1
|
Shalaby N, Kelly JJ, Sehl OC, Gevaert JJ, Fox MS, Qi Q, Foster PJ, Thiessen JD, Hicks JW, Scholl TJ, Ronald JA. Complementary early-phase magnetic particle imaging and late-phase positron emission tomography reporter imaging of mesenchymal stem cells in vivo. NANOSCALE 2023; 15:3408-3418. [PMID: 36722918 DOI: 10.1039/d2nr03684c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Stem cell-based therapies have demonstrated significant potential in clinical applications for many debilitating diseases. The ability to non-invasively and dynamically track the location and viability of stem cells post administration could provide important information on individual patient response and/or side effects. Multi-modal cell tracking provides complementary information that can offset the limitations of a single imaging modality to yield a more comprehensive picture of cell fate. In this study, mesenchymal stem cells (MSCs) were engineered to express human sodium iodide symporter (NIS), a clinically relevant positron emission tomography (PET) reporter gene, as well as labeled with superparamagnetic iron oxide nanoparticles (SPIOs) to allow for detection with magnetic particle imaging (MPI). MSCs were additionally engineered with a preclinical bioluminescence imaging (BLI) reporter gene for comparison of BLI cell viability data to both MPI and PET data over time. MSCs were implanted into the hind limbs of immunocompromised mice and imaging with MPI, BLI and PET was performed over a 30-day period. MPI showed sensitive detection that steadily declined over the 30-day period, while BLI showed initial decreases followed by later rapid increases in signal. The PET signal of MSCs was significantly higher than the background at later timepoints. Early-phase imaging (day 0-9 post MSC injections) showed correlation between MPI and BLI data (R2 = 0.671), while PET and BLI showed strong correlation for late-phase (day 10-30 post MSC injections) imaging timepoints (R2 = 0.9817). We report the first use of combined MPI and PET for cell tracking and show the complementary benefits of MPI for sensitive detection of MSCs early after implantation and PET for longer-term measurements of cell viability.
Collapse
Affiliation(s)
- Nourhan Shalaby
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| | - John J Kelly
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Olivia C Sehl
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| | - Julia J Gevaert
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| | - Matthew S Fox
- Lawson Health Research Institute, London, ON, Canada
- Saint Joseph's Health Care, London, ON, Canada
| | - Qi Qi
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
- Lawson Health Research Institute, London, ON, Canada
| | - Paula J Foster
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Jonathan D Thiessen
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Saint Joseph's Health Care, London, ON, Canada
| | - Justin W Hicks
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
- Lawson Health Research Institute, London, ON, Canada
| | - Timothy J Scholl
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - John A Ronald
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
- Department of Microbiology & Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
2
|
Kamiyama Y, Naritomi Y, Moriya Y, Yamamoto S, Kitahashi T, Maekawa T, Yahata M, Hanada T, Uchiyama A, Noumaru A, Koga Y, Higuchi T, Ito M, Komatsu H, Miyoshi S, Kimura S, Umeda N, Fujita E, Tanaka N, Sugita T, Takayama S, Kurogi A, Yasuda S, Sato Y. Biodistribution studies for cell therapy products: Current status and issues. Regen Ther 2021; 18:202-216. [PMID: 34307798 PMCID: PMC8282960 DOI: 10.1016/j.reth.2021.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/02/2021] [Accepted: 06/16/2021] [Indexed: 01/01/2023] Open
Abstract
Information on the biodistribution (BD) of cell therapy products (CTPs) is essential for prediction and assessment of their efficacy and toxicity profiles in non-clinical and clinical studies. To conduct BD studies, it is necessary to understand regulatory requirements, implementation status, and analytical methods. This review aimed at surveying international and Japanese trends concerning the BD study for CTPs and the following subjects were investigated, which were considered particularly important: 1) comparison of guidelines to understand the regulatory status of BD studies in a global setting; 2) case studies of the BD study using databases to understand its current status in cell therapy; 3) case studies on quantitative polymerase chain reaction (qPCR) used primarily in non-clinical BD studies for CTPs; and 4) survey of imaging methods used for non-clinical and clinical BD studies. The results in this review will be a useful resource for implementing BD studies.
Collapse
Affiliation(s)
- Yoshiteru Kamiyama
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki, Japan
| | - Yoichi Naritomi
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki, Japan
| | - Yuu Moriya
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, Japan
| | - Syunsuke Yamamoto
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, Japan
| | - Tsukasa Kitahashi
- Bioscience & Engineering Laboratory, FUJIFILM Corp., 577 Ushijima, Kaisei-Machi, Ashigarakami-gun, Kanagawa, Japan
| | - Toshihiko Maekawa
- Bioscience & Engineering Laboratory, FUJIFILM Corp., 577 Ushijima, Kaisei-Machi, Ashigarakami-gun, Kanagawa, Japan
| | - Masahiro Yahata
- Preclinical Research Unit, Sumitomo Dainippon Pharma Co., Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka, Japan
| | - Takeshi Hanada
- Drug Metabolism & Pharmacokinetics Research Laboratories, Daiichi Sankyo.Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo, Japan
| | - Asako Uchiyama
- Drug Safety Research Laboratories, Shin Nippon Biomedical Laboratories, Ltd., Kagoshima, Kagoshima, Japan
| | - Akari Noumaru
- Kumamoto Laboratories, LSIM Safety Institute Corporation, 1285 Kurisaki-machi, Uto, Kumamoto, Japan
| | - Yoshiyuki Koga
- Kumamoto Laboratories, LSIM Safety Institute Corporation, 1285 Kurisaki-machi, Uto, Kumamoto, Japan
| | - Tomoaki Higuchi
- Non-clinical Development, Axcelead Drug Discovery Partners, Inc., 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, Japan
| | - Masahiko Ito
- Tsukuba Research Institute, BoZo Research Center Inc., 8 Okubo, Tsukuba, Ibaraki, Japan
| | - Hiroyuki Komatsu
- Science BD Department, CMIC Pharma Science Co., Ltd., 1-1-1 Shibaura, Minato-ku, Tokyo, Japan
| | - Sosuke Miyoshi
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki, Japan
| | - Sadaaki Kimura
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki, Japan
| | - Nobuhiro Umeda
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki, Japan
| | - Eriko Fujita
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki, Japan
| | - Naoko Tanaka
- Evaluation Center, Terumo Corporation, 1500 Inokuchi, Nakai-machi, Ashigarakami-gun, Kanagawa, Japan
| | - Taku Sugita
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, Japan
| | - Satoru Takayama
- Cell Therapy Technology, Healthcare R&D Center, Asahi Kasei Corporation, 2-1 Samejima, Fuji-Shi, Shizuoka, Japan
| | - Akihiko Kurogi
- Regenerative Medicine Research & Planning Division, ROHTO Pharmaceutical Co., Ltd., Osaka, Japan
| | - Satoshi Yasuda
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, Japan
| | - Yoji Sato
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, Japan
| |
Collapse
|
3
|
Jacobs AH, Schelhaas S, Viel T, Waerzeggers Y, Winkeler A, Zinnhardt B, Gelovani J. Imaging of Gene and Cell-Based Therapies: Basis and Clinical Trials. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00060-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
4
|
Congestive Heart Failure. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00050-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
5
|
Rajendran RL, Jogalekar MP, Gangadaran P, Ahn BC. Noninvasive in vivo cell tracking using molecular imaging: A useful tool for developing mesenchymal stem cell-based cancer treatment. World J Stem Cells 2020; 12:1492-1510. [PMID: 33505597 PMCID: PMC7789123 DOI: 10.4252/wjsc.v12.i12.1492] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/05/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023] Open
Abstract
Mounting evidence has emphasized the potential of cell therapies in treating various diseases by restoring damaged tissues or replacing defective cells in the body. Cell therapies have become a strong therapeutic modality by applying noninvasive in vivo molecular imaging for examining complex cellular processes, understanding pathophysiological mechanisms of diseases, and evaluating the kinetics/dynamics of cell therapies. In particular, mesenchymal stem cells (MSCs) have shown promise in recent years as drug carriers for cancer treatment. They can also be labeled with different probes and tracked in vivo to assess the in vivo effect of administered cells, and to optimize therapy. The exact role of MSCs in oncologic diseases is not clear as MSCs have been shown to be involved in tumor progression and inhibition, and the exact interactions between MSCs and specific cancer microenvironments are not clear. In this review, a multitude of labeling approaches, imaging modalities, and the merits/demerits of each strategy are outlined. In addition, specific examples of the use of MSCs and in vivo imaging in cancer therapy are provided. Finally, present limitations and future outlooks in terms of the translation of different imaging approaches in clinics are discussed.
Collapse
Affiliation(s)
| | | | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
| | - Byeong-Cheol Ahn
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, South Korea
| |
Collapse
|
6
|
Ashmore-Harris C, Iafrate M, Saleem A, Fruhwirth GO. Non-invasive Reporter Gene Imaging of Cell Therapies, including T Cells and Stem Cells. Mol Ther 2020; 28:1392-1416. [PMID: 32243834 PMCID: PMC7264441 DOI: 10.1016/j.ymthe.2020.03.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/15/2020] [Accepted: 03/18/2020] [Indexed: 12/14/2022] Open
Abstract
Cell therapies represent a rapidly emerging class of new therapeutics. They are intended and developed for the treatment of some of the most prevalent human diseases, including cancer, diabetes, and for regenerative medicine. Currently, they are largely developed without precise assessment of their in vivo distribution, efficacy, or survival either clinically or preclinically. However, it would be highly beneficial for both preclinical cell therapy development and subsequent clinical use to assess these parameters in situ to enable enhancements in efficacy, applicability, and safety. Molecular imaging can be exploited to track cells non-invasively on the whole-body level and can enable monitoring for prolonged periods in a manner compatible with rapidly expanding cell types. In this review, we explain how in vivo imaging can aid the development and clinical translation of cell-based therapeutics. We describe the underlying principles governing non-invasive in vivo long-term cell tracking in the preclinical and clinical settings, including available imaging technologies, reporter genes, and imaging agents as well as pitfalls related to experimental design. Our emphasis is on adoptively transferred T cell and stem cell therapies.
Collapse
Affiliation(s)
- Candice Ashmore-Harris
- Imaging Therapy and Cancer Group, Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK; Centre for Stem Cells and Regenerative Medicine, School of Basic and Medical Biosciences, King's College London, London SE1 9RT, UK
| | - Madeleine Iafrate
- Imaging Therapy and Cancer Group, Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Adeel Saleem
- Imaging Therapy and Cancer Group, Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK; Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London SE1 9RT, UK; Department of Haematological Medicine, King's College Hospital, London SE5 9RS, UK
| | - Gilbert O Fruhwirth
- Imaging Therapy and Cancer Group, Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK.
| |
Collapse
|
7
|
Abstract
Regenerative medicine with the use of stem cells has appeared as a potential therapeutic alternative for many disease states. Despite initial enthusiasm, there has been relatively slow transition to clinical trials. In large part, numerous questions remain regarding the viability, biology and efficacy of transplanted stem cells in the living subject. The critical issues highlighted the importance of developing tools to assess these questions. Advances in molecular biology and imaging have allowed the successful non-invasive monitoring of transplanted stem cells in the living subject. Over the years these methodologies have been updated to assess not only the viability but also the biology of transplanted stem cells. In this review, different imaging strategies to study the viability and biology of transplanted stem cells are presented. Use of these strategies will be critical as the different regenerative therapies are being tested for clinical use.
Collapse
Affiliation(s)
- Fakhar Abbas
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Joseph C. Wu
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
- Department of Medicine (Cardiology), Stanford University, Stanford, CA, USA
| | - Sanjiv Sam Gambhir
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
- Department of Bio-Engineering, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
8
|
Fath-Bayati L, Vasei M, Sharif-Paghaleh E. Optical fluorescence imaging with shortwave infrared light emitter nanomaterials for in vivo cell tracking in regenerative medicine. J Cell Mol Med 2019; 23:7905-7918. [PMID: 31559692 PMCID: PMC6850965 DOI: 10.1111/jcmm.14670] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/13/2019] [Accepted: 07/30/2019] [Indexed: 12/13/2022] Open
Abstract
In vivo tracking and monitoring of adoptive cell transfer has a distinct importance in cell‐based therapy. There are many imaging modalities for in vivo monitoring of biodistribution, viability and effectiveness of transferred cells. Some of these procedures are not applicable in the human body because of low sensitivity and high possibility of tissue damages. Shortwave infrared region (SWIR) imaging is a relatively new technique by which deep biological tissues can be potentially visualized with high resolution at cellular level. Indeed, scanning of the electromagnetic spectrum (beyond 1000 nm) of SWIR has a great potential to increase sensitivity and resolution of in vivo imaging for various human tissues. In this review, molecular imaging modalities used for monitoring of biodistribution and fate of administered cells with focusing on the application of non‐invasive optical imaging at shortwave infrared region are discussed in detail.
Collapse
Affiliation(s)
- Leyla Fath-Bayati
- Department of Tissue Engineering & Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.,Department of Tissue Engineering, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Mohammad Vasei
- Department of Tissue Engineering & Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.,Cell-based Therapies Research Institute, Digestive Disease Research Institute (DDRI), Shariati Hospital, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Ehsan Sharif-Paghaleh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Imaging Chemistry and Biology, Faculty of Life Sciences and Medicine, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| |
Collapse
|
9
|
Masterson CH, Curley GF, Laffey JG. Modulating the distribution and fate of exogenously delivered MSCs to enhance therapeutic potential: knowns and unknowns. Intensive Care Med Exp 2019; 7:41. [PMID: 31346794 PMCID: PMC6658643 DOI: 10.1186/s40635-019-0235-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/07/2019] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are undergoing intensive translational research for several debilitating conditions, including critical illnesses such as ARDS and sepsis. MSCs exert diverse biologic effects via their interaction with host tissues, via mechanisms that require the MSC to be in close proximity to the area of injury. Fully harnessing the therapeutic potential of advanced medicinal therapeutic products such as MSCs and their successful translation to clinical use requires a detailed understanding of MSC distribution and persistence in the injured tissues. Key aspects include understanding MSC distribution within the body, the response of the host to MSC administration, and the ultimate fate of exogenously administered MSCs within the host. Factors affecting this interaction include the MSC tissue source, the in vitro MSC culture conditions, the route of MSC administration and the specific issues relating to the target disease state, each of which remains to be fully characterised. Understanding these factors may generate strategies to modify MSC distribution and fate that may enhance their therapeutic effect. This review will examine our understanding of the mechanisms of action of MSCs, the early and late phase distribution kinetics of MSCs following in vivo administration, the ultimate fate of MSCs following administration and the potential importance of these MSC properties to their therapeutic effects. We will critique current cellular imaging and tracking methodologies used to track exogenous MSCs and their suitability for use in patients, discuss the insights they provide into the distribution and fate of MSCs after administration, and suggest strategies by which MSC biodistribution and fate may be modulated for therapeutic effect and clinical use. In conclusion, a better understanding of patterns of biodistribution and of the fate of MSCs will add important additional safety data regarding MSCs, address regulatory requirements, and may uncover strategies to increase the distribution and/or persistence of MSC at the sites of injury, potentially increasing their therapeutic potential for multiple disorders.
Collapse
Affiliation(s)
- Claire H Masterson
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, National University of Ireland Galway, Galway, Ireland.,School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Gerard F Curley
- Department of Anaesthesia and Critical Care, Royal College of Surgeons in Ireland Education and Research Centre Smurfit Building, Beaumont Hospital, Dublin, 9, Ireland
| | - John G Laffey
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, National University of Ireland Galway, Galway, Ireland. .,School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland. .,Department of Anaesthesia and Intensive Care Medicine, Galway University Hospitals, SAOLTA Hospital Group, Galway, Ireland.
| |
Collapse
|
10
|
Catanzaro V, Digilio G, Capuana F, Padovan S, Cutrin JC, Carniato F, Porta S, Grange C, Filipović N, Stevanović M. Gadolinium-Labelled Cell Scaffolds to Follow-up Cell Transplantation by Magnetic Resonance Imaging. J Funct Biomater 2019; 10:E28. [PMID: 31269673 PMCID: PMC6787680 DOI: 10.3390/jfb10030028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 12/21/2022] Open
Abstract
Cell scaffolds are often used in cell transplantation as they provide a solid structural support to implanted cells and can be bioengineered to mimic the native extracellular matrix. Gadolinium fluoride nanoparticles (Gd-NPs) as a contrast agent for Magnetic Resonance Imaging (MRI) were incorporated into poly(lactide-co-glycolide)/chitosan scaffolds to obtain Imaging Labelled Cell Scaffolds (ILCSs), having the shape of hollow spherical/ellipsoidal particles (200-600 μm diameter and 50-80 μm shell thickness). While Gd-NPs incorporated into microparticles do not provide any contrast enhancement in T1-weighted (T1w) MR images, ILCSs can release Gd-NPs in a controlled manner, thus activating MRI contrast. ILCSs seeded with human mesenchymal stromal cells (hMSCs) were xenografted subcutaneously into either immunocompromised and immunocompetent mice without any immunosuppressant treatments, and the transplants were followed-up in vivo by MRI for 18 days. Immunocompromised mice showed a progressive activation of MRI contrast within the implants due to the release of Gd-NPs in the extracellular matrix. Instead, immunocompetent mice showed poor activation of MRI contrast due to the encapsulation of ILCSs within fibrotic capsules and to the scavenging of released Gd-NPs by phagocytic cells. In conclusion, the MRI follow-up of cell xenografts can report the host cell response to the xenograft. However, it does not strictly report on the viability of transplanted hMSCs.
Collapse
Affiliation(s)
- Valeria Catanzaro
- Department of Science and Technologic Innovation, Università del Piemonte Orientale "Amedeo Avogadro", Viale T. Michel 11, I-15121 Alessandria, Italy
| | - Giuseppe Digilio
- Department of Science and Technologic Innovation, Università del Piemonte Orientale "Amedeo Avogadro", Viale T. Michel 11, I-15121 Alessandria, Italy.
| | - Federico Capuana
- Department of Molecular Biotechnology and Health Science & Center for Molecular Imaging, University of Turin, Via Nizza 52, 10126 Torino, Italy
| | - Sergio Padovan
- Institute for Biostructures and Bioimages (CNR) c/o Molecular Biotechnology Center Via Nizza 52, 10126 Torino, Italy
| | - Juan C Cutrin
- Department of Molecular Biotechnology and Health Science & Center for Molecular Imaging, University of Turin, Via Nizza 52, 10126 Torino, Italy
| | - Fabio Carniato
- Department of Science and Technologic Innovation, Università del Piemonte Orientale "Amedeo Avogadro", Viale T. Michel 11, I-15121 Alessandria, Italy
| | - Stefano Porta
- Department of Molecular Biotechnology and Health Science & Center for Molecular Imaging, University of Turin, Via Nizza 52, 10126 Torino, Italy
| | - Cristina Grange
- Department of Medical Sciences, University of Turin, Via Nizza 52, 10126 Torino, Italy
| | - Nenad Filipović
- Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Knez Mihailova 35/IV, 11000 Belgrade, Serbia
| | - Magdalena Stevanović
- Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Knez Mihailova 35/IV, 11000 Belgrade, Serbia
| |
Collapse
|
11
|
Boutagy NE, Feher A, Alkhalil I, Umoh N, Sinusas AJ. Molecular Imaging of the Heart. Compr Physiol 2019; 9:477-533. [PMID: 30873600 DOI: 10.1002/cphy.c180007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multimodality cardiovascular imaging is routinely used to assess cardiac function, structure, and physiological parameters to facilitate the diagnosis, characterization, and phenotyping of numerous cardiovascular diseases (CVD), as well as allows for risk stratification and guidance in medical therapy decision-making. Although useful, these imaging strategies are unable to assess the underlying cellular and molecular processes that modulate pathophysiological changes. Over the last decade, there have been great advancements in imaging instrumentation and technology that have been paralleled by breakthroughs in probe development and image analysis. These advancements have been merged with discoveries in cellular/molecular cardiovascular biology to burgeon the field of cardiovascular molecular imaging. Cardiovascular molecular imaging aims to noninvasively detect and characterize underlying disease processes to facilitate early diagnosis, improve prognostication, and guide targeted therapy across the continuum of CVD. The most-widely used approaches for preclinical and clinical molecular imaging include radiotracers that allow for high-sensitivity in vivo detection and quantification of molecular processes with single photon emission computed tomography and positron emission tomography. This review will describe multimodality molecular imaging instrumentation along with established and novel molecular imaging targets and probes. We will highlight how molecular imaging has provided valuable insights in determining the underlying fundamental biology of a wide variety of CVDs, including: myocardial infarction, cardiac arrhythmias, and nonischemic and ischemic heart failure with reduced and preserved ejection fraction. In addition, the potential of molecular imaging to assist in the characterization and risk stratification of systemic diseases, such as amyloidosis and sarcoidosis will be discussed. © 2019 American Physiological Society. Compr Physiol 9:477-533, 2019.
