1
|
Davies B, Schaefer S, Rafati Fard A, Newcombe V, Sutcliffe M. Finite Element Analysis for Degenerative Cervical Myelopathy: Scoping Review of the Current Findings and Design Approaches, Including Recommendations on the Choice of Material Properties. JMIR BIOMEDICAL ENGINEERING 2024; 9:e48146. [PMID: 38875683 PMCID: PMC11041437 DOI: 10.2196/48146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/31/2023] [Accepted: 02/15/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Degenerative cervical myelopathy (DCM) is a slow-motion spinal cord injury caused via chronic mechanical loading by spinal degenerative changes. A range of different degenerative changes can occur. Finite element analysis (FEA) can predict the distribution of mechanical stress and strain on the spinal cord to help understand the implications of any mechanical loading. One of the critical assumptions for FEA is the behavior of each anatomical element under loading (ie, its material properties). OBJECTIVE This scoping review aims to undertake a structured process to select the most appropriate material properties for use in DCM FEA. In doing so, it also provides an overview of existing modeling approaches in spinal cord disease and clinical insights into DCM. METHODS We conducted a scoping review using qualitative synthesis. Observational studies that discussed the use of FEA models involving the spinal cord in either health or disease (including DCM) were eligible for inclusion in the review. We followed the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) guidelines. The MEDLINE and Embase databases were searched to September 1, 2021. This was supplemented with citation searching to retrieve the literature used to define material properties. Duplicate title and abstract screening and data extraction were performed. The quality of evidence was appraised using the quality assessment tool we developed, adapted from the Newcastle-Ottawa Scale, and shortlisted with respect to DCM material properties, with a final recommendation provided. A qualitative synthesis of the literature is presented according to the Synthesis Without Meta-Analysis reporting guidelines. RESULTS A total of 60 papers were included: 41 (68%) "FEA articles" and 19 (32%) "source articles." Most FEA articles (33/41, 80%) modeled the gray matter and white matter separately, with models typically based on tabulated data or, less frequently, a hyperelastic Ogden variant or linear elastic function. Of the 19 source articles, 14 (74%) were identified as describing the material properties of the spinal cord, of which 3 (21%) were considered most relevant to DCM. Of the 41 FEA articles, 15 (37%) focused on DCM, of which 9 (60%) focused on ossification of the posterior longitudinal ligament. Our aggregated results of DCM FEA indicate that spinal cord loading is influenced by the pattern of degenerative changes, with decompression alone (eg, laminectomy) sufficient to address this as opposed to decompression combined with other procedures (eg, laminectomy and fusion). CONCLUSIONS FEA is a promising technique for exploring the pathobiology of DCM and informing clinical care. This review describes a structured approach to help future investigators deploy FEA for DCM. However, there are limitations to these recommendations and wider uncertainties. It is likely that these will need to be overcome to support the clinical translation of FEA to DCM.
Collapse
Affiliation(s)
- Benjamin Davies
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Samuel Schaefer
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Amir Rafati Fard
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Virginia Newcombe
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Michael Sutcliffe
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
2
|
Pfender N, Rosner J, Zipser CM, Friedl S, Schubert M, Sutter R, Klarhoefer M, Spirig JM, Betz M, Freund P, Farshad M, Curt A, Hupp M. Increased cranio-caudal spinal cord oscillations are the cardinal pathophysiological change in degenerative cervical myelopathy. Front Neurol 2023; 14:1217526. [PMID: 38020663 PMCID: PMC10663304 DOI: 10.3389/fneur.2023.1217526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Degenerative cervical myelopathy (DCM) is the most common cause of non-traumatic incomplete spinal cord injury, but its pathophysiology is poorly understood. As spinal cord compression observed in standard MRI often fails to explain a patient's status, new diagnostic techniques to assess DCM are one of the research priorities. Minor cardiac-related cranio-caudal oscillations of the cervical spinal cord are observed by phase-contrast MRI (PC-MRI) in healthy controls (HCs), while they become pathologically increased in patients suffering from degenerative cervical myelopathy. Whether transversal oscillations (i.e., anterior-posterior and right-left) also change in DCM patients is not known. Methods We assessed spinal cord motion simultaneously in all three spatial directions (i.e., cranio-caudal, anterior-posterior, and right-left) using sagittal PC-MRI and compared physiological oscillations in 18 HCs to pathological changes in 72 DCM patients with spinal canal stenosis. The parameter of interest was the amplitude of the velocity signal (i.e., maximum positive to maximum negative peak) during the cardiac cycle. Results Most patients suffered from mild DCM (mJOA score 16 (14-18) points), and the majority (68.1%) presented with multisegmental stenosis. The spinal canal was considerably constricted in DCM patients in all segments compared to HCs. Under physiological conditions in HCs, the cervical spinal cord oscillates in the cranio-caudal and anterior-posterior directions, while right-left motion was marginal [e.g., segment C5 amplitudes: cranio-caudal: 0.40 (0.27-0.48) cm/s; anterior-posterior: 0.18 (0.16-0.29) cm/s; right-left: 0.10 (0.08-0.13) cm/s]. Compared to HCs, DCM patients presented with considerably increased cranio-caudal oscillations due to the cardinal pathophysiologic change in non-stenotic [e.g., segment C5 amplitudes: 0.79 (0.49-1.32) cm/s] and stenotic segments [.g., segment C5 amplitudes: 0.99 (0.69-1.42) cm/s]). In contrast, right-left [e.g., segment C5 amplitudes: non-stenotic segment: 0.20 (0.13-0.32) cm/s; stenotic segment: 0.11 (0.09-0.18) cm/s] and anterior-posterior oscillations [e.g., segment C5 amplitudes: non-stenotic segment: 0.26 (0.15-0.45) cm/s; stenotic segment: 0.11 (0.09-0.18) cm/s] remained on low magnitudes comparable to HCs. Conclusion Increased cranio-caudal oscillations of the cervical cord are the cardinal pathophysiologic change and can be quantified using PC-MRI in DCM patients. This study addresses spinal cord oscillations as a relevant biomarker reflecting dynamic mechanical cord stress in DCM patients, potentially contributing to a loss of function.
Collapse
Affiliation(s)
- Nikolai Pfender
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
- University Spine Center Zurich, Balgrist University Hospital, Zurich, Switzerland
| | - Jan Rosner
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
- Department of Neurology, University Hospital Bern, Inselspital, Bern, Switzerland
| | - Carl M. Zipser
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
- University Spine Center Zurich, Balgrist University Hospital, Zurich, Switzerland
| | - Susanne Friedl
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
- University Spine Center Zurich, Balgrist University Hospital, Zurich, Switzerland
| | - Martin Schubert
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
- University Spine Center Zurich, Balgrist University Hospital, Zurich, Switzerland
| | - Reto Sutter
- Radiology, Balgrist University Hospital, Zurich, Switzerland
| | | | - José M. Spirig
- University Spine Center Zurich, Balgrist University Hospital, Zurich, Switzerland
| | - Michael Betz
- University Spine Center Zurich, Balgrist University Hospital, Zurich, Switzerland
| | - Patrick Freund
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - Mazda Farshad
- University Spine Center Zurich, Balgrist University Hospital, Zurich, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
- University Spine Center Zurich, Balgrist University Hospital, Zurich, Switzerland
| | - Markus Hupp
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| |
Collapse
|
3
|
Gibbs WN, Basha MM, Chazen JL. Management Algorithm for Osseous Metastatic Disease: What the Treatment Teams Want to Know. Neuroimaging Clin N Am 2023; 33:487-497. [PMID: 37356864 DOI: 10.1016/j.nic.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Radiologists play a primary role in identifying, characterizing, and classifying spinal metastases and can play a lifesaving role in the care of these patients by triaging those with instability to urgent spine surgery consultation. For this reason, an understanding of current treatment algorithms and principles of spinal stability in patients with cancer is vital for all who interpret spine studies. In addition, advances in imaging allow radiologists to provide more accurate diagnoses and characterize pathology, thereby improving patient safety.
