1
|
Schaff F, Jud C, Dierolf M, Günther B, Achterhold K, Gleich B, Sauter A, Woertler K, Thalhammer J, Meurer F, Neumann J, Pfeiffer F, Pfeiffer D. Feasibility of Dark-Field Radiography to Enhance Detection of Nondisplaced Fractures. Radiology 2024; 311:e231921. [PMID: 38805732 DOI: 10.1148/radiol.231921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Background Many clinically relevant fractures are occult on conventional radiographs and therefore challenging to diagnose reliably. X-ray dark-field radiography is a developing method that uses x-ray scattering as an additional signal source. Purpose To investigate whether x-ray dark-field radiography enhances the depiction of radiographically occult fractures in an experimental model compared with attenuation-based radiography alone and whether the directional dependence of dark-field signal impacts observer ratings. Materials and Methods Four porcine loin ribs had nondisplaced fractures experimentally introduced. Microstructural changes were visually verified using high-spatial-resolution three-dimensional micro-CT. X-ray dark-field radiographs were obtained before and after fracture, with the before-fracture scans serving as control images. The presence of a fracture was scored by three observers using a six-point scale (6, surely; 5, very likely; 4, likely; 3, unlikely; 2, very unlikely; and 1, certainly not). Differences between scores based on attenuation radiographs alone (n = 96) and based on combined attenuation and dark-field radiographs (n = 96) were evaluated by using the DeLong method to compare areas under the receiver operating characteristic curve. The impact of the dark-field signal directional sensitivity on observer ratings was evaluated using the Wilcoxon test. The dark-field data were split into four groups (24 images per group) according to their sensitivity orientation and tested against each other. Musculoskeletal dark-field radiography was further demonstrated on human finger and foot specimens. Results The addition of dark-field radiographs was found to increase the area under the receiver operating characteristic curve to 1 compared with an area under the receiver operating characteristic curve of 0.87 (95% CI: 0.80, 0.94) using attenuation-based radiographs alone (P < .001). There were similar observer ratings for the four different dark-field sensitivity orientations (P = .16-.65 between the groups). Conclusion These results suggested that the inclusion of dark-field radiography has the potential to help enhance the detection of nondisplaced fractures compared with attenuation-based radiography alone. © RSNA, 2024 See also the editorial by Rubin in this issue.
Collapse
Affiliation(s)
- Florian Schaff
- From the Chair of Biomedical Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str 1, 85748 Garching, Germany (F.S., C.J., M.D., B. Günther, K.A., B. Gleich, J.T., F.P.); Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany (F.S., C.J., M.D., B. Günther, K.A., B. Gleich, J.T., F.P.); Max-Planck-Institute of Quantum Optics, Garching, Germany (B. Günther); Department of Diagnostic and Interventional Radiology (A.S., K.W., J.T., F.M., J.N., F.P., D.P.) and Musculoskeletal Radiology Section (K.W.), TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; and TUM Institute for Advanced Study, Technical University of Munich, Garching, Germany (J.T., F.P., D.P.)
| | - Christoph Jud
- From the Chair of Biomedical Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str 1, 85748 Garching, Germany (F.S., C.J., M.D., B. Günther, K.A., B. Gleich, J.T., F.P.); Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany (F.S., C.J., M.D., B. Günther, K.A., B. Gleich, J.T., F.P.); Max-Planck-Institute of Quantum Optics, Garching, Germany (B. Günther); Department of Diagnostic and Interventional Radiology (A.S., K.W., J.T., F.M., J.N., F.P., D.P.) and Musculoskeletal Radiology Section (K.W.), TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; and TUM Institute for Advanced Study, Technical University of Munich, Garching, Germany (J.T., F.P., D.P.)
| | - Martin Dierolf
- From the Chair of Biomedical Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str 1, 85748 Garching, Germany (F.S., C.J., M.D., B. Günther, K.A., B. Gleich, J.T., F.P.); Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany (F.S., C.J., M.D., B. Günther, K.A., B. Gleich, J.T., F.P.); Max-Planck-Institute of Quantum Optics, Garching, Germany (B. Günther); Department of Diagnostic and Interventional Radiology (A.S., K.W., J.T., F.M., J.N., F.P., D.P.) and Musculoskeletal Radiology Section (K.W.), TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; and TUM Institute for Advanced Study, Technical University of Munich, Garching, Germany (J.T., F.P., D.P.)
| | - Benedikt Günther
- From the Chair of Biomedical Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str 1, 85748 Garching, Germany (F.S., C.J., M.D., B. Günther, K.A., B. Gleich, J.T., F.P.); Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany (F.S., C.J., M.D., B. Günther, K.A., B. Gleich, J.T., F.P.); Max-Planck-Institute of Quantum Optics, Garching, Germany (B. Günther); Department of Diagnostic and Interventional Radiology (A.S., K.W., J.T., F.M., J.N., F.P., D.P.) and Musculoskeletal Radiology Section (K.W.), TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; and TUM Institute for Advanced Study, Technical University of Munich, Garching, Germany (J.T., F.P., D.P.)
| | - Klaus Achterhold
- From the Chair of Biomedical Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str 1, 85748 Garching, Germany (F.S., C.J., M.D., B. Günther, K.A., B. Gleich, J.T., F.P.); Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany (F.S., C.J., M.D., B. Günther, K.A., B. Gleich, J.T., F.P.); Max-Planck-Institute of Quantum Optics, Garching, Germany (B. Günther); Department of Diagnostic and Interventional Radiology (A.S., K.W., J.T., F.M., J.N., F.P., D.P.) and Musculoskeletal Radiology Section (K.W.), TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; and TUM Institute for Advanced Study, Technical University of Munich, Garching, Germany (J.T., F.P., D.P.)
| | - Bernhard Gleich
- From the Chair of Biomedical Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str 1, 85748 Garching, Germany (F.S., C.J., M.D., B. Günther, K.A., B. Gleich, J.T., F.P.); Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany (F.S., C.J., M.D., B. Günther, K.A., B. Gleich, J.T., F.P.); Max-Planck-Institute of Quantum Optics, Garching, Germany (B. Günther); Department of Diagnostic and Interventional Radiology (A.S., K.W., J.T., F.M., J.N., F.P., D.P.) and Musculoskeletal Radiology Section (K.W.), TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; and TUM Institute for Advanced Study, Technical University of Munich, Garching, Germany (J.T., F.P., D.P.)
| | - Andreas Sauter
- From the Chair of Biomedical Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str 1, 85748 Garching, Germany (F.S., C.J., M.D., B. Günther, K.A., B. Gleich, J.T., F.P.); Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany (F.S., C.J., M.D., B. Günther, K.A., B. Gleich, J.T., F.P.); Max-Planck-Institute of Quantum Optics, Garching, Germany (B. Günther); Department of Diagnostic and Interventional Radiology (A.S., K.W., J.T., F.M., J.N., F.P., D.P.) and Musculoskeletal Radiology Section (K.W.), TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; and TUM Institute for Advanced Study, Technical University of Munich, Garching, Germany (J.T., F.P., D.P.)
| | - Klaus Woertler
- From the Chair of Biomedical Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str 1, 85748 Garching, Germany (F.S., C.J., M.D., B. Günther, K.A., B. Gleich, J.T., F.P.); Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany (F.S., C.J., M.D., B. Günther, K.A., B. Gleich, J.T., F.P.); Max-Planck-Institute of Quantum Optics, Garching, Germany (B. Günther); Department of Diagnostic and Interventional Radiology (A.S., K.W., J.T., F.M., J.N., F.P., D.P.) and Musculoskeletal Radiology Section (K.W.), TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; and TUM Institute for Advanced Study, Technical University of Munich, Garching, Germany (J.T., F.P., D.P.)
| | - Johannes Thalhammer
- From the Chair of Biomedical Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str 1, 85748 Garching, Germany (F.S., C.J., M.D., B. Günther, K.A., B. Gleich, J.T., F.P.); Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany (F.S., C.J., M.D., B. Günther, K.A., B. Gleich, J.T., F.P.); Max-Planck-Institute of Quantum Optics, Garching, Germany (B. Günther); Department of Diagnostic and Interventional Radiology (A.S., K.W., J.T., F.M., J.N., F.P., D.P.) and Musculoskeletal Radiology Section (K.W.), TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; and TUM Institute for Advanced Study, Technical University of Munich, Garching, Germany (J.T., F.P., D.P.)
| | - Felix Meurer
- From the Chair of Biomedical Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str 1, 85748 Garching, Germany (F.S., C.J., M.D., B. Günther, K.A., B. Gleich, J.T., F.P.); Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany (F.S., C.J., M.D., B. Günther, K.A., B. Gleich, J.T., F.P.); Max-Planck-Institute of Quantum Optics, Garching, Germany (B. Günther); Department of Diagnostic and Interventional Radiology (A.S., K.W., J.T., F.M., J.N., F.P., D.P.) and Musculoskeletal Radiology Section (K.W.), TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; and TUM Institute for Advanced Study, Technical University of Munich, Garching, Germany (J.T., F.P., D.P.)
| | - Jan Neumann
- From the Chair of Biomedical Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str 1, 85748 Garching, Germany (F.S., C.J., M.D., B. Günther, K.A., B. Gleich, J.T., F.P.); Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany (F.S., C.J., M.D., B. Günther, K.A., B. Gleich, J.T., F.P.); Max-Planck-Institute of Quantum Optics, Garching, Germany (B. Günther); Department of Diagnostic and Interventional Radiology (A.S., K.W., J.T., F.M., J.N., F.P., D.P.) and Musculoskeletal Radiology Section (K.W.), TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; and TUM Institute for Advanced Study, Technical University of Munich, Garching, Germany (J.T., F.P., D.P.)
