufficient financial resources to transition to digital imaging systems. Consequently, this constraint emerged as the central obstacle thwarting the implementation of sustainable practices in radiography. CONCLUSION Most radiographers understood the concept of sustainability in radiography; however, they were concerned about the negative impact of radiography practices on the environment and wanted more training and financial support to mitigate this impact. IMPLICATIONS FOR PRACTICE Environmental sustainability should be integrated into the radiography curriculum and provision of continuing professional development (CPD) to impart radiographers with knowledge and the best practices. Periodical audits should be conducted to monitor sustainable practices and reward deserving radiology departments.
Collapse
Affiliation(s)
- O Bwanga
- Midland University Hospital Tullamore, Radiology Department Co., Offaly, Ireland.
| | - B Chinene
- Harare Institute of Technology, Department of Radiography, Belvedere, Harare, Zimbabwe
| | - L Mudadi
- Royal Papworth Hospital, NHS Foundation Trust, Cambridge, United Kingdom
| | - S Kafwimbi
- University of Zambia, School of Health Sciences, Department of Radiography, Zambia
| | - P Nyawani
- Harare Institute of Technology, Department of Radiography, Belvedere, Harare, Zimbabwe
| | - W Matika
- Harare Institute of Technology, Department of Radiography, Belvedere, Harare, Zimbabwe
| | - E Y Mushosho
- Harare Institute of Technology, Department of Radiography, Belvedere, Harare, Zimbabwe
| | - L Mutandiro
- Harare Institute of Technology, Department of Radiography, Belvedere, Harare, Zimbabwe
| | - B Ohene-Botwe
- Department of Midwifery and Radiography, University of London Northampton Square London EC1V 0HB, United Kingdom
| |
Collapse
|
11
|
Roletto A, Catania D, Rainford L, Savio A, Zanardo M, Bonfitto GR, Zanoni S. Sustainable radiology departments: A European survey to explore radiographers' perceptions of environmental and energy sustainability issues. Radiography (Lond) 2024; 30 Suppl 1:81-90. [PMID: 38996669 DOI: 10.1016/j.radi.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/20/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024]
Abstract
INTRODUCTION The environmental impact of radiology and radiotherapy activities is influenced by the energy consumption of equipment, the life cycle of consumables, waste generation, and CO2 emissions caused by staff travel. This study aims to investigate radiographers' perception and knowledge of environmental sustainability issues. METHODS An online survey was created and distributed to European radiographers and therapeutic radiographers. The survey questions (n = 43) include demographic data; questions on their perceptions and actions regarding environmental sustainability in healthcare, energy consumption, emissions from staff travel, waste generation from radiological procedures; the role of radiographers in addressing sustainability issues within their departments. RESULTS A total of 253 responses were collected from 27 European countries. About their perception on sustainability issues, most participants considered environmental sustainability in healthcare as very important. According to 63.6% (n = 161) of respondents, the energy consumption of radiological equipment is the major source of environmental footprints from radiology activities. Additionally, 44.7% (n = 113) believe that conducting diagnostic examinations remotely could reduce environmental footprints from staff commuting About their actions at workplace, over 70% (n = 192) reported turning off devices after use. Attention to waste recycling is high, but limited to paper, plastic and glass. Contrast agents recycling procedures are implemented by 13% (n = 33). The absence or unawareness of environmental sustainability procedures in the workplace was reported by 66% (n = 167). Radiographers could play an active role in environmental sustainability programs for 243 (96.1%) participants. CONCLUSION This study provides a comprehensive overview of European radiographers' knowledge and perceptions concerning environmental sustainability issues. While radiographers recognize the importance of a green radiology department, significant gaps remain in their understanding of eco-friendly initiatives in radiology units' activities. IMPLICATION FOR PRACTICE Enhancing radiographers' skills with sustainability expertise could promote a greener culture within radiology departments.
Collapse
Affiliation(s)
- A Roletto
- Department of Mechanical and Industrial Engineering, Università degli Studi di Brescia, Via Branze 38, 25123, Brescia, Italy.
| | - D Catania
- Radiography and Diagnostic Imaging, School of Medicine, University College Dublin, Ireland.
| | - L Rainford
- Radiography and Diagnostic Imaging, School of Medicine, University College Dublin, Ireland.
| | - A Savio
- Department of Mechanical and Industrial Engineering, Università degli Studi di Brescia, Via Branze 38, 25123, Brescia, Italy.
| | - M Zanardo
- Radiology Unit, IRCCS Policlinico San Donato, Via Morandi 30, 20097, San Donato Milanese, Italy.
| | - G R Bonfitto
- Department of Information Engineering, Università degli Studi di Brescia, Via Branze 38, 25123, Brescia, Italy.
| | - S Zanoni
- Department of Civil, Environmental, Architectural Engineering and Mathematics, Università degli Studi di Brescia, Via Branze 43, 25123, Brescia, Italy.
| |
Collapse
|
12
|
Gunasekaran S, Szava-Kovats A, Battey T, Gross J, Picano E, Raman SV, Lee E, Bissell MM, Alasnag M, Campbell-Washburn AE, Hanneman K. Cardiovascular Imaging, Climate Change, and Environmental Sustainability. Radiol Cardiothorac Imaging 2024; 6:e240135. [PMID: 38900024 PMCID: PMC11211952 DOI: 10.1148/ryct.240135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/03/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024]
Abstract
Environmental exposures including poor air quality and extreme temperatures are exacerbated by climate change and are associated with adverse cardiovascular outcomes. Concomitantly, the delivery of health care generates substantial atmospheric greenhouse gas (GHG) emissions contributing to the climate crisis. Therefore, cardiac imaging teams must be aware not only of the adverse cardiovascular health effects of climate change, but also the downstream environmental ramifications of cardiovascular imaging. The purpose of this review is to highlight the impact of climate change on cardiovascular health, discuss the environmental impact of cardiovascular imaging, and describe opportunities to improve environmental sustainability of cardiac MRI, cardiac CT, echocardiography, cardiac nuclear imaging, and invasive cardiovascular imaging. Overarching strategies to improve environmental sustainability in cardiovascular imaging include prioritizing imaging tests with lower GHG emissions when more than one test is appropriate, reducing low-value imaging, and turning equipment off when not in use. Modality-specific opportunities include focused MRI protocols and low-field-strength applications, iodine contrast media recycling programs in cardiac CT, judicious use of US-enhancing agents in echocardiography, improved radiopharmaceutical procurement and waste management in nuclear cardiology, and use of reusable supplies in interventional suites. Finally, future directions and research are highlighted, including life cycle assessments over the lifespan of cardiac imaging equipment and the impact of artificial intelligence tools. Keywords: Heart, Safety, Sustainability, Cardiovascular Imaging Supplemental material is available for this article. © RSNA, 2024.
Collapse
Affiliation(s)
- Suvai Gunasekaran
- From the Biomedical Imaging Research Institute, Cedars-Sinai Medical
Center, Los Angeles, Calif (S.G.); Department of Radiology, Feinberg School of
Medicine, Northwestern University, Chicago, Ill (S.G.); Department of Nuclear
Medicine, Peter Lougheed Hospital, Alberta Health Services, Calgary, Canada
(A.S.K.); Department of Radiology, University of Calgary, Calgary, Canada
(A.S.K.); Department of Radiology & Medical Imaging, University of
Virginia, Charlottesville, Va (T.B.); Department of Radiology, Texas
Children’s Hospital, Baylor School of Medicine, Houston, Tex (J.G.);
Division of Cardiology, University Clinical Center of Serbia, University of
Belgrade, Belgrade, Serbia (E.P.); OhioHealth, Columbus, Ohio (S.V.R.); Langley
Memorial Hospital, British Columbia, Canada (E.L.); Department of Biomedical
Imaging Science, University of Leeds, Leeds, United Kingdom (M.M.B.); Cardiac
Center, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia (M.A.);
Cardiovascular Branch, Division of Intramural Research, National Heart, Lung,
and Blood Institute, National Institutes of Health, Bethesda, Md (A.E.C.W.);
Joint Department of Medical Imaging, Peter Munk Cardiac Centre and Toronto
General Hospital Research Institute, University Medical Imaging Toronto,
University Health Network (UHN), 585 University Avenue, 1 PMB-298, Toronto, ON,
Canada M5G 2N2 (K.H.); and Department of Medical Imaging, University of Toronto,
Toronto, Canada (K.H.)
| | - Andrew Szava-Kovats
- From the Biomedical Imaging Research Institute, Cedars-Sinai Medical
Center, Los Angeles, Calif (S.G.); Department of Radiology, Feinberg School of
Medicine, Northwestern University, Chicago, Ill (S.G.); Department of Nuclear
Medicine, Peter Lougheed Hospital, Alberta Health Services, Calgary, Canada
(A.S.K.); Department of Radiology, University of Calgary, Calgary, Canada
(A.S.K.); Department of Radiology & Medical Imaging, University of
Virginia, Charlottesville, Va (T.B.); Department of Radiology, Texas
Children’s Hospital, Baylor School of Medicine, Houston, Tex (J.G.);
Division of Cardiology, University Clinical Center of Serbia, University of
Belgrade, Belgrade, Serbia (E.P.); OhioHealth, Columbus, Ohio (S.V.R.); Langley
Memorial Hospital, British Columbia, Canada (E.L.); Department of Biomedical
Imaging Science, University of Leeds, Leeds, United Kingdom (M.M.B.); Cardiac
Center, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia (M.A.);
Cardiovascular Branch, Division of Intramural Research, National Heart, Lung,
and Blood Institute, National Institutes of Health, Bethesda, Md (A.E.C.W.);
Joint Department of Medical Imaging, Peter Munk Cardiac Centre and Toronto
General Hospital Research Institute, University Medical Imaging Toronto,
University Health Network (UHN), 585 University Avenue, 1 PMB-298, Toronto, ON,
Canada M5G 2N2 (K.H.); and Department of Medical Imaging, University of Toronto,
Toronto, Canada (K.H.)