Collapse
Affiliation(s)
- Wende N Gibbs
- Barrow Neurological Institute, Department of Neuroradiology, St. Joseph's Hospital and Medical Center, 350 West Thomas Road, Phoenix, AZ 85013, USA.
| | - Mahmud Mossa Basha
- University of Washington School of Medicine, 1959 Northeast Pacific Street, Seattle, WA 98195, USA
| | - J Levi Chazen
- Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021, USA
| |
Collapse
|
4
|
Schaefer SD, Davies BM, Newcombe VF, Sutcliffe MP. Could spinal cord oscillation contribute to spinal cord injury in degenerative cervical myelopathy? BRAIN & SPINE 2023; 3:101743. [PMID: 37383476 PMCID: PMC10293319 DOI: 10.1016/j.bas.2023.101743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/20/2023] [Accepted: 04/12/2023] [Indexed: 06/30/2023]
Abstract
Introduction Degenerative Cervical Myelopathy [DCM] is a slow-motion spinal cord injury. Compression and dynamic compression have been considered disease hallmarks. However, this is likely an oversimplification, as compression is more commonly incidental and has only modest correlation to disease severity. MRI studies have recently suggested spinal cord oscillation could play a role. Research question To determine if spinal cord oscillation could contribute to spinal cord injury in degenerative cervical myelopathy. Material and methods A computational model of an oscillating spinal cord was developed from imaging of a healthy volunteer. Using finite element analysis, the observed implications of stress and strain, were measured in the context of a simulated disc herniation. The significance was bench marked by comparison to a more recognised dynamic injury mechanism; a flexion extension model of dynamic compression. Results Spinal cord oscillation altered both compressive and shear strain on the spinal cord. Following initial compression, compressive strain moves from within the spinal cord to the spinal cord surface, whilst shear strain is magnified by 0.1-0.2, depending on the amplitude of oscillation. These orders of magnitude are equivalent to a dynamic compression model. Discussion and conclusion Spinal cord oscillation could significantly contribute to spinal cord damage across DCM. Its repeated occurrence with every heartbeat, draws parallels to the concept of fatigue damage, which could reconcile differing theories on the origins of DCM. This remains hypothetical at this stage, and further investigations are required.
Collapse
|
5
|
Davies BM, Mowforth O, Gharooni AA, Tetreault L, Nouri A, Dhillon RS, Bednarik J, Martin AR, Young A, Takahashi H, Boerger TF, Newcombe VF, Zipser CM, Freund P, Koljonen PA, Rodrigues-Pinto R, Rahimi-Movaghar V, Wilson JR, Kurpad SN, Fehlings MG, Kwon BK, Harrop JS, Guest JD, Curt A, Kotter MRN. A New Framework for Investigating the Biological Basis of Degenerative Cervical Myelopathy [AO Spine RECODE-DCM Research Priority Number 5]: Mechanical Stress, Vulnerability and Time. Global Spine J 2022; 12:78S-96S. [PMID: 35174728 PMCID: PMC8859710 DOI: 10.1177/21925682211057546] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
STUDY DESIGN Literature Review (Narrative). OBJECTIVE To propose a new framework, to support the investigation and understanding of the pathobiology of DCM, AO Spine RECODE-DCM research priority number 5. METHODS Degenerative cervical myelopathy is a common and disabling spinal cord disorder. In this perspective, we review key knowledge gaps between the clinical phenotype and our biological models. We then propose a reappraisal of the key driving forces behind DCM and an individual's susceptibility, including the proposal of a new framework. RESULTS Present pathobiological and mechanistic knowledge does not adequately explain the disease phenotype; why only a subset of patients with visualized cord compression show clinical myelopathy, and the amount of cord compression only weakly correlates with disability. We propose that DCM is better represented as a function of several interacting mechanical forces, such as shear, tension and compression, alongside an individual's vulnerability to spinal cord injury, influenced by factors such as age, genetics, their cardiovascular, gastrointestinal and nervous system status, and time. CONCLUSION Understanding the disease pathobiology is a fundamental research priority. We believe a framework of mechanical stress, vulnerability, and time may better represent the disease as a whole. Whilst this remains theoretical, we hope that at the very least it will inspire new avenues of research that better encapsulate the full spectrum of disease.
Collapse
Affiliation(s)
- Benjamin M Davies
- Department of Neurosurgery, 2152University of Cambridge, Cambridge, UK
| | - Oliver Mowforth
- Department of Neurosurgery, 2152University of Cambridge, Cambridge, UK
| | - Aref-Ali Gharooni
- Department of Neurosurgery, 2152University of Cambridge, Cambridge, UK
| | - Lindsay Tetreault
- New York University, Langone Health, Graduate Medical Education, 5894Department of Neurology, New York, NY, USA
| | - Aria Nouri
- Division of Neurosurgery, Geneva University Hospitals, 27230University of Geneva, Genève, Switzerland
| | - Rana S Dhillon
- Department of Neurosurgery, 60078St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
| | - Josef Bednarik
- Department of Neurology, University Hospital Brno and Faculty of Medicine, 37748Masaryk University, Brno, Czech Republic
| | - Allan R Martin
- Department of Neurosurgery, 8789University of California Davis, Sacramento, CA, USA
| | - Adam Young
- Department of Neurosurgery, 2152University of Cambridge, Cambridge, UK
| | - Hitoshi Takahashi
- Department of Pathology, Brain Research Institute, 12978Niigata University, Niigata, Japan
| | - Timothy F Boerger
- Department of Neurosurgery, 5506Medical College of Wisconsin, Wauwatosa, WI, USA
| | - Virginia Fj Newcombe
- Division of Anaesthesia, Department of Medicine, 2152University of Cambridge, Cambridge, UK
| | - Carl Moritz Zipser
- University Spine Center, 31031Balgrist University Hospital, Zurich, Switzerland
| | - Patrick Freund
- University Spine Center, 31031Balgrist University Hospital, Zurich, Switzerland
| | - Paul Aarne Koljonen
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, 25809The University of Hong Kong, Hong Kong, China
| | - Ricardo Rodrigues-Pinto
- Spinal Unit (UVM), Department of Orthopaedics, 112085Centro Hospitalar Universitário do Porto - Hospital de Santo António, Porto, Portugal
- 89239Instituto de Ciências Biomédicas Abel Salazar, Porto, Portugal
| | - Vafa Rahimi-Movaghar
- Department of Neurosurgery, Sina Trauma and Surgery Research Center, 48439Tehran University of Medical Sciences, Tehran, Iran
| | - Jefferson R Wilson
- Division of Neurosurgery, Department of Surgery, 7938University of Toronto, Toronto, ON, Canada
| | - Shekar N Kurpad
- Department of Neurosurgery, 5506Medical College of Wisconsin, Wauwatosa, WI, USA
| | - Michael G Fehlings
- Division of Neurosurgery, Department of Surgery, 7938University of Toronto, Toronto, ON, Canada
| | - Brian K Kwon
- Vancouver Spine Surgery Institute, Department of Orthopedics, The University of British Columbia, Vancouver, BC, Canada
| | - James S Harrop
- Department of Neurological Surgery, 6559Thomas Jefferson University, Philadelphia, PA, USA
| | - James D Guest
- Department of Neurosurgery and the Miami Project to Cure Paralysis, The Miller School of Medicine, 12235University of Miami, Miami, FL, USA
| | - Armin Curt
- University Spine Center, 31031Balgrist University Hospital, Zurich, Switzerland
| | - Mark R N Kotter
- Department of Neurosurgery, 2152University of Cambridge, Cambridge, UK
| |
Collapse
|
6
|
Pfender N, Rosner J, Zipser CM, Friedl S, Vallotton K, Sutter R, Klarhoefer M, Schubert M, Betz M, Spirig JM, Seif M, Hubli M, Freund P, Farshad M, Curt A, Hupp M. Comparison of axial and sagittal spinal cord motion measurements in degenerative cervical myelopathy. J Neuroimaging 2022; 32:1121-1133. [PMID: 35962464 PMCID: PMC9805009 DOI: 10.1111/jon.13035] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND AND PURPOSE The timing of decision-making for a surgical intervention in patients with mild degenerative cervical myelopathy (DCM) is challenging. Spinal cord motion phase contrast MRI (PC-MRI) measurements can reveal the extent of dynamic mechanical strain on the spinal cord to potentially identify high-risk patients. This study aims to determine the comparability of axial and sagittal PC-MRI measurements of spinal cord motion with the prospect of improving the clinical workup. METHODS Sixty-four DCM patients underwent a PC-MRI scan assessing spinal cord motion. The agreement of axial and sagittal measurements was determined by means of intraclass correlation coefficients (ICCs) and Bland-Altman analyses. RESULTS The comparability of axial and sagittal PC-MRI measurements was good to excellent at all cervical levels (ICCs motion amplitude: .810-.940; p < .001). Significant differences between axial and sagittal amplitude values could be found at segments C3 and C4, while its magnitude was low (C3: 0.07 ± 0.19 cm/second; C4: -0.12 ± 0.30 cm/second). Bland-Altman analysis showed a good agreement between axial and sagittal PC-MRI scans (coefficients of repeatability: minimum -0.23 cm/second at C2; maximum -0.58 cm/second at C4). Subgroup analysis regarding anatomic conditions (stenotic vs. nonstenotic segments) and different velocity encoding (2 vs. 3 cm/second) showed comparable results. CONCLUSIONS This study demonstrates good comparability between axial and sagittal spinal cord motion measurements in DCM patients. To this end, axial and sagittal PC-MRI are both accurate and sensitive in detecting pathologic cord motion. Therefore, such measures could identify high-risk patients and improve clinical decision-making (ie, timing of decompression).