| | - Franz Pfeiffer
- From the Chair of Biomedical Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str 1, 85748 Garching, Germany (F.S., C.J., M.D., B. Günther, K.A., B. Gleich, J.T., F.P.); Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany (F.S., C.J., M.D., B. Günther, K.A., B. Gleich, J.T., F.P.); Max-Planck-Institute of Quantum Optics, Garching, Germany (B. Günther); Department of Diagnostic and Interventional Radiology (A.S., K.W., J.T., F.M., J.N., F.P., D.P.) and Musculoskeletal Radiology Section (K.W.), TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; and TUM Institute for Advanced Study, Technical University of Munich, Garching, Germany (J.T., F.P., D.P.)
| | - Daniela Pfeiffer
- From the Chair of Biomedical Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str 1, 85748 Garching, Germany (F.S., C.J., M.D., B. Günther, K.A., B. Gleich, J.T., F.P.); Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany (F.S., C.J., M.D., B. Günther, K.A., B. Gleich, J.T., F.P.); Max-Planck-Institute of Quantum Optics, Garching, Germany (B. Günther); Department of Diagnostic and Interventional Radiology (A.S., K.W., J.T., F.M., J.N., F.P., D.P.) and Musculoskeletal Radiology Section (K.W.), TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; and TUM Institute for Advanced Study, Technical University of Munich, Garching, Germany (J.T., F.P., D.P.)
| |
Collapse
|
2
|
Gobo MSS, Balbin DR, Hönnicke MG, Poletti ME. Clinical boundary conditions for propagation-based X-ray phase contrast imaging: from bio-sample models targeting to clinical applications. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2024; 32:1163-1175. [PMID: 38943421 DOI: 10.3233/xst-230425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
BACKGROUND Typical propagation-based X-ray phase contrast imaging (PB-PCI) experiments using polyenergetic sources are tested in very ideal conditions: low-energy spectrum (mainly characteristic X-rays), small thickness and homogeneous materials considered weakly absorbing objects, large object-to-detector distance, long exposure times and non-clinical detector. OBJECTIVE Explore PB-PCI features using boundary conditions imposed by a low power polychromatic X-ray source (X-ray spectrum without characteristic X-rays), thick and heterogenous materials and a small area imaging detector with high low-detection radiation threshold, elements commonly found in a clinical scenario. METHODS A PB-PCI setup implemented using a microfocus X-ray source and a dental imaging detector was characterized in terms of different spectra and geometric parameters on the acquired images. Test phantoms containing fibers and homogeneous materials with close attenuation characteristics and animal bone and mixed soft tissues (bio-sample models) were analyzed. Contrast to Noise Ratio (CNR), system spatial resolution and Kerma values were obtained for all images. RESULTS Phase contrast images showed CNR up to 15% higher than conventional contact images. Moreover, it is better seen when large magnifications (>3) and object-to-detector distances (>13 cm) were used. The influence of the spectrum was not appreciable due to the low efficiency of the detector (thin scintillator screen) at high energies. CONCLUSIONS Despite the clinical boundary condition used in this work, regarding the X-ray spectrum, thick samples, and detection system, it was possible to acquire phase contrast images of biological samples.
Collapse
Affiliation(s)
- M S S Gobo
- Departamento de Física, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - D R Balbin
- Departamento de Física, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - M G Hönnicke
- Instituto Latino-Americano de Ciências da Vida e da Natureza, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu, Brazil
| | - M E Poletti
- Departamento de Física, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Zong F, Yang J, Jiang J, Guo J. The mechanism of moire artifacts in single-grating imaging systems and image quality optimization. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2024; 32:461-473. [PMID: 38189734 DOI: 10.3233/xst-230202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
In the X-ray single-grating imaging system, the acquisition of frequency information is the key step of phase-contrast and scattering information recovery. In the process of information extraction, it is easy to lead to the degradation of imaging quality due to the Moire Artifact, thus limiting the development and application of X-ray single-grating imaging system. In order to address the above problems, in this article, based on the theoretical analysis of the generation principle of Moire Artifact in imaging system, the advantages and disadvantages of grating rotation method are analyzed, and a method of suppressing Moire artifacts by adjusting grating projection frequency is proposed. The experimental results show that the method proposed here can suppress the Moire noise in the background noise, resulting in a reduction of more than 50% in the standard deviation of the background noise. High quality phase-contrast and scattering images are obtained experimentally, which is of great value to the development of X-ray single-grating imaging technology.
Collapse
Affiliation(s)
- Fangke Zong
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, China
- Institute of Advanced Science Facilities, Shenzhen, Guangdong, China
| | - Jun Yang
- Institute of Advanced Science Facilities, Shenzhen, Guangdong, China
| | - Jun Jiang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, China
| | - JinChuan Guo
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
4
|
Payne K, O'Bryan CA, Marcy JA, Crandall PG. Detection and prevention of foreign material in food: A review. Heliyon 2023; 9:e19574. [PMID: 37809834 PMCID: PMC10558841 DOI: 10.1016/j.heliyon.2023.e19574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 10/10/2023] Open
Abstract
This review highlights the critical concern foreign material contamination poses across the food processing industry and provides information on methods and implementations to minimize the hazards caused by foreign materials. A foreign material is defined as any non-food, foreign bodies that may cause illness or injury to the consumer and are not typically part of the food. Foreign materials can enter the food processing plant as part of the raw materials such as fruit pits, bones, or contaminants like stones, insects, soil, grit, or pieces of harvesting equipment. Over the past 20 years, foreign materials have been responsible for about one out of ten recalls of foods, with plastic fragments being the most common complaint. The goal of this paper is to further the understanding of the risks foreign materials are to consumers and the tools that could be used to minimize the risk of foreign objects in foods.
Collapse
Affiliation(s)
- Keila Payne
- Food Safety and Quality Assurance, Tyson Foods, Springdale, AR, USA
| | - Corliss A. O'Bryan
- Department of Food Science, University of Arkansas, Fayetteville, AR, USA
| | - John A. Marcy
- Center of Excellence for Poultry Science, Dept. of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - Philip G. Crandall
- Department of Food Science, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
5
|
Gassert FT, Urban T, Kufner A, Frank M, Feuerriegel GC, Baum T, Makowski MR, Braun C, Pfeiffer D, Schwaiger BJ, Pfeiffer F, Gersing AS. Dark-field X-ray imaging for the assessment of osteoporosis in human lumbar spine specimens. Front Physiol 2023; 14:1217007. [PMID: 37534364 PMCID: PMC10393038 DOI: 10.3389/fphys.2023.1217007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/05/2023] [Indexed: 08/04/2023] Open
Abstract
Background: Dark-field imaging is a novel imaging modality that allows for the assessment of material interfaces by exploiting the wave character of x-ray. While it has been extensively studied in chest imaging, only little is known about the modality for imaging other tissues. Therefore, the purpose of this study was to evaluate whether a clinical X-ray dark-field scanner prototype allows for the assessment of osteoporosis. Materials and methods: In this prospective study we examined human cadaveric lumbar spine specimens (vertebral segments L2 to L4). We used a clinical prototype for dark-field radiography that yields both attenuation and dark-field images. All specimens were scanned in lateral orientation in vertical and horizontal position. All specimens were additionally imaged with CT as reference. Bone mineral density (BMD) values were derived from asynchronously calibrated quantitative CT measurements. Correlations between attenuation signal, dark-field signal and BMD were assessed using Spearman's rank correlation coefficients. The capability of the dark-field signal for the detection of osteoporosis/osteopenia was evaluated with receiver operating characteristics (ROC) curve analysis. Results: A total of 58 vertebrae from 20 human cadaveric spine specimens (mean age, 73 years ±13 [standard deviation]; 11 women) were studied. The dark-field signal was positively correlated with the BMD, both in vertical (r = 0.56, p < .001) and horizontal position (r = 0.43, p < .001). Also, the dark-field signal ratio was positively correlated with BMD (r = 0.30, p = .02). No correlation was found between the signal ratio of attenuation signal and BMD (r = 0.14, p = .29). For the differentiation between specimens with and without osteoporosis/osteopenia, the area under the ROC curve (AUC) was 0.80 for the dark-field signal in vertical position. Conclusion: Dark-field imaging allows for the differentiation between spine specimens with and without osteoporosis/osteopenia and may therefore be a potential biomarker for bone stability.