| | - Thomas Battey
- From the Biomedical Imaging Research Institute, Cedars-Sinai Medical
Center, Los Angeles, Calif (S.G.); Department of Radiology, Feinberg School of
Medicine, Northwestern University, Chicago, Ill (S.G.); Department of Nuclear
Medicine, Peter Lougheed Hospital, Alberta Health Services, Calgary, Canada
(A.S.K.); Department of Radiology, University of Calgary, Calgary, Canada
(A.S.K.); Department of Radiology & Medical Imaging, University of
Virginia, Charlottesville, Va (T.B.); Department of Radiology, Texas
Children’s Hospital, Baylor School of Medicine, Houston, Tex (J.G.);
Division of Cardiology, University Clinical Center of Serbia, University of
Belgrade, Belgrade, Serbia (E.P.); OhioHealth, Columbus, Ohio (S.V.R.); Langley
Memorial Hospital, British Columbia, Canada (E.L.); Department of Biomedical
Imaging Science, University of Leeds, Leeds, United Kingdom (M.M.B.); Cardiac
Center, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia (M.A.);
Cardiovascular Branch, Division of Intramural Research, National Heart, Lung,
and Blood Institute, National Institutes of Health, Bethesda, Md (A.E.C.W.);
Joint Department of Medical Imaging, Peter Munk Cardiac Centre and Toronto
General Hospital Research Institute, University Medical Imaging Toronto,
University Health Network (UHN), 585 University Avenue, 1 PMB-298, Toronto, ON,
Canada M5G 2N2 (K.H.); and Department of Medical Imaging, University of Toronto,
Toronto, Canada (K.H.)
| | - Jonathan Gross
- From the Biomedical Imaging Research Institute, Cedars-Sinai Medical
Center, Los Angeles, Calif (S.G.); Department of Radiology, Feinberg School of
Medicine, Northwestern University, Chicago, Ill (S.G.); Department of Nuclear
Medicine, Peter Lougheed Hospital, Alberta Health Services, Calgary, Canada
(A.S.K.); Department of Radiology, University of Calgary, Calgary, Canada
(A.S.K.); Department of Radiology & Medical Imaging, University of
Virginia, Charlottesville, Va (T.B.); Department of Radiology, Texas
Children’s Hospital, Baylor School of Medicine, Houston, Tex (J.G.);
Division of Cardiology, University Clinical Center of Serbia, University of
Belgrade, Belgrade, Serbia (E.P.); OhioHealth, Columbus, Ohio (S.V.R.); Langley
Memorial Hospital, British Columbia, Canada (E.L.); Department of Biomedical
Imaging Science, University of Leeds, Leeds, United Kingdom (M.M.B.); Cardiac
Center, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia (M.A.);
Cardiovascular Branch, Division of Intramural Research, National Heart, Lung,
and Blood Institute, National Institutes of Health, Bethesda, Md (A.E.C.W.);
Joint Department of Medical Imaging, Peter Munk Cardiac Centre and Toronto
General Hospital Research Institute, University Medical Imaging Toronto,
University Health Network (UHN), 585 University Avenue, 1 PMB-298, Toronto, ON,
Canada M5G 2N2 (K.H.); and Department of Medical Imaging, University of Toronto,
Toronto, Canada (K.H.)
| | - Eugenio Picano
- From the Biomedical Imaging Research Institute, Cedars-Sinai Medical
Center, Los Angeles, Calif (S.G.); Department of Radiology, Feinberg School of
Medicine, Northwestern University, Chicago, Ill (S.G.); Department of Nuclear
Medicine, Peter Lougheed Hospital, Alberta Health Services, Calgary, Canada
(A.S.K.); Department of Radiology, University of Calgary, Calgary, Canada
(A.S.K.); Department of Radiology & Medical Imaging, University of
Virginia, Charlottesville, Va (T.B.); Department of Radiology, Texas
Children’s Hospital, Baylor School of Medicine, Houston, Tex (J.G.);
Division of Cardiology, University Clinical Center of Serbia, University of
Belgrade, Belgrade, Serbia (E.P.); OhioHealth, Columbus, Ohio (S.V.R.); Langley
Memorial Hospital, British Columbia, Canada (E.L.); Department of Biomedical
Imaging Science, University of Leeds, Leeds, United Kingdom (M.M.B.); Cardiac
Center, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia (M.A.);
Cardiovascular Branch, Division of Intramural Research, National Heart, Lung,
and Blood Institute, National Institutes of Health, Bethesda, Md (A.E.C.W.);
Joint Department of Medical Imaging, Peter Munk Cardiac Centre and Toronto
General Hospital Research Institute, University Medical Imaging Toronto,
University Health Network (UHN), 585 University Avenue, 1 PMB-298, Toronto, ON,
Canada M5G 2N2 (K.H.); and Department of Medical Imaging, University of Toronto,
Toronto, Canada (K.H.)
| | - Subha V. Raman
- From the Biomedical Imaging Research Institute, Cedars-Sinai Medical
Center, Los Angeles, Calif (S.G.); Department of Radiology, Feinberg School of
Medicine, Northwestern University, Chicago, Ill (S.G.); Department of Nuclear
Medicine, Peter Lougheed Hospital, Alberta Health Services, Calgary, Canada
(A.S.K.); Department of Radiology, University of Calgary, Calgary, Canada
(A.S.K.); Department of Radiology & Medical Imaging, University of
Virginia, Charlottesville, Va (T.B.); Department of Radiology, Texas
Children’s Hospital, Baylor School of Medicine, Houston, Tex (J.G.);
Division of Cardiology, University Clinical Center of Serbia, University of
Belgrade, Belgrade, Serbia (E.P.); OhioHealth, Columbus, Ohio (S.V.R.); Langley
Memorial Hospital, British Columbia, Canada (E.L.); Department of Biomedical
Imaging Science, University of Leeds, Leeds, United Kingdom (M.M.B.); Cardiac
Center, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia (M.A.);
Cardiovascular Branch, Division of Intramural Research, National Heart, Lung,
and Blood Institute, National Institutes of Health, Bethesda, Md (A.E.C.W.);
Joint Department of Medical Imaging, Peter Munk Cardiac Centre and Toronto
General Hospital Research Institute, University Medical Imaging Toronto,
University Health Network (UHN), 585 University Avenue, 1 PMB-298, Toronto, ON,
Canada M5G 2N2 (K.H.); and Department of Medical Imaging, University of Toronto,
Toronto, Canada (K.H.)
| | - Emil Lee
- From the Biomedical Imaging Research Institute, Cedars-Sinai Medical
Center, Los Angeles, Calif (S.G.); Department of Radiology, Feinberg School of
Medicine, Northwestern University, Chicago, Ill (S.G.); Department of Nuclear
Medicine, Peter Lougheed Hospital, Alberta Health Services, Calgary, Canada
(A.S.K.); Department of Radiology, University of Calgary, Calgary, Canada
(A.S.K.); Department of Radiology & Medical Imaging, University of
Virginia, Charlottesville, Va (T.B.); Department of Radiology, Texas
Children’s Hospital, Baylor School of Medicine, Houston, Tex (J.G.);
Division of Cardiology, University Clinical Center of Serbia, University of
Belgrade, Belgrade, Serbia (E.P.); OhioHealth, Columbus, Ohio (S.V.R.); Langley
Memorial Hospital, British Columbia, Canada (E.L.); Department of Biomedical
Imaging Science, University of Leeds, Leeds, United Kingdom (M.M.B.); Cardiac
Center, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia (M.A.);
Cardiovascular Branch, Division of Intramural Research, National Heart, Lung,
and Blood Institute, National Institutes of Health, Bethesda, Md (A.E.C.W.);
Joint Department of Medical Imaging, Peter Munk Cardiac Centre and Toronto
General Hospital Research Institute, University Medical Imaging Toronto,
University Health Network (UHN), 585 University Avenue, 1 PMB-298, Toronto, ON,
Canada M5G 2N2 (K.H.); and Department of Medical Imaging, University of Toronto,
Toronto, Canada (K.H.)
| | - Malenka M. Bissell
- From the Biomedical Imaging Research Institute, Cedars-Sinai Medical
Center, Los Angeles, Calif (S.G.); Department of Radiology, Feinberg School of
Medicine, Northwestern University, Chicago, Ill (S.G.); Department of Nuclear
Medicine, Peter Lougheed Hospital, Alberta Health Services, Calgary, Canada
(A.S.K.); Department of Radiology, University of Calgary, Calgary, Canada
(A.S.K.); Department of Radiology & Medical Imaging, University of
Virginia, Charlottesville, Va (T.B.); Department of Radiology, Texas
Children’s Hospital, Baylor School of Medicine, Houston, Tex (J.G.);
Division of Cardiology, University Clinical Center of Serbia, University of
Belgrade, Belgrade, Serbia (E.P.); OhioHealth, Columbus, Ohio (S.V.R.); Langley
Memorial Hospital, British Columbia, Canada (E.L.); Department of Biomedical
Imaging Science, University of Leeds, Leeds, United Kingdom (M.M.B.); Cardiac
Center, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia (M.A.);
Cardiovascular Branch, Division of Intramural Research, National Heart, Lung,
and Blood Institute, National Institutes of Health, Bethesda, Md (A.E.C.W.);
Joint Department of Medical Imaging, Peter Munk Cardiac Centre and Toronto
General Hospital Research Institute, University Medical Imaging Toronto,
University Health Network (UHN), 585 University Avenue, 1 PMB-298, Toronto, ON,
Canada M5G 2N2 (K.H.); and Department of Medical Imaging, University of Toronto,
Toronto, Canada (K.H.)