Collapse
Affiliation(s)
- Nikolai Pfender
- Spinal Cord Injury CenterBalgrist University HospitalUniversity of ZurichZurichSwitzerland
| | - Jan Rosner
- Spinal Cord Injury CenterBalgrist University HospitalUniversity of ZurichZurichSwitzerland,Department of NeurologyBern University HospitalInselspitalUniversity of BernBernSwitzerland
| | - Carl Moritz Zipser
- Spinal Cord Injury CenterBalgrist University HospitalUniversity of ZurichZurichSwitzerland
| | - Susanne Friedl
- Spinal Cord Injury CenterBalgrist University HospitalUniversity of ZurichZurichSwitzerland
| | - Kevin Vallotton
- Spinal Cord Injury CenterBalgrist University HospitalUniversity of ZurichZurichSwitzerland
| | - Reto Sutter
- RadiologyBalgrist University HospitalUniversity of ZurichZurichSwitzerland
| | | | - Martin Schubert
- Spinal Cord Injury CenterBalgrist University HospitalUniversity of ZurichZurichSwitzerland
| | - Michael Betz
- University Spine Centre ZurichBalgrist University HospitalUniversity of ZurichZurichSwitzerland
| | - José Miguel Spirig
- University Spine Centre ZurichBalgrist University HospitalUniversity of ZurichZurichSwitzerland
| | - Maryam Seif
- Spinal Cord Injury CenterBalgrist University HospitalUniversity of ZurichZurichSwitzerland,Department of NeurophysicsMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Michèle Hubli
- Spinal Cord Injury CenterBalgrist University HospitalUniversity of ZurichZurichSwitzerland
| | - Patrick Freund
- Spinal Cord Injury CenterBalgrist University HospitalUniversity of ZurichZurichSwitzerland
| | - Mazda Farshad
- University Spine Centre ZurichBalgrist University HospitalUniversity of ZurichZurichSwitzerland
| | - Armin Curt
- Spinal Cord Injury CenterBalgrist University HospitalUniversity of ZurichZurichSwitzerland,University Spine Centre ZurichBalgrist University HospitalUniversity of ZurichZurichSwitzerland
| | - Markus Hupp
- Spinal Cord Injury CenterBalgrist University HospitalUniversity of ZurichZurichSwitzerland
| |
Collapse
|
7
|
Spinal Cord Motion in Degenerative Cervical Myelopathy: The Level of the Stenotic Segment and Gender Cause Altered Pathodynamics. J Clin Med 2021; 10:jcm10173788. [PMID: 34501236 PMCID: PMC8432264 DOI: 10.3390/jcm10173788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/28/2022] Open
Abstract
In degenerative cervical myelopathy (DCM), focally increased spinal cord motion has been observed for C5/C6, but whether stenoses at other cervical segments lead to similar pathodynamics and how severity of stenosis, age, and gender affect them is still unclear. We report a prospective matched-pair controlled trial on 65 DCM patients. A high-resolution 3D T2 sampling perfection with application-optimized contrasts using different flip angle evolution (SPACE) and a phase-contrast magnetic resonance imaging (MRI) sequence were performed and automatically segmented. Anatomical and spinal cord motion data were assessed per segment from C2/C3 to C7/T1. Spinal cord motion was focally increased at a level of stenosis among patients with stenosis at C4/C5 (n = 14), C5/C6 (n = 33), and C6/C7 (n = 10) (p < 0.033). Patients with stenosis at C2/C3 (n = 2) and C3/C4 (n = 6) presented a similar pattern, not reaching significance. Gender was a significant predictor of higher spinal cord dynamics among men with stenosis at C5/C6 (p = 0.048) and C6/C7 (p = 0.033). Age and severity of stenosis did not relate to spinal cord motion. Thus, the data demonstrates focally increased spinal cord motion depending on the specific level of stenosis. Gender-related effects lead to dynamic alterations among men with stenosis at C5/C6 and C6/C7. The missing relation of motion to severity of stenosis underlines a possible additive diagnostic value of spinal cord motion analysis in DCM.
Collapse
|
8
|
Klinge PM, McElroy A, Donahue JE, Brinker T, Gokaslan ZL, Beland MD. Abnormal spinal cord motion at the craniocervical junction in hypermobile Ehlers-Danlos patients. J Neurosurg Spine 2021; 35:18-24. [PMID: 34020423 DOI: 10.3171/2020.10.spine201765] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/23/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The craniocervical junction (CCJ) is anatomically complex and comprises multiple joints that allow for wide head and neck movements. The thecal sac must adjust to such movements. Accordingly, the thecal sac is not rigidly attached to the bony spinal canal but instead tethered by fibrous suspension ligaments, including myodural bridges (MDBs). The authors hypothesized that pathological spinal cord motion is due to the laxity of such suspension bands in patients with connective tissue disorders, e.g., hypermobile Ehlers-Danlos syndrome (EDS). METHODS The ultrastructure of MDBs that were intraoperatively harvested from patients with Chiari malformation was investigated with transmission electron microscopy, and 8 patients with EDS were compared with 8 patients without EDS. MRI was used to exclude patients with EDS and craniocervical instability (CCI). Real-time ultrasound was used to compare the spinal cord at C1-2 of 20 patients with EDS with those of 18 healthy control participants. RESULTS The ultrastructural damage of the collagen fibrils of the MDBs was distinct in patients with EDS, indicating a pathological mechanical laxity. In patients with EDS, ultrasound revealed increased cardiac pulsatory motion and irregular displacement of the spinal cord during head movements. CONCLUSIONS Laxity of spinal cord suspension ligaments and the associated spinal cord motion disorder are possible pathogenic factors for chronic neck pain and headache in patients with EDS but without radiologically proven CCI.
Collapse
Affiliation(s)
| | | | | | - Thomas Brinker
- 3Department of Neurosurgery, Medical School Hannover, Germany
| | | | - Michael D Beland
- 4Radiology, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, Rhode Island; and
| |
Collapse
|
9
|
Hupp M, Pfender N, Vallotton K, Rosner J, Friedl S, Zipser CM, Sutter R, Klarhöfer M, Spirig JM, Betz M, Schubert M, Freund P, Farshad M, Curt A. The Restless Spinal Cord in Degenerative Cervical Myelopathy. AJNR Am J Neuroradiol 2021; 42:597-609. [PMID: 33541903 DOI: 10.3174/ajnr.a6958] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 10/12/2020] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE The spinal cord is subject to a periodic, cardiac-related movement, which is increased at the level of a cervical stenosis. Increased oscillations may exert mechanical stress on spinal cord tissue causing intramedullary damage. Motion analysis thus holds promise as a biomarker related to disease progression in degenerative cervical myelopathy. Our aim was characterization of the cervical spinal cord motion in patients with degenerative cervical myelopathy. MATERIALS AND METHODS Phase-contrast MR imaging data were analyzed in 55 patients (37 men; mean age, 56.2 [SD,12.0] years; 36 multisegmental stenoses) and 18 controls (9 men, P = .368; mean age, 62.2 [SD, 6.5] years; P = .024). Parameters of interest included the displacement and motion pattern. Motion data were pooled on the segmental level for comparison between groups. RESULTS In patients, mean craniocaudal oscillations were increased manifold at any level of a cervical stenosis (eg, C5 displacement: controls [n = 18], 0.54 [SD, 0.16] mm; patients [n = 29], monosegmental stenosis [n = 10], 1.86 [SD, 0.92] mm; P < .001) and even in segments remote from the level of the stenosis (eg, C2 displacement: controls [n = 18], 0.36 [SD, 0.09] mm; patients [n = 52]; stenosis: C3, n = 21; C4, n = 11; C5, n = 18; C6, n = 2; 0.85 [SD, 0.46] mm; P < .001). Motion at C2 differed with the distance to the next stenotic segment and the number of stenotic segments. The motion pattern in most patients showed continuous spinal cord motion throughout the cardiac cycle. CONCLUSIONS Patients with degenerative cervical myelopathy show altered spinal cord motion with increased and ongoing oscillations at and also beyond the focal level of stenosis. Phase-contrast MR imaging has promise as a biomarker to reveal mechanical stress to the cord and may be applicable to predict disease progression and the impact of surgical interventions.