Collapse
Affiliation(s)
- Florian T. Gassert
- Department of Diagnostic and Interventional Radiology, School of Medicine and Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Theresa Urban
- Department of Diagnostic and Interventional Radiology, School of Medicine and Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Chair of Biomedical Physics, Department of Physics, School of Natural Sciences, Technical University of Munich, Garching, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany
| | - Alexander Kufner
- Department of Diagnostic and Interventional Radiology, School of Medicine and Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Manuela Frank
- Department of Diagnostic and Interventional Radiology, School of Medicine and Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Chair of Biomedical Physics, Department of Physics, School of Natural Sciences, Technical University of Munich, Garching, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany
| | - Georg C. Feuerriegel
- Department of Diagnostic and Interventional Radiology, School of Medicine and Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Thomas Baum
- Department of Neuroradiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Marcus R. Makowski
- Department of Diagnostic and Interventional Radiology, School of Medicine and Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christian Braun
- Institute of Forensic Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Daniela Pfeiffer
- Department of Diagnostic and Interventional Radiology, School of Medicine and Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Munich Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | - Benedikt J. Schwaiger
- Department of Neuroradiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Franz Pfeiffer
- Department of Diagnostic and Interventional Radiology, School of Medicine and Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Chair of Biomedical Physics, Department of Physics, School of Natural Sciences, Technical University of Munich, Garching, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany
- Munich Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | - Alexandra S. Gersing
- Department of Neuroradiology, University Hospital of Munich, LMU Munich, Munich, Germany
| |
Collapse
|
6
|
Yang JS, Jeon SY, Choi JH. Acquisition of a single grid-based phase-contrast X-ray image using instantaneous frequency and noise filtering. Biomed Eng Online 2022; 21:92. [PMID: 36575491 PMCID: PMC9793636 DOI: 10.1186/s12938-022-01061-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND To obtain phase-contrast X-ray images, single-grid imaging systems are effective, but Moire artifacts remain a significant issue. The solution for removing Moire artifacts from an image is grid rotation, which can distinguish between these artifacts and sample information within the Fourier space. However, the mechanical movement of grid rotation is slower than the real-time change in Moire artifacts. Thus, Moire artifacts generated during real-time imaging cannot be removed using grid rotation. To overcome this problem, we propose an effective method to obtain phase-contrast X-ray images using instantaneous frequency and noise filtering. RESULT The proposed phase-contrast X-ray image using instantaneous frequency and noise filtering effectively suppressed noise with Moire patterns. The proposed method also preserved the clear edge of the inner and outer boundaries and internal anatomical information from the biological sample, outperforming conventional Fourier analysis-based methods, including absorption, scattering, and phase-contrast X-ray images. In particular, when comparing the phase information for the proposed method with the x-axis gradient image from the absorption image, the proposed method correctly distinguished two different types of soft tissue and the detailed information, while the latter method did not. CONCLUSION This study successfully achieved a significant improvement in image quality for phase-contrast X-ray images using instantaneous frequency and noise filtering. This study can provide a foundation for real-time bio-imaging research using three-dimensional computed tomography.
Collapse
Affiliation(s)
- Jae-Suk Yang
- grid.255649.90000 0001 2171 7754Division of Mechanical and Biomedical Engineering, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760 Republic of Korea
| | - Sun-Young Jeon
- grid.255649.90000 0001 2171 7754Division of Mechanical and Biomedical Engineering, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760 Republic of Korea
| | - Jang-Hwan Choi
- grid.255649.90000 0001 2171 7754Division of Mechanical and Biomedical Engineering, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760 Republic of Korea
| |
Collapse
|
7
|
Low-density foreign body detection in food products using single-shot grid-based dark-field X-ray imaging. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Analysis of a silicon comb structure using an inverse Talbot-Lau neutron grating interferometer. Sci Rep 2022; 12:3461. [PMID: 35241696 PMCID: PMC8894421 DOI: 10.1038/s41598-022-06409-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/20/2021] [Indexed: 11/08/2022] Open
Abstract
We describe an inverse Talbot-Lau neutron grating interferometer that provides an extended autocorrelation length range for quantitative dark-field imaging. To our knowledge, this is the first report of a Talbot-Lau neutron grating interferometer (nTLI) with inverse geometry. We demonstrate a range of autocorrelation lengths (ACL) starting at low tens of nanometers, which is significantly extended compared to the ranges of conventional and symmetric setups. ACLs from a minimum of 44 nm to the maximum of 3.5 μm were presented for the designed wavelength of 4.4 Å in experiments. Additionally, the inverse nTLI has neutron-absorbing gratings with an optically thick gadolinium oxysulfide (Gadox) structure, allowing it to provide a visibility of up to 52% while maintaining a large field of view of approximately 100 mm × 100 mm. We demonstrate the application of our interferometer to quantitative dark-field imaging by using diluted polystyrene particles in an aqueous solution and silicon comb structures. We obtain quantitative structural information of the sphere size and concentration of diluted polystyrene particles and the period, height, and duty cycle of the silicon comb structures. The optically thick Gadox structure of the analyzer grating also provides improved characteristics for the correction of incoherent neutron scattering in an aqueous solution compared to the symmetric nTLI.
Collapse
|
9
|
Intact, Commercial Lithium-Polymer Batteries: Spatially Resolved Grating-Based Interferometry Imaging, Bragg Edge Imaging, and Neutron Diffraction. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We survey several neutron imaging and diffraction methods for non-destructive testing and evaluation of intact, commercial lithium-ion batteries. Specifically, far-field interferometry was explored as an option to probe a wide range of autocorrelation lengths within the batteries via neutron imaging. The dark-field interferometry images change remarkably from fresh to worn batteries, and from charged to discharged batteries. When attempting to search for visual evidence of battery degradation, neutron Talbot-Lau grating interferometry exposed battery layering and particle scattering through dark-field imaging. Bragg edge imaging also reveals battery wear and state of charge. Neutron diffraction observed chemical changes between fresh and worn, charged and discharged batteries. However, the utility of these methods, for commercial batteries, is dependent upon battery size and shape, with 19 to 43 mAh prismatic batteries proving most convenient for these experimental methods. This study reports some of the first spatially resolved, small angle scattering (dark-field) images showing battery degradation.
Collapse
|
10
|
Qiao Z, Shi X, Wojcik M, Assoufid L. High-Resolution Scanning Coded-Mask-Based X-ray Multi-Contrast Imaging and Tomography. J Imaging 2021; 7:jimaging7120249. [PMID: 34940716 PMCID: PMC8705295 DOI: 10.3390/jimaging7120249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 11/16/2022] Open
Abstract
Near-field X-ray speckle tracking has been used in phase-contrast imaging and tomography as an emerging technique, providing higher contrast images than traditional absorption radiography. Most reported methods use sandpaper or membrane filters as speckle generators and digital image cross-correlation for phase reconstruction, which has either limited resolution or requires a large number of position scanning steps. Recently, we have proposed a novel coded-mask-based multi-contrast imaging (CMMI) technique for single-shot measurement with superior performance in efficiency and resolution compared with other single-shot methods. We present here a scanning CMMI method for the ultimate imaging resolution and phase sensitivity by using a coded mask as a high-contrast speckle generator, the flexible scanning mode, the adaption of advanced maximum-likelihood optimization to scanning data, and the multi-resolution analysis. Scanning CMMI can outperform other speckle-based imaging methods, such as X-ray speckle vector tracking, providing higher quality absorption, phase, and dark-field images with fewer scanning steps. Scanning CMMI is also successfully demonstrated in multi-contrast tomography, showing great potentials in high-resolution full-field imaging applications, such as in vivo biomedical imaging.
Collapse
|
11
|
Single-Shot Multicontrast X-ray Imaging for In Situ Visualization of Chemical Reaction Products. J Imaging 2021; 7:jimaging7110221. [PMID: 34821852 PMCID: PMC8621068 DOI: 10.3390/jimaging7110221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 12/02/2022] Open
Abstract
We present the application of single-shot multicontrast X-ray imaging with an inverted Hartmann mask to the time-resolved in situ visualization of chemical reaction products. The real-time monitoring of an illustrative chemical reaction indicated the formation of the precipitate by the absorption, differential phase, and scattering contrast images obtained from a single projection. Through these contrast channels, the formation of the precipitate along the mixing line of the reagents, the border between the solid and the solution, and the presence of the scattering structures of 100–200 nm sizes were observed. The measurements were performed in a flexible and robust setup, which can be tailored to various imaging applications at different time scales.
Collapse
|
12
|
Wu Z, Gao K, Wang Z, Wang S, Zhu P, Ren Y, Tian Y. Generalized reverse projection method for grating-based phase tomography. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:854-863. [PMID: 33949993 DOI: 10.1107/s1600577521001806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
The reverse projection protocol results in fast phase-contrast imaging thanks to its compatibility with conventional computed-tomography scanning. Many researchers have proposed variants. However, all these reverse projection methods in grating-based phase-contrast imaging are built on the hypothesis of the synchronous phase of reference shifting curves in the whole field of view. The hypothesis imposes uniformity and alignment requirements on the gratings, thus the field of view is generally limited. In this paper, a generalized reverse projection method is presented analytically for the case of non-uniform reference in grating-based phase tomography. The method is demonstrated by theoretical derivation, numerical simulations and synchrotron radiation experiments. The influence of imaging position to sensitivity, and the phase-wrapping phenomenon are also discussed. The proposed method combines the advantages of the high efficiency of the reverse projection method and the universal applicability of the phase-stepping method. The authors believe that the method would be used widely in fast and dose-constrained imaging.
Collapse
Affiliation(s)
- Zhao Wu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, People's Republic of China
| | - Kun Gao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, People's Republic of China
| | - Zhili Wang
- School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Shengxiang Wang
- Institute of High-Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Peiping Zhu
- Institute of High-Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yuqi Ren
- Shanghai Synchrotron Radiation Facility, Chinese Academy of Sciences, Shanghai 201204, People's Republic of China
| | - Yangchao Tian
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, People's Republic of China
| |
Collapse
|
13
|
Graetz J, Balles A, Hanke R, Zabler S. Review and experimental verification of x-ray dark-field signal interpretations with respect to quantitative isotropic and anisotropic dark-field computed tomography. Phys Med Biol 2020; 65:235017. [PMID: 32916662 DOI: 10.1088/1361-6560/abb7c6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Talbot(-Lau) interferometric x-ray and neutron dark-field imaging has, over the past decade, gained substantial interest for its ability to provide insights into a sample's microstructure below the imaging resolution by means of ultra small angle scattering effects. Quantitative interpretations of such images depend on models of the signal origination process that relate the observable image contrast to underlying physical processes. A review of such models is given here and their relation to the wave optical derivations by Yashiro et al and Lynch et al as well as to small angle scattering is discussed. Fresnel scaling is introduced to explain the characteristic distance dependence observed in cone beam geometries. Moreover, a model describing the anisotropic signals of fibrous objects is derived. The Yashiro-Lynch model is experimentally verified both in radiographic and tomographic imaging in a monochromatic synchrotron setting, considering both the effects of material and positional dependence of the resulting dark-field contrast. The effect of varying sample-detector distance on the dark-field signal is shown to be non-negligible for tomographic imaging, yet can be largely compensated for by symmetric acquisition trajectories. The derived orientation dependence of the dark-field contrast of fibrous materials both with respect to variations in autocorrelation width and scattering cross section is experimentally validated using carbon fiber reinforced rods.