Collapse
Affiliation(s)
- Nabil E Boutagy
- Department of Medicine, Yale Translational Research Imaging Center, Yale University School of Medicine, Section of Cardiovascular Medicine, New Haven, Connecticut, USA
| | - Attila Feher
- Department of Medicine, Yale Translational Research Imaging Center, Yale University School of Medicine, Section of Cardiovascular Medicine, New Haven, Connecticut, USA
| | - Imran Alkhalil
- Department of Medicine, Yale Translational Research Imaging Center, Yale University School of Medicine, Section of Cardiovascular Medicine, New Haven, Connecticut, USA
| | - Nsini Umoh
- Department of Medicine, Yale Translational Research Imaging Center, Yale University School of Medicine, Section of Cardiovascular Medicine, New Haven, Connecticut, USA
| | - Albert J Sinusas
- Department of Medicine, Yale Translational Research Imaging Center, Yale University School of Medicine, Section of Cardiovascular Medicine, New Haven, Connecticut, USA.,Yale University School of Medicine, Department of Radiology and Biomedical Imaging, New Haven, Connecticut, USA
| |
Collapse
|
12
|
Francis E, Kearney L, Clover J. The effects of stem cells on burn wounds: a review. INTERNATIONAL JOURNAL OF BURNS AND TRAUMA 2019; 9:1-12. [PMID: 30911430 PMCID: PMC6420705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 11/12/2018] [Indexed: 06/09/2023]
Abstract
INTRODUCTION Stem cell therapy application is at the vanguard of regenerative medicine across all medical disciplines. Stem cells are of special interest in burn wounds, as they have multiple potential indications for application; including - accelerating wound healing, improving skin regeneration to incorporate skin appendages, reducing fibrosis and improving scarring. METHODS A literature review was performed using both MeSH and keyword searches of PubMed to identify all potentially suitable publications. Search criteria were restricted to the English language, but acceptable English translations were sought for inclusion. Inclusion dates were from 2003 up until and including 2017. Studies included looked at stem cells in burn wounds only. RESULTS There were 692 potentially suitable publications of which 72 were included for review. These included a systematic reviews and original research articles. CONCLUSIONS Stem cells accelerate burn wound healing by inducing neo-angiogenesis, collagen deposition and granulation tissue formation. They modulate the inflammatory response and reduce the risk of infection. They can regenerate skin appendages and halt he zone of stasis in acute burn injury. However with these pre-clinical animal model studies we must be cautious with our interpretation of this novel therapy.
Collapse
Affiliation(s)
- Eamon Francis
- Department of Plastic, Reconstructive & Burns Surgery, Cork University Hospital Wilton Road, Cork, Ireland
| | - Laura Kearney
- Department of Plastic, Reconstructive & Burns Surgery, Cork University Hospital Wilton Road, Cork, Ireland
| | - James Clover
- Department of Plastic, Reconstructive & Burns Surgery, Cork University Hospital Wilton Road, Cork, Ireland
| |
Collapse
|
13
|
Speidel A, Stuckey DJ, Chow LW, Jackson LH, Noseda M, Abreu Paiva M, Schneider MD, Stevens MM. Multimodal Hydrogel-Based Platform To Deliver and Monitor Cardiac Progenitor/Stem Cell Engraftment. ACS CENTRAL SCIENCE 2017; 3:338-348. [PMID: 28470052 PMCID: PMC5408339 DOI: 10.1021/acscentsci.7b00039] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Indexed: 05/17/2023]
Abstract
Retention and survival of transplanted cells are major limitations to the efficacy of regenerative medicine, with short-term paracrine signals being the principal mechanism underlying current cell therapies for heart repair. Consequently, even improvements in short-term durability may have a potential impact on cardiac cell grafting. We have developed a multimodal hydrogel-based platform comprised of a poly(ethylene glycol) network cross-linked with bioactive peptides functionalized with Gd(III) in order to monitor the localization and retention of the hydrogel in vivo by magnetic resonance imaging. In this study, we have tailored the material for cardiac applications through the inclusion of a heparin-binding peptide (HBP) sequence in the cross-linker design and formulated the gel to display mechanical properties resembling those of cardiac tissue. Luciferase-expressing cardiac stem cells (CSC-Luc2) encapsulated within these gels maintained their metabolic activity for up to 14 days in vitro. Encapsulation in the HBP hydrogels improved CSC-Luc2 retention in the mouse myocardium and hind limbs at 3 days by 6.5- and 12- fold, respectively. Thus, this novel heparin-binding based, Gd(III)-tagged hydrogel and CSC-Luc2 platform system demonstrates a tailored, in vivo detectable theranostic cell delivery system that can be implemented to monitor and assess the transplanted material and cell retention.
Collapse
Affiliation(s)
- Alessondra
T. Speidel
- British Heart Foundation Centre of Research Excellence, Department of Materials, Department of Bioengineering, Institute for Biomedical
Engineering, and National Heart and Lung Institute, Imperial
College London, London, SW7 2AZ, United Kingdom
| | - Daniel J. Stuckey
- British Heart Foundation Centre of Research Excellence, Department of Materials, Department of Bioengineering, Institute for Biomedical
Engineering, and National Heart and Lung Institute, Imperial
College London, London, SW7 2AZ, United Kingdom
- Centre
for
Advanced Biomedical Imaging (CABI), University
College London, London WC1E 6DD, United Kingdom
| | - Lesley W. Chow
- British Heart Foundation Centre of Research Excellence, Department of Materials, Department of Bioengineering, Institute for Biomedical
Engineering, and National Heart and Lung Institute, Imperial
College London, London, SW7 2AZ, United Kingdom
| | - Laurence H. Jackson
- Centre
for
Advanced Biomedical Imaging (CABI), University
College London, London WC1E 6DD, United Kingdom
| | - Michela Noseda
- British Heart Foundation Centre of Research Excellence, Department of Materials, Department of Bioengineering, Institute for Biomedical
Engineering, and National Heart and Lung Institute, Imperial
College London, London, SW7 2AZ, United Kingdom
| | - Marta Abreu Paiva
- British Heart Foundation Centre of Research Excellence, Department of Materials, Department of Bioengineering, Institute for Biomedical
Engineering, and National Heart and Lung Institute, Imperial
College London, London, SW7 2AZ, United Kingdom
| | - Michael D. Schneider
- British Heart Foundation Centre of Research Excellence, Department of Materials, Department of Bioengineering, Institute for Biomedical
Engineering, and National Heart and Lung Institute, Imperial
College London, London, SW7 2AZ, United Kingdom
| | - Molly M. Stevens
- British Heart Foundation Centre of Research Excellence, Department of Materials, Department of Bioengineering, Institute for Biomedical
Engineering, and National Heart and Lung Institute, Imperial
College London, London, SW7 2AZ, United Kingdom
| |
Collapse
|
14
|
Momeni A, Neelamegham S, Parashurama N. Current challenges for the targeted delivery and molecular imaging of stem cells in animal models. Bioengineered 2016; 8:316-324. [PMID: 27813700 PMCID: PMC5553333 DOI: 10.1080/21655979.2016.1233090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
In contrast to conventional, molecular medicine that focuses on targeting specific pathways, stem cell therapy aims to perturb many related mechanisms in order to derive therapeutic benefit. This emerging modality is inherently complex due to the variety of cell types that can be used, delivery approaches that need to be optimized in order to target the cellular therapeutic to specific sites in vivo, and non-invasive imaging methods that are needed to monitor cell fate. This review highlights advancements in the field, with focus on recent publications that use preclinical animal models for cardiovascular stem cell therapy. It highlights studies where cell adhesion engineering (CAE) has been used to functionalize stem cells to home them to sites of therapy, much like peripheral blood neutrophils. It also describes the current state of molecular imaging approaches that aim to non-invasively track the spatio-temporal pattern of stem cell delivery in living subjects.
Collapse
Affiliation(s)
- Arezoo Momeni
- a Department of Chemical and Biological Engineering , University at Buffalo (State University of New York) , Furnas Hall, Buffalo , NY , USA.,b Clinical and Translation Research Center (CTRC) , University at Buffalo (State University of New York) , NY , USA
| | - Sriram Neelamegham
- a Department of Chemical and Biological Engineering , University at Buffalo (State University of New York) , Furnas Hall, Buffalo , NY , USA.,b Clinical and Translation Research Center (CTRC) , University at Buffalo (State University of New York) , NY , USA
| | - Natesh Parashurama
- a Department of Chemical and Biological Engineering , University at Buffalo (State University of New York) , Furnas Hall, Buffalo , NY , USA.,b Clinical and Translation Research Center (CTRC) , University at Buffalo (State University of New York) , NY , USA
| |
Collapse
|
15
|
Artificial MicroRNAs as Novel Secreted Reporters for Cell Monitoring in Living Subjects. PLoS One 2016; 11:e0159369. [PMID: 27442530 PMCID: PMC4956193 DOI: 10.1371/journal.pone.0159369] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 07/02/2016] [Indexed: 01/08/2023] Open
Abstract
Reporter genes are powerful technologies that can be used to directly inform on the fate of transplanted cells in living subjects. Imaging reporter genes are often employed to quantify cell number, location(s), and viability with various imaging modalities. To complement this, reporters that are secreted from cells can provide a low-cost, in vitro diagnostic test to monitor overall cell viability at relatively high frequency without knowing the locations of all cells. Whereas protein-based secretable reporters have been developed, an RNA-based reporter detectable with amplification inherent PCR-based assays has not been previously described. MicroRNAs (miRNAs) are short non-coding RNAs (18–22 nt) that regulate mRNA translation and are being explored as relatively stable blood-based disease biomarkers. We developed an artificial miRNA-based secreted reporter, called Sec-miR, utilizing a coding sequence that is not expressed endogenously and does not have any known vertebrate target. Sec-miR was detectable in both the cells and culture media of transiently transfected cells. Cells stably expressing Sec-miR also reliably secreted it into the culture media. Mice implanted with parental HeLa cells or HeLa cells expressing both Sec-miR and the bioluminescence imaging (BLI) reporter gene Firefly luciferase (FLuc) were monitored over time for tumor volume, FLuc signal via BLI, and blood levels of Sec-miR. Significantly (p<0.05) higher Sec-miR was found in the blood of mice bearing Sec-miR-expressing tumors compared to parental cell tumors at 21 and 28 days after implantation. Importantly, blood Sec-miR reporter levels after day 21 showed a trend towards correlation with tumor volume (R2 = 0.6090; p = 0.0671) and significantly correlated with FLuc signal (R2 = 0.7067; p<0.05). Finally, we could significantly (p<0.01) amplify Sec-miR secretion into the cell media by chaining together multiple Sec-miR copies (4 instead of 1 or 2) within an expression cassette. Overall, we show that a novel complement of BLI together with a unique Sec-miR reporter adds an in vitro RNA-based diagnostic to enhance the monitoring of transplanted cells. While Sec-miR was not as sensitive as BLI for monitoring cell number, it may be more sensitive than clinically-relevant positron emission tomography (PET) reporter assays. Future work will focus on improving cell detectability via improved secretion of Sec-miR reporters from cells and more sensitive detection platforms, as well as, exploring other miRNA sequences to allow multiplexed monitoring of more than one cell population at a time. Continued development may lead to more refined and precise monitoring of cell-based therapies.
Collapse
|
16
|
Parashurama N, Ahn BC, Ziv K, Ito K, Paulmurugan R, Willmann JK, Chung J, Ikeno F, Swanson JC, Merk DR, Lyons JK, Yerushalmi D, Teramoto T, Kosuge H, Dao CN, Ray P, Patel M, Chang YF, Mahmoudi M, Cohen JE, Goldstone AB, Habte F, Bhaumik S, Yaghoubi S, Robbins RC, Dash R, Yang PC, Brinton TJ, Yock PG, McConnell MV, Gambhir SS. Multimodality Molecular Imaging of Cardiac Cell Transplantation: Part II. In Vivo Imaging of Bone Marrow Stromal Cells in Swine with PET/CT and MR Imaging. Radiology 2016; 280:826-36. [PMID: 27332865 DOI: 10.1148/radiol.2016151150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Purpose To quantitatively determine the limit of detection of marrow stromal cells (MSC) after cardiac cell therapy (CCT) in swine by using clinical positron emission tomography (PET) reporter gene imaging and magnetic resonance (MR) imaging with cell prelabeling. Materials and Methods Animal studies were approved by the institutional administrative panel on laboratory animal care. Seven swine received 23 intracardiac cell injections that contained control MSC and cell mixtures of MSC expressing a multimodality triple fusion (TF) reporter gene (MSC-TF) and bearing superparamagnetic iron oxide nanoparticles (NP) (MSC-TF-NP) or NP alone. Clinical MR imaging and PET reporter gene molecular imaging were performed after intravenous injection of the radiotracer fluorine 18-radiolabeled 9-[4-fluoro-3-(hydroxyl methyl) butyl] guanine ((18)F-FHBG). Linear regression analysis of both MR imaging and PET data and nonlinear regression analysis of PET data were performed, accounting for multiple injections per animal. Results MR imaging showed a positive correlation between MSC-TF-NP cell number and dephasing (dark) signal (R(2) = 0.72, P = .0001) and a lower detection limit of at least approximately 1.5 × 10(7) cells. PET reporter gene imaging demonstrated a significant positive correlation between MSC-TF and target-to-background ratio with the linear model (R(2) = 0.88, P = .0001, root mean square error = 0.523) and the nonlinear model (R(2) = 0.99, P = .0001, root mean square error = 0.273) and a lower detection limit of 2.5 × 10(8) cells. Conclusion The authors quantitatively determined the limit of detection of MSC after CCT in swine by using clinical PET reporter gene imaging and clinical MR imaging with cell prelabeling. (©) RSNA, 2016 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Natesh Parashurama
- From the Department of Radiology, James Clark Center, Molecular Imaging Program at Stanford, 318 Campus Drive West, Room E153, Stanford University, Stanford, CA 94305 (N.P., K.Z., K.I., R.P., J.K.W., D.Y., M.P., Y.F.C., F.H., S.Y., S.S.G.); Department of Cardiovascular Medicine (J.C., F.I., J.K.L., T.T., H.K., C.N.D., M.M., R.D., P.C.Y., T.J.B., P.G.Y., M.V.M.), Department of Cardiothoracic Surgery (J.C.S., D.R.M., J.E.C., A.B.G., R.C.R.), Department of Bioengineering (D.Y., P.G.Y., S.S.G.), Canary Center for Early Detection of Cancer (R.P., S.S.G.), and Department of Materials Science and Engineering (S.S.G.), Stanford University, Stanford, Calif; GE Global Research Center, General Electric, Niskayuna, NY (S.B.); Department of Nuclear Medicine, Kyungpook National University, Daegu, South Korea (B.C.A.); and Advanced Center for Treatment, Research, and Education ACTREC, Tata Memorial Centre, Navi Mumbai, India (P.R.)
| | - Byeong-Cheol Ahn
- From the Department of Radiology, James Clark Center, Molecular Imaging Program at Stanford, 318 Campus Drive West, Room E153, Stanford University, Stanford, CA 94305 (N.P., K.Z., K.I., R.P., J.K.W., D.Y., M.P., Y.F.C., F.H., S.Y., S.S.G.); Department of Cardiovascular Medicine (J.C., F.I., J.K.L., T.T., H.K., C.N.D., M.M., R.D., P.C.Y., T.J.B., P.G.Y., M.V.M.), Department of Cardiothoracic Surgery (J.C.S., D.R.M., J.E.C., A.B.G., R.C.R.), Department of Bioengineering (D.Y., P.G.Y., S.S.G.), Canary Center for Early Detection of Cancer (R.P., S.S.G.), and Department of Materials Science and Engineering (S.S.G.), Stanford University, Stanford, Calif; GE Global Research Center, General Electric, Niskayuna, NY (S.B.); Department of Nuclear Medicine, Kyungpook National University, Daegu, South Korea (B.C.A.); and Advanced Center for Treatment, Research, and Education ACTREC, Tata Memorial Centre, Navi Mumbai, India (P.R.)
| | - Keren Ziv
- From the Department of Radiology, James Clark Center, Molecular Imaging Program at Stanford, 318 Campus Drive West, Room E153, Stanford University, Stanford, CA 94305 (N.P., K.Z., K.I., R.P., J.K.W., D.Y., M.P., Y.F.C., F.H., S.Y., S.S.G.); Department of Cardiovascular Medicine (J.C., F.I., J.K.L., T.T., H.K., C.N.D., M.M., R.D., P.C.Y., T.J.B., P.G.Y., M.V.M.), Department of Cardiothoracic Surgery (J.C.S., D.R.M., J.E.C., A.B.G., R.C.R.), Department of Bioengineering (D.Y., P.G.Y., S.S.G.), Canary Center for Early Detection of Cancer (R.P., S.S.G.), and Department of Materials Science and Engineering (S.S.G.), Stanford University, Stanford, Calif; GE Global Research Center, General Electric, Niskayuna, NY (S.B.); Department of Nuclear Medicine, Kyungpook National University, Daegu, South Korea (B.C.A.); and Advanced Center for Treatment, Research, and Education ACTREC, Tata Memorial Centre, Navi Mumbai, India (P.R.)
| | - Ken Ito
- From the Department of Radiology, James Clark Center, Molecular Imaging Program at Stanford, 318 Campus Drive West, Room E153, Stanford University, Stanford, CA 94305 (N.P., K.Z., K.I., R.P., J.K.W., D.Y., M.P., Y.F.C., F.H., S.Y., S.S.G.); Department of Cardiovascular Medicine (J.C., F.I., J.K.L., T.T., H.K., C.N.D., M.M., R.D., P.C.Y., T.J.B., P.G.Y., M.V.M.), Department of Cardiothoracic Surgery (J.C.S., D.R.M., J.E.C., A.B.G., R.C.R.), Department of Bioengineering (D.Y., P.G.Y., S.S.G.), Canary Center for Early Detection of Cancer (R.P., S.S.G.), and Department of Materials Science and Engineering (S.S.G.), Stanford University, Stanford, Calif; GE Global Research Center, General Electric, Niskayuna, NY (S.B.); Department of Nuclear Medicine, Kyungpook National University, Daegu, South Korea (B.C.A.); and Advanced Center for Treatment, Research, and Education ACTREC, Tata Memorial Centre, Navi Mumbai, India (P.R.)