Collapse
Affiliation(s)
- M Hupp
- From the Spinal Cord Injury Center (M.H., N.P., K.V., J.R., S.F., C.M.Z., M.S., P.F., A.C.)
| | - N Pfender
- From the Spinal Cord Injury Center (M.H., N.P., K.V., J.R., S.F., C.M.Z., M.S., P.F., A.C.)
| | - K Vallotton
- From the Spinal Cord Injury Center (M.H., N.P., K.V., J.R., S.F., C.M.Z., M.S., P.F., A.C.)
| | - J Rosner
- From the Spinal Cord Injury Center (M.H., N.P., K.V., J.R., S.F., C.M.Z., M.S., P.F., A.C.).,Department of Neurology (J.R.), University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - S Friedl
- From the Spinal Cord Injury Center (M.H., N.P., K.V., J.R., S.F., C.M.Z., M.S., P.F., A.C.)
| | - C M Zipser
- From the Spinal Cord Injury Center (M.H., N.P., K.V., J.R., S.F., C.M.Z., M.S., P.F., A.C.)
| | | | - M Klarhöfer
- Siemens Healthcare AG (M.K.), Zurich, Switzerland
| | - J M Spirig
- University Spine Center Zurich (J.M.S., M.B., M.F., A.C.), Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - M Betz
- University Spine Center Zurich (J.M.S., M.B., M.F., A.C.), Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - M Schubert
- From the Spinal Cord Injury Center (M.H., N.P., K.V., J.R., S.F., C.M.Z., M.S., P.F., A.C.)
| | - P Freund
- From the Spinal Cord Injury Center (M.H., N.P., K.V., J.R., S.F., C.M.Z., M.S., P.F., A.C.)
| | - M Farshad
- University Spine Center Zurich (J.M.S., M.B., M.F., A.C.), Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - A Curt
- From the Spinal Cord Injury Center (M.H., N.P., K.V., J.R., S.F., C.M.Z., M.S., P.F., A.C.).,University Spine Center Zurich (J.M.S., M.B., M.F., A.C.), Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Oztek MA, Mayr NA, Mossa-Basha M, Nyflot M, Sponseller PA, Wu W, Hofstetter CP, Saigal R, Bowen SR, Hippe DS, Yuh WTC, Stewart RD, Lo SS. The Dancing Cord: Inherent Spinal Cord Motion and Its Effect on Cord Dose in Spine Stereotactic Body Radiation Therapy. Neurosurgery 2020; 87:1157-1166. [PMID: 32497210 PMCID: PMC8184298 DOI: 10.1093/neuros/nyaa202] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 03/19/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Spinal cord dose limits are critically important for the safe practice of spine stereotactic body radiotherapy (SBRT). However, the effect of inherent spinal cord motion on cord dose in SBRT is unknown. OBJECTIVE To assess the effects of cord motion on spinal cord dose in SBRT. METHODS Dynamic balanced fast field echo (BFFE) magnetic resonance imaging (MRI) was obtained in 21 spine metastasis patients treated with SBRT. Planning computed tomography (CT), conventional static T2-weighted MRI, BFFE MRI, and dose planning data were coregistered. Spinal cord from the dynamic BFFE images (corddyn) was compared with the T2-weighted MRI (cordstat) to analyze motion of corddyn beyond the cordstat (Dice coefficient, Jaccard index), and beyond cordstat with added planning organ at risk volume (PRV) margins. Cord dose was compared between cordstat, and corddyn (Wilcoxon signed-rank test). RESULTS Dice coefficient (0.70-0.95, median 0.87) and Jaccard index (0.54-0.90, median 0.77) demonstrated motion of corddyn beyond cordstat. In 62% of the patients (13/21), the dose to corddyn exceeded that of cordstat by 0.6% to 13.8% (median 4.3%). The corddyn spatially excursed outside the 1-mm PRV margin of cordstat in 9 patients (43%); among these dose to corddyn exceeded dose to cordstat >+ 1-mm PRV margin in 78% of the patients (7/9). Corddyn did not excurse outside the 1.5-mm or 2-mm PRV cord cordstat margin. CONCLUSION Spinal cord motion may contribute to increases in radiation dose to the cord from SBRT for spine metastasis. A PRV margin of at least 1.5 to 2 mm surrounding the cord should be strongly considered to account for inherent spinal cord motion.
Collapse
Affiliation(s)
- Murat Alp Oztek
- Department of Radiology, University of Washington School of Medicine, Seattle, Washington
| | - Nina A Mayr
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington
| | - Mahmud Mossa-Basha
- Department of Radiology, University of Washington School of Medicine, Seattle, Washington
| | - Matthew Nyflot
- Department of Radiology, University of Washington School of Medicine, Seattle, Washington.,Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington
| | - Patricia A Sponseller
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington
| | - Wei Wu
- Department of Radiology, University of Washington School of Medicine, Seattle, Washington
| | - Christoph P Hofstetter
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington
| | - Rajiv Saigal
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington
| | - Stephen R Bowen
- Department of Radiology, University of Washington School of Medicine, Seattle, Washington.,Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington
| | - Daniel S Hippe
- Department of Radiology, University of Washington School of Medicine, Seattle, Washington
| | - William T C Yuh
- Department of Radiology, University of Washington School of Medicine, Seattle, Washington
| | - Robert D Stewart
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington
| | - Simon S Lo
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
11
|
Geldschläger O, Bosch D, Avdievich NI, Henning A. Ultrahigh-resolution quantitative spinal cord MRI at 9.4T. Magn Reson Med 2020; 85:1013-1027. [PMID: 32789980 DOI: 10.1002/mrm.28455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 11/08/2022]
Abstract
PURPOSE To present the results of the first human spinal cord in vivo MRI scans at 9.4T. METHODS A human brain coil was used to image the human spinal cord at 9.4T. All anatomical images were acquired with a T2 *-weighted gradient-echo sequence. A comparison of the influence of four different B0 shimming routines on the image quality was performed. Intrinsic signal-to-noise-ratio maps were determined using a pseudo-multiple replica approach. Measurements with different echo times were compared and processed to one multiecho data image combination image. Based on the multiecho acquisitions, T2 *-relaxation time maps were calculated. Algorithmic spinal cord detection and gray matter/white matter segmentation were tested. RESULTS An echo time between 9 and 13.8 ms compromised best between gray matter/white matter contrast and image quality. A maximum in-plane resolution of 0.15 × 0.15 mm2 was achieved for anatomical images. These images offered excellent image quality and made small structures of the spinal cord visible. The scanner vendor implemented B0 shimming routine performed best during this work. Intrinsic signal-to-noise-ratio values of between 6600 and 8060 at the upper cervical spinal cord were achieved. Detection and segmentation worked reliably. An average T2 *-time of 24.88 ms ± 6.68 ms for gray matter and 19.37 ms ± 8.66 ms for white matter was calculated. CONCLUSION The proposed human brain coil can be used to image the spinal cord. The maximum in-plane resolution in this work was higher compared with the 7T results from the literature. The 9.4T acquisitions made the small structures of the spinal cord clearly visible.