Collapse
Affiliation(s)
- J Graetz
- Lehrstuhl für Röntgenmikroskopie, Universität Würzburg, Josef-Martin-Weg 63, 97074 Würzburg, Germany. Fraunhofer IIS, division EZRT, Flugplatzstraße 75, 90768 Fürth / Josef-Martin-Weg 63, 97074 Würzburg, Germany
| | | | | | | |
Collapse
|
14
|
Braig EM, Pfeiffer D, Willner M, Sellerer T, Taphorn K, Petrich C, Scholz J, Petzold L, Birnbacher L, Dierolf M, Pfeiffer F, Herzen J. Single spectrum three-material decomposition with grating-based x-ray phase-contrast CT. Phys Med Biol 2020; 65:185011. [PMID: 32460250 DOI: 10.1088/1361-6560/ab9704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Grating-based x-ray phase-contrast imaging provides three simultaneous image channels originating from a single image acquisition. While the phase signal provides direct access to the electron density in tomography, there is additional information on sub-resolutional structural information which is called dark-field signal in analogy to optical microscopy. The additional availability of the conventional attenuation image qualifies the method for implementation into existing diagnostic routines. The simultaneous access to the attenuation coefficient and the electron density allows for quantitative two-material discrimination as demonstrated lately for measurements at a quasi-monochromatic compact synchrotron source. Here, we investigate the transfer of the method to conventional polychromatic x-ray sources and the additional inclusion of the dark-field signal for three-material decomposition. We evaluate the future potential of grating-based x-ray phase-contrast CT for quantitative three-material discrimination for the specific case of early stroke diagnosis at conventional polychromatic x-ray sources. Compared to conventional CT, the method has the potential to discriminate coagulated blood directly from contrast agent extravasation within a single CT acquisition. Additionally, the dark-field information allows for the clear identification of hydroxyapatite clusters due to their micro-structure despite a similar attenuation as the applied contrast agent. This information on materials with sub-resolutional microstructures is considered to comprise advantages relevant for various pathologies.
Collapse
Affiliation(s)
- Eva-Maria Braig
- Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, 85748 Garching, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
The X-ray dark-field signal can be measured with a grating-based Talbot-Lau interferometer. It measures small angle scattering of micrometer-sized oriented structures. Interestingly, the signal is a function not only of the material, but also of the relative orientation of the sample, the X-ray beam direction, and the direction of the interferometer sensitivity. This property is very interesting for potential tomographically reconstructing structures below the imaging resolution. However, tomographic reconstruction itself is a substantial challenge. A key step of the reconstruction algorithm is the inversion of a forward projection model. In this work, we propose a very general 3-D projection model. We derive the projection model under the assumption that the observed scatter distribution has a Gaussian shape. We theoretically show the consistency of our model with existing, more constrained 2-D models. Furthermore, we experimentally show the compatibility of our model with simulations and real dark-field measurements. We believe that this 3-D projection model is an important step towards more flexible trajectories and, by extension, dark-field imaging protocols that are much better applicable in practice.
Collapse
|
16
|
Hosono R, Kawabata T, Hayashida K, Kudo T, Ozaki K, Teranishi N, Hatsui T, Hosoi T, Watanabe H, Shimura T. Advancement of X-ray radiography using microfocus X-ray source in conjunction with amplitude grating and SOI pixel detector, SOPHIAS. OPTICS EXPRESS 2018; 26:21044-21053. [PMID: 30119410 DOI: 10.1364/oe.26.021044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/25/2018] [Indexed: 06/08/2023]
Abstract
We show how to improve microfocus X-ray radiography by using the SOPHIAS silicon-on-insulator pixel detector in conjunction with an amplitude grating. Single-exposure multi-energy absorption and differential phase contrast imaging was performed using the single amplitude grating method. The sensitivity in differential phase contrast imaging in a two-pixel-pitch setup was enhanced by 39% in comparison with the previously reported method [Rev. Sci. Instrum. 81, 113702 (2010).] by analyzing charge-sharing effects. Small-angle-scattering imaging was also possible in the two-pixel-pitch setup by counting the number of X-ray photons passing the pixel boundaries.
Collapse
|
17
|
X-ray Phase Contrast: Research on a Future Imaging Modality. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/978-3-319-96520-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
18
|
Single-Shot X-ray Phase Retrieval through Hierarchical Data Analysis and a Multi-Aperture Analyser. J Imaging 2018. [DOI: 10.3390/jimaging4060076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
19
|
Lee H, Lim H, Jeon D, Park C, Lee D, Cho H, Seo C, Kim K, Kim G, Park S, Kang S, Park J, Kim W, Lim Y, Woo T. Eliminating artifacts in single-grid phase-contrast x-ray imaging for improving image quality. Comput Biol Med 2018; 97:74-82. [DOI: 10.1016/j.compbiomed.2018.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 04/03/2018] [Accepted: 04/19/2018] [Indexed: 10/17/2022]
|
20
|
A Shack-Hartmann Sensor for Single-Shot Multi-Contrast Imaging with Hard X-rays. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8050737] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Vedantham S, Karellas A. Emerging Breast Imaging Technologies on the Horizon. Semin Ultrasound CT MR 2018; 39:114-121. [PMID: 29317033 DOI: 10.1053/j.sult.2017.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Early detection of breast cancers by mammography in conjunction with adjuvant therapy has contributed to reduction in breast cancer mortality. Mammography remains the "gold-standard" for breast cancer screening but is limited by tissue superposition. Digital breast tomosynthesis and more recently, dedicated breast computed tomography have been developed to alleviate the tissue superposition problem. However, all of these modalities rely upon x-ray attenuation contrast to provide anatomical images, and there are ongoing efforts to develop and clinically translate alternative modalities. These emerging modalities could provide for new contrast mechanisms and may potentially improve lesion detection and diagnosis. In this article, several of these emerging modalities are discussed with a focus on technologies that have advanced to the stage of in vivo clinical evaluation.
Collapse
Affiliation(s)
- Srinivasan Vedantham
- Department of Medical Imaging, University of Arizona College of Medicine, Banner University Medical Center, Tucson, AZ.
| | - Andrew Karellas
- Department of Medical Imaging, University of Arizona College of Medicine, Banner University Medical Center, Tucson, AZ
| |
Collapse
|
22
|
Bao Y, Shao Q, Hu R, Wang S, Gao K, Wang Y, Tian Y, Zhu P. Effect of particle-size selectivity on quantitative X-ray dark-field computed tomography using a grating interferometer. Radiat Phys Chem Oxf Engl 1993 2017. [DOI: 10.1016/j.radphyschem.2016.01.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Modregger P, Kagias M, Irvine SC, Brönnimann R, Jefimovs K, Endrizzi M, Olivo A. Interpretation and Utility of the Moments of Small-Angle X-Ray Scattering Distributions. PHYSICAL REVIEW LETTERS 2017; 118:265501. [PMID: 28707948 DOI: 10.1103/physrevlett.118.265501] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Indexed: 05/23/2023]
Abstract
Small angle x-ray scattering has been proven to be a valuable method for accessing structural information below the spatial resolution limit implied by direct imaging. Here, we theoretically derive the relation that links the subpixel differential phase signal provided by the sample to the moments of scattering distributions accessible by refraction sensitive x-ray imaging techniques. As an important special case we explain the scatter or dark-field contrast in terms of the sample's phase signal. Further, we establish that, for binary phase objects, the nth moment scales with the difference of the refractive index decrement to the power of n. Finally, we experimentally demonstrate the utility of the moments by quantitatively determining the particle sizes of a range of powders with a laboratory-based setup.
Collapse
Affiliation(s)
- Peter Modregger
- Department of Medical Physics and Bioengineering, University College London, Gower Street, WC1E 6BT London, United Kingdom
| | - Matias Kagias
- Swiss Light Source, Paul Scherrer Institut, 5232 Villigen, Switzerland
- Institute for Biomedical Engineering, UZH/ETH Zürich, 8092 Zürich, Switzerland
| | - Sarah C Irvine
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE Oxfordshire, United Kingdom
| | - Rolf Brönnimann
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Reliability Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Konstantins Jefimovs
- Swiss Light Source, Paul Scherrer Institut, 5232 Villigen, Switzerland
- Institute for Biomedical Engineering, UZH/ETH Zürich, 8092 Zürich, Switzerland
| | - Marco Endrizzi
- Department of Medical Physics and Bioengineering, University College London, Gower Street, WC1E 6BT London, United Kingdom
| | - Alessandro Olivo
- Department of Medical Physics and Bioengineering, University College London, Gower Street, WC1E 6BT London, United Kingdom
| |
Collapse
|
24
|
Endrizzi M, Vittoria FA, Rigon L, Dreossi D, Iacoviello F, Shearing PR, Olivo A. X-ray Phase-Contrast Radiography and Tomography with a Multiaperture Analyzer. PHYSICAL REVIEW LETTERS 2017; 118:243902. [PMID: 28665636 DOI: 10.1103/physrevlett.118.243902] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Indexed: 05/23/2023]
Abstract
We present a multiaperture analyzer setup for performing x-ray phase contrast imaging in planar and three-dimensional modalities. The method is based on strongly structuring the x-ray beam with an amplitude modulator, before it reaches the sample, and on a multiaperture analyzing element before detection. A multislice representation of the sample is used to establish a quantitative relation between projection images and the corresponding three-dimensional distributions, leading to successful tomographic reconstruction. Sample absorption, phase, and scattering are retrieved from the measurement of five intensity projections. The method is tested on custom-built phantoms with synchrotron radiation: sample absorption and phase can be reliably retrieved also in combination with strong scatterers, simultaneously attaining high sensitivity and dynamic range.