| | - Ramasamy Paulmurugan
- From the Department of Radiology, James Clark Center, Molecular Imaging Program at Stanford, 318 Campus Drive West, Room E153, Stanford University, Stanford, CA 94305 (N.P., K.Z., K.I., R.P., J.K.W., D.Y., M.P., Y.F.C., F.H., S.Y., S.S.G.); Department of Cardiovascular Medicine (J.C., F.I., J.K.L., T.T., H.K., C.N.D., M.M., R.D., P.C.Y., T.J.B., P.G.Y., M.V.M.), Department of Cardiothoracic Surgery (J.C.S., D.R.M., J.E.C., A.B.G., R.C.R.), Department of Bioengineering (D.Y., P.G.Y., S.S.G.), Canary Center for Early Detection of Cancer (R.P., S.S.G.), and Department of Materials Science and Engineering (S.S.G.), Stanford University, Stanford, Calif; GE Global Research Center, General Electric, Niskayuna, NY (S.B.); Department of Nuclear Medicine, Kyungpook National University, Daegu, South Korea (B.C.A.); and Advanced Center for Treatment, Research, and Education ACTREC, Tata Memorial Centre, Navi Mumbai, India (P.R.)
| | - Jürgen K Willmann
- From the Department of Radiology, James Clark Center, Molecular Imaging Program at Stanford, 318 Campus Drive West, Room E153, Stanford University, Stanford, CA 94305 (N.P., K.Z., K.I., R.P., J.K.W., D.Y., M.P., Y.F.C., F.H., S.Y., S.S.G.); Department of Cardiovascular Medicine (J.C., F.I., J.K.L., T.T., H.K., C.N.D., M.M., R.D., P.C.Y., T.J.B., P.G.Y., M.V.M.), Department of Cardiothoracic Surgery (J.C.S., D.R.M., J.E.C., A.B.G., R.C.R.), Department of Bioengineering (D.Y., P.G.Y., S.S.G.), Canary Center for Early Detection of Cancer (R.P., S.S.G.), and Department of Materials Science and Engineering (S.S.G.), Stanford University, Stanford, Calif; GE Global Research Center, General Electric, Niskayuna, NY (S.B.); Department of Nuclear Medicine, Kyungpook National University, Daegu, South Korea (B.C.A.); and Advanced Center for Treatment, Research, and Education ACTREC, Tata Memorial Centre, Navi Mumbai, India (P.R.)
| | - Jaehoon Chung
- From the Department of Radiology, James Clark Center, Molecular Imaging Program at Stanford, 318 Campus Drive West, Room E153, Stanford University, Stanford, CA 94305 (N.P., K.Z., K.I., R.P., J.K.W., D.Y., M.P., Y.F.C., F.H., S.Y., S.S.G.); Department of Cardiovascular Medicine (J.C., F.I., J.K.L., T.T., H.K., C.N.D., M.M., R.D., P.C.Y., T.J.B., P.G.Y., M.V.M.), Department of Cardiothoracic Surgery (J.C.S., D.R.M., J.E.C., A.B.G., R.C.R.), Department of Bioengineering (D.Y., P.G.Y., S.S.G.), Canary Center for Early Detection of Cancer (R.P., S.S.G.), and Department of Materials Science and Engineering (S.S.G.), Stanford University, Stanford, Calif; GE Global Research Center, General Electric, Niskayuna, NY (S.B.); Department of Nuclear Medicine, Kyungpook National University, Daegu, South Korea (B.C.A.); and Advanced Center for Treatment, Research, and Education ACTREC, Tata Memorial Centre, Navi Mumbai, India (P.R.)
| | - Fumiaki Ikeno
- From the Department of Radiology, James Clark Center, Molecular Imaging Program at Stanford, 318 Campus Drive West, Room E153, Stanford University, Stanford, CA 94305 (N.P., K.Z., K.I., R.P., J.K.W., D.Y., M.P., Y.F.C., F.H., S.Y., S.S.G.); Department of Cardiovascular Medicine (J.C., F.I., J.K.L., T.T., H.K., C.N.D., M.M., R.D., P.C.Y., T.J.B., P.G.Y., M.V.M.), Department of Cardiothoracic Surgery (J.C.S., D.R.M., J.E.C., A.B.G., R.C.R.), Department of Bioengineering (D.Y., P.G.Y., S.S.G.), Canary Center for Early Detection of Cancer (R.P., S.S.G.), and Department of Materials Science and Engineering (S.S.G.), Stanford University, Stanford, Calif; GE Global Research Center, General Electric, Niskayuna, NY (S.B.); Department of Nuclear Medicine, Kyungpook National University, Daegu, South Korea (B.C.A.); and Advanced Center for Treatment, Research, and Education ACTREC, Tata Memorial Centre, Navi Mumbai, India (P.R.)
| | - Julia C Swanson
- From the Department of Radiology, James Clark Center, Molecular Imaging Program at Stanford, 318 Campus Drive West, Room E153, Stanford University, Stanford, CA 94305 (N.P., K.Z., K.I., R.P., J.K.W., D.Y., M.P., Y.F.C., F.H., S.Y., S.S.G.); Department of Cardiovascular Medicine (J.C., F.I., J.K.L., T.T., H.K., C.N.D., M.M., R.D., P.C.Y., T.J.B., P.G.Y., M.V.M.), Department of Cardiothoracic Surgery (J.C.S., D.R.M., J.E.C., A.B.G., R.C.R.), Department of Bioengineering (D.Y., P.G.Y., S.S.G.), Canary Center for Early Detection of Cancer (R.P., S.S.G.), and Department of Materials Science and Engineering (S.S.G.), Stanford University, Stanford, Calif; GE Global Research Center, General Electric, Niskayuna, NY (S.B.); Department of Nuclear Medicine, Kyungpook National University, Daegu, South Korea (B.C.A.); and Advanced Center for Treatment, Research, and Education ACTREC, Tata Memorial Centre, Navi Mumbai, India (P.R.)
| | - Denis R Merk
- From the Department of Radiology, James Clark Center, Molecular Imaging Program at Stanford, 318 Campus Drive West, Room E153, Stanford University, Stanford, CA 94305 (N.P., K.Z., K.I., R.P., J.K.W., D.Y., M.P., Y.F.C., F.H., S.Y., S.S.G.); Department of Cardiovascular Medicine (J.C., F.I., J.K.L., T.T., H.K., C.N.D., M.M., R.D., P.C.Y., T.J.B., P.G.Y., M.V.M.), Department of Cardiothoracic Surgery (J.C.S., D.R.M., J.E.C., A.B.G., R.C.R.), Department of Bioengineering (D.Y., P.G.Y., S.S.G.), Canary Center for Early Detection of Cancer (R.P., S.S.G.), and Department of Materials Science and Engineering (S.S.G.), Stanford University, Stanford, Calif; GE Global Research Center, General Electric, Niskayuna, NY (S.B.); Department of Nuclear Medicine, Kyungpook National University, Daegu, South Korea (B.C.A.); and Advanced Center for Treatment, Research, and Education ACTREC, Tata Memorial Centre, Navi Mumbai, India (P.R.)
| | - Jennifer K Lyons
- From the Department of Radiology, James Clark Center, Molecular Imaging Program at Stanford, 318 Campus Drive West, Room E153, Stanford University, Stanford, CA 94305 (N.P., K.Z., K.I., R.P., J.K.W., D.Y., M.P., Y.F.C., F.H., S.Y., S.S.G.); Department of Cardiovascular Medicine (J.C., F.I., J.K.L., T.T., H.K., C.N.D., M.M., R.D., P.C.Y., T.J.B., P.G.Y., M.V.M.), Department of Cardiothoracic Surgery (J.C.S., D.R.M., J.E.C., A.B.G., R.C.R.), Department of Bioengineering (D.Y., P.G.Y., S.S.G.), Canary Center for Early Detection of Cancer (R.P., S.S.G.), and Department of Materials Science and Engineering (S.S.G.), Stanford University, Stanford, Calif; GE Global Research Center, General Electric, Niskayuna, NY (S.B.); Department of Nuclear Medicine, Kyungpook National University, Daegu, South Korea (B.C.A.); and Advanced Center for Treatment, Research, and Education ACTREC, Tata Memorial Centre, Navi Mumbai, India (P.R.)
| | - David Yerushalmi
- From the Department of Radiology, James Clark Center, Molecular Imaging Program at Stanford, 318 Campus Drive West, Room E153, Stanford University, Stanford, CA 94305 (N.P., K.Z., K.I., R.P., J.K.W., D.Y., M.P., Y.F.C., F.H., S.Y., S.S.G.); Department of Cardiovascular Medicine (J.C., F.I., J.K.L., T.T., H.K., C.N.D., M.M., R.D., P.C.Y., T.J.B., P.G.Y., M.V.M.), Department of Cardiothoracic Surgery (J.C.S., D.R.M., J.E.C., A.B.G., R.C.R.), Department of Bioengineering (D.Y., P.G.Y., S.S.G.), Canary Center for Early Detection of Cancer (R.P., S.S.G.), and Department of Materials Science and Engineering (S.S.G.), Stanford University, Stanford, Calif; GE Global Research Center, General Electric, Niskayuna, NY (S.B.); Department of Nuclear Medicine, Kyungpook National University, Daegu, South Korea (B.C.A.); and Advanced Center for Treatment, Research, and Education ACTREC, Tata Memorial Centre, Navi Mumbai, India (P.R.)
| | - Tomohiko Teramoto
- From the Department of Radiology, James Clark Center, Molecular Imaging Program at Stanford, 318 Campus Drive West, Room E153, Stanford University, Stanford, CA 94305 (N.P., K.Z., K.I., R.P., J.K.W., D.Y., M.P., Y.F.C., F.H., S.Y., S.S.G.); Department of Cardiovascular Medicine (J.C., F.I., J.K.L., T.T., H.K., C.N.D., M.M., R.D., P.C.Y., T.J.B., P.G.Y., M.V.M.), Department of Cardiothoracic Surgery (J.C.S., D.R.M., J.E.C., A.B.G., R.C.R.), Department of Bioengineering (D.Y., P.G.Y., S.S.G.), Canary Center for Early Detection of Cancer (R.P., S.S.G.), and Department of Materials Science and Engineering (S.S.G.), Stanford University, Stanford, Calif; GE Global Research Center, General Electric, Niskayuna, NY (S.B.); Department of Nuclear Medicine, Kyungpook National University, Daegu, South Korea (B.C.A.); and Advanced Center for Treatment, Research, and Education ACTREC, Tata Memorial Centre, Navi Mumbai, India (P.R.)
| | - Hisanori Kosuge
- From the Department of Radiology, James Clark Center, Molecular Imaging Program at Stanford, 318 Campus Drive West, Room E153, Stanford University, Stanford, CA 94305 (N.P., K.Z., K.I., R.P., J.K.W., D.Y., M.P., Y.F.C., F.H., S.Y., S.S.G.); Department of Cardiovascular Medicine (J.C., F.I., J.K.L., T.T., H.K., C.N.D., M.M., R.D., P.C.Y., T.J.B., P.G.Y., M.V.M.), Department of Cardiothoracic Surgery (J.C.S., D.R.M., J.E.C., A.B.G., R.C.R.), Department of Bioengineering (D.Y., P.G.Y., S.S.G.), Canary Center for Early Detection of Cancer (R.P., S.S.G.), and Department of Materials Science and Engineering (S.S.G.), Stanford University, Stanford, Calif; GE Global Research Center, General Electric, Niskayuna, NY (S.B.); Department of Nuclear Medicine, Kyungpook National University, Daegu, South Korea (B.C.A.); and Advanced Center for Treatment, Research, and Education ACTREC, Tata Memorial Centre, Navi Mumbai, India (P.R.)
| | - Catherine N Dao
- From the Department of Radiology, James Clark Center, Molecular Imaging Program at Stanford, 318 Campus Drive West, Room E153, Stanford University, Stanford, CA 94305 (N.P., K.Z., K.I., R.P., J.K.W., D.Y., M.P., Y.F.C., F.H., S.Y., S.S.G.); Department of Cardiovascular Medicine (J.C., F.I., J.K.L., T.T., H.K., C.N.D., M.M., R.D., P.C.Y., T.J.B., P.G.Y., M.V.M.), Department of Cardiothoracic Surgery (J.C.S., D.R.M., J.E.C., A.B.G., R.C.R.), Department of Bioengineering (D.Y., P.G.Y., S.S.G.), Canary Center for Early Detection of Cancer (R.P., S.S.G.), and Department of Materials Science and Engineering (S.S.G.), Stanford University, Stanford, Calif; GE Global Research Center, General Electric, Niskayuna, NY (S.B.); Department of Nuclear Medicine, Kyungpook National University, Daegu, South Korea (B.C.A.); and Advanced Center for Treatment, Research, and Education ACTREC, Tata Memorial Centre, Navi Mumbai, India (P.R.)
| | - Pritha Ray
- From the Department of Radiology, James Clark Center, Molecular Imaging Program at Stanford, 318 Campus Drive West, Room E153, Stanford University, Stanford, CA 94305 (N.P., K.Z., K.I., R.P., J.K.W., D.Y., M.P., Y.F.C., F.H., S.Y., S.S.G.); Department of Cardiovascular Medicine (J.C., F.I., J.K.L., T.T., H.K., C.N.D., M.M., R.D., P.C.Y., T.J.B., P.G.Y., M.V.M.), Department of Cardiothoracic Surgery (J.C.S., D.R.M., J.E.C., A.B.G., R.C.R.), Department of Bioengineering (D.Y., P.G.Y., S.S.G.), Canary Center for Early Detection of Cancer (R.P., S.S.G.), and Department of Materials Science and Engineering (S.S.G.), Stanford University, Stanford, Calif; GE Global Research Center, General Electric, Niskayuna, NY (S.B.); Department of Nuclear Medicine, Kyungpook National University, Daegu, South Korea (B.C.A.); and Advanced Center for Treatment, Research, and Education ACTREC, Tata Memorial Centre, Navi Mumbai, India (P.R.)
| | - Manishkumar Patel
- From the Department of Radiology, James Clark Center, Molecular Imaging Program at Stanford, 318 Campus Drive West, Room E153, Stanford University, Stanford, CA 94305 (N.P., K.Z., K.I., R.P., J.K.W., D.Y., M.P., Y.F.C., F.H., S.Y., S.S.G.); Department of Cardiovascular Medicine (J.C., F.I., J.K.L., T.T., H.K., C.N.D., M.M., R.D., P.C.Y., T.J.B., P.G.Y., M.V.M.), Department of Cardiothoracic Surgery (J.C.S., D.R.M., J.E.C., A.B.G., R.C.R.), Department of Bioengineering (D.Y., P.G.Y., S.S.G.), Canary Center for Early Detection of Cancer (R.P., S.S.G.), and Department of Materials Science and Engineering (S.S.G.), Stanford University, Stanford, Calif; GE Global Research Center, General Electric, Niskayuna, NY (S.B.); Department of Nuclear Medicine, Kyungpook National University, Daegu, South Korea (B.C.A.); and Advanced Center for Treatment, Research, and Education ACTREC, Tata Memorial Centre, Navi Mumbai, India (P.R.)
| | - Ya-Fang Chang
- From the Department of Radiology, James Clark Center, Molecular Imaging Program at Stanford, 318 Campus Drive West, Room E153, Stanford University, Stanford, CA 94305 (N.P., K.Z., K.I., R.P., J.K.W., D.Y., M.P., Y.F.C., F.H., S.Y., S.S.G.); Department of Cardiovascular Medicine (J.C., F.I., J.K.L., T.T., H.K., C.N.D., M.M., R.D., P.C.Y., T.J.B., P.G.Y., M.V.M.), Department of Cardiothoracic Surgery (J.C.S., D.R.M., J.E.C., A.B.G., R.C.R.), Department of Bioengineering (D.Y., P.G.Y., S.S.G.), Canary Center for Early Detection of Cancer (R.P., S.S.G.), and Department of Materials Science and Engineering (S.S.G.), Stanford University, Stanford, Calif; GE Global Research Center, General Electric, Niskayuna, NY (S.B.); Department of Nuclear Medicine, Kyungpook National University, Daegu, South Korea (B.C.A.); and Advanced Center for Treatment, Research, and Education ACTREC, Tata Memorial Centre, Navi Mumbai, India (P.R.)
| | - Morteza Mahmoudi
- From the Department of Radiology, James Clark Center, Molecular Imaging Program at Stanford, 318 Campus Drive West, Room E153, Stanford University, Stanford, CA 94305 (N.P., K.Z., K.I., R.P., J.K.W., D.Y., M.P., Y.F.C., F.H., S.Y., S.S.G.); Department of Cardiovascular Medicine (J.C., F.I., J.K.L., T.T., H.K., C.N.D., M.M., R.D., P.C.Y., T.J.B., P.G.Y., M.V.M.), Department of Cardiothoracic Surgery (J.C.S., D.R.M., J.E.C., A.B.G., R.C.R.), Department of Bioengineering (D.Y., P.G.Y., S.S.G.), Canary Center for Early Detection of Cancer (R.P., S.S.G.), and Department of Materials Science and Engineering (S.S.G.), Stanford University, Stanford, Calif; GE Global Research Center, General Electric, Niskayuna, NY (S.B.); Department of Nuclear Medicine, Kyungpook National University, Daegu, South Korea (B.C.A.); and Advanced Center for Treatment, Research, and Education ACTREC, Tata Memorial Centre, Navi Mumbai, India (P.R.)
| | - Jeff Eric Cohen
- From the Department of Radiology, James Clark Center, Molecular Imaging Program at Stanford, 318 Campus Drive West, Room E153, Stanford University, Stanford, CA 94305 (N.P., K.Z., K.I., R.P., J.K.W., D.Y., M.P., Y.F.C., F.H., S.Y., S.S.G.); Department of Cardiovascular Medicine (J.C., F.I., J.K.L., T.T., H.K., C.N.D., M.M., R.D., P.C.Y., T.J.B., P.G.Y., M.V.M.), Department of Cardiothoracic Surgery (J.C.S., D.R.M., J.E.C., A.B.G., R.C.R.), Department of Bioengineering (D.Y., P.G.Y., S.S.G.), Canary Center for Early Detection of Cancer (R.P., S.S.G.), and Department of Materials Science and Engineering (S.S.G.), Stanford University, Stanford, Calif; GE Global Research Center, General Electric, Niskayuna, NY (S.B.); Department of Nuclear Medicine, Kyungpook National University, Daegu, South Korea (B.C.A.); and Advanced Center for Treatment, Research, and Education ACTREC, Tata Memorial Centre, Navi Mumbai, India (P.R.)
| | - Andrew Brooks Goldstone
- From the Department of Radiology, James Clark Center, Molecular Imaging Program at Stanford, 318 Campus Drive West, Room E153, Stanford University, Stanford, CA 94305 (N.P., K.Z., K.I., R.P., J.K.W., D.Y., M.P., Y.F.C., F.H., S.Y., S.S.G.); Department of Cardiovascular Medicine (J.C., F.I., J.K.L., T.T., H.K., C.N.D., M.M., R.D., P.C.Y., T.J.B., P.G.Y., M.V.M.), Department of Cardiothoracic Surgery (J.C.S., D.R.M., J.E.C., A.B.G., R.C.R.), Department of Bioengineering (D.Y., P.G.Y., S.S.G.), Canary Center for Early Detection of Cancer (R.P., S.S.G.), and Department of Materials Science and Engineering (S.S.G.), Stanford University, Stanford, Calif; GE Global Research Center, General Electric, Niskayuna, NY (S.B.); Department of Nuclear Medicine, Kyungpook National University, Daegu, South Korea (B.C.A.); and Advanced Center for Treatment, Research, and Education ACTREC, Tata Memorial Centre, Navi Mumbai, India (P.R.)
| | - Frezghi Habte
- From the Department of Radiology, James Clark Center, Molecular Imaging Program at Stanford, 318 Campus Drive West, Room E153, Stanford University, Stanford, CA 94305 (N.P., K.Z., K.I., R.P., J.K.W., D.Y., M.P., Y.F.C., F.H., S.Y., S.S.G.); Department of Cardiovascular Medicine (J.C., F.I., J.K.L., T.T., H.K., C.N.D., M.M., R.D., P.C.Y., T.J.B., P.G.Y., M.V.M.), Department of Cardiothoracic Surgery (J.C.S., D.R.M., J.E.C., A.B.G., R.C.R.), Department of Bioengineering (D.Y., P.G.Y., S.S.G.), Canary Center for Early Detection of Cancer (R.P., S.S.G.), and Department of Materials Science and Engineering (S.S.G.), Stanford University, Stanford, Calif; GE Global Research Center, General Electric, Niskayuna, NY (S.B.); Department of Nuclear Medicine, Kyungpook National University, Daegu, South Korea (B.C.A.); and Advanced Center for Treatment, Research, and Education ACTREC, Tata Memorial Centre, Navi Mumbai, India (P.R.)