Collapse
Affiliation(s)
- Ole Geldschläger
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Dario Bosch
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Biomedical Magnetic Resonance, University Hospital Tübingen, Tübingen, Germany
| | - Nikolai I Avdievich
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Anke Henning
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
12
|
Correlation between spinal cord diffusion tensor imaging and postural response latencies in persons with multiple sclerosis: A pilot study. Magn Reson Imaging 2019; 66:226-231. [PMID: 31704395 DOI: 10.1016/j.mri.2019.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 10/11/2019] [Accepted: 11/03/2019] [Indexed: 11/23/2022]
Abstract
PURPOSE Longer latency of postural response in multiple sclerosis (MS) may be linked to imbalance and increased likelihood of falls. It may be caused by the compromised microstructural integrity in the spinal cord, as evidenced by slowed somatosensory conduction in the spinal cord. Thus, the purpose of this study is to investigate the correlation between latency of postural responses and microstructural integrity of the cervical spinal cord, the region particularly related to the disease severity in MS, using diffusion tensor imaging (DTI) metrics. METHODS Seventeen persons with MS with mild-to-moderate disease severity were enrolled in this study. Postural response latencies of each patient were measured using electromyography of the tibialis anterior muscle (TA) and gastrocnemius muscle (GN) in response to surface perturbations. Cervical spinal cord DTI images were obtained from each patient. DTI mean, radial, axial diffusivity, and fractional anisotropy (FA) were measured between segments C4 and C6. Correlations of DTI metrics with postural response latencies, expanded disability status scale (EDSS) scores, and 25-foot walk (T25FW) were assessed using the Spearman's rank correlation coefficient at α = 0.05. RESULTS Lower FA was significantly correlated with longer latencies measured on right TA in response to forward postural perturbations (r = -0.51, p = .04). DTI metrics showed no significant correlations with EDSS scores (r = -0.06-0.09, p = .73-0.95) or T25FW (r = -0.1-0.14, p = .6-0.94). DTI metrics showed no significant differences between subjects with and without spinal cord lesions (p = .2-0.7). CONCLUSIONS Our results showed a significant correlation between lower FA in the cervical spinal cord and longer latencies measured on right TA in response to forward postural perturbations in persons with MS, suggesting that impaired cervical spinal cord microstructure assessed by DTI may be associated with the delayed postural responses.
Collapse
|
13
|
Vannesjo SJ, Clare S, Kasper L, Tracey I, Miller KL. A method for correcting breathing-induced field fluctuations in T2*-weighted spinal cord imaging using a respiratory trace. Magn Reson Med 2019; 81:3745-3753. [PMID: 30737825 PMCID: PMC6492127 DOI: 10.1002/mrm.27664] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/01/2018] [Accepted: 12/27/2018] [Indexed: 02/04/2023]
Abstract
PURPOSE Spinal cord MRI at ultrahigh field is hampered by time-varying magnetic fields associated with the breathing cycle, giving rise to ghosting artifacts in multi-shot acquisitions. Here, we suggest a correction approach based on linking the signal from a respiratory bellows to field changes inside the spinal cord. The information is used to correct the data at the image reconstruction level. METHODS The correction was demonstrated in the context of multi-shot T2*-weighted imaging of the cervical spinal cord at 7T. A respiratory trace was acquired during a high-resolution multi-echo gradient-echo sequence, used for structural imaging and quantitative T2* mapping, and a multi-shot EPI time series, as would be suitable for fMRI. The coupling between the trace and the breathing-induced fields was determined by a short calibration scan in each individual. Images were reconstructed with and without trace-based correction. RESULTS In the multi-echo acquisition, breathing-induced fields caused severe ghosting in images with long TE, which led to a systematic underestimation of T2* in the spinal cord. The trace-based correction reduced the ghosting and increased the estimated T2* values. Breathing-related ghosting was also observed in the multi-shot EPI images. The correction largely removed the ghosting, thereby improving the temporal signal-to-noise ratio of the time series. CONCLUSIONS Trace-based retrospective correction of breathing-induced field variations can reduce ghosting and improve quantitative metrics in multi-shot structural and functional T2*-weighted imaging of the spinal cord. The method is straightforward to implement and does not rely on sequence modifications or additional hardware beyond a respiratory bellows.
Collapse
Affiliation(s)
- S. Johanna Vannesjo
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Stuart Clare
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Lars Kasper
- Institute for Biomedical EngineeringETH Zurich and University of ZurichZurichSwitzerland
- Translational Neuromodeling Unit, Institute for Biomedical EngineeringUniversity of Zurich and ETH ZurichZurichSwitzerland
| | - Irene Tracey
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Karla L. Miller
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| |
Collapse
|
14
|
Segmental differences of cervical spinal cord motion: advancing from confounders to a diagnostic tool. Sci Rep 2019; 9:7415. [PMID: 31092891 PMCID: PMC6520379 DOI: 10.1038/s41598-019-43908-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/02/2019] [Indexed: 01/01/2023] Open
Abstract
Increased cranio-caudal spinal cord motion is associated with clinical impairment in degenerative cervical myelopathy. However, whether spinal cord motion holds potential as a neuroimaging biomarker requires further validation. Different confounders (i.e. subject characteristics, methodological problems such as phase drift, etc.) on spinal cord motion readouts have to be considered. Twenty-two healthy subjects underwent phase contrast MRI, a subset of subjects (N = 9) had repeated scans. Parameters of interest included amplitude of velocity signal, maximum cranial respectively maximum caudal velocity, displacement (=area under curve of the velocity signal). The cervical spinal cord showed pulse synchronic oscillatory motions with significant differences in all readouts across cervical segments, with a maximum at C5. The Inter-rater reliability was excellent for all readouts. The test-retest reliability was excellent for all parameters at C2 to C6, but not for maximum cranial velocity at C6 and all readouts at C7. Spinal cord motion was correlated with spinal canal size, heart rate and body size. This is the first study to propose a standardized MRI measurement of spinal cord motion for further clinical implementation based on satisfactory phase drift correction and excellent reliability. Understanding the influence of confounders (e.g. structural conditions of the spine) is essential for introducing cord motion into the diagnostic work up.
Collapse
|
15
|
El Mendili MM, Querin G, Bede P, Pradat PF. Spinal Cord Imaging in Amyotrophic Lateral Sclerosis: Historical Concepts-Novel Techniques. Front Neurol 2019; 10:350. [PMID: 31031688 PMCID: PMC6474186 DOI: 10.3389/fneur.2019.00350] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 03/21/2019] [Indexed: 01/13/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common adult onset motor neuron disease with no effective disease modifying therapies at present. Spinal cord degeneration is a hallmark feature of ALS, highlighted in the earliest descriptions of the disease by Lockhart Clarke and Jean-Martin Charcot. The anterior horns and corticospinal tracts are invariably affected in ALS, but up to recently it has been notoriously challenging to detect and characterize spinal pathology in vivo. With recent technological advances, spinal imaging now offers unique opportunities to appraise lower motor neuron degeneration, sensory involvement, metabolic alterations, and interneuron pathology in ALS. Quantitative spinal imaging in ALS has now been used in cross-sectional and longitudinal study designs, applied to presymptomatic mutation carriers, and utilized in machine learning applications. Despite its enormous clinical and academic potential, a number of physiological, technological, and methodological challenges limit the routine use of computational spinal imaging in ALS. In this review, we provide a comprehensive overview of emerging spinal cord imaging methods and discuss their advantages, drawbacks, and biomarker potential in clinical applications, clinical trial settings, monitoring, and prognostic roles.
Collapse
Affiliation(s)
- Mohamed Mounir El Mendili
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Biomedical Imaging Laboratory (LIB), Sorbonne University, CNRS, INSERM, Paris, France
| | - Giorgia Querin
- Biomedical Imaging Laboratory (LIB), Sorbonne University, CNRS, INSERM, Paris, France.,Department of Neurology, Pitié-Salpêtrière University Hospital (APHP), Paris, France
| | - Peter Bede
- Biomedical Imaging Laboratory (LIB), Sorbonne University, CNRS, INSERM, Paris, France.,Department of Neurology, Pitié-Salpêtrière University Hospital (APHP), Paris, France.,Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland
| | - Pierre-François Pradat
- Biomedical Imaging Laboratory (LIB), Sorbonne University, CNRS, INSERM, Paris, France.,Department of Neurology, Pitié-Salpêtrière University Hospital (APHP), Paris, France
| |
Collapse
|
16
|
How We Found Purpose, Passion, and Happiness in Our Profession. J Med Imaging Radiat Sci 2018; 49:228-231. [PMID: 32074046 DOI: 10.1016/j.jmir.2018.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 11/24/2022]
|
17
|
Dupont SM, De Leener B, Taso M, Le Troter A, Nadeau S, Stikov N, Callot V, Cohen-Adad J. Fully-integrated framework for the segmentation and registration of the spinal cord white and gray matter. Neuroimage 2016; 150:358-372. [PMID: 27663988 DOI: 10.1016/j.neuroimage.2016.09.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/23/2016] [Accepted: 09/12/2016] [Indexed: 10/21/2022] Open
Abstract
The spinal cord white and gray matter can be affected by various pathologies such as multiple sclerosis, amyotrophic lateral sclerosis or trauma. Being able to precisely segment the white and gray matter could help with MR image analysis and hence be useful in further understanding these pathologies, and helping with diagnosis/prognosis and drug development. Up to date, white/gray matter segmentation has mostly been done manually, which is time consuming, induces a bias related to the rater and prevents large-scale multi-center studies. Recently, few methods have been proposed to automatically segment the spinal cord white and gray matter. However, no single method exists that combines the following criteria: (i) fully automatic, (ii) works on various MRI contrasts, (iii) robust towards pathology and (iv) freely available and open source. In this study we propose a multi-atlas based method for the segmentation of the spinal cord white and gray matter that addresses the previous limitations. Moreover, to study the spinal cord morphology, atlas-based approaches are increasingly used. These approaches rely on the registration of a spinal cord template to an MR image, however the registration usually doesn't take into account the spinal cord internal structure and thus lacks accuracy. In this study, we propose a new template registration framework that integrates the white and gray matter segmentation to account for the specific gray matter shape of each individual subject. Validation of segmentation was performed in 24 healthy subjects using T2*-weighted images, in 8 healthy subjects using diffusion weighted images (exhibiting inverted white-to-gray matter contrast compared to T2*-weighted), and in 5 patients with spinal cord injury. The template registration was validated in 24 subjects using T2*-weighted data. Results of automatic segmentation on T2*-weighted images was in close correspondence with the manual segmentation (Dice coefficient in the white/gray matter of 0.91/0.71 respectively). Similarly, good results were obtained in data with inverted contrast (diffusion-weighted image) and in patients. When compared to the classical template registration framework, the proposed framework that accounts for gray matter shape significantly improved the quality of the registration (comparing Dice coefficient in gray matter: p=9.5×10-6). While further validation is needed to show the benefits of the new registration framework in large cohorts and in a variety of patients, this study provides a fully-integrated tool for quantitative assessment of white/gray matter morphometry and template-based analysis. All the proposed methods are implemented in the Spinal Cord Toolbox (SCT), an open-source software for processing spinal cord multi-parametric MRI data.