| | - Mirvat Alasnag
- From the Biomedical Imaging Research Institute, Cedars-Sinai Medical
Center, Los Angeles, Calif (S.G.); Department of Radiology, Feinberg School of
Medicine, Northwestern University, Chicago, Ill (S.G.); Department of Nuclear
Medicine, Peter Lougheed Hospital, Alberta Health Services, Calgary, Canada
(A.S.K.); Department of Radiology, University of Calgary, Calgary, Canada
(A.S.K.); Department of Radiology & Medical Imaging, University of
Virginia, Charlottesville, Va (T.B.); Department of Radiology, Texas
Children’s Hospital, Baylor School of Medicine, Houston, Tex (J.G.);
Division of Cardiology, University Clinical Center of Serbia, University of
Belgrade, Belgrade, Serbia (E.P.); OhioHealth, Columbus, Ohio (S.V.R.); Langley
Memorial Hospital, British Columbia, Canada (E.L.); Department of Biomedical
Imaging Science, University of Leeds, Leeds, United Kingdom (M.M.B.); Cardiac
Center, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia (M.A.);
Cardiovascular Branch, Division of Intramural Research, National Heart, Lung,
and Blood Institute, National Institutes of Health, Bethesda, Md (A.E.C.W.);
Joint Department of Medical Imaging, Peter Munk Cardiac Centre and Toronto
General Hospital Research Institute, University Medical Imaging Toronto,
University Health Network (UHN), 585 University Avenue, 1 PMB-298, Toronto, ON,
Canada M5G 2N2 (K.H.); and Department of Medical Imaging, University of Toronto,
Toronto, Canada (K.H.)
| | - Adrienne E. Campbell-Washburn
- From the Biomedical Imaging Research Institute, Cedars-Sinai Medical
Center, Los Angeles, Calif (S.G.); Department of Radiology, Feinberg School of
Medicine, Northwestern University, Chicago, Ill (S.G.); Department of Nuclear
Medicine, Peter Lougheed Hospital, Alberta Health Services, Calgary, Canada
(A.S.K.); Department of Radiology, University of Calgary, Calgary, Canada
(A.S.K.); Department of Radiology & Medical Imaging, University of
Virginia, Charlottesville, Va (T.B.); Department of Radiology, Texas
Children’s Hospital, Baylor School of Medicine, Houston, Tex (J.G.);
Division of Cardiology, University Clinical Center of Serbia, University of
Belgrade, Belgrade, Serbia (E.P.); OhioHealth, Columbus, Ohio (S.V.R.); Langley
Memorial Hospital, British Columbia, Canada (E.L.); Department of Biomedical
Imaging Science, University of Leeds, Leeds, United Kingdom (M.M.B.); Cardiac
Center, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia (M.A.);
Cardiovascular Branch, Division of Intramural Research, National Heart, Lung,
and Blood Institute, National Institutes of Health, Bethesda, Md (A.E.C.W.);
Joint Department of Medical Imaging, Peter Munk Cardiac Centre and Toronto
General Hospital Research Institute, University Medical Imaging Toronto,
University Health Network (UHN), 585 University Avenue, 1 PMB-298, Toronto, ON,
Canada M5G 2N2 (K.H.); and Department of Medical Imaging, University of Toronto,
Toronto, Canada (K.H.)
| | - Kate Hanneman
- From the Biomedical Imaging Research Institute, Cedars-Sinai Medical
Center, Los Angeles, Calif (S.G.); Department of Radiology, Feinberg School of
Medicine, Northwestern University, Chicago, Ill (S.G.); Department of Nuclear
Medicine, Peter Lougheed Hospital, Alberta Health Services, Calgary, Canada
(A.S.K.); Department of Radiology, University of Calgary, Calgary, Canada
(A.S.K.); Department of Radiology & Medical Imaging, University of
Virginia, Charlottesville, Va (T.B.); Department of Radiology, Texas
Children’s Hospital, Baylor School of Medicine, Houston, Tex (J.G.);
Division of Cardiology, University Clinical Center of Serbia, University of
Belgrade, Belgrade, Serbia (E.P.); OhioHealth, Columbus, Ohio (S.V.R.); Langley
Memorial Hospital, British Columbia, Canada (E.L.); Department of Biomedical
Imaging Science, University of Leeds, Leeds, United Kingdom (M.M.B.); Cardiac
Center, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia (M.A.);
Cardiovascular Branch, Division of Intramural Research, National Heart, Lung,
and Blood Institute, National Institutes of Health, Bethesda, Md (A.E.C.W.);
Joint Department of Medical Imaging, Peter Munk Cardiac Centre and Toronto
General Hospital Research Institute, University Medical Imaging Toronto,
University Health Network (UHN), 585 University Avenue, 1 PMB-298, Toronto, ON,
Canada M5G 2N2 (K.H.); and Department of Medical Imaging, University of Toronto,
Toronto, Canada (K.H.)
| |
Collapse
|
13
|
Ghotra SS, Champendal M, Flaction L, Ribeiro RT, Sá Dos Reis C. Approaches to reduce medical imaging departments' environmental impact: A scoping review. Radiography (Lond) 2024; 30 Suppl 1:108-116. [PMID: 39146889 DOI: 10.1016/j.radi.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/17/2024]
Abstract
INTRODUCTION Global warming stands as a paramount public health issue of our time, and it is fundamental to explore approaches to green medical imaging departments/(MID). This study aims to map the existing actions in the literature that promote sustainable development in MID towards the promotion of environmental impact reduction. METHODS Following the JBI methodology and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR), this literature search was conducted on MEDLINE, Embase and CINAHL to encompass studies published after 2013. Combinations of keywords and relevant terms related to environmental sustainability, recycling, medical waste, and greening radiology were applied for this review. Three independent reviewers screened abstracts, titles, and eligible full-text. Disagreement was solved through consensus. RESULTS 38 out of 4630 articles met all inclusion criteria, and four additional articles were identified and added through reference search. A third of the studies included were published after 2022, and most were conducted in developed countries (36/41). Articles focused on computed tomography (9/41), magnetic resonance imaging (6/41), interventional radiology (4/41), conventional radiography (4/41), ultrasound (2/41), mixed modalities (10/41), or not applicable to an imaging modality (6/41). Four principal categories were identified to decrease ecological footprint: energy consumption, waste management, justification and environmental pollution. CONCLUSION To minimise the environmental impact of MIDs raising awareness and promoting education is fundamental. Examinations must be justified adequately, energy consumption must be reduced, and waste management practices need to be implemented. Further studies are required to prioritise the most effective strategies, supporting decision-making among stakeholders. IMPLICATIONS FOR PRACTICE Several strategies are already possible to implement to reduce the environmental impact of MIDs and improve the healthcare outcomes for patients.
Collapse
Affiliation(s)
- S S Ghotra
- School of Health Sciences (HESAV), University of Applied Sciences and Arts Western Switzerland (HES-SO), Lausanne, 1011, Switzerland; Department of Radiology, Hospital of Yverdon-les-Bains (eHnv), 1400, Yverdon-les-Bains, Switzerland.
| | - M Champendal
- School of Health Sciences (HESAV), University of Applied Sciences and Arts Western Switzerland (HES-SO), Lausanne, 1011, Switzerland.
| | - L Flaction
- School of Health Sciences (HESAV), University of Applied Sciences and Arts Western Switzerland (HES-SO), Lausanne, 1011, Switzerland.
| | - R T Ribeiro
- School of Health Sciences (HESAV), University of Applied Sciences and Arts Western Switzerland (HES-SO), Lausanne, 1011, Switzerland.
| | - C Sá Dos Reis
- School of Health Sciences (HESAV), University of Applied Sciences and Arts Western Switzerland (HES-SO), Lausanne, 1011, Switzerland.
| |
Collapse
|
14
|
Kim HHR, Leschied JR, Lall N, Otero HJ, Kadom N. That's GROSS! Practical steps towards sustainability in pediatric radiology. Pediatr Radiol 2024; 54:1036-1039. [PMID: 38374438 DOI: 10.1007/s00247-024-05878-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/26/2024] [Accepted: 02/06/2024] [Indexed: 02/21/2024]
Affiliation(s)
- Helen H R Kim
- Department of Radiology, Seattle Children's Hospital, University of Washington School of Medicine, 4800 Sand Point Way NE, MA.7.220, Seattle, WA, 98105, USA.
| | - Jessica R Leschied
- Department of Radiology, Monroe Carell Jr. Children's Hospital, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Neil Lall
- Department of Radiology and Imaging Sciences, Children's Healthcare of Atlanta, Emory University, Atlanta, GA, USA
| | - Hansel J Otero
- Department of Radiology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Nadja Kadom
- Department of Radiology and Imaging Sciences, Children's Healthcare of Atlanta, Emory University, Atlanta, GA, USA
| |
Collapse
|
15
|
McKee H, Brown MJ, Kim HHR, Doo FX, Panet H, Rockall AG, Omary RA, Hanneman K. Planetary Health and Radiology: Why We Should Care and What We Can Do. Radiology 2024; 311:e240219. [PMID: 38652030 DOI: 10.1148/radiol.240219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Climate change adversely affects the well-being of humans and the entire planet. A planetary health framework recognizes that sustaining a healthy planet is essential to achieving individual, community, and global health. Radiology contributes to the climate crisis by generating greenhouse gas (GHG) emissions during the production and use of medical imaging equipment and supplies. To promote planetary health, strategies that mitigate and adapt to climate change in radiology are needed. Mitigation strategies to reduce GHG emissions include switching to renewable energy sources, refurbishing rather than replacing imaging scanners, and powering down unused scanners. Radiology departments must also build resiliency to the now unavoidable impacts of the climate crisis. Adaptation strategies include education, upgrading building infrastructure, and developing departmental sustainability dashboards to track progress in achieving sustainability goals. Shifting practices to catalyze these necessary changes in radiology requires a coordinated approach. This includes partnering with key stakeholders, providing effective communication, and prioritizing high-impact interventions. This article reviews the intersection of planetary health and radiology. Its goals are to emphasize why we should care about sustainability, showcase actions we can take to mitigate our impact, and prepare us to adapt to the effects of climate change. © RSNA, 2024 Supplemental material is available for this article. See also the article by Ibrahim et al in this issue. See also the article by Lenkinski and Rofsky in this issue.