| | - Srabani Bhaumik
- From the Department of Radiology, James Clark Center, Molecular Imaging Program at Stanford, 318 Campus Drive West, Room E153, Stanford University, Stanford, CA 94305 (N.P., K.Z., K.I., R.P., J.K.W., D.Y., M.P., Y.F.C., F.H., S.Y., S.S.G.); Department of Cardiovascular Medicine (J.C., F.I., J.K.L., T.T., H.K., C.N.D., M.M., R.D., P.C.Y., T.J.B., P.G.Y., M.V.M.), Department of Cardiothoracic Surgery (J.C.S., D.R.M., J.E.C., A.B.G., R.C.R.), Department of Bioengineering (D.Y., P.G.Y., S.S.G.), Canary Center for Early Detection of Cancer (R.P., S.S.G.), and Department of Materials Science and Engineering (S.S.G.), Stanford University, Stanford, Calif; GE Global Research Center, General Electric, Niskayuna, NY (S.B.); Department of Nuclear Medicine, Kyungpook National University, Daegu, South Korea (B.C.A.); and Advanced Center for Treatment, Research, and Education ACTREC, Tata Memorial Centre, Navi Mumbai, India (P.R.)
| | - Shahriar Yaghoubi
- From the Department of Radiology, James Clark Center, Molecular Imaging Program at Stanford, 318 Campus Drive West, Room E153, Stanford University, Stanford, CA 94305 (N.P., K.Z., K.I., R.P., J.K.W., D.Y., M.P., Y.F.C., F.H., S.Y., S.S.G.); Department of Cardiovascular Medicine (J.C., F.I., J.K.L., T.T., H.K., C.N.D., M.M., R.D., P.C.Y., T.J.B., P.G.Y., M.V.M.), Department of Cardiothoracic Surgery (J.C.S., D.R.M., J.E.C., A.B.G., R.C.R.), Department of Bioengineering (D.Y., P.G.Y., S.S.G.), Canary Center for Early Detection of Cancer (R.P., S.S.G.), and Department of Materials Science and Engineering (S.S.G.), Stanford University, Stanford, Calif; GE Global Research Center, General Electric, Niskayuna, NY (S.B.); Department of Nuclear Medicine, Kyungpook National University, Daegu, South Korea (B.C.A.); and Advanced Center for Treatment, Research, and Education ACTREC, Tata Memorial Centre, Navi Mumbai, India (P.R.)
| | - Robert C Robbins
- From the Department of Radiology, James Clark Center, Molecular Imaging Program at Stanford, 318 Campus Drive West, Room E153, Stanford University, Stanford, CA 94305 (N.P., K.Z., K.I., R.P., J.K.W., D.Y., M.P., Y.F.C., F.H., S.Y., S.S.G.); Department of Cardiovascular Medicine (J.C., F.I., J.K.L., T.T., H.K., C.N.D., M.M., R.D., P.C.Y., T.J.B., P.G.Y., M.V.M.), Department of Cardiothoracic Surgery (J.C.S., D.R.M., J.E.C., A.B.G., R.C.R.), Department of Bioengineering (D.Y., P.G.Y., S.S.G.), Canary Center for Early Detection of Cancer (R.P., S.S.G.), and Department of Materials Science and Engineering (S.S.G.), Stanford University, Stanford, Calif; GE Global Research Center, General Electric, Niskayuna, NY (S.B.); Department of Nuclear Medicine, Kyungpook National University, Daegu, South Korea (B.C.A.); and Advanced Center for Treatment, Research, and Education ACTREC, Tata Memorial Centre, Navi Mumbai, India (P.R.)
| | - Rajesh Dash
- From the Department of Radiology, James Clark Center, Molecular Imaging Program at Stanford, 318 Campus Drive West, Room E153, Stanford University, Stanford, CA 94305 (N.P., K.Z., K.I., R.P., J.K.W., D.Y., M.P., Y.F.C., F.H., S.Y., S.S.G.); Department of Cardiovascular Medicine (J.C., F.I., J.K.L., T.T., H.K., C.N.D., M.M., R.D., P.C.Y., T.J.B., P.G.Y., M.V.M.), Department of Cardiothoracic Surgery (J.C.S., D.R.M., J.E.C., A.B.G., R.C.R.), Department of Bioengineering (D.Y., P.G.Y., S.S.G.), Canary Center for Early Detection of Cancer (R.P., S.S.G.), and Department of Materials Science and Engineering (S.S.G.), Stanford University, Stanford, Calif; GE Global Research Center, General Electric, Niskayuna, NY (S.B.); Department of Nuclear Medicine, Kyungpook National University, Daegu, South Korea (B.C.A.); and Advanced Center for Treatment, Research, and Education ACTREC, Tata Memorial Centre, Navi Mumbai, India (P.R.)
| | - Phillip C Yang
- From the Department of Radiology, James Clark Center, Molecular Imaging Program at Stanford, 318 Campus Drive West, Room E153, Stanford University, Stanford, CA 94305 (N.P., K.Z., K.I., R.P., J.K.W., D.Y., M.P., Y.F.C., F.H., S.Y., S.S.G.); Department of Cardiovascular Medicine (J.C., F.I., J.K.L., T.T., H.K., C.N.D., M.M., R.D., P.C.Y., T.J.B., P.G.Y., M.V.M.), Department of Cardiothoracic Surgery (J.C.S., D.R.M., J.E.C., A.B.G., R.C.R.), Department of Bioengineering (D.Y., P.G.Y., S.S.G.), Canary Center for Early Detection of Cancer (R.P., S.S.G.), and Department of Materials Science and Engineering (S.S.G.), Stanford University, Stanford, Calif; GE Global Research Center, General Electric, Niskayuna, NY (S.B.); Department of Nuclear Medicine, Kyungpook National University, Daegu, South Korea (B.C.A.); and Advanced Center for Treatment, Research, and Education ACTREC, Tata Memorial Centre, Navi Mumbai, India (P.R.)
| | - Todd J Brinton
- From the Department of Radiology, James Clark Center, Molecular Imaging Program at Stanford, 318 Campus Drive West, Room E153, Stanford University, Stanford, CA 94305 (N.P., K.Z., K.I., R.P., J.K.W., D.Y., M.P., Y.F.C., F.H., S.Y., S.S.G.); Department of Cardiovascular Medicine (J.C., F.I., J.K.L., T.T., H.K., C.N.D., M.M., R.D., P.C.Y., T.J.B., P.G.Y., M.V.M.), Department of Cardiothoracic Surgery (J.C.S., D.R.M., J.E.C., A.B.G., R.C.R.), Department of Bioengineering (D.Y., P.G.Y., S.S.G.), Canary Center for Early Detection of Cancer (R.P., S.S.G.), and Department of Materials Science and Engineering (S.S.G.), Stanford University, Stanford, Calif; GE Global Research Center, General Electric, Niskayuna, NY (S.B.); Department of Nuclear Medicine, Kyungpook National University, Daegu, South Korea (B.C.A.); and Advanced Center for Treatment, Research, and Education ACTREC, Tata Memorial Centre, Navi Mumbai, India (P.R.)
| | - Paul G Yock
- From the Department of Radiology, James Clark Center, Molecular Imaging Program at Stanford, 318 Campus Drive West, Room E153, Stanford University, Stanford, CA 94305 (N.P., K.Z., K.I., R.P., J.K.W., D.Y., M.P., Y.F.C., F.H., S.Y., S.S.G.); Department of Cardiovascular Medicine (J.C., F.I., J.K.L., T.T., H.K., C.N.D., M.M., R.D., P.C.Y., T.J.B., P.G.Y., M.V.M.), Department of Cardiothoracic Surgery (J.C.S., D.R.M., J.E.C., A.B.G., R.C.R.), Department of Bioengineering (D.Y., P.G.Y., S.S.G.), Canary Center for Early Detection of Cancer (R.P., S.S.G.), and Department of Materials Science and Engineering (S.S.G.), Stanford University, Stanford, Calif; GE Global Research Center, General Electric, Niskayuna, NY (S.B.); Department of Nuclear Medicine, Kyungpook National University, Daegu, South Korea (B.C.A.); and Advanced Center for Treatment, Research, and Education ACTREC, Tata Memorial Centre, Navi Mumbai, India (P.R.)
| | - Michael V McConnell
- From the Department of Radiology, James Clark Center, Molecular Imaging Program at Stanford, 318 Campus Drive West, Room E153, Stanford University, Stanford, CA 94305 (N.P., K.Z., K.I., R.P., J.K.W., D.Y., M.P., Y.F.C., F.H., S.Y., S.S.G.); Department of Cardiovascular Medicine (J.C., F.I., J.K.L., T.T., H.K., C.N.D., M.M., R.D., P.C.Y., T.J.B., P.G.Y., M.V.M.), Department of Cardiothoracic Surgery (J.C.S., D.R.M., J.E.C., A.B.G., R.C.R.), Department of Bioengineering (D.Y., P.G.Y., S.S.G.), Canary Center for Early Detection of Cancer (R.P., S.S.G.), and Department of Materials Science and Engineering (S.S.G.), Stanford University, Stanford, Calif; GE Global Research Center, General Electric, Niskayuna, NY (S.B.); Department of Nuclear Medicine, Kyungpook National University, Daegu, South Korea (B.C.A.); and Advanced Center for Treatment, Research, and Education ACTREC, Tata Memorial Centre, Navi Mumbai, India (P.R.)
| | - Sanjiv S Gambhir
- From the Department of Radiology, James Clark Center, Molecular Imaging Program at Stanford, 318 Campus Drive West, Room E153, Stanford University, Stanford, CA 94305 (N.P., K.Z., K.I., R.P., J.K.W., D.Y., M.P., Y.F.C., F.H., S.Y., S.S.G.); Department of Cardiovascular Medicine (J.C., F.I., J.K.L., T.T., H.K., C.N.D., M.M., R.D., P.C.Y., T.J.B., P.G.Y., M.V.M.), Department of Cardiothoracic Surgery (J.C.S., D.R.M., J.E.C., A.B.G., R.C.R.), Department of Bioengineering (D.Y., P.G.Y., S.S.G.), Canary Center for Early Detection of Cancer (R.P., S.S.G.), and Department of Materials Science and Engineering (S.S.G.), Stanford University, Stanford, Calif; GE Global Research Center, General Electric, Niskayuna, NY (S.B.); Department of Nuclear Medicine, Kyungpook National University, Daegu, South Korea (B.C.A.); and Advanced Center for Treatment, Research, and Education ACTREC, Tata Memorial Centre, Navi Mumbai, India (P.R.)
| |
Collapse
|
17
|
Parashurama N, Ahn BC, Ziv K, Ito K, Paulmurugan R, Willmann JK, Chung J, Ikeno F, Swanson JC, Merk DR, Lyons JK, Yerushalmi D, Teramoto T, Kosuge H, Dao CN, Ray P, Patel M, Chang YF, Mahmoudi M, Cohen JE, Goldstone AB, Habte F, Bhaumik S, Yaghoubi S, Robbins RC, Dash R, Yang PC, Brinton TJ, Yock PG, McConnell MV, Gambhir SS. Multimodality Molecular Imaging of Cardiac Cell Transplantation: Part I. Reporter Gene Design, Characterization, and Optical in Vivo Imaging of Bone Marrow Stromal Cells after Myocardial Infarction. Radiology 2016; 280:815-25. [PMID: 27308957 DOI: 10.1148/radiol.2016140049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Purpose To use multimodality reporter-gene imaging to assess the serial survival of marrow stromal cells (MSC) after therapy for myocardial infarction (MI) and to determine if the requisite preclinical imaging end point was met prior to a follow-up large-animal MSC imaging study. Materials and Methods Animal studies were approved by the Institutional Administrative Panel on Laboratory Animal Care. Mice (n = 19) that had experienced MI were injected with bone marrow-derived MSC that expressed a multimodality triple fusion (TF) reporter gene. The TF reporter gene (fluc2-egfp-sr39ttk) consisted of a human promoter, ubiquitin, driving firefly luciferase 2 (fluc2), enhanced green fluorescent protein (egfp), and the sr39tk positron emission tomography reporter gene. Serial bioluminescence imaging of MSC-TF and ex vivo luciferase assays were performed. Correlations were analyzed with the Pearson product-moment correlation, and serial imaging results were analyzed with a mixed-effects regression model. Results Analysis of the MSC-TF after cardiac cell therapy showed significantly lower signal on days 8 and 14 than on day 2 (P = .011 and P = .001, respectively). MSC-TF with MI demonstrated significantly higher signal than MSC-TF without MI at days 4, 8, and 14 (P = .016). Ex vivo luciferase activity assay confirmed the presence of MSC-TF on days 8 and 14 after MI. Conclusion Multimodality reporter-gene imaging was successfully used to assess serial MSC survival after therapy for MI, and it was determined that the requisite preclinical imaging end point, 14 days of MSC survival, was met prior to a follow-up large-animal MSC study. (©) RSNA, 2016 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Natesh Parashurama
- From the Department of Radiology, James Clark Center, Molecular Imaging Program at Stanford, 318 Campus Drive West, Room E153, Stanford University, Stanford, CA 94305 (N.P., K.Z., K.I., R.P., J.K.W., D.Y., M.P., Y.F.C., F.H., S.Y., S.S.G.); Department of Cardiovascular Medicine (J.C., F.I., J.K.L., T.T., H.K., C.N.D., M.M., R.D., P.C.Y., T.J.B., P.G.Y., M.V.M.), Department of Cardiothoracic Surgery (J.C.S., D.R.M., J.E.C., A.B.G., R.C.R.), Department of Bioengineering (D.Y., P.G.Y., S.S.G.), Canary Center for Early Detection of Cancer (R.P., S.S.G.), and Department of Materials Science and Engineering (S.S.G.), Stanford University, Stanford, Calif; GE Global Research Center, General Electric, Niskayuna, NY (S.B.); Department of Nuclear Medicine, Kyungpook National University, Daegu, South Korea (B.C.A.); and Advanced Center for Treatment, Research, and Education ACTREC, Tata Memorial Centre, Navi Mumbai, India (P.R.)
| | - Byeong-Cheol Ahn
- From the Department of Radiology, James Clark Center, Molecular Imaging Program at Stanford, 318 Campus Drive West, Room E153, Stanford University, Stanford, CA 94305 (N.P., K.Z., K.I., R.P., J.K.W., D.Y., M.P., Y.F.C., F.H., S.Y., S.S.G.); Department of Cardiovascular Medicine (J.C., F.I., J.K.L., T.T., H.K., C.N.D., M.M., R.D., P.C.Y., T.J.B., P.G.Y., M.V.M.), Department of Cardiothoracic Surgery (J.C.S., D.R.M., J.E.C., A.B.G., R.C.R.), Department of Bioengineering (D.Y., P.G.Y., S.S.G.), Canary Center for Early Detection of Cancer (R.P., S.S.G.), and Department of Materials Science and Engineering (S.S.G.), Stanford University, Stanford, Calif; GE Global Research Center, General Electric, Niskayuna, NY (S.B.); Department of Nuclear Medicine, Kyungpook National University, Daegu, South Korea (B.C.A.); and Advanced Center for Treatment, Research, and Education ACTREC, Tata Memorial Centre, Navi Mumbai, India (P.R.)
| | - Keren Ziv
- From the Department of Radiology, James Clark Center, Molecular Imaging Program at Stanford, 318 Campus Drive West, Room E153, Stanford University, Stanford, CA 94305 (N.P., K.Z., K.I., R.P., J.K.W., D.Y., M.P., Y.F.C., F.H., S.Y., S.S.G.); Department of Cardiovascular Medicine (J.C., F.I., J.K.L., T.T., H.K., C.N.D., M.M., R.D., P.C.Y., T.J.B., P.G.Y., M.V.M.), Department of Cardiothoracic Surgery (J.C.S., D.R.M., J.E.C., A.B.G., R.C.R.), Department of Bioengineering (D.Y., P.G.Y., S.S.G.), Canary Center for Early Detection of Cancer (R.P., S.S.G.), and Department of Materials Science and Engineering (S.S.G.), Stanford University, Stanford, Calif; GE Global Research Center, General Electric, Niskayuna, NY (S.B.); Department of Nuclear Medicine, Kyungpook National University, Daegu, South Korea (B.C.A.); and Advanced Center for Treatment, Research, and Education ACTREC, Tata Memorial Centre, Navi Mumbai, India (P.R.)
| | - Ken Ito
- From the Department of Radiology, James Clark Center, Molecular Imaging Program at Stanford, 318 Campus Drive West, Room E153, Stanford University, Stanford, CA 94305 (N.P., K.Z., K.I., R.P., J.K.W., D.Y., M.P., Y.F.C., F.H., S.Y., S.S.G.); Department of Cardiovascular Medicine (J.C., F.I., J.K.L., T.T., H.K., C.N.D., M.M., R.D., P.C.Y., T.J.B., P.G.Y., M.V.M.), Department of Cardiothoracic Surgery (J.C.S., D.R.M., J.E.C., A.B.G., R.C.R.), Department of Bioengineering (D.Y., P.G.Y., S.S.G.), Canary Center for Early Detection of Cancer (R.P., S.S.G.), and Department of Materials Science and Engineering (S.S.G.), Stanford University, Stanford, Calif; GE Global Research Center, General Electric, Niskayuna, NY (S.B.); Department of Nuclear Medicine, Kyungpook National University, Daegu, South Korea (B.C.A.); and Advanced Center for Treatment, Research, and Education ACTREC, Tata Memorial Centre, Navi Mumbai, India (P.R.)
| | - Ramasamy Paulmurugan
- From the Department of Radiology, James Clark Center, Molecular Imaging Program at Stanford, 318 Campus Drive West, Room E153, Stanford University, Stanford, CA 94305 (N.P., K.Z., K.I., R.P., J.K.W., D.Y., M.P., Y.F.C., F.H., S.Y., S.S.G.); Department of Cardiovascular Medicine (J.C., F.I., J.K.L., T.T., H.K., C.N.D., M.M., R.D., P.C.Y., T.J.B., P.G.Y., M.V.M.), Department of Cardiothoracic Surgery (J.C.S., D.R.M., J.E.C., A.B.G., R.C.R.), Department of Bioengineering (D.Y., P.G.Y., S.S.G.), Canary Center for Early Detection of Cancer (R.P., S.S.G.), and Department of Materials Science and Engineering (S.S.G.), Stanford University, Stanford, Calif; GE Global Research Center, General Electric, Niskayuna, NY (S.B.); Department of Nuclear Medicine, Kyungpook National University, Daegu, South Korea (B.C.A.); and Advanced Center for Treatment, Research, and Education ACTREC, Tata Memorial Centre, Navi Mumbai, India (P.R.)
| | - Jürgen K Willmann
- From the Department of Radiology, James Clark Center, Molecular Imaging Program at Stanford, 318 Campus Drive West, Room E153, Stanford University, Stanford, CA 94305 (N.P., K.Z., K.I., R.P., J.K.W., D.Y., M.P., Y.F.C., F.H., S.Y., S.S.G.); Department of Cardiovascular Medicine (J.C., F.I., J.K.L., T.T., H.K., C.N.D., M.M., R.D., P.C.Y., T.J.B., P.G.Y., M.V.M.), Department of Cardiothoracic Surgery (J.C.S., D.R.M., J.E.C., A.B.G., R.C.R.), Department of Bioengineering (D.Y., P.G.Y., S.S.G.), Canary Center for Early Detection of Cancer (R.P., S.S.G.), and Department of Materials Science and Engineering (S.S.G.), Stanford University, Stanford, Calif; GE Global Research Center, General Electric, Niskayuna, NY (S.B.); Department of Nuclear Medicine, Kyungpook National University, Daegu, South Korea (B.C.A.); and Advanced Center for Treatment, Research, and Education ACTREC, Tata Memorial Centre, Navi Mumbai, India (P.R.)