Collapse
Affiliation(s)
- Sara M Dupont
- NeuroPoly Lab, Polytechnique Montreal, Montreal, QC, Canada
| | | | - Manuel Taso
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, Marseille, France; AP-HM, Hopital de la Timone, Pôle d'imagerie médicale, CEMEREM, Marseille, France
| | - Arnaud Le Troter
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, Marseille, France; AP-HM, Hopital de la Timone, Pôle d'imagerie médicale, CEMEREM, Marseille, France
| | - Sylvie Nadeau
- Pathokinesiology Laboratory, Centre for Interdisciplinary Research in Rehabilitation, Institut de réadaptation Gingras-Lindsay-de-Montréal- CIUSSS Centre-Sud-de-l'Île-de-Montréal, Montreal, QC, Canada; School of Rehabilitation, Université de Montréal, Montreal, QC, Canada
| | - Nikola Stikov
- NeuroPoly Lab, Polytechnique Montreal, Montreal, QC, Canada; Montreal Heart Institute, Montreal, QC, Canada
| | - Virginie Callot
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, Marseille, France; AP-HM, Hopital de la Timone, Pôle d'imagerie médicale, CEMEREM, Marseille, France
| | - Julien Cohen-Adad
- NeuroPoly Lab, Polytechnique Montreal, Montreal, QC, Canada; Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
18
|
Samson RS, Lévy S, Schneider T, Smith AK, Smith SA, Cohen-Adad J, Gandini Wheeler-Kingshott CAM. ZOOM or Non-ZOOM? Assessing Spinal Cord Diffusion Tensor Imaging Protocols for Multi-Centre Studies. PLoS One 2016; 11:e0155557. [PMID: 27171194 PMCID: PMC4865165 DOI: 10.1371/journal.pone.0155557] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/29/2016] [Indexed: 12/02/2022] Open
Abstract
The purpose of this study was to develop and evaluate two spinal cord (SC) diffusion tensor imaging (DTI) protocols, implemented at multiple sites (using scanners from two different manufacturers), one available on any clinical scanner, and one using more advanced options currently available in the research setting, and to use an automated processing method for unbiased quantification. DTI parameters are sensitive to changes in the diseased SC. However, imaging the cord can be technically challenging due to various factors including its small size, patient-related and physiological motion, and field inhomogeneities. Rapid acquisition sequences such as Echo Planar Imaging (EPI) are desirable but may suffer from image distortions. We present a multi-centre comparison of two acquisition protocols implemented on scanners from two different vendors (Siemens and Philips), one using a reduced field-of-view (rFOV) EPI sequence, and one only using options available on standard clinical scanners such as outer volume suppression (OVS). Automatic analysis was performed with the Spinal Cord Toolbox for unbiased and reproducible quantification of DTI metrics in the white matter. Images acquired using the rFOV sequence appear less distorted than those acquired using OVS alone. SC DTI parameter values obtained using both sequences at all sites were consistent with previous measurements made at 3T. For the same scanner manufacturer, DTI parameter inter-site SDs were smaller for the rFOV sequence compared to the OVS sequence. The higher inter-site reproducibility (for the same manufacturer and acquisition details, i.e. ZOOM data acquired at the two Philips sites) of rFOV compared to the OVS sequence supports the idea that making research options such as rFOV more widely available would improve accuracy of measurements obtained in multi-centre clinical trials. Future multi-centre studies should also aim to match the rFOV technique and signal-to-noise ratios in all sequences from different manufacturers/sites in order to avoid any bias in measured DTI parameters and ensure similar sensitivity to pathological changes.
Collapse
Affiliation(s)
- Rebecca S. Samson
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, London, United Kingdom
- * E-mail:
| | - Simon Lévy
- Institute of Biomedical Engineering, Ecole Polytechnique de Montreal, Montreal, QC, Canada
- Functional Neuroimaging Unit, University of Montreal, Montreal, QC, Canada
| | - Torben Schneider
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, London, United Kingdom
- Philips Healthcare, Guilford, Surrey, United Kingdom
| | - Alex K. Smith
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Seth A. Smith
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Julien Cohen-Adad
- Institute of Biomedical Engineering, Ecole Polytechnique de Montreal, Montreal, QC, Canada
- Functional Neuroimaging Unit, University of Montreal, Montreal, QC, Canada
| | - Claudia A. M. Gandini Wheeler-Kingshott
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, London, United Kingdom
- Brain MRI 3T Center, C. Mondino National Neurological Institute, Pavia, Italy
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
19
|
Alcaide-Leon P, Pauranik A, Alshafai L, Rawal S, Oh J, Montanera W, Leung G, Bharatha A. Comparison of Sagittal FSE T2, STIR, and T1-Weighted Phase-Sensitive Inversion Recovery in the Detection of Spinal Cord Lesions in MS at 3T. AJNR Am J Neuroradiol 2016; 37:970-5. [PMID: 26797141 PMCID: PMC7960295 DOI: 10.3174/ajnr.a4656] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/09/2015] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Determining the diagnostic accuracy of different MR sequences is essential to design MR imaging protocols. The purpose of the study was to compare 3T sagittal FSE T2, STIR, and T1-weighted phase-sensitive inversion recovery in the detection of spinal cord lesions in patients with suspected or definite MS. MATERIALS AND METHODS We performed a retrospective analysis of 38 patients with suspected or definite MS. Involvement of the cervical and thoracic cord segments was recorded on sagittal FSE T2, STIR, and T1-weighted phase-sensitive inversion recovery sequences independently by 2 readers. A consensus criterion standard read was performed with all sequences available. Sensitivity, specificity, and interobserver agreement were calculated for each sequence. RESULTS In the cervical cord, the sensitivity of T1-weighted phase-sensitive inversion recovery (96.2%) and STIR (89.6%) was significantly higher (P < .05) than that of FSE T2 (50.9%), but no significant difference was found between T1-weighted phase-sensitive inversion recovery and STIR. In the thoracic cord, sensitivity values were 93.8% for STIR, 71.9% for FSE T2, and 50.8% for T1-weighted phase-sensitive inversion recovery. Significant differences were found for all comparisons (P < .05). No differences were detected in specificity. Poor image quality and lower sensitivity of thoracic T1-weighted phase-sensitive inversion recovery compared with the other 2 sequences were associated with a thicker back fat pad. CONCLUSIONS The use of an additional sagittal sequence other than FSE T2 significantly increases the detection of cervical and thoracic spinal cord lesions in patients with MS at 3T. In the cervical segment, both STIR and T1-weighted phase-sensitive inversion recovery offer high sensitivity and specificity, whereas in the thoracic spine, STIR performs better than T1-weighted phase-sensitive inversion recovery, particularly in patients with a thick dorsal fat pad.