Collapse
Affiliation(s)
- Hayley McKee
- From the Temerty Faculty of Medicine (H.M.) and Department of Medical Imaging (H.M., H.P., K.H.), University of Toronto, Toronto, Ontario, Canada; Department of Radiology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada (M.J.B.); Department of Radiology, Seattle Children's Hospital, University of Washington School of Medicine, Seattle, Wash (H.H.R.K.); University of Maryland Medical Intelligent Imaging (UM2ii) Center, Department of Radiology and Nuclear Medicine, University of Maryland Medical Center, Baltimore, Md (F.X.D.); Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, England (A.G.R.); Department of Radiology, Imperial College Healthcare NHS Trust, London, England (A.G.R.); Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tenn (R.A.O.); Joint Department of Medical Imaging, University Medical Imaging Toronto, Toronto, Ontario, Canada (K.H.); and Toronto General Hospital Research Institute, University Health Network, University of Toronto, 1 PMB-298, 585 University Ave, Toronto, ON, Canada M5G 2N2 (K.H.)
| | - Maura J Brown
- From the Temerty Faculty of Medicine (H.M.) and Department of Medical Imaging (H.M., H.P., K.H.), University of Toronto, Toronto, Ontario, Canada; Department of Radiology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada (M.J.B.); Department of Radiology, Seattle Children's Hospital, University of Washington School of Medicine, Seattle, Wash (H.H.R.K.); University of Maryland Medical Intelligent Imaging (UM2ii) Center, Department of Radiology and Nuclear Medicine, University of Maryland Medical Center, Baltimore, Md (F.X.D.); Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, England (A.G.R.); Department of Radiology, Imperial College Healthcare NHS Trust, London, England (A.G.R.); Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tenn (R.A.O.); Joint Department of Medical Imaging, University Medical Imaging Toronto, Toronto, Ontario, Canada (K.H.); and Toronto General Hospital Research Institute, University Health Network, University of Toronto, 1 PMB-298, 585 University Ave, Toronto, ON, Canada M5G 2N2 (K.H.)
| | - Helen H R Kim
- From the Temerty Faculty of Medicine (H.M.) and Department of Medical Imaging (H.M., H.P., K.H.), University of Toronto, Toronto, Ontario, Canada; Department of Radiology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada (M.J.B.); Department of Radiology, Seattle Children's Hospital, University of Washington School of Medicine, Seattle, Wash (H.H.R.K.); University of Maryland Medical Intelligent Imaging (UM2ii) Center, Department of Radiology and Nuclear Medicine, University of Maryland Medical Center, Baltimore, Md (F.X.D.); Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, England (A.G.R.); Department of Radiology, Imperial College Healthcare NHS Trust, London, England (A.G.R.); Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tenn (R.A.O.); Joint Department of Medical Imaging, University Medical Imaging Toronto, Toronto, Ontario, Canada (K.H.); and Toronto General Hospital Research Institute, University Health Network, University of Toronto, 1 PMB-298, 585 University Ave, Toronto, ON, Canada M5G 2N2 (K.H.)
| | - Florence X Doo
- From the Temerty Faculty of Medicine (H.M.) and Department of Medical Imaging (H.M., H.P., K.H.), University of Toronto, Toronto, Ontario, Canada; Department of Radiology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada (M.J.B.); Department of Radiology, Seattle Children's Hospital, University of Washington School of Medicine, Seattle, Wash (H.H.R.K.); University of Maryland Medical Intelligent Imaging (UM2ii) Center, Department of Radiology and Nuclear Medicine, University of Maryland Medical Center, Baltimore, Md (F.X.D.); Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, England (A.G.R.); Department of Radiology, Imperial College Healthcare NHS Trust, London, England (A.G.R.); Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tenn (R.A.O.); Joint Department of Medical Imaging, University Medical Imaging Toronto, Toronto, Ontario, Canada (K.H.); and Toronto General Hospital Research Institute, University Health Network, University of Toronto, 1 PMB-298, 585 University Ave, Toronto, ON, Canada M5G 2N2 (K.H.)
| | - Hayley Panet
- From the Temerty Faculty of Medicine (H.M.) and Department of Medical Imaging (H.M., H.P., K.H.), University of Toronto, Toronto, Ontario, Canada; Department of Radiology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada (M.J.B.); Department of Radiology, Seattle Children's Hospital, University of Washington School of Medicine, Seattle, Wash (H.H.R.K.); University of Maryland Medical Intelligent Imaging (UM2ii) Center, Department of Radiology and Nuclear Medicine, University of Maryland Medical Center, Baltimore, Md (F.X.D.); Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, England (A.G.R.); Department of Radiology, Imperial College Healthcare NHS Trust, London, England (A.G.R.); Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tenn (R.A.O.); Joint Department of Medical Imaging, University Medical Imaging Toronto, Toronto, Ontario, Canada (K.H.); and Toronto General Hospital Research Institute, University Health Network, University of Toronto, 1 PMB-298, 585 University Ave, Toronto, ON, Canada M5G 2N2 (K.H.)
| | - Andrea G Rockall
- From the Temerty Faculty of Medicine (H.M.) and Department of Medical Imaging (H.M., H.P., K.H.), University of Toronto, Toronto, Ontario, Canada; Department of Radiology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada (M.J.B.); Department of Radiology, Seattle Children's Hospital, University of Washington School of Medicine, Seattle, Wash (H.H.R.K.); University of Maryland Medical Intelligent Imaging (UM2ii) Center, Department of Radiology and Nuclear Medicine, University of Maryland Medical Center, Baltimore, Md (F.X.D.); Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, England (A.G.R.); Department of Radiology, Imperial College Healthcare NHS Trust, London, England (A.G.R.); Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tenn (R.A.O.); Joint Department of Medical Imaging, University Medical Imaging Toronto, Toronto, Ontario, Canada (K.H.); and Toronto General Hospital Research Institute, University Health Network, University of Toronto, 1 PMB-298, 585 University Ave, Toronto, ON, Canada M5G 2N2 (K.H.)
| | - Reed A Omary
- From the Temerty Faculty of Medicine (H.M.) and Department of Medical Imaging (H.M., H.P., K.H.), University of Toronto, Toronto, Ontario, Canada; Department of Radiology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada (M.J.B.); Department of Radiology, Seattle Children's Hospital, University of Washington School of Medicine, Seattle, Wash (H.H.R.K.); University of Maryland Medical Intelligent Imaging (UM2ii) Center, Department of Radiology and Nuclear Medicine, University of Maryland Medical Center, Baltimore, Md (F.X.D.); Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, England (A.G.R.); Department of Radiology, Imperial College Healthcare NHS Trust, London, England (A.G.R.); Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tenn (R.A.O.); Joint Department of Medical Imaging, University Medical Imaging Toronto, Toronto, Ontario, Canada (K.H.); and Toronto General Hospital Research Institute, University Health Network, University of Toronto, 1 PMB-298, 585 University Ave, Toronto, ON, Canada M5G 2N2 (K.H.)
| | - Kate Hanneman
- From the Temerty Faculty of Medicine (H.M.) and Department of Medical Imaging (H.M., H.P., K.H.), University of Toronto, Toronto, Ontario, Canada; Department of Radiology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada (M.J.B.); Department of Radiology, Seattle Children's Hospital, University of Washington School of Medicine, Seattle, Wash (H.H.R.K.); University of Maryland Medical Intelligent Imaging (UM2ii) Center, Department of Radiology and Nuclear Medicine, University of Maryland Medical Center, Baltimore, Md (F.X.D.); Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, England (A.G.R.); Department of Radiology, Imperial College Healthcare NHS Trust, London, England (A.G.R.); Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tenn (R.A.O.); Joint Department of Medical Imaging, University Medical Imaging Toronto, Toronto, Ontario, Canada (K.H.); and Toronto General Hospital Research Institute, University Health Network, University of Toronto, 1 PMB-298, 585 University Ave, Toronto, ON, Canada M5G 2N2 (K.H.)
| |
Collapse
|
16
|
Chaban YV, Vosshenrich J, McKee H, Gunasekaran S, Brown MJ, Atalay MK, Heye T, Markl M, Woolen SA, Simonetti OP, Hanneman K. Environmental Sustainability and MRI: Challenges, Opportunities, and a Call for Action. J Magn Reson Imaging 2024; 59:1149-1167. [PMID: 37694980 DOI: 10.1002/jmri.28994] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023] Open
Abstract
The environmental impact of magnetic resonance imaging (MRI) has recently come into focus. This includes its enormous demand for electricity compared to other imaging modalities and contamination of water bodies with anthropogenic gadolinium related to contrast administration. Given the pressing threat of climate change, addressing these challenges to improve the environmental sustainability of MRI is imperative. The purpose of this review is to discuss the challenges, opportunities, and the need for action to reduce the environmental impact of MRI and prepare for the effects of climate change. The approaches outlined are categorized as strategies to reduce greenhouse gas (GHG) emissions from MRI during production and use phases, approaches to reduce the environmental impact of MRI including the preservation of finite resources, and development of adaption plans to prepare for the impact of climate change. Co-benefits of these strategies are emphasized including lower GHG emission and reduced cost along with improved heath and patient satisfaction. Although MRI is energy-intensive, there are many steps that can be taken now to improve the environmental sustainability of MRI and prepare for the effects of climate change. On-going research, technical development, and collaboration with industry partners are needed to achieve further reductions in MRI-related GHG emissions and to decrease the reliance on finite resources. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 6.