Collapse
Affiliation(s)
- M Endrizzi
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - F A Vittoria
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - L Rigon
- Physics Department, University of Trieste, Via Valerio 2, 34127 Trieste, Italy
- Istituto Nazionale di Fisica Nulceare, Sezione di Trieste, Via Valerio 2, 34127 Trieste, Italy
| | - D Dreossi
- Sincrotrone Trieste SCpA, S.S. 14 km 163.5, 34012 Basovizza Trieste, Italy
| | - F Iacoviello
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, WC1E 7JE, United Kingdom
| | - P R Shearing
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, WC1E 7JE, United Kingdom
| | - A Olivo
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
25
|
Olatinwo MB, Ham K, McCarney J, Marathe S, Ge J, Knapp G, Butler LG. Recent applications of X-ray grating interferometry imaging to evaluate flame retardancy performance of brominated flame retardant. Polym Degrad Stab 2017. [DOI: 10.1016/j.polymdegradstab.2017.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Modregger P, Cremona TP, Benarafa C, Schittny JC, Olivo A, Endrizzi M. Small angle x-ray scattering with edge-illumination. Sci Rep 2016; 6:30940. [PMID: 27491917 PMCID: PMC4974648 DOI: 10.1038/srep30940] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/11/2016] [Indexed: 11/24/2022] Open
Abstract
Sensitivity to sub-pixel sample features has been demonstrated as a valuable capability of phase contrast x-ray imaging. Here, we report on a method to obtain angular-resolved small angle x-ray scattering distributions with edge-illumination- based imaging utilizing incoherent illumination from an x-ray tube. Our approach provides both the three established image modalities (absorption, differential phase and scatter strength), plus a number of additional contrasts related to unresolved sample features. The complementarity of these contrasts is experimentally validated by using different materials in powder form. As a significant application example we show that the extended complementary contrasts could allow the diagnosis of pulmonary emphysema in a murine model. In support of this, we demonstrate that the properties of the retrieved scattering distributions are consistent with the expectation of increased feature sizes related to pulmonary emphysema. Combined with the simplicity of implementation of edge-illumination, these findings suggest a high potential for exploiting extended sub-pixel contrasts in the diagnosis of lung diseases and beyond.
Collapse
Affiliation(s)
- Peter Modregger
- Department of Medical Physics and Bioengineering, University College London, Gower Street, WC1E 6BT London, United Kingdom
| | - Tiziana P. Cremona
- Institute of Anatomy, University of Berne, Baltzerstrasse 2, 3012 Bern, Switzerland
| | - Charaf Benarafa
- Theodor Kocher Institute, University of Berne, Freiestrasse 1, 3012 Bern, Switzerland
| | - Johannes C. Schittny
- Institute of Anatomy, University of Berne, Baltzerstrasse 2, 3012 Bern, Switzerland
| | - Alessandro Olivo
- Department of Medical Physics and Bioengineering, University College London, Gower Street, WC1E 6BT London, United Kingdom
| | - Marco Endrizzi
- Department of Medical Physics and Bioengineering, University College London, Gower Street, WC1E 6BT London, United Kingdom
| |
Collapse
|
27
|
Asymmetric masks for laboratory-based X-ray phase-contrast imaging with edge illumination. Sci Rep 2016; 6:25466. [PMID: 27145924 PMCID: PMC4857105 DOI: 10.1038/srep25466] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 04/18/2016] [Indexed: 02/08/2023] Open
Abstract
We report on an asymmetric mask concept that enables X-ray phase-contrast imaging without requiring any movement in the system during data acquisition. The method is compatible with laboratory equipment, namely a commercial detector and a rotating anode tube. The only motion required is that of the object under investigation which is scanned through the imaging system. Two proof-of-principle optical elements were designed, fabricated and experimentally tested. Quantitative measurements on samples of known shape and composition were compared to theory with good agreement. The method is capable of measuring the attenuation, refraction and (ultra-small-angle) X-ray scattering, does not have coherence requirements and naturally adapts to all those situations in which the X-ray image is obtained by scanning a sample through the imaging system.
Collapse
|
28
|
Marschner M, Willner M, Potdevin G, Fehringer A, Noël PB, Pfeiffer F, Herzen J. Helical X-ray phase-contrast computed tomography without phase stepping. Sci Rep 2016; 6:23953. [PMID: 27052368 PMCID: PMC4823776 DOI: 10.1038/srep23953] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/17/2016] [Indexed: 01/15/2023] Open
Abstract
X-ray phase-contrast computed tomography (PCCT) using grating interferometry provides enhanced soft-tissue contrast. The possibility to use standard polychromatic laboratory sources enables an implementation into a clinical setting. Thus, PCCT has gained significant attention in recent years. However, phase-contrast CT scans still require significantly increased measurement times in comparison to conventional attenuation-based CT imaging. This is mainly due to a time-consuming stepping of a grating, which is necessary for an accurate retrieval of the phase information. In this paper, we demonstrate a novel scan technique, which directly allows the determination of the phase signal without a phase-stepping procedure. The presented work is based on moiré fringe scanning, which allows fast data acquisition in radiographic applications such as mammography or in-line product analysis. Here, we demonstrate its extension to tomography enabling a continuous helical sample rotation as routinely performed in clinical CT systems. Compared to standard phase-stepping techniques, the proposed helical fringe-scanning procedure enables faster measurements, an extended field of view and relaxes the stability requirements of the system, since the gratings remain stationary. Finally, our approach exceeds previously introduced methods by not relying on spatial interpolation to acquire the phase-contrast signal.
Collapse
Affiliation(s)
- M Marschner
- Lehrstuhl für Biomedizinische Physik, Physik-Department &Institut für Medizintechnik, Technische Universität München, 85748 Garching, Germany
| | - M Willner
- Lehrstuhl für Biomedizinische Physik, Physik-Department &Institut für Medizintechnik, Technische Universität München, 85748 Garching, Germany
| | - G Potdevin
- Lehrstuhl für Biomedizinische Physik, Physik-Department &Institut für Medizintechnik, Technische Universität München, 85748 Garching, Germany
| | - A Fehringer
- Lehrstuhl für Biomedizinische Physik, Physik-Department &Institut für Medizintechnik, Technische Universität München, 85748 Garching, Germany
| | - P B Noël
- Lehrstuhl für Biomedizinische Physik, Physik-Department &Institut für Medizintechnik, Technische Universität München, 85748 Garching, Germany.,Institut für diagnostische und interventionelle Radiologie, Klinikum rechts der Isar, Technische Universität München, 81675 München, Germany
| | - F Pfeiffer
- Lehrstuhl für Biomedizinische Physik, Physik-Department &Institut für Medizintechnik, Technische Universität München, 85748 Garching, Germany.,Institut für diagnostische und interventionelle Radiologie, Klinikum rechts der Isar, Technische Universität München, 81675 München, Germany
| | - J Herzen
- Lehrstuhl für Biomedizinische Physik, Physik-Department &Institut für Medizintechnik, Technische Universität München, 85748 Garching, Germany
| |
Collapse
|
29
|
Li P, Zhang K, Bao Y, Ren Y, Ju Z, Wang Y, He Q, Zhu Z, Huang W, Yuan Q, Zhu P. Angular signal radiography. OPTICS EXPRESS 2016; 24:5829-5845. [PMID: 27136780 DOI: 10.1364/oe.24.005829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Microscopy techniques using visible photons, x-rays, neutrons, and electrons have made remarkable impact in many scientific disciplines. The microscopic data can often be expressed as the convolution of the spatial distribution of certain properties of the specimens and the inherent response function of the imaging system. The x-ray grating interferometer (XGI), which is sensitive to the deviation angle of the incoming x-rays, has attracted significant attention in the past years due to its capability in achieving x-ray phase contrast imaging with low brilliance source. However, the comprehensive and analytical theoretical framework is yet to be presented. Herein, we propose a theoretical framework termed angular signal radiography (ASR) to describe the imaging process of the XGI system in a classical, comprehensive and analytical manner. We demonstrated, by means of theoretical deduction and synchrotron based experiments, that the spatial distribution of specimens' physical properties, including absorption, refraction and scattering, can be extracted by ASR in XGI. Implementation of ASR in XGI offers advantages such as simplified phase retrieval algorithm, reduced overall radiation dose, and improved image acquisition speed. These advantages, as well as the limitations of the proposed method, are systematically investigated in this paper.