| | - Jaehoon Chung
- From the Department of Radiology, James Clark Center, Molecular Imaging Program at Stanford, 318 Campus Drive West, Room E153, Stanford University, Stanford, CA 94305 (N.P., K.Z., K.I., R.P., J.K.W., D.Y., M.P., Y.F.C., F.H., S.Y., S.S.G.); Department of Cardiovascular Medicine (J.C., F.I., J.K.L., T.T., H.K., C.N.D., M.M., R.D., P.C.Y., T.J.B., P.G.Y., M.V.M.), Department of Cardiothoracic Surgery (J.C.S., D.R.M., J.E.C., A.B.G., R.C.R.), Department of Bioengineering (D.Y., P.G.Y., S.S.G.), Canary Center for Early Detection of Cancer (R.P., S.S.G.), and Department of Materials Science and Engineering (S.S.G.), Stanford University, Stanford, Calif; GE Global Research Center, General Electric, Niskayuna, NY (S.B.); Department of Nuclear Medicine, Kyungpook National University, Daegu, South Korea (B.C.A.); and Advanced Center for Treatment, Research, and Education ACTREC, Tata Memorial Centre, Navi Mumbai, India (P.R.)
| | - Fumiaki Ikeno
- From the Department of Radiology, James Clark Center, Molecular Imaging Program at Stanford, 318 Campus Drive West, Room E153, Stanford University, Stanford, CA 94305 (N.P., K.Z., K.I., R.P., J.K.W., D.Y., M.P., Y.F.C., F.H., S.Y., S.S.G.); Department of Cardiovascular Medicine (J.C., F.I., J.K.L., T.T., H.K., C.N.D., M.M., R.D., P.C.Y., T.J.B., P.G.Y., M.V.M.), Department of Cardiothoracic Surgery (J.C.S., D.R.M., J.E.C., A.B.G., R.C.R.), Department of Bioengineering (D.Y., P.G.Y., S.S.G.), Canary Center for Early Detection of Cancer (R.P., S.S.G.), and Department of Materials Science and Engineering (S.S.G.), Stanford University, Stanford, Calif; GE Global Research Center, General Electric, Niskayuna, NY (S.B.); Department of Nuclear Medicine, Kyungpook National University, Daegu, South Korea (B.C.A.); and Advanced Center for Treatment, Research, and Education ACTREC, Tata Memorial Centre, Navi Mumbai, India (P.R.)
| | - Julia C Swanson
- From the Department of Radiology, James Clark Center, Molecular Imaging Program at Stanford, 318 Campus Drive West, Room E153, Stanford University, Stanford, CA 94305 (N.P., K.Z., K.I., R.P., J.K.W., D.Y., M.P., Y.F.C., F.H., S.Y., S.S.G.); Department of Cardiovascular Medicine (J.C., F.I., J.K.L., T.T., H.K., C.N.D., M.M., R.D., P.C.Y., T.J.B., P.G.Y., M.V.M.), Department of Cardiothoracic Surgery (J.C.S., D.R.M., J.E.C., A.B.G., R.C.R.), Department of Bioengineering (D.Y., P.G.Y., S.S.G.), Canary Center for Early Detection of Cancer (R.P., S.S.G.), and Department of Materials Science and Engineering (S.S.G.), Stanford University, Stanford, Calif; GE Global Research Center, General Electric, Niskayuna, NY (S.B.); Department of Nuclear Medicine, Kyungpook National University, Daegu, South Korea (B.C.A.); and Advanced Center for Treatment, Research, and Education ACTREC, Tata Memorial Centre, Navi Mumbai, India (P.R.)
| | - Denis R Merk
- From the Department of Radiology, James Clark Center, Molecular Imaging Program at Stanford, 318 Campus Drive West, Room E153, Stanford University, Stanford, CA 94305 (N.P., K.Z., K.I., R.P., J.K.W., D.Y., M.P., Y.F.C., F.H., S.Y., S.S.G.); Department of Cardiovascular Medicine (J.C., F.I., J.K.L., T.T., H.K., C.N.D., M.M., R.D., P.C.Y., T.J.B., P.G.Y., M.V.M.), Department of Cardiothoracic Surgery (J.C.S., D.R.M., J.E.C., A.B.G., R.C.R.), Department of Bioengineering (D.Y., P.G.Y., S.S.G.), Canary Center for Early Detection of Cancer (R.P., S.S.G.), and Department of Materials Science and Engineering (S.S.G.), Stanford University, Stanford, Calif; GE Global Research Center, General Electric, Niskayuna, NY (S.B.); Department of Nuclear Medicine, Kyungpook National University, Daegu, South Korea (B.C.A.); and Advanced Center for Treatment, Research, and Education ACTREC, Tata Memorial Centre, Navi Mumbai, India (P.R.)
| | - Jennifer K Lyons
- From the Department of Radiology, James Clark Center, Molecular Imaging Program at Stanford, 318 Campus Drive West, Room E153, Stanford University, Stanford, CA 94305 (N.P., K.Z., K.I., R.P., J.K.W., D.Y., M.P., Y.F.C., F.H., S.Y., S.S.G.); Department of Cardiovascular Medicine (J.C., F.I., J.K.L., T.T., H.K., C.N.D., M.M., R.D., P.C.Y., T.J.B., P.G.Y., M.V.M.), Department of Cardiothoracic Surgery (J.C.S., D.R.M., J.E.C., A.B.G., R.C.R.), Department of Bioengineering (D.Y., P.G.Y., S.S.G.), Canary Center for Early Detection of Cancer (R.P., S.S.G.), and Department of Materials Science and Engineering (S.S.G.), Stanford University, Stanford, Calif; GE Global Research Center, General Electric, Niskayuna, NY (S.B.); Department of Nuclear Medicine, Kyungpook National University, Daegu, South Korea (B.C.A.); and Advanced Center for Treatment, Research, and Education ACTREC, Tata Memorial Centre, Navi Mumbai, India (P.R.)
| | - David Yerushalmi
- From the Department of Radiology, James Clark Center, Molecular Imaging Program at Stanford, 318 Campus Drive West, Room E153, Stanford University, Stanford, CA 94305 (N.P., K.Z., K.I., R.P., J.K.W., D.Y., M.P., Y.F.C., F.H., S.Y., S.S.G.); Department of Cardiovascular Medicine (J.C., F.I., J.K.L., T.T., H.K., C.N.D., M.M., R.D., P.C.Y., T.J.B., P.G.Y., M.V.M.), Department of Cardiothoracic Surgery (J.C.S., D.R.M., J.E.C., A.B.G., R.C.R.), Department of Bioengineering (D.Y., P.G.Y., S.S.G.), Canary Center for Early Detection of Cancer (R.P., S.S.G.), and Department of Materials Science and Engineering (S.S.G.), Stanford University, Stanford, Calif; GE Global Research Center, General Electric, Niskayuna, NY (S.B.); Department of Nuclear Medicine, Kyungpook National University, Daegu, South Korea (B.C.A.); and Advanced Center for Treatment, Research, and Education ACTREC, Tata Memorial Centre, Navi Mumbai, India (P.R.)
| | - Tomohiko Teramoto
- From the Department of Radiology, James Clark Center, Molecular Imaging Program at Stanford, 318 Campus Drive West, Room E153, Stanford University, Stanford, CA 94305 (N.P., K.Z., K.I., R.P., J.K.W., D.Y., M.P., Y.F.C., F.H., S.Y., S.S.G.); Department of Cardiovascular Medicine (J.C., F.I., J.K.L., T.T., H.K., C.N.D., M.M., R.D., P.C.Y., T.J.B., P.G.Y., M.V.M.), Department of Cardiothoracic Surgery (J.C.S., D.R.M., J.E.C., A.B.G., R.C.R.), Department of Bioengineering (D.Y., P.G.Y., S.S.G.), Canary Center for Early Detection of Cancer (R.P., S.S.G.), and Department of Materials Science and Engineering (S.S.G.), Stanford University, Stanford, Calif; GE Global Research Center, General Electric, Niskayuna, NY (S.B.); Department of Nuclear Medicine, Kyungpook National University, Daegu, South Korea (B.C.A.); and Advanced Center for Treatment, Research, and Education ACTREC, Tata Memorial Centre, Navi Mumbai, India (P.R.)
| | - Hisanori Kosuge
- From the Department of Radiology, James Clark Center, Molecular Imaging Program at Stanford, 318 Campus Drive West, Room E153, Stanford University, Stanford, CA 94305 (N.P., K.Z., K.I., R.P., J.K.W., D.Y., M.P., Y.F.C., F.H., S.Y., S.S.G.); Department of Cardiovascular Medicine (J.C., F.I., J.K.L., T.T., H.K., C.N.D., M.M., R.D., P.C.Y., T.J.B., P.G.Y., M.V.M.), Department of Cardiothoracic Surgery (J.C.S., D.R.M., J.E.C., A.B.G., R.C.R.), Department of Bioengineering (D.Y., P.G.Y., S.S.G.), Canary Center for Early Detection of Cancer (R.P., S.S.G.), and Department of Materials Science and Engineering (S.S.G.), Stanford University, Stanford, Calif; GE Global Research Center, General Electric, Niskayuna, NY (S.B.); Department of Nuclear Medicine, Kyungpook National University, Daegu, South Korea (B.C.A.); and Advanced Center for Treatment, Research, and Education ACTREC, Tata Memorial Centre, Navi Mumbai, India (P.R.)
| | - Catherine N Dao
- From the Department of Radiology, James Clark Center, Molecular Imaging Program at Stanford, 318 Campus Drive West, Room E153, Stanford University, Stanford, CA 94305 (N.P., K.Z., K.I., R.P., J.K.W., D.Y., M.P., Y.F.C., F.H., S.Y., S.S.G.); Department of Cardiovascular Medicine (J.C., F.I., J.K.L., T.T., H.K., C.N.D., M.M., R.D., P.C.Y., T.J.B., P.G.Y., M.V.M.), Department of Cardiothoracic Surgery (J.C.S., D.R.M., J.E.C., A.B.G., R.C.R.), Department of Bioengineering (D.Y., P.G.Y., S.S.G.), Canary Center for Early Detection of Cancer (R.P., S.S.G.), and Department of Materials Science and Engineering (S.S.G.), Stanford University, Stanford, Calif; GE Global Research Center, General Electric, Niskayuna, NY (S.B.); Department of Nuclear Medicine, Kyungpook National University, Daegu, South Korea (B.C.A.); and Advanced Center for Treatment, Research, and Education ACTREC, Tata Memorial Centre, Navi Mumbai, India (P.R.)
| | - Pritha Ray
- From the Department of Radiology, James Clark Center, Molecular Imaging Program at Stanford, 318 Campus Drive West, Room E153, Stanford University, Stanford, CA 94305 (N.P., K.Z., K.I., R.P., J.K.W., D.Y., M.P., Y.F.C., F.H., S.Y., S.S.G.); Department of Cardiovascular Medicine (J.C., F.I., J.K.L., T.T., H.K., C.N.D., M.M., R.D., P.C.Y., T.J.B., P.G.Y., M.V.M.), Department of Cardiothoracic Surgery (J.C.S., D.R.M., J.E.C., A.B.G., R.C.R.), Department of Bioengineering (D.Y., P.G.Y., S.S.G.), Canary Center for Early Detection of Cancer (R.P., S.S.G.), and Department of Materials Science and Engineering (S.S.G.), Stanford University, Stanford, Calif; GE Global Research Center, General Electric, Niskayuna, NY (S.B.); Department of Nuclear Medicine, Kyungpook National University, Daegu, South Korea (B.C.A.); and Advanced Center for Treatment, Research, and Education ACTREC, Tata Memorial Centre, Navi Mumbai, India (P.R.)
| | - Manishkumar Patel
- From the Department of Radiology, James Clark Center, Molecular Imaging Program at Stanford, 318 Campus Drive West, Room E153, Stanford University, Stanford, CA 94305 (N.P., K.Z., K.I., R.P., J.K.W., D.Y., M.P., Y.F.C., F.H., S.Y., S.S.G.); Department of Cardiovascular Medicine (J.C., F.I., J.K.L., T.T., H.K., C.N.D., M.M., R.D., P.C.Y., T.J.B., P.G.Y., M.V.M.), Department of Cardiothoracic Surgery (J.C.S., D.R.M., J.E.C., A.B.G., R.C.R.), Department of Bioengineering (D.Y., P.G.Y., S.S.G.), Canary Center for Early Detection of Cancer (R.P., S.S.G.), and Department of Materials Science and Engineering (S.S.G.), Stanford University, Stanford, Calif; GE Global Research Center, General Electric, Niskayuna, NY (S.B.); Department of Nuclear Medicine, Kyungpook National University, Daegu, South Korea (B.C.A.); and Advanced Center for Treatment, Research, and Education ACTREC, Tata Memorial Centre, Navi Mumbai, India (P.R.)
| | - Ya-Fang Chang
- From the Department of Radiology, James Clark Center, Molecular Imaging Program at Stanford, 318 Campus Drive West, Room E153, Stanford University, Stanford, CA 94305 (N.P., K.Z., K.I., R.P., J.K.W., D.Y., M.P., Y.F.C., F.H., S.Y., S.S.G.); Department of Cardiovascular Medicine (J.C., F.I., J.K.L., T.T., H.K., C.N.D., M.M., R.D., P.C.Y., T.J.B., P.G.Y., M.V.M.), Department of Cardiothoracic Surgery (J.C.S., D.R.M., J.E.C., A.B.G., R.C.R.), Department of Bioengineering (D.Y., P.G.Y., S.S.G.), Canary Center for Early Detection of Cancer (R.P., S.S.G.), and Department of Materials Science and Engineering (S.S.G.), Stanford University, Stanford, Calif; GE Global Research Center, General Electric, Niskayuna, NY (S.B.); Department of Nuclear Medicine, Kyungpook National University, Daegu, South Korea (B.C.A.); and Advanced Center for Treatment, Research, and Education ACTREC, Tata Memorial Centre, Navi Mumbai, India (P.R.)
| | - Morteza Mahmoudi
- From the Department of Radiology, James Clark Center, Molecular Imaging Program at Stanford, 318 Campus Drive West, Room E153, Stanford University, Stanford, CA 94305 (N.P., K.Z., K.I., R.P., J.K.W., D.Y., M.P., Y.F.C., F.H., S.Y., S.S.G.); Department of Cardiovascular Medicine (J.C., F.I., J.K.L., T.T., H.K., C.N.D., M.M., R.D., P.C.Y., T.J.B., P.G.Y., M.V.M.), Department of Cardiothoracic Surgery (J.C.S., D.R.M., J.E.C., A.B.G., R.C.R.), Department of Bioengineering (D.Y., P.G.Y., S.S.G.), Canary Center for Early Detection of Cancer (R.P., S.S.G.), and Department of Materials Science and Engineering (S.S.G.), Stanford University, Stanford, Calif; GE Global Research Center, General Electric, Niskayuna, NY (S.B.); Department of Nuclear Medicine, Kyungpook National University, Daegu, South Korea (B.C.A.); and Advanced Center for Treatment, Research, and Education ACTREC, Tata Memorial Centre, Navi Mumbai, India (P.R.)
| | - Jeff Eric Cohen
- From the Department of Radiology, James Clark Center, Molecular Imaging Program at Stanford, 318 Campus Drive West, Room E153, Stanford University, Stanford, CA 94305 (N.P., K.Z., K.I., R.P., J.K.W., D.Y., M.P., Y.F.C., F.H., S.Y., S.S.G.); Department of Cardiovascular Medicine (J.C., F.I., J.K.L., T.T., H.K., C.N.D., M.M., R.D., P.C.Y., T.J.B., P.G.Y., M.V.M.), Department of Cardiothoracic Surgery (J.C.S., D.R.M., J.E.C., A.B.G., R.C.R.), Department of Bioengineering (D.Y., P.G.Y., S.S.G.), Canary Center for Early Detection of Cancer (R.P., S.S.G.), and Department of Materials Science and Engineering (S.S.G.), Stanford University, Stanford, Calif; GE Global Research Center, General Electric, Niskayuna, NY (S.B.); Department of Nuclear Medicine, Kyungpook National University, Daegu, South Korea (B.C.A.); and Advanced Center for Treatment, Research, and Education ACTREC, Tata Memorial Centre, Navi Mumbai, India (P.R.)
| | - Andrew Brooks Goldstone
- From the Department of Radiology, James Clark Center, Molecular Imaging Program at Stanford, 318 Campus Drive West, Room E153, Stanford University, Stanford, CA 94305 (N.P., K.Z., K.I., R.P., J.K.W., D.Y., M.P., Y.F.C., F.H., S.Y., S.S.G.); Department of Cardiovascular Medicine (J.C., F.I., J.K.L., T.T., H.K., C.N.D., M.M., R.D., P.C.Y., T.J.B., P.G.Y., M.V.M.), Department of Cardiothoracic Surgery (J.C.S., D.R.M., J.E.C., A.B.G., R.C.R.), Department of Bioengineering (D.Y., P.G.Y., S.S.G.), Canary Center for Early Detection of Cancer (R.P., S.S.G.), and Department of Materials Science and Engineering (S.S.G.), Stanford University, Stanford, Calif; GE Global Research Center, General Electric, Niskayuna, NY (S.B.); Department of Nuclear Medicine, Kyungpook National University, Daegu, South Korea (B.C.A.); and Advanced Center for Treatment, Research, and Education ACTREC, Tata Memorial Centre, Navi Mumbai, India (P.R.)
| | - Frezghi Habte
- From the Department of Radiology, James Clark Center, Molecular Imaging Program at Stanford, 318 Campus Drive West, Room E153, Stanford University, Stanford, CA 94305 (N.P., K.Z., K.I., R.P., J.K.W., D.Y., M.P., Y.F.C., F.H., S.Y., S.S.G.); Department of Cardiovascular Medicine (J.C., F.I., J.K.L., T.T., H.K., C.N.D., M.M., R.D., P.C.Y., T.J.B., P.G.Y., M.V.M.), Department of Cardiothoracic Surgery (J.C.S., D.R.M., J.E.C., A.B.G., R.C.R.), Department of Bioengineering (D.Y., P.G.Y., S.S.G.), Canary Center for Early Detection of Cancer (R.P., S.S.G.), and Department of Materials Science and Engineering (S.S.G.), Stanford University, Stanford, Calif; GE Global Research Center, General Electric, Niskayuna, NY (S.B.); Department of Nuclear Medicine, Kyungpook National University, Daegu, South Korea (B.C.A.); and Advanced Center for Treatment, Research, and Education ACTREC, Tata Memorial Centre, Navi Mumbai, India (P.R.)
| | - Srabani Bhaumik
- From the Department of Radiology, James Clark Center, Molecular Imaging Program at Stanford, 318 Campus Drive West, Room E153, Stanford University, Stanford, CA 94305 (N.P., K.Z., K.I., R.P., J.K.W., D.Y., M.P., Y.F.C., F.H., S.Y., S.S.G.); Department of Cardiovascular Medicine (J.C., F.I., J.K.L., T.T., H.K., C.N.D., M.M., R.D., P.C.Y., T.J.B., P.G.Y., M.V.M.), Department of Cardiothoracic Surgery (J.C.S., D.R.M., J.E.C., A.B.G., R.C.R.), Department of Bioengineering (D.Y., P.G.Y., S.S.G.), Canary Center for Early Detection of Cancer (R.P., S.S.G.), and Department of Materials Science and Engineering (S.S.G.), Stanford University, Stanford, Calif; GE Global Research Center, General Electric, Niskayuna, NY (S.B.); Department of Nuclear Medicine, Kyungpook National University, Daegu, South Korea (B.C.A.); and Advanced Center for Treatment, Research, and Education ACTREC, Tata Memorial Centre, Navi Mumbai, India (P.R.)