Collapse
Affiliation(s)
- P Alcaide-Leon
- From the Departments of Medical Imaging (P.A.-L., A.P., W.M., G.L., A.B.)
| | - A Pauranik
- From the Departments of Medical Imaging (P.A.-L., A.P., W.M., G.L., A.B.)
| | - L Alshafai
- Department of Medical Imaging (L.A.), University Health Network, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - S Rawal
- Department of Medical Imaging (S.R.), University Health Network, Toronto Western Hospital, Toronto, Ontario, Canada
| | - J Oh
- Movement Disorders (J.O.), St Michael's Hospital, Toronto, Ontario, Canada
| | - W Montanera
- From the Departments of Medical Imaging (P.A.-L., A.P., W.M., G.L., A.B.)
| | - G Leung
- From the Departments of Medical Imaging (P.A.-L., A.P., W.M., G.L., A.B.)
| | - A Bharatha
- From the Departments of Medical Imaging (P.A.-L., A.P., W.M., G.L., A.B.)
| |
Collapse
|
20
|
Tseng CL, Sussman MS, Atenafu EG, Letourneau D, Ma L, Soliman H, Thibault I, Cho BCJ, Simeonov A, Yu E, Fehlings MG, Sahgal A. Magnetic resonance imaging assessment of spinal cord and cauda equina motion in supine patients with spinal metastases planned for spine stereotactic body radiation therapy. Int J Radiat Oncol Biol Phys 2015; 91:995-1002. [PMID: 25832691 DOI: 10.1016/j.ijrobp.2014.12.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 12/14/2014] [Accepted: 12/17/2014] [Indexed: 10/23/2022]
Abstract
PURPOSE To assess motion of the spinal cord and cauda equina, which are critical neural tissues (CNT), which is important when evaluating the planning organ-at-risk margin required for stereotactic body radiation therapy. METHODS AND MATERIALS We analyzed CNT motion in 65 patients with spinal metastases (11 cervical, 39 thoracic, and 24 lumbar spinal segments) in the supine position using dynamic axial and sagittal magnetic resonance imaging (dMRI, 3T Verio, Siemens) over a 137-second interval. Motion was segregated according to physiologic cardiorespiratory oscillatory motion (characterized by the average root mean square deviation) and random bulk shifts associated with gross patient motion (characterized by the range). Displacement was evaluated in the anteroposterior (AP), lateral (LR), and superior-inferior (SI) directions by use of a correlation coefficient template matching algorithm, with quantification of random motion measure error over 3 separate trials. Statistical significance was defined according to P<.05. RESULTS In the AP, LR, and SI directions, significant oscillatory motion was observed in 39.2%, 35.1%, and 10.8% of spinal segments, respectively, and significant bulk motions in all cases. The median oscillatory CNT motions in the AP, LR, and SI directions were 0.16 mm, 0.17 mm, and 0.44 mm, respectively, and the maximal statistically significant oscillatory motions were 0.39 mm, 0.41 mm, and 0.77 mm, respectively. The median bulk displacements in the AP, LR, and SI directions were 0.51 mm, 0.59 mm, and 0.66 mm, and the maximal statistically significant displacements were 2.21 mm, 2.87 mm, and 3.90 mm, respectively. In the AP, LR, and SI directions, bulk displacements were greater than 1.5 mm in 5.4%, 9.0%, and 14.9% of spinal segments, respectively. No significant differences in axial motion were observed according to cord level or cauda equina. CONCLUSIONS Oscillatory CNT motion was observed to be relatively minor. Our results support the importance of controlling bulk patient motion and the practice of applying a planning organ-at-risk margin.
Collapse
Affiliation(s)
- Chia-Lin Tseng
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada; Department of Radiation Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Marshall S Sussman
- Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Eshetu G Atenafu
- Department of Biostatistics, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Daniel Letourneau
- Department of Radiation Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Lijun Ma
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Hany Soliman
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Isabelle Thibault
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - B C John Cho
- Department of Radiation Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Anna Simeonov
- Department of Radiation Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Eugene Yu
- Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Michael G Fehlings
- Department of Neurosurgery and Spine Program, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada; Department of Radiation Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
21
|
Diffusion tensor imaging focusing on lower cervical spinal cord using 2D reduced FOV interleaved multislice single-shot diffusion-weighted echo-planar imaging: comparison with conventional single-shot diffusion-weighted echo-planar imaging. Magn Reson Imaging 2015; 33:401-6. [DOI: 10.1016/j.mri.2015.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 09/16/2014] [Accepted: 01/10/2015] [Indexed: 11/19/2022]
|
22
|
Heidari Pahlavian S, Bunck AC, Loth F, Shane Tubbs R, Yiallourou T, Kroeger JR, Heindel W, Martin BA. Characterization of the discrepancies between four-dimensional phase-contrast magnetic resonance imaging and in-silico simulations of cerebrospinal fluid dynamics. J Biomech Eng 2015; 137:051002. [PMID: 25647090 DOI: 10.1115/1.4029699] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Indexed: 02/05/2023]
Abstract
The purpose of the present study was to compare subject-specific magnetic resonance imaging (MRI)-based computational fluid dynamics (CFD) simulations with time-resolved three-directional (3D) velocity-encoded phase-contrast MRI (4D PCMRI) measurements of the cerebrospinal fluid (CSF) velocity field in the cervical spinal subarachnoid space (SSS). Three-dimensional models of the cervical SSS were constructed based on MRI image segmentation and anatomical measurements for a healthy subject and patient with Chiari I malformation. CFD was used to simulate the CSF motion and compared to the 4D PCMRI measurements. Four-dimensional PCMRI measurements had much greater CSF velocities compared to CFD simulations (1.4 to 5.6× greater). Four-dimensional PCMRI and CFD both showed anterior and anterolateral dominance of CSF velocities, although this flow feature was more pronounced in 4D PCMRI measurements compared to CFD. CSF flow jets were present near the nerve rootlets and denticulate ligaments (NRDL) in the CFD simulation. Flow jets were visible in the 4D PCMRI measurements, although they were not clearly attributable to nerve rootlets. Inclusion of spinal cord NRDL in the cervical SSS does not fully explain the differences between velocities obtained from 4D PCMRI measurements and CFD simulations.
Collapse
|
23
|
Vavasour IM, Meyers SM, MacMillan EL, Mädler B, Li DKB, Rauscher A, Vertinsky T, Venu V, MacKay AL, Curt A. Increased spinal cord movements in cervical spondylotic myelopathy. Spine J 2014; 14:2344-54. [PMID: 24462810 DOI: 10.1016/j.spinee.2014.01.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 12/10/2013] [Accepted: 01/17/2014] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Magnetic resonance imaging (MRI) is a very useful diagnostic test for cervical spondylotic myelopathy (CSM) because it can identify degenerative changes within the spinal cord (SC), disclose the extent, localization, and the kind of SC compression, and help rule out other SC disorders. However, the relationships between changes in cerebrospinal fluid (CSF) flow, cord motion, the extent and severity of spinal canal stenosis, and the development of CSM symptoms are not well understood. PURPOSE To evaluate if changes in the velocity of CSF and SC movements provide additional insight into the pathophysiological mechanisms underlying CSM beyond MRI observations of cord compression. STUDY DESIGN Prospective radiologic study of recruited patients. PATIENT SAMPLE Thirteen CSM subjects and 15 age and gender matched controls. OUTCOME MEASURES Magnetic resonance imaging measures included CSF and SC movement. Cervical cord condition was assessed by the Japanese Orthopaedic Association (JOA) score, compression ratio (CR), and somatosensory evoked potentials (SSEPs) of the tibial and ulnar nerves. METHODS Phase-contrast imaging at the level of stenosis for patients and at C5 for controls and T2-weighted images were compared with clinical findings. RESULTS Cerebrospinal fluid velocity was significantly reduced in CSM subjects as compared with controls and was related to cord CR. Changes in CSF velocity and cord compression were not correlated with clinical measures (JOA scores, SSEP) or the presence of T2 hyperintensities. Spinal cord movements, that is, cord displacement and velocity in the craniocaudal axis, were increased in CSM patients. Increased SC movements (ie, total cord displacement) both in the controls and CSM subjects were associated with altered spinal conduction as assessed by SSEP. CONCLUSIONS This study revealed rather unexpected increased cord movements in the craniocaudal axis in CSM patients that may contribute to myelopathic deteriorations in combination with spinal canal compression. Understanding the relevance of cord movements with respect to supporting the clinical CSM diagnosis or disease monitoring requires further long-term follow-up studies.