Collapse
Affiliation(s)
- Yuri V Chaban
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jan Vosshenrich
- Department of Radiology, University Hospital Basel, Basel, Switzerland
| | - Hayley McKee
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Suvai Gunasekaran
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Maura J Brown
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael K Atalay
- Department of Diagnostic Imaging, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Tobias Heye
- Department of Radiology, University Hospital Basel, Basel, Switzerland
| | - Michael Markl
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA
| | - Sean A Woolen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | | | - Kate Hanneman
- Department of Medical Imaging, University Medical Imaging Toronto, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Rovira À, Ben Salem D, Geraldo AF, Cappelle S, Del Poggio A, Cocozza S, Saatci I, Zlatareva D, Lojo S, Quattrocchi CC, Morales Á, Yousry T. Go Green in Neuroradiology: towards reducing the environmental impact of its practice. Neuroradiology 2024; 66:463-476. [PMID: 38353699 DOI: 10.1007/s00234-024-03305-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/03/2024] [Indexed: 02/23/2024]
Abstract
Raising public awareness about the relevance of supporting sustainable practices is required owing to the phenomena of global warming caused by the rising production of greenhouse gases. The healthcare sector generates a relevant proportion of the total carbon emissions in developed countries, and radiology is estimated to be a major contributor to this carbon footprint. Neuroradiology markedly contributes to this negative environmental effect, as this radiological subspecialty generates a high proportion of diagnostic and interventional imaging procedures, the majority of them requiring high energy-intensive equipment. Therefore, neuroradiologists and neuroradiological departments are especially responsible for implementing decisions and initiatives able to reduce the unfavourable environmental effects of their activities, by focusing on four strategic pillars-reducing energy, water, and helium use; properly recycling and/or disposing of waste and residues (including contrast media); encouraging environmentally friendly behaviour; and reducing the effects of ionizing radiation on the environment. The purpose of this article is to alert neuroradiologists about their environmental responsibilities and to analyse the most productive strategic axes, goals, and lines of action that contribute to reducing the environmental impact associated with their professional activities.
Collapse
Affiliation(s)
- Àlex Rovira
- Section of Neuroradiology, Department of Radiology (IDI), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain.
| | | | - Ana Filipa Geraldo
- Diagnostic Neuroradiology Unit, Department of Radiology, Centro Hospitalar Vila Nova de Gaia/Espinho (CHVNG/E), Porto, Portugal
| | - Sarah Cappelle
- Department of Radiology, University Hospitals Leuven, Louvain, Belgium
| | - Anna Del Poggio
- Department of Neuroradiology and CERMAC, San Raffaele Hospital, Milan, Italy
| | - Sirio Cocozza
- Department of Advanced Biomedical Sciences, University of Naples, "Federico II", Naples, Italy
| | - Isil Saatci
- Section of Neurointervention, Neuroradiology, Private Koru Hospitals, Ankara, Turkey
| | - Dora Zlatareva
- Department of Radiology, Medical University Sofia, Sofia, Bulgaria
| | - Sara Lojo
- Department of Radiology, Hospital Álvaro Cunqueiro, Vigo, Spain
| | - Carlo Cosimo Quattrocchi
- Centre for Medical Sciences CISMed, University of Trento, Trento, Italy
- Radiology, Multizonal Unit of Rovereto and Arco, APSS Provincia Autonoma Di Trento, Trento, Italy
| | - Ángel Morales
- Department of Radiology, Hospital Universitario Donostia, San Sebastián, Spain
| | - Tarek Yousry
- Lysholm Department of Neuroradiology, UCLH National Hospital for Neurology and Neurosurgery, Neuroradiological Academic Unit, UCL Institute of Neurology, London, UK
| |
Collapse
|
18
|
Ibrahim F, Cadour F, Campbell-Washburn AE, Allen BD, Vosshenrich J, Brown MJ, Thavendiranathan P, Hanneman K, Moy L. Energy and Greenhouse Gas Emission Savings Associated with Implementation of an Abbreviated Cardiac MRI Protocol. Radiology 2024; 311:e240588. [PMID: 38652029 PMCID: PMC11070609 DOI: 10.1148/radiol.240588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/25/2024]
Abstract
Supplemental material is available for this article. See also the article by Lenkinski and Rofsky in this issue. See also the article by McKee et al in this issue.
Collapse
Affiliation(s)