| | - Shahriar Yaghoubi
- From the Department of Radiology, James Clark Center, Molecular Imaging Program at Stanford, 318 Campus Drive West, Room E153, Stanford University, Stanford, CA 94305 (N.P., K.Z., K.I., R.P., J.K.W., D.Y., M.P., Y.F.C., F.H., S.Y., S.S.G.); Department of Cardiovascular Medicine (J.C., F.I., J.K.L., T.T., H.K., C.N.D., M.M., R.D., P.C.Y., T.J.B., P.G.Y., M.V.M.), Department of Cardiothoracic Surgery (J.C.S., D.R.M., J.E.C., A.B.G., R.C.R.), Department of Bioengineering (D.Y., P.G.Y., S.S.G.), Canary Center for Early Detection of Cancer (R.P., S.S.G.), and Department of Materials Science and Engineering (S.S.G.), Stanford University, Stanford, Calif; GE Global Research Center, General Electric, Niskayuna, NY (S.B.); Department of Nuclear Medicine, Kyungpook National University, Daegu, South Korea (B.C.A.); and Advanced Center for Treatment, Research, and Education ACTREC, Tata Memorial Centre, Navi Mumbai, India (P.R.)
| | - Robert C Robbins
- From the Department of Radiology, James Clark Center, Molecular Imaging Program at Stanford, 318 Campus Drive West, Room E153, Stanford University, Stanford, CA 94305 (N.P., K.Z., K.I., R.P., J.K.W., D.Y., M.P., Y.F.C., F.H., S.Y., S.S.G.); Department of Cardiovascular Medicine (J.C., F.I., J.K.L., T.T., H.K., C.N.D., M.M., R.D., P.C.Y., T.J.B., P.G.Y., M.V.M.), Department of Cardiothoracic Surgery (J.C.S., D.R.M., J.E.C., A.B.G., R.C.R.), Department of Bioengineering (D.Y., P.G.Y., S.S.G.), Canary Center for Early Detection of Cancer (R.P., S.S.G.), and Department of Materials Science and Engineering (S.S.G.), Stanford University, Stanford, Calif; GE Global Research Center, General Electric, Niskayuna, NY (S.B.); Department of Nuclear Medicine, Kyungpook National University, Daegu, South Korea (B.C.A.); and Advanced Center for Treatment, Research, and Education ACTREC, Tata Memorial Centre, Navi Mumbai, India (P.R.)
| | - Rajesh Dash
- From the Department of Radiology, James Clark Center, Molecular Imaging Program at Stanford, 318 Campus Drive West, Room E153, Stanford University, Stanford, CA 94305 (N.P., K.Z., K.I., R.P., J.K.W., D.Y., M.P., Y.F.C., F.H., S.Y., S.S.G.); Department of Cardiovascular Medicine (J.C., F.I., J.K.L., T.T., H.K., C.N.D., M.M., R.D., P.C.Y., T.J.B., P.G.Y., M.V.M.), Department of Cardiothoracic Surgery (J.C.S., D.R.M., J.E.C., A.B.G., R.C.R.), Department of Bioengineering (D.Y., P.G.Y., S.S.G.), Canary Center for Early Detection of Cancer (R.P., S.S.G.), and Department of Materials Science and Engineering (S.S.G.), Stanford University, Stanford, Calif; GE Global Research Center, General Electric, Niskayuna, NY (S.B.); Department of Nuclear Medicine, Kyungpook National University, Daegu, South Korea (B.C.A.); and Advanced Center for Treatment, Research, and Education ACTREC, Tata Memorial Centre, Navi Mumbai, India (P.R.)
| | - Phillip C Yang
- From the Department of Radiology, James Clark Center, Molecular Imaging Program at Stanford, 318 Campus Drive West, Room E153, Stanford University, Stanford, CA 94305 (N.P., K.Z., K.I., R.P., J.K.W., D.Y., M.P., Y.F.C., F.H., S.Y., S.S.G.); Department of Cardiovascular Medicine (J.C., F.I., J.K.L., T.T., H.K., C.N.D., M.M., R.D., P.C.Y., T.J.B., P.G.Y., M.V.M.), Department of Cardiothoracic Surgery (J.C.S., D.R.M., J.E.C., A.B.G., R.C.R.), Department of Bioengineering (D.Y., P.G.Y., S.S.G.), Canary Center for Early Detection of Cancer (R.P., S.S.G.), and Department of Materials Science and Engineering (S.S.G.), Stanford University, Stanford, Calif; GE Global Research Center, General Electric, Niskayuna, NY (S.B.); Department of Nuclear Medicine, Kyungpook National University, Daegu, South Korea (B.C.A.); and Advanced Center for Treatment, Research, and Education ACTREC, Tata Memorial Centre, Navi Mumbai, India (P.R.)
| | - Todd J Brinton
- From the Department of Radiology, James Clark Center, Molecular Imaging Program at Stanford, 318 Campus Drive West, Room E153, Stanford University, Stanford, CA 94305 (N.P., K.Z., K.I., R.P., J.K.W., D.Y., M.P., Y.F.C., F.H., S.Y., S.S.G.); Department of Cardiovascular Medicine (J.C., F.I., J.K.L., T.T., H.K., C.N.D., M.M., R.D., P.C.Y., T.J.B., P.G.Y., M.V.M.), Department of Cardiothoracic Surgery (J.C.S., D.R.M., J.E.C., A.B.G., R.C.R.), Department of Bioengineering (D.Y., P.G.Y., S.S.G.), Canary Center for Early Detection of Cancer (R.P., S.S.G.), and Department of Materials Science and Engineering (S.S.G.), Stanford University, Stanford, Calif; GE Global Research Center, General Electric, Niskayuna, NY (S.B.); Department of Nuclear Medicine, Kyungpook National University, Daegu, South Korea (B.C.A.); and Advanced Center for Treatment, Research, and Education ACTREC, Tata Memorial Centre, Navi Mumbai, India (P.R.)
| | - Paul G Yock
- From the Department of Radiology, James Clark Center, Molecular Imaging Program at Stanford, 318 Campus Drive West, Room E153, Stanford University, Stanford, CA 94305 (N.P., K.Z., K.I., R.P., J.K.W., D.Y., M.P., Y.F.C., F.H., S.Y., S.S.G.); Department of Cardiovascular Medicine (J.C., F.I., J.K.L., T.T., H.K., C.N.D., M.M., R.D., P.C.Y., T.J.B., P.G.Y., M.V.M.), Department of Cardiothoracic Surgery (J.C.S., D.R.M., J.E.C., A.B.G., R.C.R.), Department of Bioengineering (D.Y., P.G.Y., S.S.G.), Canary Center for Early Detection of Cancer (R.P., S.S.G.), and Department of Materials Science and Engineering (S.S.G.), Stanford University, Stanford, Calif; GE Global Research Center, General Electric, Niskayuna, NY (S.B.); Department of Nuclear Medicine, Kyungpook National University, Daegu, South Korea (B.C.A.); and Advanced Center for Treatment, Research, and Education ACTREC, Tata Memorial Centre, Navi Mumbai, India (P.R.)
| | - Michael V McConnell
- From the Department of Radiology, James Clark Center, Molecular Imaging Program at Stanford, 318 Campus Drive West, Room E153, Stanford University, Stanford, CA 94305 (N.P., K.Z., K.I., R.P., J.K.W., D.Y., M.P., Y.F.C., F.H., S.Y., S.S.G.); Department of Cardiovascular Medicine (J.C., F.I., J.K.L., T.T., H.K., C.N.D., M.M., R.D., P.C.Y., T.J.B., P.G.Y., M.V.M.), Department of Cardiothoracic Surgery (J.C.S., D.R.M., J.E.C., A.B.G., R.C.R.), Department of Bioengineering (D.Y., P.G.Y., S.S.G.), Canary Center for Early Detection of Cancer (R.P., S.S.G.), and Department of Materials Science and Engineering (S.S.G.), Stanford University, Stanford, Calif; GE Global Research Center, General Electric, Niskayuna, NY (S.B.); Department of Nuclear Medicine, Kyungpook National University, Daegu, South Korea (B.C.A.); and Advanced Center for Treatment, Research, and Education ACTREC, Tata Memorial Centre, Navi Mumbai, India (P.R.)
| | - Sanjiv S Gambhir
- From the Department of Radiology, James Clark Center, Molecular Imaging Program at Stanford, 318 Campus Drive West, Room E153, Stanford University, Stanford, CA 94305 (N.P., K.Z., K.I., R.P., J.K.W., D.Y., M.P., Y.F.C., F.H., S.Y., S.S.G.); Department of Cardiovascular Medicine (J.C., F.I., J.K.L., T.T., H.K., C.N.D., M.M., R.D., P.C.Y., T.J.B., P.G.Y., M.V.M.), Department of Cardiothoracic Surgery (J.C.S., D.R.M., J.E.C., A.B.G., R.C.R.), Department of Bioengineering (D.Y., P.G.Y., S.S.G.), Canary Center for Early Detection of Cancer (R.P., S.S.G.), and Department of Materials Science and Engineering (S.S.G.), Stanford University, Stanford, Calif; GE Global Research Center, General Electric, Niskayuna, NY (S.B.); Department of Nuclear Medicine, Kyungpook National University, Daegu, South Korea (B.C.A.); and Advanced Center for Treatment, Research, and Education ACTREC, Tata Memorial Centre, Navi Mumbai, India (P.R.)
| |
Collapse
|
18
|
Stem Cell Imaging: Tools to Improve Cell Delivery and Viability. Stem Cells Int 2016; 2016:9240652. [PMID: 26880997 PMCID: PMC4736428 DOI: 10.1155/2016/9240652] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/06/2015] [Accepted: 10/15/2015] [Indexed: 01/01/2023] Open
Abstract
Stem cell therapy (SCT) has shown very promising preclinical results in a variety of regenerative medicine applications. Nevertheless, the complete utility of this technology remains unrealized. Imaging is a potent tool used in multiple stages of SCT and this review describes the role that imaging plays in cell harvest, cell purification, and cell implantation, as well as a discussion of how imaging can be used to assess outcome in SCT. We close with some perspective on potential growth in the field.
Collapse
|
19
|
Du W, Tao H, Zhao S, He ZX, Li Z. Translational applications of molecular imaging in cardiovascular disease and stem cell therapy. Biochimie 2015; 116:43-51. [PMID: 26134715 DOI: 10.1016/j.biochi.2015.06.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 06/25/2015] [Indexed: 12/21/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of mortality and morbidity worldwide. Molecular imaging techniques provide valuable information at cellular and molecular level, as opposed to anatomical and structural layers acquired from traditional imaging modalities. More specifically, molecular imaging employs imaging probes which interact with specific molecular targets and therefore makes it possible to visualize biological processes in vivo. Molecular imaging technology is now progressing towards preclinical and clinical application that gives an integral and comprehensive guidance for the investigation of cardiovascular disease. In addition, cardiac stem cell therapy holds great promise for clinical translation. Undoubtedly, combining stem cell therapy with molecular imaging technology will bring a broad prospect for the study and treatment of cardiac disease. This review will focus on the progresses of molecular imaging strategies in cardiovascular disease and cardiac stem cell therapy. Furthermore, the perspective on the future role of molecular imaging in clinical translation and potential strategies in defining safety and efficacy of cardiac stem cell therapies will be discussed.
Collapse
Affiliation(s)
- Wei Du
- Collaborative Innovation Center for Biotherapy, Nankai University School of Medicine, Tianjin, China; Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University School of Medicine, Tianjin, China; The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Hongyan Tao
- Collaborative Innovation Center for Biotherapy, Nankai University School of Medicine, Tianjin, China; Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University School of Medicine, Tianjin, China
| | - Shihua Zhao
- Department of Radiology, Fuwai Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Zuo-Xiang He
- Department of Nuclear Imaging, Fuwai Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.
| | - Zongjin Li
- Collaborative Innovation Center for Biotherapy, Nankai University School of Medicine, Tianjin, China; Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University School of Medicine, Tianjin, China; The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
20
|
Zare S, Anjomshoa M, Kurd S, Chai JK, Dahmardei M, Nilforoushzadeh MA, Rostamzadeh A. Regenerative Medicine: Novel Approach in Burn Wound Healing. ACTA ACUST UNITED AC 2015. [DOI: 10.17795/jssc30351] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Current Perspectives in Mesenchymal Stromal Cell Therapies for Airway Tissue Defects. Stem Cells Int 2015; 2015:746392. [PMID: 26167186 PMCID: PMC4475757 DOI: 10.1155/2015/746392] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 05/24/2015] [Accepted: 05/28/2015] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is the leading cause of cancer death and respiratory diseases are the third cause of death in industrialized countries; for this reason the airways and cardiopulmonary system have been the focus of extensive investigation, in particular of the new emerging branch of regenerative medicine. Mesenchymal stromal cells (MSCs) are a population of undifferentiated multipotent adult cells that naturally reside within the human body, which can differentiate into osteogenic, chondrogenic, and adipogenic lineages when cultured in specific inducing media. MSCs have the ability to migrate and engraft at sites of inflammation and injury in response to cytokines, chemokines, and growth factors at a wound site and they can exert local reparative effects through transdifferentiation and differentiation into specific cell types or via the paracrine secretion of soluble factors with anti-inflammatory and wound-healing activities. Experimental and clinical evidence exists regarding MSCs efficacy in airway defects restoration; although clinical MSCs use, in the daily practice, is not yet completely reached for airway diseases, we can argue that MSCs do not represent any more merely an experimental approach to airway tissue defects restoration but they can be considered as a “salvage” therapeutic tool in very selected patients and diseases.
Collapse
|
22
|
Amend B, Vaegler M, Fuchs K, Mannheim JG, Will S, Kramer U, Hart ML, Feitz W, Chapple C, Stenzl A, Aicher WK. Regeneration of degenerated urinary sphincter muscles: improved stem cell-based therapies and novel imaging technologies. Cell Transplant 2015; 24:2171-83. [PMID: 25608017 DOI: 10.3727/096368915x686229] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Stress urinary incontinence (SUI) is a largely ousted but significant medical, social, and economic problem. Surveys suggest that nowadays approximately 10% of the male and 15% of the female population suffer from urinary incontinence at some stage in their lifetime. In women, two major etiologies contribute to SUI: degeneration of the urethral sphincter muscle controlling the closing mechanism of the bladder outflow and changes in lower pelvic organ position associated with degeneration of connective tissue or with mechanical stress, including obesity and load and tissue injury during pregnancy and delivery. In males, the reduction of the sphincter muscle function is sometimes due to surgical interventions as a consequence of prostate cancer treatment, benign prostate hyperplasia, or of neuropathical origin. Accordingly, for women and men different therapies were developed. In some cases, SUI can be treated by physical exercise, electrophysiological stimulation, and pharmacological interventions. If this fails to improve the situation, surgical interventions are required. In standard procedures, endoprostheses for mechanical support of the weakened tissue or mechanical valves for a bladder outflow control are implanted. In 20% of cases treated, repeat procedures are required as implants yield all sorts of side effects in time. Based on preclinical studies, the application of an advanced therapy medicinal product (ATMP) such as implantation of autologous cells may be a curative and long-lasting therapy for SUI. Cellular therapy could also be an option for men suffering from incontinence caused by injury of the nerves controlling the muscular sphincter system. Here we briefly report on human progenitor cells, especially on mesenchymal stromal cells (MSCs), their expansion and differentiation to smooth muscle or striated muscle cells in vitro, labeling of cells for in vivo imaging, concepts of improved, precise, yet gentle application of cells in muscle tissue, and monitoring of injected cells in situ.
Collapse
Affiliation(s)
- Bastian Amend
- Department of Urology, University of Tuebingen Hospital, Tuebingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Naumova AV, Modo M, Moore A, Murry CE, Frank JA. Clinical imaging in regenerative medicine. Nat Biotechnol 2014; 32:804-18. [PMID: 25093889 PMCID: PMC4164232 DOI: 10.1038/nbt.2993] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 07/15/2014] [Indexed: 01/09/2023]
Abstract
In regenerative medicine, clinical imaging is indispensable for characterizing damaged tissue and for measuring the safety and efficacy of therapy. However, the ability to track the fate and function of transplanted cells with current technologies is limited. Exogenous contrast labels such as nanoparticles give a strong signal in the short term but are unreliable long term. Genetically encoded labels are good both short- and long-term in animals, but in the human setting they raise regulatory issues related to the safety of genomic integration and potential immunogenicity of reporter proteins. Imaging studies in brain, heart and islets share a common set of challenges, including developing novel labeling approaches to improve detection thresholds and early delineation of toxicity and function. Key areas for future research include addressing safety concerns associated with genetic labels and developing methods to follow cell survival, differentiation and integration with host tissue. Imaging may bridge the gap between cell therapies and health outcomes by elucidating mechanisms of action through longitudinal monitoring.
Collapse
Affiliation(s)
- Anna V Naumova
- 1] Department of Radiology, University of Washington, Seattle, Washington, USA. [2] Center for Cardiovascular Biology, University of Washington, Seattle, Washington, USA. [3] Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| | - Michel Modo
- 1] McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA. [2] Centre for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania, USA. [3] Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA. [4] Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anna Moore
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Charles E Murry
- 1] Center for Cardiovascular Biology, University of Washington, Seattle, Washington, USA. [2] Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA. [3] Department of Pathology, University of Washington, Seattle, Washington, USA. [4] Department of Bioengineering, University of Washington, Seattle, Washington, USA. [5] Department of Medicine/Cardiology, University of Washington, Seattle, Washington, USA
| | - Joseph A Frank
- 1] Radiology and Imaging Sciences, Clinical, National Institutes of Health, Bethesda, Maryland, USA. [2] National Institutes of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
24
|
Katsikis A, Koutelou M. Cardiac Stem Cell Imaging by SPECT and PET. CURRENT CARDIOVASCULAR IMAGING REPORTS 2014. [DOI: 10.1007/s12410-014-9265-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Chen IY, Gheysens O, Li Z, Rasooly JA, Wang Q, Paulmurugan R, Rosenberg J, Rodriguez-Porcel M, Willmann JK, Wang DS, Contag CH, Robbins RC, Wu JC, Gambhir SS. Noninvasive imaging of hypoxia-inducible factor-1α gene therapy for myocardial ischemia. Hum Gene Ther Methods 2014; 24:279-88. [PMID: 23937265 DOI: 10.1089/hgtb.2013.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hypoxia-inducible factor-1 alpha (HIF-1α) gene therapy holds great promise for the treatment of myocardial ischemia. Both preclinical and clinical evaluations of this therapy are underway and can benefit from a vector strategy that allows noninvasive assessment of HIF-1α expression as an objective measure of gene delivery. We have developed a novel bidirectional plasmid vector (pcTnT-HIF-1α-VP2-TSTA-fluc), which employs the cardiac troponin T (cTnT) promoter in conjunction with a two-step transcriptional amplification (TSTA) system to drive the linked expression of a recombinant HIF-1α gene (HIF-1α-VP2) and the firefly luciferase gene (fluc). The firefly luciferase (FLuc) activity serves as a surrogate for HIF-1α-VP2 expression, and can be noninvasively assessed in mice using bioluminescence imaging after vector delivery. Transfection of cultured HL-1 cardiomyocytes with pcTnT-HIF-1α-VP2-TSTA-fluc led to a strong correlation between FLuc and HIF-1α-dependent vascular endothelial growth factor expression (r(2)=0.88). Intramyocardial delivery of pcTnT-HIF-1α-VP2-TSTA-fluc into infarcted mouse myocardium led to persistent HIF-1α-VP2 expression for 4 weeks, even though it improved neither CD31+ microvessel density nor echocardiographically determined left ventricular systolic function. These results lend support to recent findings of suboptimal efficacy associated with plasmid-mediated HIF-1α therapy. The imaging techniques developed herein should be useful for further optimizing HIF-1α-VP2 therapy in preclinical models of myocardial ischemia.