Collapse
|
30
|
X-ray Scatter Imaging of Hepatocellular Carcinoma in a Mouse Model Using Nanoparticle Contrast Agents. Sci Rep 2015; 5:15673. [PMID: 26511147 PMCID: PMC4625152 DOI: 10.1038/srep15673] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 06/08/2015] [Indexed: 01/22/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide and is almost uniformly fatal. Current methods of detection include ultrasound examination and imaging by CT scan or MRI; however, these techniques are problematic in terms of sensitivity and specificity, and the detection of early tumors (<1 cm diameter) has proven elusive. Better, more specific, and more sensitive detection methods are therefore urgently needed. Here we discuss the application of a newly developed x-ray imaging technique called Spatial Frequency Heterodyne Imaging (SFHI) for the early detection of HCC. SFHI uses x-rays scattered by an object to form an image and is more sensitive than conventional absorption-based x-radiography. We show that tissues labeled in vivo with gold nanoparticle contrast agents can be detected using SFHI. We also demonstrate that directed targeting and SFHI of HCC tumors in a mouse model is possible through the use of HCC-specific antibodies. The enhanced sensitivity of SFHI relative to currently available techniques enables the x-ray imaging of tumors that are just a few millimeters in diameter and substantially reduces the amount of nanoparticle contrast agent required for intravenous injection relative to absorption-based x-ray imaging.
Collapse
|
31
|
X-ray microtomography using correlation of near-field speckles for material characterization. Proc Natl Acad Sci U S A 2015; 112:12569-73. [PMID: 26424447 DOI: 10.1073/pnas.1502828112] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nondestructive microscale investigation of objects is an invaluable tool in life and materials sciences. Currently, such investigation is mainly performed with X-ray laboratory systems, which are based on absorption-contrast imaging and cannot access the information carried by the phase of the X-ray waves. The phase signal is, nevertheless, of great value in X-ray imaging as it is complementary to the absorption information and in general more sensitive to visualize features with small density differences. Synchrotron facilities, which deliver a beam of high brilliance and high coherence, provide the ideal condition to develop such advanced phase-sensitive methods, but their access is limited. Here we show how a small modification of a laboratory setup yields simultaneously quantitative and 3D absorption and phase images of the object. This single-shot method is based on correlation of X-ray near-field speckles and represents a significant broadening of the capabilities of laboratory-based X-ray tomography.
Collapse
|
32
|
Harmon KJ, Miao H, Gomella AA, Bennett EE, Foster BA, Bhandarkar P, Wen H. Motionless electromagnetic phase stepping versus mechanical phase stepping in x-ray phase-contrast imaging with a compact source. Phys Med Biol 2015; 60:3031-43. [PMID: 25803511 DOI: 10.1088/0031-9155/60/8/3031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
X-ray phase contrast imaging based on grating interferometers detects the refractive index distribution of an object without relying on radiation attenuation, thereby having the potential for reduced radiation absorption. These techniques belong to the broader category of optical wavefront measurement, which requires stepping the phase of the interference pattern to obtain a pixel-wise map of the phase distortion of the wavefront. While phase stepping traditionally involves mechanical scanning of a grating or mirror, we developed electromagnetic phase stepping (EPS) for imaging with compact sources to obviate the need for mechanical movement. In EPS a solenoid coil is placed outside the x-ray tube to shift its focal spot with a magnetic field, causing a relative movement between the projection of the sample and the interference pattern in the image. Here we present two embodiments of this method. We verified experimentally that electromagnetic and mechanical phase stepping give the same results and attain the same signal-to-noise ratios under the same radiation dose. We found that the relative changes of interference fringe visibility were within 3.0% when the x-ray focal spot was shifted by up to 1.0 mm in either direction. We conclude that when using x-ray tube sources, EPS is an effective means of phase stepping without the need for mechanical movement.
Collapse
Affiliation(s)
- Katherine J Harmon
- Imaging Physics Laboratory, Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Wang H, Berujon S, Herzen J, Atwood R, Laundy D, Hipp A, Sawhney K. X-ray phase contrast tomography by tracking near field speckle. Sci Rep 2015; 5:8762. [PMID: 25735237 PMCID: PMC4349152 DOI: 10.1038/srep08762] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 02/03/2015] [Indexed: 11/09/2022] Open
Abstract
X-ray imaging techniques that capture variations in the x-ray phase can yield higher
contrast images with lower x-ray dose than is possible with conventional absorption
radiography. However, the extraction of phase information is often more difficult
than the extraction of absorption information and requires a more sophisticated
experimental arrangement. We here report a method for three-dimensional (3D) X-ray
phase contrast computed tomography (CT) which gives quantitative volumetric
information on the real part of the refractive index. The method is based on the
recently developed X-ray speckle tracking technique in which the displacement of
near field speckle is tracked using a digital image correlation algorithm. In
addition to differential phase contrast projection images, the method allows the
dark-field images to be simultaneously extracted. After reconstruction, compared to
conventional absorption CT images, the 3D phase CT images show greatly enhanced
contrast. This new imaging method has advantages compared to other X-ray imaging
methods in simplicity of experimental arrangement, speed of measurement and relative
insensitivity to beam movements. These features make the technique an attractive
candidate for material imaging such as in-vivo imaging of biological systems
containing soft tissue.
Collapse
Affiliation(s)
- Hongchang Wang
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Sebastien Berujon
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Julia Herzen
- Institue of Materials Science, Helmholtz-Zentrum Geesthacht, Geesthacht, Germany
| | - Robert Atwood
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - David Laundy
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Alexander Hipp
- Institue of Materials Science, Helmholtz-Zentrum Geesthacht, Geesthacht, Germany
| | - Kawal Sawhney
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| |
Collapse
|
34
|
Rand D, Walsh EG, Derdak Z, Wands JR, Rose-Petruck C. A highly sensitive x-ray imaging modality for hepatocellular carcinoma detection in vitro. Phys Med Biol 2015; 60:769-84. [PMID: 25559398 PMCID: PMC4323189 DOI: 10.1088/0031-9155/60/2/769] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Innovations that improve sensitivity and reduce cost are of paramount importance in diagnostic imaging. The novel x-ray imaging modality called spatial frequency heterodyne imaging (SFHI) is based on a linear arrangement of x-ray source, tissue, and x-ray detector, much like that of a conventional x-ray imaging apparatus. However, SFHI rests on a complete paradigm reversal compared to conventional x-ray absorption-based radiology: while scattered x-rays are carefully rejected in absorption-based x-ray radiology to enhance the image contrast, SFHI forms images exclusively from x-rays scattered by the tissue. In this study we use numerical processing to produce x-ray scatter images of hepatocellular carcinoma labeled with a nanoparticle contrast agent. We subsequently compare the sensitivity of SFHI in this application to that of both conventional x-ray imaging and magnetic resonance imaging (MRI). Although SFHI is still in the early stages of its development, our results show that the sensitivity of SFHI is an order of magnitude greater than that of absorption-based x-ray imaging and approximately equal to that of MRI. As x-ray imaging modalities typically have lower installation and service costs compared to MRI, SFHI could become a cost effective alternative to MRI, particularly in areas of the world with inadequate availability of MRI facilities.
Collapse
Affiliation(s)
- Danielle Rand
- Department of Chemistry, Brown University. 324 Brook Street, Providence, Rhode Island 02912 (USA)
| | - Edward G. Walsh
- Department of Neuroscience, Brown University. 185 Meeting Street, Providence, Rhode Island 02912 (USA)
| | - Zoltan Derdak
- The Liver Research Center, Rhode Island Hospital and Warren Alpert Medical School of Brown University. 55 Claverick Street, Providence, Rhode Island 02903 (USA)
| | - Jack R. Wands
- The Liver Research Center, Rhode Island Hospital and Warren Alpert Medical School of Brown University. 55 Claverick Street, Providence, Rhode Island 02903 (USA)
| | - Christoph Rose-Petruck
- Department of Chemistry, Brown University. 324 Brook Street, Providence, Rhode Island 02912 (USA)
| |
Collapse
|
35
|
General solution for quantitative dark-field contrast imaging with grating interferometers. Sci Rep 2014; 4:7243. [PMID: 25430623 PMCID: PMC4246210 DOI: 10.1038/srep07243] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 11/11/2014] [Indexed: 02/01/2023] Open
Abstract
Grating interferometer based imaging with X-rays and neutrons has proven to hold huge potential for applications in key research fields conveying biology and medicine as well as engineering and magnetism, respectively. The thereby amenable dark-field imaging modality implied the promise to access structural information beyond reach of direct spatial resolution. However, only here a yet missing approach is reported that finally allows exploiting this outstanding potential for non-destructive materials characterizations. It enables to obtain quantitative structural small angle scattering information combined with up to 3-dimensional spatial image resolution even at lab based x-ray or at neutron sources. The implied two orders of magnitude efficiency gain as compared to currently available techniques in this regime paves the way for unprecedented structural investigations of complex sample systems of interest for material science in a vast range of fields.
Collapse
|
36
|
Malecki A, Eggl E, Schaff F, Potdevin G, Baum T, Garcia EG, Bauer JS, Pfeiffer F. Correlation of X-ray dark-field radiography to mechanical sample properties. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2014; 20:1528-1533. [PMID: 24983688 DOI: 10.1017/s1431927614001718] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The directional dark-field signal obtained with X-ray grating interferometry yields direction-dependent information about the X-ray scattering taking place inside the examined sample. It allows examination of its morphology without the requirement of resolving the micrometer size structures directly causing the scattering. The local morphology in turn gives rise to macroscopic mechanical properties of the investigated specimen. In this study, we investigate the relation between the biomechanical elasticity (Young's modulus) and the measured directional dark-field parameters of a well-defined sample made of wood. In our proof-of-principle experiment, we found a correlation between Young's modulus, the average dark-field signal, and the average dark-field anisotropy. Hence, we are able to show that directional dark-field imaging is a new method to predict mechanical sample properties. As grating interferometry provides absorption, phase-contrast, and dark-field data at the same time, this technique appears promising to combine imaging and mechanical testing in a single testing stage. Therefore, we believe that directional dark-field imaging will have a large impact in the materials science world.