- Fadi Ibrahim
- From the Department of Medical Imaging, University Medical Imaging
Toronto, University of Toronto, Toronto, Ontario, Canada (F.I., F.C., P.T.,
K.H.); Cardiovascular Branch, Division of Intramural Research, National Heart,
Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
(A.E.C.W.); Department of Radiology, Northwestern University Feinberg School of
Medicine, Chicago, Ill (B.D.A.); Department of Radiology, University Hospital
Basel, Basel, Switzerland (J.V.); Department of Radiology, Faculty of Medicine,
University of British Columbia, Vancouver, Canada (M.J.B.); Division of
Cardiology, Peter Munk Cardiac Centre, University Health Network, University of
Toronto, Toronto, Ontario, Canada (P.T.); and Toronto General Hospital Research
Institute, University Health Network, University of Toronto, 585 University Ave,
1 PMB-298, Toronto, ON, Canada M5G 2N2 (P.T., K.H.)
| | - Farah Cadour
- From the Department of Medical Imaging, University Medical Imaging
Toronto, University of Toronto, Toronto, Ontario, Canada (F.I., F.C., P.T.,
K.H.); Cardiovascular Branch, Division of Intramural Research, National Heart,
Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
(A.E.C.W.); Department of Radiology, Northwestern University Feinberg School of
Medicine, Chicago, Ill (B.D.A.); Department of Radiology, University Hospital
Basel, Basel, Switzerland (J.V.); Department of Radiology, Faculty of Medicine,
University of British Columbia, Vancouver, Canada (M.J.B.); Division of
Cardiology, Peter Munk Cardiac Centre, University Health Network, University of
Toronto, Toronto, Ontario, Canada (P.T.); and Toronto General Hospital Research
Institute, University Health Network, University of Toronto, 585 University Ave,
1 PMB-298, Toronto, ON, Canada M5G 2N2 (P.T., K.H.)
| | - Adrienne E. Campbell-Washburn
- From the Department of Medical Imaging, University Medical Imaging
Toronto, University of Toronto, Toronto, Ontario, Canada (F.I., F.C., P.T.,
K.H.); Cardiovascular Branch, Division of Intramural Research, National Heart,
Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
(A.E.C.W.); Department of Radiology, Northwestern University Feinberg School of
Medicine, Chicago, Ill (B.D.A.); Department of Radiology, University Hospital
Basel, Basel, Switzerland (J.V.); Department of Radiology, Faculty of Medicine,
University of British Columbia, Vancouver, Canada (M.J.B.); Division of
Cardiology, Peter Munk Cardiac Centre, University Health Network, University of
Toronto, Toronto, Ontario, Canada (P.T.); and Toronto General Hospital Research
Institute, University Health Network, University of Toronto, 585 University Ave,
1 PMB-298, Toronto, ON, Canada M5G 2N2 (P.T., K.H.)
| | - Bradley D. Allen
- From the Department of Medical Imaging, University Medical Imaging
Toronto, University of Toronto, Toronto, Ontario, Canada (F.I., F.C., P.T.,
K.H.); Cardiovascular Branch, Division of Intramural Research, National Heart,
Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
(A.E.C.W.); Department of Radiology, Northwestern University Feinberg School of
Medicine, Chicago, Ill (B.D.A.); Department of Radiology, University Hospital
Basel, Basel, Switzerland (J.V.); Department of Radiology, Faculty of Medicine,
University of British Columbia, Vancouver, Canada (M.J.B.); Division of
Cardiology, Peter Munk Cardiac Centre, University Health Network, University of
Toronto, Toronto, Ontario, Canada (P.T.); and Toronto General Hospital Research
Institute, University Health Network, University of Toronto, 585 University Ave,
1 PMB-298, Toronto, ON, Canada M5G 2N2 (P.T., K.H.)
| | - Jan Vosshenrich
- From the Department of Medical Imaging, University Medical Imaging
Toronto, University of Toronto, Toronto, Ontario, Canada (F.I., F.C., P.T.,
K.H.); Cardiovascular Branch, Division of Intramural Research, National Heart,
Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
(A.E.C.W.); Department of Radiology, Northwestern University Feinberg School of
Medicine, Chicago, Ill (B.D.A.); Department of Radiology, University Hospital
Basel, Basel, Switzerland (J.V.); Department of Radiology, Faculty of Medicine,
University of British Columbia, Vancouver, Canada (M.J.B.); Division of
Cardiology, Peter Munk Cardiac Centre, University Health Network, University of
Toronto, Toronto, Ontario, Canada (P.T.); and Toronto General Hospital Research
Institute, University Health Network, University of Toronto, 585 University Ave,
1 PMB-298, Toronto, ON, Canada M5G 2N2 (P.T., K.H.)
| | - Maura J. Brown
- From the Department of Medical Imaging, University Medical Imaging
Toronto, University of Toronto, Toronto, Ontario, Canada (F.I., F.C., P.T.,
K.H.); Cardiovascular Branch, Division of Intramural Research, National Heart,
Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
(A.E.C.W.); Department of Radiology, Northwestern University Feinberg School of
Medicine, Chicago, Ill (B.D.A.); Department of Radiology, University Hospital
Basel, Basel, Switzerland (J.V.); Department of Radiology, Faculty of Medicine,
University of British Columbia, Vancouver, Canada (M.J.B.); Division of
Cardiology, Peter Munk Cardiac Centre, University Health Network, University of
Toronto, Toronto, Ontario, Canada (P.T.); and Toronto General Hospital Research
Institute, University Health Network, University of Toronto, 585 University Ave,
1 PMB-298, Toronto, ON, Canada M5G 2N2 (P.T., K.H.)
| | - Paaladinesh Thavendiranathan
- From the Department of Medical Imaging, University Medical Imaging
Toronto, University of Toronto, Toronto, Ontario, Canada (F.I., F.C., P.T.,
K.H.); Cardiovascular Branch, Division of Intramural Research, National Heart,
Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
(A.E.C.W.); Department of Radiology, Northwestern University Feinberg School of
Medicine, Chicago, Ill (B.D.A.); Department of Radiology, University Hospital
Basel, Basel, Switzerland (J.V.); Department of Radiology, Faculty of Medicine,
University of British Columbia, Vancouver, Canada (M.J.B.); Division of
Cardiology, Peter Munk Cardiac Centre, University Health Network, University of
Toronto, Toronto, Ontario, Canada (P.T.); and Toronto General Hospital Research
Institute, University Health Network, University of Toronto, 585 University Ave,
1 PMB-298, Toronto, ON, Canada M5G 2N2 (P.T., K.H.)
| | - Kate Hanneman
- From the Department of Medical Imaging, University Medical Imaging
Toronto, University of Toronto, Toronto, Ontario, Canada (F.I., F.C., P.T.,
K.H.); Cardiovascular Branch, Division of Intramural Research, National Heart,
Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
(A.E.C.W.); Department of Radiology, Northwestern University Feinberg School of
Medicine, Chicago, Ill (B.D.A.); Department of Radiology, University Hospital
Basel, Basel, Switzerland (J.V.); Department of Radiology, Faculty of Medicine,
University of British Columbia, Vancouver, Canada (M.J.B.); Division of
Cardiology, Peter Munk Cardiac Centre, University Health Network, University of
Toronto, Toronto, Ontario, Canada (P.T.); and Toronto General Hospital Research
Institute, University Health Network, University of Toronto, 585 University Ave,
1 PMB-298, Toronto, ON, Canada M5G 2N2 (P.T., K.H.)
| | - Linda Moy
- From the Department of Medical Imaging, University Medical Imaging
Toronto, University of Toronto, Toronto, Ontario, Canada (F.I., F.C., P.T.,
K.H.); Cardiovascular Branch, Division of Intramural Research, National Heart,
Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
(A.E.C.W.); Department of Radiology, Northwestern University Feinberg School of
Medicine, Chicago, Ill (B.D.A.); Department of Radiology, University Hospital
Basel, Basel, Switzerland (J.V.); Department of Radiology, Faculty of Medicine,
University of British Columbia, Vancouver, Canada (M.J.B.); Division of
Cardiology, Peter Munk Cardiac Centre, University Health Network, University of
Toronto, Toronto, Ontario, Canada (P.T.); and Toronto General Hospital Research
Institute, University Health Network, University of Toronto, 585 University Ave,
1 PMB-298, Toronto, ON, Canada M5G 2N2 (P.T., K.H.)
| |
Collapse
|
19
|
Chodorowski M, Ognard J, Rovira À, Gentric JC, Bourhis D, Ben Salem D. Energy consumption in MRI: Determinants and management options. J Neuroradiol 2024; 51:182-189. [PMID: 38065429 DOI: 10.1016/j.neurad.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/22/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Energy consumption awareness is a known concern, and radiology departments have energy-intensive consuming machines. The means of energy consumption management in MRI scanners have yet to be evaluated. PURPOSE To measure the MRI energy consumption and to evaluate the means to reduce it. MATERIALS AND METHODS Data was retrieved for two MRI scanners through the hospital's automated energy consumption measurement software. After correlation with picture archiving and communication system (PACS) files, they were segmented by machine and mode (as follows: stand-by, idle and active) and analyzed. Active mode data for a specific brain MRI protocol have been isolated, and equivalent low energy consuming protocol was made. Both were performed on phantom and compared. Same protocol was performed on a phantom using 3.0T 16 and 32 head channels coils. Multiples sequences were acquired on phantom to evaluate power consumption. RESULTS Stand-by mode accounted for 60 % of machine time and 40 % of energy consumption, active mode accounted for 20 % machine time and 40 % energy consumption, idle mode for 20 % imachine time and 20 % consumption. DWI and TOF sequences were the most consuming in our brain-MRI protocol. The low energy consuming protocol allowed a saving of approximately 10 % of energy consumption, which amounted for 0.20€ for each examination. This difference was mainly due to an energy consumption reduction of the DWI sequence. There were no difference in consumption between a 3.0T 16 and 32 channels head coils. Sequence's active power and duration (especially considering slice thickness) have to be taken into account when trying to optimize energy consumption. CONCLUSION There are two key factors to consider when trying to reduce MRI scan energy consumption. Stand-by mode energy consumption has to be taken into account when choosing an MRI scan, as it can't be changed further on. Active mode energy consumption is dependent of the MRI protocols used, and can be reduced with sequences adaptation, which must take into account sequence's active power and duration, on top of image quality.
Collapse
Affiliation(s)
- Mateusz Chodorowski
- Service d'Imagerie Médicale, CHU Brest, Univ. Brest, Boulevard Tanguy Prigent, Brest CEDEX, 29609, France.
| | - Julien Ognard
- Service d'Imagerie Médicale, CHU Brest, Univ. Brest, Boulevard Tanguy Prigent, Brest CEDEX, 29609, France; INSERM UMR 1101, Laboratoire de Traitement de L'Information Médicale - LaTIM, Université de Bretagne Occidentale, 22, Avenue C. Desmoulins, Brest 29238 Cedex 3, France
| | - Àlex Rovira
- Section of Neuroradiology, Department of Radiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain
| | - Jean-Christophe Gentric
- Service d'Imagerie Médicale, CHU Brest, Univ. Brest, Boulevard Tanguy Prigent, Brest CEDEX, 29609, France; Inserm, UMR 1304 (GETBO), Western Brittany Thrombosis Study Group, Université de Bretagne Occidentale, Brest, France
| | - David Bourhis
- Inserm, UMR 1304 (GETBO), Western Brittany Thrombosis Study Group, Université de Bretagne Occidentale, Brest, France; Service de Physique Médicale, CHU Brest, France
| | - Douraied Ben Salem
- Service d'Imagerie Médicale, CHU Brest, Univ. Brest, Boulevard Tanguy Prigent, Brest CEDEX, 29609, France; INSERM UMR 1101, Laboratoire de Traitement de L'Information Médicale - LaTIM, Université de Bretagne Occidentale, 22, Avenue C. Desmoulins, Brest 29238 Cedex 3, France
| |
Collapse
|
20
|
Roletto A, Zanardo M, Bonfitto GR, Catania D, Sardanelli F, Zanoni S. The environmental impact of energy consumption and carbon emissions in radiology departments: a systematic review. Eur Radiol Exp 2024; 8:35. [PMID: 38418763 PMCID: PMC10902235 DOI: 10.1186/s41747-024-00424-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/18/2023] [Indexed: 03/02/2024] Open
Abstract
OBJECTIVES Energy consumption and carbon emissions from medical equipment like CT/MRI scanners and workstations contribute to the environmental impact of healthcare facilities. The aim of this systematic review was to identify all strategies to reduce energy use and carbon emissions in radiology. METHODS In June 2023, a systematic review (Medline/Embase/Web of Science) was performed to search original articles on environmental sustainability in radiology. The extracted data include environmental sustainability topics (e.g., energy consumption, carbon footprint) and radiological devices involved. Sustainable actions and environmental impact in radiology settings were analyzed. Study quality was assessed using the QualSyst tool. RESULTS From 918 retrieved articles, 16 met the inclusion criteria. Among them, main topics were energy consumption (10/16, 62.5%), life-cycle assessment (4/16, 25.0%), and carbon footprint (2/16, 12.5%). Eleven studies reported that 40-91% of the energy consumed by radiological devices can be defined as "nonproductive" (devices "on" but not working). Turning-off devices during idle periods 9/16 (56.2%) and implementing workflow informatic tools (2/16, 12.5%) were the sustainable actions identified. Energy-saving strategies were reported in 8/16 articles (50%), estimating annual savings of thousand kilowatt-hours (14,180-171,000 kWh). Cost-savings were identified in 7/16 (43.7%) articles, ranging from US $9,225 to 14,328 per device. Study quality was over or equal the 80% of high-quality level in 14/16 (87.5%) articles. CONCLUSION Energy consumption and environmental sustainability in radiology received attention in literature. Sustainable actions include turning-off radiological devices during idle periods, favoring the most energy-efficient imaging devices, and educating radiological staff on energy-saving practices, without compromising service quality. RELEVANCE STATEMENT A non-negligible number of articles - mainly coming from North America and Europe - highlighted the need for energy-saving strategies, attention to equipment life-cycle assessment, and carbon footprint reduction in radiology, with a potential for cost-saving outcome. KEY POINTS • Energy consumption and environmental sustainability in radiology received attention in the literature (16 articles published from 2010 to 2023). • A substantial portion (40-91%) of the energy consumed by radiological devices was classified as "non-productive" (devices "on" but not working). • Sustainable action such as shutting down devices during idle periods was identified, with potential annual energy savings ranging from 14,180 to 171,000 kWh.