Collapse
Affiliation(s)
- Ian Y Chen
- 1 Departments of Radiology, Bioengineering, and Material Science & Engineering, Molecular Imaging Program at Stanford, Stanford University , Stanford, CA 94305
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Pei Z, Lan X, Cheng Z, Qin C, Xia X, Yuan H, Ding Z, Zhang Y. Multimodality molecular imaging to monitor transplanted stem cells for the treatment of ischemic heart disease. PLoS One 2014; 9:e90543. [PMID: 24608323 PMCID: PMC3946457 DOI: 10.1371/journal.pone.0090543] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 01/31/2014] [Indexed: 01/08/2023] Open
Abstract
PURPOSE Non-invasive techniques to monitor the survival and migration of transplanted stem cells in real-time is crucial for the success of stem cell therapy. The aim of this study was to explore multimodality molecular imaging to monitor transplanted stem cells with a triple-fused reporter gene [TGF; herpes simplex virus type 1 thymidine kinase (HSV1-tk), enhanced green fluorescence protein (eGFP), and firefly luciferase (FLuc)] in acute myocardial infarction rat models. METHODS Rat myocardial infarction was established by ligating the left anterior descending coronary artery. A recombinant adenovirus carrying TGF (Ad5-TGF) was constructed. After transfection with Ad5-TGF, 5 × 10(6) bone marrow mesenchymal stem cells (BMSCs) were transplanted into the anterior wall of the left ventricle (n = 14). Untransfected BMSCs were as controls (n = 8). MicroPET/CT, fluorescence and bioluminescence imaging were performed. Continuous images were obtained at day 2, 3 and 7 after transplantation with all three imaging modalities and additional images were performed with bioluminescence imaging until day 15 after transplantation. RESULTS High signals in the heart area were observed using microPET/CT, fluorescence and bioluminescence imaging of infarcted rats injected with Ad5-TGF-transfected BMSCs, whereas no signals were observed in controls. Semi-quantitative analysis showed the gradual decrease of signals in all three imaging modalities with time. Immunohistochemistry assays confirmed the location of the TGF protein expression was the same as the site of stem cell-specific marker expression, suggesting that TGF tracked the stem cells in situ. CONCLUSIONS We demonstrated that TGF could be used as a reporter gene to monitor stem cells in a myocardial infarction model by multimodality molecular imaging.
Collapse
Affiliation(s)
- Zhijun Pei
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China; Department of PET Center, Taihe Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Zhen Cheng
- Molecular Imaging Program at Stanford and Bio-X Program, Stanford University, Stanford, California, United States of America
| | - Chunxia Qin
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Xiaotian Xia
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Hui Yuan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Zhiling Ding
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yongxue Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| |
Collapse
|
27
|
Synthesis of a probe for monitoring HSV1-tk reporter gene expression using chemical exchange saturation transfer MRI. Nat Protoc 2013; 8:2380-91. [PMID: 24177294 DOI: 10.1038/nprot.2013.140] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In experiments involving transgenic animals or animals treated with transgenic cells, it is important to have a method to monitor the expression of the relevant genes longitudinally and noninvasively. An MRI-based reporter gene enables monitoring of gene expression in the deep tissues of living subjects. This information can be co-registered with detailed high-resolution anatomical and functional information. We describe here the synthesis of the reporter probe, 5-methyl-5,6-dihydrothymidine (5-MDHT), which can be used for imaging of the herpes simplex virus type 1 thymidine kinase (HSV1-tk) reporter gene expression in rodents by MRI. The protocol also includes data acquisition and data processing routines customized for chemical exchange saturation transfer (CEST) contrast mechanisms. The dihydropyrimidine 5-MDHT is synthesized through a catalytic hydrogenation of the 5,6-double bond of thymidine to yield 5,6-dihydrothymidine, which is methylated on the C-5 position of the resulting saturated pyrimidine ring. The synthesis of 5-MDHT can be completed within 5 d, and the compound is stable for more than 1 year.
Collapse
|
28
|
Psaltis PJ, Peterson KM, Xu R, Franchi F, Witt T, Chen IY, Lerman A, Simari RD, Gambhir SS, Rodriguez-Porcel M. Noninvasive monitoring of oxidative stress in transplanted mesenchymal stromal cells. JACC Cardiovasc Imaging 2013; 6:795-802. [PMID: 23643284 PMCID: PMC3710523 DOI: 10.1016/j.jcmg.2012.11.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 11/01/2012] [Accepted: 11/09/2012] [Indexed: 12/21/2022]
Abstract
OBJECTIVES The goal of this study was to validate a pathway-specific reporter gene that could be used to noninvasively image the oxidative status of progenitor cells. BACKGROUND In cell therapy studies, reporter gene imaging plays a valuable role in the assessment of cell fate in living subjects. After myocardial injury, noxious stimuli in the host tissue confer oxidative stress to transplanted cells that may influence their survival and reparative function. METHODS Rat mesenchymal stromal cells (MSCs) were studied for phenotypic evidence of increased oxidative stress under in vitro stress. On the basis of their up-regulation of the pro-oxidant enzyme p67(phox) subunit of nicotinamide adenine dinucleotide phosphate (NAD[P]H oxidase p67(phox)), an oxidative stress sensor was constructed, comprising the firefly luciferase (Fluc) reporter gene driven by the NAD(P)H p67(phox) promoter. MSCs cotransfected with NAD(P)H p67(phox)-Fluc and a cell viability reporter gene (cytomegalovirus-Renilla luciferase) were studied under in vitro and in vivo pro-oxidant conditions. RESULTS After in vitro validation of the sensor during low-serum culture, transfected MSCs were transplanted into a rat model of myocardial ischemia/reperfusion (IR) and monitored by using bioluminescence imaging. Compared with sham controls (no IR), cardiac Fluc intensity was significantly higher in IR rats (3.5-fold at 6 h, 2.6-fold at 24 h, 5.4-fold at 48 h; p < 0.01), indicating increased cellular oxidative stress. This finding was corroborated by ex vivo luminometry after correcting for Renilla luciferase activity as a measure of viable MSC number (Fluc:Renilla luciferase ratio 0.011 ± 0.003 for sham vs. 0.026 ± 0.004 for IR at 48 h; p < 0.05). Furthermore, in IR animals that received MSCs preconditioned with an antioxidant agent (tempol), Fluc signal was strongly attenuated, substantiating the specificity of the oxidative stress sensor. CONCLUSIONS Pathway-specific reporter gene imaging allows assessment of changes in the oxidative status of MSCs after delivery to ischemic myocardium, providing a template to monitor key biological interactions between transplanted cells and their host environment in living subjects.
Collapse
Affiliation(s)
- Peter J Psaltis
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Karen M Peterson
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Rende Xu
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Federico Franchi
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Tyra Witt
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Ian Y Chen
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Amir Lerman
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Robert D Simari
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Sanjiv S Gambhir
- Department of Radiology and Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA
| | - Martin Rodriguez-Porcel
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
29
|
Liu Z, Wen X, Wang H, Zhou J, Zhao M, Lin Q, Wang Y, Li J, Li D, Du Z, Yao A, Cao F, Wang C. Molecular imaging of induced pluripotent stem cell immunogenicity with in vivo development in ischemic myocardium. PLoS One 2013; 8:e66369. [PMID: 23840453 PMCID: PMC3688792 DOI: 10.1371/journal.pone.0066369] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 05/07/2013] [Indexed: 11/18/2022] Open
Abstract
Whether differentiation of induced pluripotent stem cells (iPSCs) in ischemic myocardium enhances their immunogenicity, thereby increasing their chance for rejection, is unclear. Here, we dynamically demonstrated the immunogenicity and rejection of iPSCs in ischemic myocardium using bioluminescent imaging (BLI). Murine iPSCs were transduced with a tri-fusion (TF) reporter gene consisting of firefly luciferase-red fluorescent protein-truncated thymidine kinase (fluc-mrfp-tTK). Ascorbic acid (Vc) were used to induce iPSCs to differentiate into cardiomyocytes (CM). iPSCs and iPS-CMs were intramyocardially injected into immunocompetent or immunosuppressed allogenic murine with myocardial infarction. BLI was performed to track transplanted cells. Immune cell infiltration was evaluated by immunohistochemistry. Syngeneic iPSCs were also injected and evaluated. The results demonstrated that undifferentiated iPSCs survived and proliferated in allogenic immunocompetent recipients early post-transplantation, accompanying with mild immune cell infiltration. With in vivo differentiation, a progressive immune cell infiltration could be detected. While transplantation of allogenic iPSC-CMs were observed an acute rejection from receipts. In immune-suppressed recipients, the proliferation of iPSCs could be maintained and intramyocardial teratomas were formed. Transplantation of syngeneic iPSCs and iPSC-CMs were also observed progressive immune cell infiltration. This study demonstrated that iPSC immunogenicity increases with in vivo differentiation, which will increase their chance for rejection in iPSC-based therapy.
Collapse
Affiliation(s)
- Zhiqiang Liu
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, P.R. China
| | - Xinyu Wen
- Department of Clinical Biochemistry, Chinese PLA General Hospital, Beijing, P.R. China
| | - Haibin Wang
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, P.R. China
| | - Jin Zhou
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, P.R. China
| | - Mengge Zhao
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, P.R. China
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan, United States of America
| | - Qiuxia Lin
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, P.R. China
| | - Yan Wang
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, P.R. China
| | - Junjie Li
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, P.R. China
| | - Dexue Li
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, P.R. China
| | - Zhiyan Du
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, P.R. China
| | - Anning Yao
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, P.R. China
| | - Feng Cao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xian, Shanxi, P.R. China
| | - Changyong Wang
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, P.R. China
- * E-mail:
| |
Collapse
|
30
|
Chen IY, Wu JC. Molecular imaging: the key to advancing cardiac stem cell therapy. Trends Cardiovasc Med 2013; 23:201-10. [PMID: 23561794 DOI: 10.1016/j.tcm.2012.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 12/10/2012] [Accepted: 12/11/2012] [Indexed: 12/30/2022]
Abstract
Cardiac stem cell therapy continues to hold promise for the treatment of ischemic heart disease despite the fact that early promising pre-clinical findings have yet to be translated into consistent clinical success. The latest human studies have collectively identified a pressing need to better understand stem cell behavior in humans and called for more incorporation of noninvasive imaging techniques into the design and evaluation of human stem cell therapy trials. This review discusses the various molecular imaging techniques validated to date for studying stem cells in living subjects, with a particular emphasis on their utilities in assessing the acute retention and the long-term survival of transplanted stem cells. These imaging techniques will be essential for advancing cardiac stem cell therapy by providing the means to both guide ongoing optimization and predict treatment response in humans.
Collapse
Affiliation(s)
- Ian Y Chen
- Department of Medicine, Division of Cardiovascular Medicine, Stanford, CA, USA; Department of Radiology, Molecular Imaging Program at Stanford, Stanford, CA 94305-5454, USA
| | | |
Collapse
|
31
|
Rodriguez-Porcel M, Kronenberg MW, Henry TD, Traverse JH, Pepine CJ, Ellis SG, Willerson JT, Moyé LA, Simari RD. Cell tracking and the development of cell-based therapies: a view from the Cardiovascular Cell Therapy Research Network. JACC Cardiovasc Imaging 2012; 5:559-65. [PMID: 22595165 DOI: 10.1016/j.jcmg.2011.12.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 12/13/2011] [Accepted: 12/15/2011] [Indexed: 12/12/2022]
Abstract
Cell-based therapies are being developed for myocardial infarction (MI) and its consequences (e.g., heart failure) as well as refractory angina and critical limb ischemia. The promising results obtained in preclinical studies led to the translation of this strategy to clinical studies. To date, the initial results have been mixed: some studies showed benefit, whereas in others, no benefit was observed. There is a growing consensus among the scientific community that a better understanding of the fate of transplanted cells (e.g., cell homing and viability over time) will be critical for the long-term success of these strategies and that future studies should include an assessment of cell homing, engraftment, and fate as an integral part of the trial design. In this review, different imaging methods and technologies are discussed within the framework of the physiological answers that the imaging strategies can provide, with a special focus on the inherent regulatory issues.
Collapse
|
32
|
Zhang G, Lan X, Yen TC, Chen Q, Pei Z, Qin C, Zhang Y. Therapeutic gene expression in transduced mesenchymal stem cells can be monitored using a reporter gene. Nucl Med Biol 2012; 39:1243-50. [PMID: 22796395 DOI: 10.1016/j.nucmedbio.2012.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 05/23/2012] [Accepted: 06/12/2012] [Indexed: 12/29/2022]
Abstract
AIM We constructed a recombinant adenovirus construct Ad5-sr39tk-IRES-VEGF(165) (Ad5-SIV) that contained a mutant herpes viral thymidine kinase reporter gene (HSV1-sr39tk) and the human vascular endothelial growth factor 165 (VEGF(165)) gene for noninvasive imaging of gene expression. The recombinant adenovirus Ad5-SIV was transfected into rat bone marrow-derived mesenchymal stem cells (MSCs), and we measured the expression of HSV1-sr39tk and VEGF(165) to evaluate the feasibility of monitoring VEGF(165) expression using reporter gene expression. METHODS The MSCs were infected with Ad5-SIV at various levels of infection (MOI), ranging from 0 to 100 infectious units per cell (IU/cell). The mRNA and protein expression levels of the reporter and therapeutic genes were determined using real-time RT-PCR, Western blot, ELISA and immunofluorescence. The HSV1-sr39tk expression in the MSCs was also detected in vitro using a cellular uptake study of the reporter probe (131)I-FIAU. Gene expression was also evaluated in vivo by micro-Positron Emission Tomography/Computed Tomography (micro-PET/CT) imaging 1day after injecting Ad5-SIV-tranfected MSCs into the left foreleg of the rat. The right foreleg was injected with non-transfected MSCs and served as an internal control. RESULTS The real-time RT-PCR results demonstrated a good correlation between the expression levels of HSV1-sr39tk mRNA and VEGF(165) mRNA (R(2)=0.93, P<0.05). The cellular uptake of (131)I-FIAU increased with increasing viral titers (R(2)=0.89; P<0.05), and in the group that received an MOI of 100, a peak value of 30.15%±1.11% was found at 3 hours of incubation. The uptake rates increased rapidly between 30 and 150 minutes and reached a plateau after 150 minutes. The uptake rates of (131)I-FIAU by the Ad5-SIV-infected cells were significantly higher than by the Ad5-EGFP-infected cells for all time points (t=18.43-54.83, P<0.05). Moreover, the rate of VEGF(165) protein secretion was highly correlated with the uptake rate of (131)I-FIAU (R(2)=0.84, P<0.05). The radioactivity on the micro-PET/CT images was significantly higher in the left foreleg (which received the transfected MSCs) compared with the control foreleg. CONCLUSIONS These results suggest that radionuclide reporter gene imaging may be used to monitor gene expression in vivo.
Collapse
Affiliation(s)
- Guopeng Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | | | | | | | | | | | | |
Collapse
|
33
|
Templin C, Zweigerdt R, Schwanke K, Olmer R, Ghadri JR, Emmert MY, Müller E, Küest SM, Cohrs S, Schibli R, Kronen P, Hilbe M, Reinisch A, Strunk D, Haverich A, Hoerstrup S, Lüscher TF, Kaufmann PA, Landmesser U, Martin U. Transplantation and tracking of human-induced pluripotent stem cells in a pig model of myocardial infarction: assessment of cell survival, engraftment, and distribution by hybrid single photon emission computed tomography/computed tomography of sodium iodide symporter transgene expression. Circulation 2012; 126:430-9. [PMID: 22767659 DOI: 10.1161/circulationaha.111.087684] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Evaluation of novel cellular therapies in large-animal models and patients is currently hampered by the lack of imaging approaches that allow for long-term monitoring of viable transplanted cells. In this study, sodium iodide symporter (NIS) transgene imaging was evaluated as an approach to follow in vivo survival, engraftment, and distribution of human-induced pluripotent stem cell (hiPSC) derivatives in a pig model of myocardial infarction. METHODS AND RESULTS Transgenic hiPSC lines stably expressing a fluorescent reporter and NIS (NIS(pos)-hiPSCs) were established. Iodide uptake, efflux, and viability of NIS(pos)-hiPSCs were assessed in vitro. Ten (±2) days after induction of myocardial infarction by transient occlusion of the left anterior descending artery, catheter-based intramyocardial injection of NIS(pos)-hiPSCs guided by 3-dimensional NOGA mapping was performed. Dual-isotope single photon emission computed tomographic/computed tomographic imaging was applied with the use of (123)I to follow donor cell survival and distribution and with the use of (99m)TC-tetrofosmin for perfusion imaging. In vitro, iodide uptake in NIS(pos)-hiPSCs was increased 100-fold above that of nontransgenic controls. In vivo, viable NIS(pos)-hiPSCs could be visualized for up to 15 weeks. Immunohistochemistry demonstrated that hiPSC-derived endothelial cells contributed to vascularization. Up to 12 to 15 weeks after transplantation, no teratomas were detected. CONCLUSIONS This study describes for the first time the feasibility of repeated long-term in vivo imaging of viability and tissue distribution of cellular grafts in large animals. Moreover, this is the first report demonstrating vascular differentiation and long-term engraftment of hiPSCs in a large-animal model of myocardial infarction. NIS(pos)-hiPSCs represent a valuable tool to monitor and improve current cellular treatment strategies in clinically relevant animal models.
Collapse
Affiliation(s)
- Christian Templin
- Department of Cardiology, University Hospital Zurich, Rämistrasse 100, 8091 Zürich, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Shah K. Mesenchymal stem cells engineered for cancer therapy. Adv Drug Deliv Rev 2012; 64:739-48. [PMID: 21740940 DOI: 10.1016/j.addr.2011.06.010] [Citation(s) in RCA: 248] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 06/20/2011] [Accepted: 06/22/2011] [Indexed: 12/22/2022]
Abstract
Recent pre-clinical and clinical studies have shown that stem cell-based therapies hold tremendous promise for the treatment of human disease. Mesenchymal stem cells (MSC) are emerging as promising anti-cancer agents which have an enormous potential to be utilized to treat a number of different cancer types. MSC have inherent tumor-trophic migratory properties, which allows them to serve as vehicles for delivering effective, targeted therapy to isolated tumors and metastatic disease. MSC have been readily engineered to express anti-proliferative, pro-apoptotic, anti-angiogenic agents that specifically target different cancer types. Many of these strategies have been validated in a wide range of studies evaluating treatment feasibility or efficacy, as well as establishing methods for real-time monitoring of stem cell migration in vivo for optimal therapy surveillance and accelerated development. This review aims to provide an in depth status of current MSC-based cancer therapies, as well as the prospects for their clinical translation.
Collapse
|
35
|
Ransohoff JD, Wu JC. Imaging stem cell therapy for the treatment of peripheral arterial disease. Curr Vasc Pharmacol 2012; 10:361-73. [PMID: 22239638 PMCID: PMC3683543 DOI: 10.2174/157016112799959404] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Revised: 06/28/2011] [Accepted: 10/19/2011] [Indexed: 01/08/2023]
Abstract
Arteriosclerotic cardiovascular diseases are among the leading causes of morbidity and mortality worldwide. Therapeutic angiogenesis aims to treat ischemic myocardial and peripheral tissues by delivery of recombinant proteins, genes, or cells to promote neoangiogenesis. Concerns regarding the safety, side effects, and efficacy of protein and gene transfer studies have led to the development of cell-based therapies as alternative approaches to induce vascular regeneration and to improve function of damaged tissue. Cell-based therapies may be improved by the application of imaging technologies that allow investigators to track the location, engraftment, and survival of the administered cell population. The past decade of investigations has produced promising clinical data regarding cell therapy, but design of trials and evaluation of treatments stand to be improved by emerging insight from imaging studies. Here, we provide an overview of pre-clinical and clinical experience using cell-based therapies to promote vascular regeneration in the treatment of peripheral arterial disease. We also review four major imaging modalities and underscore the importance of in vivo analysis of cell fate for a full understanding of functional outcomes.