Collapse
Affiliation(s)
- Andreas Malecki
- 1Physik-Department,Technische Universität München,James-Franck-Str. 1,85748 Garching,Germany
| | - Elena Eggl
- 1Physik-Department,Technische Universität München,James-Franck-Str. 1,85748 Garching,Germany
| | - Florian Schaff
- 1Physik-Department,Technische Universität München,James-Franck-Str. 1,85748 Garching,Germany
| | - Guillaume Potdevin
- 1Physik-Department,Technische Universität München,James-Franck-Str. 1,85748 Garching,Germany
| | - Thomas Baum
- 3Institut für Radiologie,Klinikum rechts der Isar,Technische Universität München,Ismaninger Straße 22,81675 München,Bavaria,Germany
| | - Eduardo Grande Garcia
- 3Institut für Radiologie,Klinikum rechts der Isar,Technische Universität München,Ismaninger Straße 22,81675 München,Bavaria,Germany
| | - Jan S Bauer
- 4Abteilung für Neuroradiologie,Klinikum rechts der Isar,Technische Universität München,Ismaninger Straße 22,81675 München,Bavaria,Germany
| | - Franz Pfeiffer
- 1Physik-Department,Technische Universität München,James-Franck-Str. 1,85748 Garching,Germany
| |
Collapse
|
37
|
Rand D, Uchida M, Douglas T, Rose-Petruck C. X-ray spatial frequency heterodyne imaging of protein-based nanobubble contrast agents. OPTICS EXPRESS 2014; 22:23290-23298. [PMID: 25321797 PMCID: PMC4247185 DOI: 10.1364/oe.22.023290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/07/2014] [Accepted: 08/07/2014] [Indexed: 06/04/2023]
Abstract
Spatial Frequency Heterodyne Imaging (SFHI) is a novel x-ray scatter imaging technique that utilizes nanoparticle contrast agents. The enhanced sensitivity of this new technique relative to traditional absorption-based x-ray radiography makes it promising for applications in biomedical and materials imaging. Although previous studies on SFHI have utilized only metal nanoparticle contrast agents, we show that nanomaterials with a much lower electron density are also suitable. We prepared protein-based "nanobubble" contrast agents that are comprised of protein cage architectures filled with gas. Results show that these nanobubbles provide contrast in SFHI comparable to that of gold nanoparticles of similar size.
Collapse
Affiliation(s)
- Danielle Rand
- Department of Chemistry, Brown University, Providence, Rhode Island 02912,
USA
| | - Masaki Uchida
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405,
USA
| | - Trevor Douglas
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405,
USA
| | | |
Collapse
|
38
|
Reconstruction of scalar and vectorial components in X-ray dark-field tomography. Proc Natl Acad Sci U S A 2014; 111:12699-704. [PMID: 25136091 DOI: 10.1073/pnas.1321080111] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Grating-based X-ray dark-field imaging is a novel technique for obtaining image contrast for object structures at size scales below setup resolution. Such an approach appears particularly beneficial for medical imaging and nondestructive testing. It has already been shown that the dark-field signal depends on the direction of observation. However, up to now, algorithms for fully recovering the orientation dependence in a tomographic volume are still unexplored. In this publication, we propose a reconstruction method for grating-based X-ray dark-field tomography, which models the orientation-dependent signal as an additional observable from a standard tomographic scan. In detail, we extend the tomographic volume to a tensorial set of voxel data, containing the local orientation and contributions to dark-field scattering. In our experiments, we present the first results of several test specimens exhibiting a heterogeneous composition in microstructure, which demonstrates the diagnostic potential of the method.
Collapse
|
39
|
Zanette I, Zhou T, Burvall A, Lundström U, Larsson DH, Zdora M, Thibault P, Pfeiffer F, Hertz HM. Speckle-based x-ray phase-contrast and dark-field imaging with a laboratory source. PHYSICAL REVIEW LETTERS 2014; 112:253903. [PMID: 25014818 DOI: 10.1103/physrevlett.112.253903] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Indexed: 05/23/2023]
Abstract
We report on the observation and application of near-field speckles with a laboratory x-ray source. The detection of speckles is possible thanks to the enhanced brilliance properties of the used liquid-metal-jet source, and opens the way to a range of new applications in laboratory-based coherent x-ray imaging. Here, we use the speckle pattern for multimodal imaging of demonstrator objects. Moreover, we introduce algorithms for phase and dark-field imaging using speckle tracking, and we show that they yield superior results with respect to existing methods.
Collapse
Affiliation(s)
- I Zanette
- Physik-Department, Technische Universität München, Garching 85748, Germany
| | - T Zhou
- Department of Applied Physics, KTH Royal Institute of Technology, Stockholm 106 91, Sweden
| | - A Burvall
- Department of Applied Physics, KTH Royal Institute of Technology, Stockholm 106 91, Sweden
| | - U Lundström
- Department of Applied Physics, KTH Royal Institute of Technology, Stockholm 106 91, Sweden
| | - D H Larsson
- Department of Applied Physics, KTH Royal Institute of Technology, Stockholm 106 91, Sweden
| | - M Zdora
- Physik-Department, Technische Universität München, Garching 85748, Germany
| | - P Thibault
- Department of Physics & Astronomy, University College London, London WC1E 6BT, United Kingdom
| | - F Pfeiffer
- Physik-Department, Technische Universität München, Garching 85748, Germany
| | - H M Hertz
- Department of Applied Physics, KTH Royal Institute of Technology, Stockholm 106 91, Sweden
| |
Collapse
|
40
|
Hagen CK, Munro PRT, Endrizzi M, Diemoz PC, Olivo A. Low-dose phase contrast tomography with conventional x-ray sources. Med Phys 2014; 41:070701. [DOI: 10.1118/1.4884297] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
41
|
Yaroshenko A, Hellbach K, Bech M, Grandl S, Reiser MF, Pfeiffer F, Meinel FG. Grating-based X-ray dark-field imaging: a new paradigm in radiography. CURRENT RADIOLOGY REPORTS 2014. [DOI: 10.1007/s40134-014-0057-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
42
|
Scherer K, Birnbacher L, Chabior M, Herzen J, Mayr D, Grandl S, Sztrókay-Gaul A, Hellerhoff K, Bamberg F, Pfeiffer F. Bi-directional x-ray phase-contrast mammography. PLoS One 2014; 9:e93502. [PMID: 24824594 PMCID: PMC4019485 DOI: 10.1371/journal.pone.0093502] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 03/03/2014] [Indexed: 12/15/2022] Open
Abstract
Phase-contrast x-ray imaging is a promising improvement of conventional absorption-based mammography for early tumor detection. This potential has been demonstrated recently, utilizing structured gratings to obtain differential phase and dark-field scattering images. However, the inherently anisotropic imaging sensitivity of the proposed mono-directional approach yields only insufficient diagnostic information, and has low diagnostic sensitivity to highly oriented structures. To overcome these limitations, we present a two-directional x-ray phase-contrast mammography approach and demonstrate its advantages by applying it to a freshly dissected, cancerous mastectomy breast specimen. We illustrate that the two-directional scanning procedure overcomes the insufficient diagnostic value of a single scan, and reliably detects tumor structures, independently from their orientation within the breast. Our results indicate the indispensable diagnostic necessity and benefit of a multi-directional approach for x-ray phase-contrast mammography.
Collapse
Affiliation(s)
- Kai Scherer
- Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, Garching, Germany
- * E-mail:
| | - Lorenz Birnbacher
- Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, Garching, Germany
| | - Michael Chabior
- Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, Garching, Germany
| | - Julia Herzen
- Centre for Materials and Coastal Research, Helmholtz-Zentrum Geesthacht, Geesthacht, Germany
| | - Doris Mayr
- Department of Pathology, Ludwig Maximilian University, Munich, Germany
| | - Susanne Grandl
- Department of Clinical Radiology, Ludwig Maximilian University, Munich, Germany
| | - Anikó Sztrókay-Gaul
- Department of Clinical Radiology, Ludwig Maximilian University, Munich, Germany
| | - Karin Hellerhoff
- Department of Clinical Radiology, Ludwig Maximilian University, Munich, Germany
| | - Fabian Bamberg
- Department of Clinical Radiology, Ludwig Maximilian University, Munich, Germany
| | - Franz Pfeiffer
- Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, Garching, Germany
| |
Collapse
|
43
|
Nagai K. A phase demodulation method for two-dimensional grating-based X-ray interferometry. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2014; 372:20130034. [PMID: 24470416 DOI: 10.1098/rsta.2013.0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This paper presents a novel approach to achieving high spatial resolution in the demodulation of images produced by a two-dimensional X-ray Talbot interferometry (XTI) system. Currently, demodulation of XTI images is mainly performed by either phase-stepping (PS) or Fourier transform (FT) methods. However, the PS method for two-dimensional XTI demodulation requires a larger number of exposures and a more complex grating control process than that of one-dimensional XTI. On the other hand, although the FT method uses only a single-fringe image, it gives lower spatial resolution than the PS method. For practical application of two-dimensional XTI, a simpler exposure process with high spatial resolution is required. In this paper, we introduce a hybrid method combining the PS and FT methods. This method simplifies the exposure process in comparison with the PS method required in two-dimensional XTI while achieving higher spatial resolution than the FT method in the demodulation of images. The method works by using additional exposures to eliminate unnecessary spectral components that appear in the FT method. Furthermore, the proposed method is demonstrated by using actual two-dimensional XTI data and shown to achieve high spatial resolution in the demodulation of images for both the x- and y-differential phase components.