Collapse
Affiliation(s)
- Andrea Roletto
- Department of Mechanical and Industrial Engineering, Università degli Studi di Brescia, Via Branze 38, 25123, Brescia, Italy.
| | - Moreno Zanardo
- Radiology Unit, IRCCS Policlinico San Donato, Via Morandi 30, 20097, San Donato Milanese, Italy
| | - Giuseppe Roberto Bonfitto
- Department of Information Engineering, Università degli Studi di Brescia, Via Branze 38, 25123, Brescia, Italy
| | - Diego Catania
- Health Professions Leadership and Management Unit, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Francesco Sardanelli
- Radiology Unit, IRCCS Policlinico San Donato, Via Morandi 30, 20097, San Donato Milanese, Italy
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Mangiagalli 31, 20133, Milan, Italy
| | - Simone Zanoni
- Department of Civil, Environmental, Architectural Engineering and Mathematics, Università degli Studi di Brescia, Via Branze 43, 25123, Brescia, Italy
| |
Collapse
|
21
|
Doo FX, Vosshenrich J, Cook TS, Moy L, Almeida EP, Woolen SA, Gichoya JW, Heye T, Hanneman K. Environmental Sustainability and AI in Radiology: A Double-Edged Sword. Radiology 2024; 310:e232030. [PMID: 38411520 PMCID: PMC10902597 DOI: 10.1148/radiol.232030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/21/2023] [Accepted: 11/17/2023] [Indexed: 02/28/2024]
Abstract
According to the World Health Organization, climate change is the single biggest health threat facing humanity. The global health care system, including medical imaging, must manage the health effects of climate change while at the same time addressing the large amount of greenhouse gas (GHG) emissions generated in the delivery of care. Data centers and computational efforts are increasingly large contributors to GHG emissions in radiology. This is due to the explosive increase in big data and artificial intelligence (AI) applications that have resulted in large energy requirements for developing and deploying AI models. However, AI also has the potential to improve environmental sustainability in medical imaging. For example, use of AI can shorten MRI scan times with accelerated acquisition times, improve the scheduling efficiency of scanners, and optimize the use of decision-support tools to reduce low-value imaging. The purpose of this Radiology in Focus article is to discuss this duality at the intersection of environmental sustainability and AI in radiology. Further discussed are strategies and opportunities to decrease AI-related emissions and to leverage AI to improve sustainability in radiology, with a focus on health equity. Co-benefits of these strategies are explored, including lower cost and improved patient outcomes. Finally, knowledge gaps and areas for future research are highlighted.
Collapse
Affiliation(s)
- Florence X. Doo
- From the University of Maryland Medical Intelligent Imaging (UM2ii)
Center, Department of Radiology and Nuclear Medicine, University of Maryland,
Baltimore, MD (F.X.D.); Department of Radiology, University Hospital Basel,
Basel, Switzerland (J.V., T.H.); Department of Radiology, New York University,
New York, NY (J.V., L.M.); Department of Radiology, Perelman School of Medicine
at the University of Pennsylvania, Philadelphia, Pa (T.S.C.); Joint Department
of Medical Imaging, University Health Network, Toronto, Ontario, Canada
(E.P.R.P.A., K.H.); Department of Radiology and Biomedical Imaging, University
of California San Francisco, San Francisco, Calif (S.A.W.); Department of
Radiology and Imaging Sciences, Emory University, Atlanta, Ga (J.W.G.); Toronto
General Hospital Research Institute, University Health Network, University of
Toronto, 585 University Ave, 1 PMB-298, Toronto, ON, Cananda M5G 2N2 (K.H.); and
Department of Medical Imaging, University Medical Imaging Toronto, University of
Toronto, Toronto, Ontario, Canada (K.H.)
| | - Jan Vosshenrich
- From the University of Maryland Medical Intelligent Imaging (UM2ii)
Center, Department of Radiology and Nuclear Medicine, University of Maryland,
Baltimore, MD (F.X.D.); Department of Radiology, University Hospital Basel,
Basel, Switzerland (J.V., T.H.); Department of Radiology, New York University,
New York, NY (J.V., L.M.); Department of Radiology, Perelman School of Medicine
at the University of Pennsylvania, Philadelphia, Pa (T.S.C.); Joint Department
of Medical Imaging, University Health Network, Toronto, Ontario, Canada
(E.P.R.P.A., K.H.); Department of Radiology and Biomedical Imaging, University
of California San Francisco, San Francisco, Calif (S.A.W.); Department of
Radiology and Imaging Sciences, Emory University, Atlanta, Ga (J.W.G.); Toronto
General Hospital Research Institute, University Health Network, University of
Toronto, 585 University Ave, 1 PMB-298, Toronto, ON, Cananda M5G 2N2 (K.H.); and
Department of Medical Imaging, University Medical Imaging Toronto, University of
Toronto, Toronto, Ontario, Canada (K.H.)
| | - Tessa S. Cook
- From the University of Maryland Medical Intelligent Imaging (UM2ii)
Center, Department of Radiology and Nuclear Medicine, University of Maryland,
Baltimore, MD (F.X.D.); Department of Radiology, University Hospital Basel,
Basel, Switzerland (J.V., T.H.); Department of Radiology, New York University,
New York, NY (J.V., L.M.); Department of Radiology, Perelman School of Medicine
at the University of Pennsylvania, Philadelphia, Pa (T.S.C.); Joint Department
of Medical Imaging, University Health Network, Toronto, Ontario, Canada
(E.P.R.P.A., K.H.); Department of Radiology and Biomedical Imaging, University
of California San Francisco, San Francisco, Calif (S.A.W.); Department of
Radiology and Imaging Sciences, Emory University, Atlanta, Ga (J.W.G.); Toronto
General Hospital Research Institute, University Health Network, University of
Toronto, 585 University Ave, 1 PMB-298, Toronto, ON, Cananda M5G 2N2 (K.H.); and
Department of Medical Imaging, University Medical Imaging Toronto, University of
Toronto, Toronto, Ontario, Canada (K.H.)
| | - Linda Moy
- From the University of Maryland Medical Intelligent Imaging (UM2ii)
Center, Department of Radiology and Nuclear Medicine, University of Maryland,
Baltimore, MD (F.X.D.); Department of Radiology, University Hospital Basel,
Basel, Switzerland (J.V., T.H.); Department of Radiology, New York University,
New York, NY (J.V., L.M.); Department of Radiology, Perelman School of Medicine
at the University of Pennsylvania, Philadelphia, Pa (T.S.C.); Joint Department
of Medical Imaging, University Health Network, Toronto, Ontario, Canada
(E.P.R.P.A., K.H.); Department of Radiology and Biomedical Imaging, University
of California San Francisco, San Francisco, Calif (S.A.W.); Department of
Radiology and Imaging Sciences, Emory University, Atlanta, Ga (J.W.G.); Toronto
General Hospital Research Institute, University Health Network, University of
Toronto, 585 University Ave, 1 PMB-298, Toronto, ON, Cananda M5G 2N2 (K.H.); and
Department of Medical Imaging, University Medical Imaging Toronto, University of
Toronto, Toronto, Ontario, Canada (K.H.)
| | - Eduardo P.R.P. Almeida
- From the University of Maryland Medical Intelligent Imaging (UM2ii)
Center, Department of Radiology and Nuclear Medicine, University of Maryland,
Baltimore, MD (F.X.D.); Department of Radiology, University Hospital Basel,
Basel, Switzerland (J.V., T.H.); Department of Radiology, New York University,
New York, NY (J.V., L.M.); Department of Radiology, Perelman School of Medicine
at the University of Pennsylvania, Philadelphia, Pa (T.S.C.); Joint Department
of Medical Imaging, University Health Network, Toronto, Ontario, Canada
(E.P.R.P.A., K.H.); Department of Radiology and Biomedical Imaging, University
of California San Francisco, San Francisco, Calif (S.A.W.); Department of
Radiology and Imaging Sciences, Emory University, Atlanta, Ga (J.W.G.); Toronto
General Hospital Research Institute, University Health Network, University of
Toronto, 585 University Ave, 1 PMB-298, Toronto, ON, Cananda M5G 2N2 (K.H.); and
Department of Medical Imaging, University Medical Imaging Toronto, University of
Toronto, Toronto, Ontario, Canada (K.H.)
| | - Sean A. Woolen
- From the University of Maryland Medical Intelligent Imaging (UM2ii)
Center, Department of Radiology and Nuclear Medicine, University of Maryland,
Baltimore, MD (F.X.D.); Department of Radiology, University Hospital Basel,
Basel, Switzerland (J.V., T.H.); Department of Radiology, New York University,
New York, NY (J.V., L.M.); Department of Radiology, Perelman School of Medicine
at the University of Pennsylvania, Philadelphia, Pa (T.S.C.); Joint Department
of Medical Imaging, University Health Network, Toronto, Ontario, Canada
(E.P.R.P.A., K.H.); Department of Radiology and Biomedical Imaging, University
of California San Francisco, San Francisco, Calif (S.A.W.); Department of
Radiology and Imaging Sciences, Emory University, Atlanta, Ga (J.W.G.); Toronto
General Hospital Research Institute, University Health Network, University of
Toronto, 585 University Ave, 1 PMB-298, Toronto, ON, Cananda M5G 2N2 (K.H.); and
Department of Medical Imaging, University Medical Imaging Toronto, University of
Toronto, Toronto, Ontario, Canada (K.H.)