Collapse
Affiliation(s)
- Julia D. Ransohoff
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joseph C. Wu
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute of Regenerative Medicine and Stem Cell Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
36
|
Yaghoubi SS, Campbell DO, Radu CG, Czernin J. Positron emission tomography reporter genes and reporter probes: gene and cell therapy applications. Am J Cancer Res 2012; 2:374-91. [PMID: 22509201 PMCID: PMC3326723 DOI: 10.7150/thno.3677] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 02/09/2012] [Indexed: 12/22/2022] Open
Abstract
Positron emission tomography (PET) imaging reporter genes (IRGs) and PET reporter probes (PRPs) are amongst the most valuable tools for gene and cell therapy. PET IRGs/PRPs can be used to non-invasively monitor all aspects of the kinetics of therapeutic transgenes and cells in all types of living mammals. This technology is generalizable and can allow long-term kinetics monitoring. In gene therapy, PET IRGs/PRPs can be used for whole-body imaging of therapeutic transgene expression, monitoring variations in the magnitude of transgene expression over time. In cell or cellular gene therapy, PET IRGs/PRPs can be used for whole-body monitoring of therapeutic cell locations, quantity at all locations, survival and proliferation over time and also possibly changes in characteristics or function over time. In this review, we have classified PET IRGs/PRPs into two groups based on the source from which they were derived: human or non-human. This classification addresses the important concern of potential immunogenicity in humans, which is important for expansion of PET IRG imaging in clinical trials. We have then discussed the application of this technology in gene/cell therapy and described its use in these fields, including a summary of using PET IRGs/PRPs in gene and cell therapy clinical trials. This review concludes with a discussion of the future direction of PET IRGs/PRPs and recommends cell and gene therapists collaborate with molecular imaging experts early in their investigations to choose a PET IRG/PRP system suitable for progression into clinical trials.
Collapse
|
37
|
Affiliation(s)
- Angel T Chan
- Department of Cardiology, Johns Hopkins University, 720 Rutland Ave, Baltimore, MD 21205, USA
| | | |
Collapse
|
38
|
Hwang DW, Lee DS. Optical imaging for stem cell differentiation to neuronal lineage. Nucl Med Mol Imaging 2012; 46:1-9. [PMID: 24900026 DOI: 10.1007/s13139-011-0122-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 11/22/2011] [Accepted: 11/24/2011] [Indexed: 01/14/2023] Open
Abstract
In regenerative medicine, the prospect of stem cell therapy holds great promise for the recovery of injured tissues and effective treatment of intractable diseases. Tracking stem cell fate provides critical information to understand and evaluate the success of stem cell therapy. The recent emergence of in vivo noninvasive molecular imaging has enabled assessment of the behavior of grafted stem cells in living subjects. In this review, we provide an overview of current optical imaging strategies based on cell- or tissue-specific reporter gene expression and of in vivo methods to monitor stem cell differentiation into neuronal lineages. These methods use optical reporters either regulated by neuron-specific promoters or containing neuron-specific microRNA binding sites. Both systems revealed dramatic changes in optical reporter imaging signals in cells differentiating into a neuronal lineage. The detection limit of weak promoters or reporter genes can be greatly enhanced by adopting a yeast GAL4 amplification system or an engineering-enhanced luciferase reporter gene. Furthermore, we propose an advanced imaging system to monitor neuronal differentiation during neurogenesis that uses in vivo multiplexed imaging techniques capable of detecting several targets simultaneously.
Collapse
Affiliation(s)
- Do Won Hwang
- Department of Nuclear Medicine, College of Medicine, Seoul National University, 28 Yongon-Dong, Jongno-Gu, Seoul, 110-744 Korea ; Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul, Korea
| | - Dong Soo Lee
- Department of Nuclear Medicine, College of Medicine, Seoul National University, 28 Yongon-Dong, Jongno-Gu, Seoul, 110-744 Korea ; WCU, Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| |
Collapse
|
39
|
Imaging of human mesenchymal stromal cells: homing to human brain tumors. J Neurooncol 2011; 107:257-67. [DOI: 10.1007/s11060-011-0754-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 10/24/2011] [Indexed: 12/14/2022]
|
40
|
Arno A, Smith AH, Blit PH, Shehab MA, Gauglitz GG, Jeschke MG. Stem Cell Therapy: A New Treatment for Burns? Pharmaceuticals (Basel) 2011; 4:1355-1380. [PMID: 27721328 PMCID: PMC4060129 DOI: 10.3390/ph4101355] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 09/21/2011] [Accepted: 10/10/2011] [Indexed: 12/12/2022] Open
Abstract
Stem cell therapy has emerged as a promising new approach in almost every medicine specialty. This vast, heterogeneous family of cells are now both naturally (embryonic and adult stem cells) or artificially obtained (induced pluripotent stem cells or iPSCs) and their fates have become increasingly controllable, thanks to ongoing research in this passionate new field. We are at the beginning of a new era in medicine, with multiple applications for stem cell therapy, not only as a monotherapy, but also as an adjunct to other strategies, such as organ transplantation or standard drug treatment. Regrettably, serious preclinical concerns remain and differentiation, cell fusion, senescence and signalling crosstalk with growth factors and biomaterials are still challenges for this promising multidisciplinary therapeutic modality. Severe burns have several indications for stem cell therapy, including enhancement of wound healing, replacement of damaged skin and perfect skin regeneration - incorporating skin appendages and reduced fibrosis -, as well as systemic effects, such as inflammation, hypermetabolism and immunosuppression. The aim of this review is to describe well established characteristics of stem cells and to delineate new advances in the stem cell field, in the context of burn injury and wound healing.
Collapse
Affiliation(s)
- Anna Arno
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada
- Plastic Surgery Department and Burn Unit, Vall d'Hebron University Hospital, Autonomous University of Barcelona, Passeig de la Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Alexandra H Smith
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada
| | - Patrick H Blit
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada
| | - Mohammed Al Shehab
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada
| | - Gerd G Gauglitz
- Department of Dermatology and Allergology, Ludwig Maximilians University, Geschwister-Scholl-Platz 1, 80539, Munich, Germany
| | - Marc G Jeschke
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada.
| |
Collapse
|
41
|
Affiliation(s)
- Frank M Bengel
- Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
42
|
Psaltis PJ, Simari RD, Rodriguez-Porcel M. Emerging roles for integrated imaging modalities in cardiovascular cell-based therapeutics: a clinical perspective. Eur J Nucl Med Mol Imaging 2011; 39:165-81. [PMID: 21901381 DOI: 10.1007/s00259-011-1925-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 08/18/2011] [Indexed: 12/20/2022]
Abstract
Despite preclinical promise, the progress of cell-based therapy to clinical cardiovascular practice has been slowed by several challenges and uncertainties that have been highlighted by the conflicting results of human trials. Most telling has been the revelation that current strategies fall short of achieving sufficient retention and engraftment of cells to meet the ambitious objective of myocardial regeneration. This has sparked novel research into the refinement of cell biology and delivery to overcome these shortcomings. Within this context, molecular imaging has emerged as a valuable tool for providing noninvasive surveillance of cell fate in vivo. Direct and indirect labelling of cells can be coupled with clinically relevant imaging modalities, such as radionuclide single photon emission computed tomography and positron emission tomography, and magnetic resonance imaging, to assess their short- and long-term distributions, along with their viability, proliferation and functional interaction with the host myocardium. This review details the strengths and limitations of the different cell labelling and imaging techniques and their potential application to the clinical realm. We also consider the broader, multifaceted utility of imaging throughout the cell therapy process, providing a discussion of its considerable value during cell delivery and its importance during the evaluation of cardiac outcomes in clinical studies.
Collapse
Affiliation(s)
- Peter J Psaltis
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | |
Collapse
|
43
|
Dimayuga VM, Rodriguez-Porcel M. Molecular imaging of cell therapy for gastroenterologic applications. Pancreatology 2011; 11:414-27. [PMID: 21912197 DOI: 10.1159/000327395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Stem cell therapy has appeared as a possible therapeutic alternative for numerous diseases. Furthermore, cancer stem cells are a focus of significant interest as they may allow for a better understanding of the genesis of different malignancies. The ultimate goal of stem cell therapeutics is to ensure the viability and functionality of the transplanted cells. Similarly, the ultimate goal of understanding cancer stem cells is to understand how they behave in the living subject. Until recently, the efficacy of stem cell therapies has been assessed by overall organ function recovery. Understanding the behavior and biology of stem cells directly in the living subject can also lead to therapy optimization. Thus, there is a critical need for reliable and accurate methods to understand stem cell biology in vivo. Recent advances in both imaging and molecular biology have enabled transplanted stem cells to be successfully monitored in the living subject. The use of molecular imaging modalities has the capability to answer these questions and may one day be translated to patients. In this review, we will discuss the potential imaging strategies and how they can be utilized, depending on the questions that need to be answered.
Collapse
|
44
|
Perin EC, Tian M, Marini FC, Silva GV, Zheng Y, Baimbridge F, Quan X, Fernandes MR, Gahremanpour A, Young D, Paolillo V, Mukhopadhyay U, Borne AT, Uthamanthil R, Brammer D, Jackson J, Decker WK, Najjar AM, Thomas MW, Volgin A, Rabinovich B, Soghomonyan S, Jeong HJ, Rios JM, Steiner D, Robinson S, Mawlawi O, Pan T, Stafford J, Kundra V, Li C, Alauddin MM, Willerson JT, Shpall E, Gelovani JG. Imaging long-term fate of intramyocardially implanted mesenchymal stem cells in a porcine myocardial infarction model. PLoS One 2011; 6:e22949. [PMID: 21912635 PMCID: PMC3164664 DOI: 10.1371/journal.pone.0022949] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 07/01/2011] [Indexed: 12/22/2022] Open
Abstract
The long-term fate of stem cells after intramyocardial delivery is unknown. We used noninvasive, repetitive PET/CT imaging with [(18)F]FEAU to monitor the long-term (up to 5 months) spatial-temporal dynamics of MSCs retrovirally transduced with the sr39HSV1-tk gene (sr39HSV1-tk-MSC) and implanted intramyocardially in pigs with induced acute myocardial infarction. Repetitive [(18)F]FEAU PET/CT revealed a biphasic pattern of sr39HSV1-tk-MSC dynamics; cell proliferation peaked at 33-35 days after injection, in periinfarct regions and the major cardiac lymphatic vessels and lymph nodes. The sr39HSV1-tk-MSC-associated [(18)F]FEAU signals gradually decreased thereafter. Cardiac lymphography studies using PG-Gd-NIRF813 contrast for MRI and near-infrared fluorescence imaging showed rapid clearance of the contrast from the site of intramyocardial injection through the subepicardial lymphatic network into the lymphatic vessels and periaortic lymph nodes. Immunohistochemical analysis of cardiac tissue obtained at 35 and 150 days demonstrated several types of sr39HSV1-tk expressing cells, including fibro-myoblasts, lymphovascular cells, and microvascular and arterial endothelium. In summary, this study demonstrated the feasibility and sensitivity of [(18)F]FEAU PET/CT imaging for long-term, in-vivo monitoring (up to 5 months) of the fate of intramyocardially injected sr39HSV1-tk-MSC cells. Intramyocardially transplanted MSCs appear to integrate into the lymphatic endothelium and may help improve myocardial lymphatic system function after MI.
Collapse
Affiliation(s)
- Emerson C Perin
- The Texas Heart Institute at St. Luke's Episcopal Hospital, Houston, Texas, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Zhang WY, Ebert AD, Narula J, Wu JC. Imaging cardiac stem cell therapy: translations to human clinical studies. J Cardiovasc Transl Res 2011; 4:514-22. [PMID: 21538182 PMCID: PMC3657500 DOI: 10.1007/s12265-011-9281-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 04/14/2011] [Indexed: 12/21/2022]
Abstract
Stem cell therapy promises to open exciting new options in the treatment of cardiovascular diseases. Although feasible and clinically safe, the in vivo behavior and integration of stem cell transplants still remain largely unknown. Thus, the development of innovative non-invasive imaging techniques capable of effectively tracking such therapy in vivo is vital for a more in-depth investigation into future clinical applications. Such imaging modalities will not only generate further insight into the mechanisms behind stem cell-based therapy, but also address some major concerns associated with translational cardiovascular stem cell therapy. In the present review, we summarize the principles underlying three major stem cell tracking methods: (1) radioactive labeling for positron emission tomography (PET) and single photon emission computed tomography (SPECT) imaging, (2) iron particle labeling for magnetic resonance imaging (MRI), and (3) reporter gene labeling for bioluminescence, fluorescence, MRI, SPECT, and PET imaging. We then discuss recent clinical studies that have utilized these modalities to gain biological insights into stem cell fate.
Collapse
Affiliation(s)
- Wendy Y. Zhang
- Department of Medicine (Division of Cardiology), Stanford University School of Medicine
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine
| | - Antje D. Ebert
- Department of Medicine (Division of Cardiology), Stanford University School of Medicine
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine
| | - Jagat Narula
- Division of Cardiology, UC Irvine Medical Center, Orange, California, USA
| | - Joseph C. Wu
- Department of Medicine (Division of Cardiology), Stanford University School of Medicine
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine
| |
Collapse
|
46
|
Lee AS, Xu D, Plews JR, Nguyen PK, Nag D, Lyons JK, Han L, Hu S, Lan F, Liu J, Huang M, Narsinh KH, Long CT, de Almeida PE, Levi B, Kooreman N, Bangs C, Pacharinsak C, Ikeno F, Yeung AC, Gambhir SS, Robbins RC, Longaker MT, Wu JC. Preclinical derivation and imaging of autologously transplanted canine induced pluripotent stem cells. J Biol Chem 2011; 286:32697-704. [PMID: 21719696 DOI: 10.1074/jbc.m111.235739] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Derivation of patient-specific induced pluripotent stem cells (iPSCs) opens a new avenue for future applications of regenerative medicine. However, before iPSCs can be used in a clinical setting, it is critical to validate their in vivo fate following autologous transplantation. Thus far, preclinical studies have been limited to small animals and have yet to be conducted in large animals that are physiologically more similar to humans. In this study, we report the first autologous transplantation of iPSCs in a large animal model through the generation of canine iPSCs (ciPSCs) from the canine adipose stromal cells and canine fibroblasts of adult mongrel dogs. We confirmed pluripotency of ciPSCs using the following techniques: (i) immunostaining and quantitative PCR for the presence of pluripotent and germ layer-specific markers in differentiated ciPSCs; (ii) microarray analysis that demonstrates similar gene expression profiles between ciPSCs and canine embryonic stem cells; (iii) teratoma formation assays; and (iv) karyotyping for genomic stability. Fate of ciPSCs autologously transplanted to the canine heart was tracked in vivo using clinical positron emission tomography, computed tomography, and magnetic resonance imaging. To demonstrate clinical potential of ciPSCs to treat models of injury, we generated endothelial cells (ciPSC-ECs) and used these cells to treat immunodeficient murine models of myocardial infarction and hindlimb ischemia.
Collapse
Affiliation(s)
- Andrew S Lee
- Department of Radiology, Stanford University School of Medicine, Stanford, California 94305-5454, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
PET molecular imaging in stem cell therapy for neurological diseases. Eur J Nucl Med Mol Imaging 2011; 38:1926-38. [DOI: 10.1007/s00259-011-1860-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 06/06/2011] [Indexed: 01/12/2023]
|
48
|
Abstract
Regenerative medicine using stem cells has appeared as a potential therapeutic alternative for coronary artery disease, and stem cell clinical studies are currently on their way. However, initial results of these studies have provided mixed information, in part because of the inability to correlate organ functional information with the presence/absence of transplanted stem cells. Recent advances in molecular biology and imaging have allowed the successful noninvasive monitoring of transplanted stem cells in the living subject. In this article, different imaging strategies (direct labeling, indirect labeling with reporter genes) to study the viability and biology of stem cells are discussed. In addition, the limitations of each approach and imaging modality (eg, single photon emission computed tomography, positron emission tomography, and MRI) and their requirements for clinical use are addressed. Use of these strategies will be critical as the different regenerative therapies are being tested for clinical use.
Collapse
|
49
|
Campan M, Lionetti V, Aquaro GD, Forini F, Matteucci M, Vannucci L, Chiuppesi F, Di Cristofano C, Faggioni M, Maioli M, Barile L, Messina E, Lombardi M, Pucci A, Pistello M, Recchia FA. Ferritin as a reporter gene for in vivo tracking of stem cells by 1.5-T cardiac MRI in a rat model of myocardial infarction. Am J Physiol Heart Circ Physiol 2011; 300:H2238-50. [DOI: 10.1152/ajpheart.00935.2010] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The methods currently utilized to track stem cells by cardiac MRI are affected by important limitations, and new solutions are needed. We tested human ferritin heavy chain (hFTH) as a reporter gene for in vivo tracking of stem cells by cardiac MRI. Swine cardiac stem/progenitor cells were transduced with a lentiviral vector to overexpress hFTH and cultured to obtain cardiospheres (Cs). Myocardial infarction was induced in rats, and, after 45 min, the animals were subjected to intramyocardial injection of ∼200 hFTH-Cs or nontransduced Cs or saline solution in the border zone. By employing clinical standard 1.5-Tesla MRI scanner and a multiecho T2* gradient echo sequence, we localized iron-accumulating tissue only in hearts treated with hFTH-Cs. This signal was detectable at 1 wk after infarction, and its size did not change significantly after 4 wk (6.33 ± 3.05 vs. 4.41 ± 4.38 mm2). Cs transduction did not affect their cardioreparative potential, as indicated by the significantly better preserved left ventricular global and regional function and the 36% reduction in infarct size in both groups that received Cs compared with control infarcts. Prussian blue staining confirmed the presence of differentiated, iron-accumulating cells containing mitochondria of porcine origin. Cs-derived cells displayed CD31, α-smooth muscle, and α-sarcomeric actin antigens, indicating that the differentiation into endothelial, smooth muscle and cardiac muscle lineage was not affected by ferritin overexpression. In conclusion, hFTH can be used as a MRI reporter gene to track dividing/differentiating stem cells in the beating heart, while simultaneously monitoring cardiac morpho-functional changes.
Collapse
Affiliation(s)
| | - Vincenzo Lionetti
- Sector of Medicine, Scuola Superiore Sant′Anna
- Fondazione CNR-Regione Toscana “G. Monasterio”
| | | | | | | | - Laura Vannucci
- Retrovirus Centre and Virology Section, Department of Experimental Pathology, University of Pisa, Pisa
| | - Flavia Chiuppesi
- Retrovirus Centre and Virology Section, Department of Experimental Pathology, University of Pisa, Pisa
| | - Claudio Di Cristofano
- Department of Experimental Medicine, La Sapienza University, Polo Pontino, I.C.O.T, Latina
| | | | - Margherita Maioli
- Department of Biomedical Sciences and National Institute of Biostructures and Biosystems, University of Sassari, Sassari
| | - Lucio Barile
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan
| | - Elisa Messina
- Department of Experimental Medicine, La Sapienza University of Rome, Rome
| | | | - Angela Pucci
- Division of Surgical, Molecular and Ultrastructural Pathology, Pisa University Hospital, Pisa, Italy; and
| | - Mauro Pistello
- Retrovirus Centre and Virology Section, Department of Experimental Pathology, University of Pisa, Pisa
| | - Fabio A. Recchia
- Sector of Medicine, Scuola Superiore Sant′Anna
- Department of Physiology, New York Medical College, Valhalla, New York
| |
Collapse
|
50
|
In Reply: Emerging Approaches for Cardiovascular Stem Cell Imaging. CURRENT CARDIOVASCULAR IMAGING REPORTS 2011. [DOI: 10.1007/s12410-011-9080-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|