Collapse
Affiliation(s)
- Kentaro Nagai
- Frontier Research Center, Corporate R&D Headquarters, , Canon Inc., 3-30-2 Shimaruko, Ohta-ku, Tokyo 146-8501, Japan
| |
Collapse
|
44
|
Efficient decoding of 2D structured illumination with linear phase stepping in X-ray phase contrast and dark-field imaging. PLoS One 2014; 9:e87127. [PMID: 24489853 PMCID: PMC3904978 DOI: 10.1371/journal.pone.0087127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 12/23/2013] [Indexed: 11/19/2022] Open
Abstract
The ability to map the phase distribution and lateral coherence of an x-ray wavefront offers the potential for imaging the human body through phase contrast, without the need to deposit significant radiation energy. The classic means to achieve this goal is structured illumination, in which a periodic intensity modulation is introduced into the image, and changes in the phase distribution of the wavefront are detected as distortions of the modulation pattern. Two-dimensional periodic patterns are needed to fully characterize a transverse wavefront. Traditionally, the information in a 2D pattern is retrieved at high resolution by acquiring multiple images while shifting the pattern over a 2D matrix of positions. Here we describe a method to decode 2D periodic patterns with single-axis phase stepping, without either a loss of information or increasing the number of sampling steps. The method is created to reduce the instrumentation complexity of high-resolution 2D wavefront sensing in general. It is demonstrated with motionless electromagnetic phase stepping and a flexible processing algorithm in x-ray dark-field and phase contrast imaging.
Collapse
|
45
|
Yaroshenko A, Bech M, Potdevin G, Malecki A, Biernath T, Wolf J, Tapfer A, Schüttler M, Meiser J, Kunka D, Amberger M, Mohr J, Pfeiffer F. Non-binary phase gratings for x-ray imaging with a compact Talbot interferometer. OPTICS EXPRESS 2014; 22:547-556. [PMID: 24515015 DOI: 10.1364/oe.22.000547] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
X-ray imaging using a Talbot-Lau interferometer, consisting of three binary gratings, is a well-established approach to acquire x-ray phase-contrast and dark-field images with a polychromatic source. However, challenges in the production of high aspect ratio gratings limit the construction of a compact setup for high x-ray energies. In this study we consider the use of phase gratings with triangular-shaped structures in an x-ray interferometer and show that such gratings can yield high visibilities for significantly shorter propagation distances than conventional gratings with binary structures. The findings are supported by simulation and experimental results for both cases of a monochromatic and a polychromatic source.
Collapse
|
46
|
Motionless phase stepping in X-ray phase contrast imaging with a compact source. Proc Natl Acad Sci U S A 2013; 110:19268-72. [PMID: 24218599 DOI: 10.1073/pnas.1311053110] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
X-ray phase contrast imaging offers a way to visualize the internal structures of an object without the need to deposit significant radiation, and thereby alleviate the main concern in X-ray diagnostic imaging procedures today. Grating-based differential phase contrast imaging techniques are compatible with compact X-ray sources, which is a key requirement for the majority of clinical X-ray modalities. However, these methods are substantially limited by the need for mechanical phase stepping. We describe an electromagnetic phase-stepping method that eliminates mechanical motion, thus removing the constraints in speed, accuracy, and flexibility. The method is broadly applicable to both projection and tomography imaging modes. The transition from mechanical to electromagnetic scanning should greatly facilitate the translation of X-ray phase contrast techniques into mainstream applications.
Collapse
|
47
|
Yaroshenko A, Meinel FG, Bech M, Tapfer A, Velroyen A, Schleede S, Auweter S, Bohla A, Yildirim AÖ, Nikolaou K, Bamberg F, Eickelberg O, Reiser MF, Pfeiffer F. Pulmonary Emphysema Diagnosis with a Preclinical Small-Animal X-ray Dark-Field Scatter-Contrast Scanner. Radiology 2013; 269:427-33. [DOI: 10.1148/radiol.13122413] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
48
|
Bayer F, Zabler S, Brendel C, Pelzer G, Rieger J, Ritter A, Weber T, Michel T, Anton G. Projection angle dependence in grating-based X-ray dark-field imaging of ordered structures. OPTICS EXPRESS 2013; 21:19922-19933. [PMID: 24105538 DOI: 10.1364/oe.21.019922] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Over the recent years X-ray differential phase-contrast imaging was developed for the hard X-ray regime as produced from laboratory X-ray sources. The technique uses a grating-based Talbot-Lau interferometer and was shown to yield image contrast gain, which makes it very interesting to the fields of medical imaging and non-destructive testing, respectively. In addition to X-ray attenuation contrast, the differential phase-contrast and dark-field images provide different structural information about a specimen. For the dark-field even at length scales much smaller than the spatial resolution of the imaging system. Physical interpretation of the dark-field information as present in radiographic and tomographic (CT) images requires a detailed look onto the geometric orientation between specimen and the setup. During phase-stepping the drop in intensity modulation, due to local scattering effects within the specimen is reproduced in the dark-field signal. This signal shows strong dependencies on micro-porosity and micro-fibers if these are numerous enough in the object. Since a grating-interferometer using a common unidirectional line grating is sensitive to X-ray scattering in one plane only, the dark-field image is influenced by the fiber orientations with respect to the grating bars, which can be exploited to obtain anisotropic structural information. With this contribution, we attempt to extend existing models for 2D projections to 3D data by analyzing dark-field contrast tomography of anisotropically structured materials such as carbon fiber reinforced carbon (CFRC).
Collapse
|
49
|
Malecki A, Potdevin G, Biernath T, Eggl E, Grande Garcia E, Baum T, Noël PB, Bauer JS, Pfeiffer F. Coherent superposition in grating-based directional dark-field imaging. PLoS One 2013; 8:e61268. [PMID: 23637802 PMCID: PMC3634061 DOI: 10.1371/journal.pone.0061268] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 03/07/2013] [Indexed: 11/18/2022] Open
Abstract
X-ray dark-field scatter imaging allows to gain information on the average local direction and anisotropy of micro-structural features in a sample well below the actual detector resolution. For thin samples the morphological interpretation of the signal is straight forward, provided that only one average orientation of sub-pixel features is present in the specimen. For thick samples, however, where the x-ray beam may pass structures of many different orientations and dimensions, this simple assumption in general does not hold and a quantitative description of the resulting directional dark-field signal is required to draw deductions on the morphology. Here we present a description of the signal formation for thick samples with many overlying structures and show its validity in experiment. In contrast to existing experimental work this description follows from theoretical predictions of a numerical study using a Fourier optics approach. One can easily extend this description and perform a quantitative structural analysis of clinical or materials science samples with directional dark-field imaging or even direction-dependent dark-field CT.
Collapse
Affiliation(s)
- Andreas Malecki
- Department of Physics and Institute of Medical Engineering, Technische Universität München, Garching, Bavaria, Germany
| | - Guillaume Potdevin
- Department of Physics and Institute of Medical Engineering, Technische Universität München, Garching, Bavaria, Germany
| | - Thomas Biernath
- Department of Physics and Institute of Medical Engineering, Technische Universität München, Garching, Bavaria, Germany
| | - Elena Eggl
- Department of Physics and Institute of Medical Engineering, Technische Universität München, Garching, Bavaria, Germany
| | - Eduardo Grande Garcia
- Institut für Radiologie, Klinikum rechts der Isar, Technische Universität München, München, Bavaria, Germany
| | - Thomas Baum
- Institut für Radiologie, Klinikum rechts der Isar, Technische Universität München, München, Bavaria, Germany
| | - Peter B. Noël
- Institut für Radiologie, Klinikum rechts der Isar, Technische Universität München, München, Bavaria, Germany
| | - Jan S. Bauer
- Institut für Radiologie, Klinikum rechts der Isar, Technische Universität München, München, Bavaria, Germany
| | - Franz Pfeiffer
- Department of Physics and Institute of Medical Engineering, Technische Universität München, Garching, Bavaria, Germany
| |
Collapse
|
50
|
Pfeiffer F, Herzen J, Willner M, Chabior M, Auweter S, Reiser M, Bamberg F. Grating-based X-ray phase contrast for biomedical imaging applications. Z Med Phys 2013; 23:176-85. [PMID: 23453793 DOI: 10.1016/j.zemedi.2013.02.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 01/31/2013] [Accepted: 02/05/2013] [Indexed: 02/01/2023]
Abstract
In this review article we describe the development of grating-based X-ray phase-contrast imaging, with particular emphasis on potential biomedical applications of the technology. We review the basics of image formation in grating-based phase-contrast and dark-field radiography and present some exemplary multimodal radiography results obtained with laboratory X-ray sources. Furthermore, we discuss the theoretical concepts to extend grating-based multimodal radiography to quantitative transmission, phase-contrast, and dark-field scattering computed tomography.
Collapse
Affiliation(s)
- Franz Pfeiffer
- Department of Physics, Technical University Munich, 85748 Garching, Germany.
| | | | | | | | | | | | | |
Collapse
|