| | - Judy Wawira Gichoya
- From the University of Maryland Medical Intelligent Imaging (UM2ii)
Center, Department of Radiology and Nuclear Medicine, University of Maryland,
Baltimore, MD (F.X.D.); Department of Radiology, University Hospital Basel,
Basel, Switzerland (J.V., T.H.); Department of Radiology, New York University,
New York, NY (J.V., L.M.); Department of Radiology, Perelman School of Medicine
at the University of Pennsylvania, Philadelphia, Pa (T.S.C.); Joint Department
of Medical Imaging, University Health Network, Toronto, Ontario, Canada
(E.P.R.P.A., K.H.); Department of Radiology and Biomedical Imaging, University
of California San Francisco, San Francisco, Calif (S.A.W.); Department of
Radiology and Imaging Sciences, Emory University, Atlanta, Ga (J.W.G.); Toronto
General Hospital Research Institute, University Health Network, University of
Toronto, 585 University Ave, 1 PMB-298, Toronto, ON, Cananda M5G 2N2 (K.H.); and
Department of Medical Imaging, University Medical Imaging Toronto, University of
Toronto, Toronto, Ontario, Canada (K.H.)
| | - Tobias Heye
- From the University of Maryland Medical Intelligent Imaging (UM2ii)
Center, Department of Radiology and Nuclear Medicine, University of Maryland,
Baltimore, MD (F.X.D.); Department of Radiology, University Hospital Basel,
Basel, Switzerland (J.V., T.H.); Department of Radiology, New York University,
New York, NY (J.V., L.M.); Department of Radiology, Perelman School of Medicine
at the University of Pennsylvania, Philadelphia, Pa (T.S.C.); Joint Department
of Medical Imaging, University Health Network, Toronto, Ontario, Canada
(E.P.R.P.A., K.H.); Department of Radiology and Biomedical Imaging, University
of California San Francisco, San Francisco, Calif (S.A.W.); Department of
Radiology and Imaging Sciences, Emory University, Atlanta, Ga (J.W.G.); Toronto
General Hospital Research Institute, University Health Network, University of
Toronto, 585 University Ave, 1 PMB-298, Toronto, ON, Cananda M5G 2N2 (K.H.); and
Department of Medical Imaging, University Medical Imaging Toronto, University of
Toronto, Toronto, Ontario, Canada (K.H.)
| | - Kate Hanneman
- From the University of Maryland Medical Intelligent Imaging (UM2ii)
Center, Department of Radiology and Nuclear Medicine, University of Maryland,
Baltimore, MD (F.X.D.); Department of Radiology, University Hospital Basel,
Basel, Switzerland (J.V., T.H.); Department of Radiology, New York University,
New York, NY (J.V., L.M.); Department of Radiology, Perelman School of Medicine
at the University of Pennsylvania, Philadelphia, Pa (T.S.C.); Joint Department
of Medical Imaging, University Health Network, Toronto, Ontario, Canada
(E.P.R.P.A., K.H.); Department of Radiology and Biomedical Imaging, University
of California San Francisco, San Francisco, Calif (S.A.W.); Department of
Radiology and Imaging Sciences, Emory University, Atlanta, Ga (J.W.G.); Toronto
General Hospital Research Institute, University Health Network, University of
Toronto, 585 University Ave, 1 PMB-298, Toronto, ON, Cananda M5G 2N2 (K.H.); and
Department of Medical Imaging, University Medical Imaging Toronto, University of
Toronto, Toronto, Ontario, Canada (K.H.)
| |
Collapse
|
22
|
Truhn D, Müller-Franzes G, Kather JN. The ecological footprint of medical AI. Eur Radiol 2024; 34:1176-1178. [PMID: 37580599 PMCID: PMC10853292 DOI: 10.1007/s00330-023-10123-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/23/2023] [Accepted: 08/01/2023] [Indexed: 08/16/2023]
Affiliation(s)
- Daniel Truhn
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Aachen, Germany.
| | - Gustav Müller-Franzes
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Jakob Nikolas Kather
- Else Kroener Fresenius Center for Digital Health, Technical University Dresden, Dresden, Germany
- Department of Medicine I, University Hospital Dresden, Dresden, Germany
- Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
23
|
Mariampillai J, Rockall A, Manuellian C, Cartwright S, Taylor S, Deng M, Sheard S. The green and sustainable radiology department. RADIOLOGIE (HEIDELBERG, GERMANY) 2023; 63:21-26. [PMID: 37721584 PMCID: PMC10689521 DOI: 10.1007/s00117-023-01189-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/18/2023] [Indexed: 09/19/2023]
Abstract
As manmade climate change threatens the health of the planet, it is important that we understand and address the contribution of healthcare to global emissions. Medical imaging is a significant contributor to overall emissions. This article aims to highlight key issues and examples of sustainable practices, in order to empower radiologists to make a change within their department.
Collapse
Affiliation(s)
| | - Andrea Rockall
- Clinical Chair of Radiology, Department of Cancer and Surgery, Faculty of Medicine, Imperial College London, London, UK.
| | | | | | | | | | | |
Collapse
|
24
|
Merkle EM, Bamberg F, Vosshenrich J. The Impact of Modern Imaging Techniques on Carbon Footprints: Relevance and Outlook. Eur Urol Focus 2023; 9:891-893. [PMID: 37758613 DOI: 10.1016/j.euf.2023.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
It is estimated that the health care sector accounts for 4.0-8.5% of total global CO2 emissions, with medical imaging representing an energy-intensive contributor. We outline the carbon footprint of the imaging modalities most relevant to urology and list practical recommendations that can have a positive impact on sustainability. PATIENT SUMMARY: Energy use for medical imaging scans is a significant contributor to carbon emissions by the health care sector. Steps to improve sustainability can include choosing the least energy-intensive option among the scan types suitable for each patient and condition, and switching off equipment when it is not in use.
Collapse
Affiliation(s)
- Elmar M Merkle
- Department of Radiology, University Hospitals Basel, Basel, Switzerland.
| | - Fabian Bamberg
- Department of Diagnostic and Interventional Radiology, University of Freiburg Medical Center, Freiburg, Germany
| | - Jan Vosshenrich
- Department of Radiology, University Hospitals Basel, Basel, Switzerland
| |
Collapse
|
25
|
Anudjo MNK, Vitale C, Elshami W, Hancock A, Adeleke S, Franklin JM, Akudjedu TN. Considerations for environmental sustainability in clinical radiology and radiotherapy practice: A systematic literature review and recommendations for a greener practice. Radiography (Lond) 2023; 29:1077-1092. [PMID: 37757675 DOI: 10.1016/j.radi.2023.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
INTRODUCTION Environmental sustainability (ES) in healthcare is an important current challenge in the wider context of reducing the environmental impacts of human activity. Identifying key routes to making clinical radiology and radiotherapy (CRR) practice more environmentally sustainable will provide a framework for delivering greener clinical services. This study sought to explore and integrate current evidence regarding ES in CRR departments, to provide a comprehensive guide for greener practice, education, and research. METHODS A systematic literature search and review of studies of diverse evidence including qualitative, quantitative, and mixed methods approach was completed across six databases. The Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines and the Quality Assessment Tool for Studies with Diverse Designs (QATSDD) was used to assess the included studies. A result-based convergent data synthesis approach was employed to integrate the study findings. RESULTS A total of 162 articles were identified. After applying a predefined exclusion criterion, fourteen articles were eligible. Three themes emerged as potentially important areas of CRR practice that contribute to environmental footprint: energy consumption and data storage practices; usage of clinical consumables and waste management practices; and CRR activities related to staff and patient travel. CONCLUSIONS Key components of CRR practice that influence environmental impact were identified, which could serve as a framework for exploring greener practice interventions. Widening the scope of research, education and awareness is imperative to providing a holistic appreciation of the environmental burden of healthcare. IMPLICATIONS FOR PRACTICE Encouraging eco-friendly travelling options, leveraging artificial Intelligence (AI) and CRR specific policies to optimise utilisation of resources such as energy and radiopharmaceuticals are recommended for a greener practice.
Collapse
Affiliation(s)
- M N K Anudjo
- Institute of Medical Imaging & Visualisation, Department of Medical Science & Public Health, Faculty of Health & Social Sciences, Bournemouth University, UK
| | - C Vitale
- Institute of Medical Imaging & Visualisation, Department of Medical Science & Public Health, Faculty of Health & Social Sciences, Bournemouth University, UK; IRCCS San Raffaele Hospital, Milan, Italy
| | - W Elshami
- Department of Medical Diagnostic Imaging, College of Health Sciences, University of Sharjah, United Arab Emirates
| | - A Hancock
- Department of Medical Imaging, University of Exeter, Exeter, UK
| | - S Adeleke
- School of Cancer & Pharmaceutical Sciences, King's College London, Queen Square, London WC1N 3BG, UK; High Dimensional Neurology, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - J M Franklin
- Institute of Medical Imaging & Visualisation, Department of Medical Science & Public Health, Faculty of Health & Social Sciences, Bournemouth University, UK
| | - T N Akudjedu
- Institute of Medical Imaging & Visualisation, Department of Medical Science & Public Health, Faculty of Health & Social Sciences, Bournemouth University, UK.
| |
Collapse
|