Collapse
Affiliation(s)
- Irene M Vavasour
- Department of Radiology, 2211 Wesbrook Mall, University of British Columbia, Vancouver, BC, Canada, V6T 2B5.
| | - Sandra M Meyers
- Department of Physics and Astronomy, 6224 Agricultural Rd, University of British Columbia, Vancouver, BC, Canada, V6T 1Z1
| | - Erin L MacMillan
- Department of Medicine, 2775 Laurel St, 10th Floor, Vancouver, BC, Canada, V5Z 1M9
| | - Burkhard Mädler
- Department of Neurosurgery, Sigmund-Freud-Str. 25, Univerity of Bonn, Germany, 53105
| | - David K B Li
- Department of Radiology, 2211 Wesbrook Mall, University of British Columbia, Vancouver, BC, Canada, V6T 2B5
| | - Alexander Rauscher
- Department of Radiology, 2211 Wesbrook Mall, University of British Columbia, Vancouver, BC, Canada, V6T 2B5; UBC MRI Research Centre, M10 Purdy Pavilion, 2111 Wesbrook Mall, University of British Columbia, Vancouver, BC, Canada, V6T 2B5
| | - Talia Vertinsky
- Department of Radiology, 855 W 12th Ave, Vancouver General Hospital, Vancouver, BC, Canada, V5Z 4E3
| | - Vic Venu
- Department of Radiology, 855 W 12th Ave, Vancouver General Hospital, Vancouver, BC, Canada, V5Z 4E3
| | - Alex L MacKay
- Department of Radiology, 2211 Wesbrook Mall, University of British Columbia, Vancouver, BC, Canada, V6T 2B5; Department of Physics and Astronomy, 6224 Agricultural Rd, University of British Columbia, Vancouver, BC, Canada, V6T 1Z1
| | - Armin Curt
- Spinal Cord Injury Center, Forchstrasse 340, University of Zurich, CH-8008 Zurich, Switzerland; International Collaboration on Repair Discoveries (ICORD), 818 West 10th Ave, University of British Columbia, Vancouver, BC, Canada, V5Z 1M9
| |
Collapse
|
24
|
Groupwise multi-atlas segmentation of the spinal cord's internal structure. Med Image Anal 2014; 18:460-71. [PMID: 24556080 DOI: 10.1016/j.media.2014.01.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 10/31/2013] [Accepted: 01/21/2014] [Indexed: 12/14/2022]
Abstract
The spinal cord is an essential and vulnerable component of the central nervous system. Differentiating and localizing the spinal cord internal structure (i.e., gray matter vs. white matter) is critical for assessment of therapeutic impacts and determining prognosis of relevant conditions. Fortunately, new magnetic resonance imaging (MRI) sequences enable clinical study of the in vivo spinal cord's internal structure. Yet, low contrast-to-noise ratio, artifacts, and imaging distortions have limited the applicability of tissue segmentation techniques pioneered elsewhere in the central nervous system. Additionally, due to the inter-subject variability exhibited on cervical MRI, typical deformable volumetric registrations perform poorly, limiting the applicability of a typical multi-atlas segmentation framework. Thus, to date, no automated algorithms have been presented for the spinal cord's internal structure. Herein, we present a novel slice-based groupwise registration framework for robustly segmenting cervical spinal cord MRI. Specifically, we provide a method for (1) pre-aligning the slice-based atlases into a groupwise-consistent space, (2) constructing a model of spinal cord variability, (3) projecting the target slice into the low-dimensional space using a model-specific registration cost function, and (4) estimating robust segmentation susing geodesically appropriate atlas information. Moreover, the proposed framework provides a natural mechanism for performing atlas selection and initializing the free model parameters in an informed manner. In a cross-validation experiment using 67 MR volumes of the cervical spinal cord, we demonstrate sub-millimetric accuracy, significant quantitative and qualitative improvement over comparable multi-atlas frameworks, and provide insight into the sensitivity of the associated model parameters.
Collapse
|
25
|
Samson RS, Ciccarelli O, Kachramanoglou C, Brightman L, Lutti A, Thomas DL, Weiskopf N, Wheeler-Kingshott CAM. Tissue- and column-specific measurements from multi-parameter mapping of the human cervical spinal cord at 3 T. NMR IN BIOMEDICINE 2013; 26:1823-30. [PMID: 24105923 PMCID: PMC4034603 DOI: 10.1002/nbm.3022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 06/25/2013] [Accepted: 08/09/2013] [Indexed: 05/05/2023]
Abstract
The aim of this study was to quantify a range of MR parameters [apparent proton density, longitudinal relaxation time T1, magnetisation transfer (MT) ratio, MT saturation (which represents the additional percentage MT saturation of the longitudinal magnetisation caused by a single MT pulse) and apparent transverse relaxation rate R2*] in the white matter columns and grey matter of the healthy cervical spinal cord. The cervical cords of 13 healthy volunteers were scanned at 3 T using a protocol optimised for multi-parameter mapping. Intra-subject co-registration was performed using linear registration, and tissue- and column-specific parameter values were calculated. Cervical cord parameter values measured from levels C1-C5 in 13 subjects are: apparent proton density, 4822 ± 718 a.u.; MT ratio, 40.4 ± 1.53 p.u.; MT saturation, 1.40 ± 0.12 p.u.; T1 = 1848 ± 143 ms; R2* = 22.6 ± 1.53 s(-1). Inter-subject coefficients of variation were low in both the cervical cord and tissue- and column-specific measurements, illustrating the potential of this method for the investigation of changes in these parameters caused by pathology. In summary, an optimised cervical cord multi-parameter mapping protocol was developed, enabling tissue- and column-specific measurements to be made. This technique has the potential to provide insight into the pathological processes occurring in the cervical cord affected by neurological disorders.
Collapse
Affiliation(s)
- RS Samson
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of NeurologyQueen Square, London, UK
- *Correspondence to: R. Samson, UCL Institute of Neurology, Queen Square House, Queen Square, London WC1N 3BG, UK., E-mail:
| | - O Ciccarelli
- NMR Research Unit, Queen Square MS Centre, Department of Brain Repair and Rehabilitation, UCL Institute of NeurologyQueen Square, London, UK
| | - C Kachramanoglou
- NMR Research Unit, Queen Square MS Centre, Department of Brain Repair and Rehabilitation, UCL Institute of NeurologyQueen Square, London, UK
| | | | - A Lutti
- Wellcome Trust Centre for Neuroimaging, UCL Institute of NeurologyQueen Square, London, UK
| | - DL Thomas
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Institute of NeurologyQueen Square, London, UK
| | - N Weiskopf
- Wellcome Trust Centre for Neuroimaging, UCL Institute of NeurologyQueen Square, London, UK
| | - CAM Wheeler-Kingshott
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of NeurologyQueen Square, London, UK
| |
Collapse
|
26
|
Saritas EU, Lee D, Çukur T, Shankaranarayanan A, Nishimura DG. Hadamard slice encoding for reduced-FOV diffusion-weighted imaging. Magn Reson Med 2013; 72:1277-90. [DOI: 10.1002/mrm.25044] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 10/22/2013] [Accepted: 10/24/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Emine Ulku Saritas
- Department of Electrical Engineering; Stanford University; Stanford California USA
- Department of Electrical and Electronics Engineering; Bilkent University; Bilkent Ankara Turkey
- National Magnetic Resonance Research Center (UMRAM); Bilkent University; Bilkent Ankara Turkey
| | - Daeho Lee
- Department of Electrical Engineering; Stanford University; Stanford California USA
| | - Tolga Çukur
- Department of Electrical Engineering; Stanford University; Stanford California USA
- Department of Electrical and Electronics Engineering; Bilkent University; Bilkent Ankara Turkey
- National Magnetic Resonance Research Center (UMRAM); Bilkent University; Bilkent Ankara Turkey
| | | | - Dwight G. Nishimura
- Department of Electrical Engineering; Stanford University; Stanford California USA
| |
Collapse
|
27
|
Viljoen S, Oya H, Reddy CG, Dalm BD, Shurig R, Odden K, Gillies GT, Howard MA. Apparatus for simulating dynamic interactions between the spinal cord and soft-coupled intradural implants. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2013; 84:114303. [PMID: 24289414 DOI: 10.1063/1.4831801] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We have designed, built, and tested an apparatus used for investigating the biomechanical response of a novel intradural spinal cord stimulator to the simulated physiological movement of the spinal cord within the thecal sac. In this apparatus, the rostral-caudal displacements of an anthropomorphic spinal cord surrogate can be controlled with a resolution of approximately 0.1% of a target value for up to 10(7) lateral movement cycles occurring at a repetition rate of 2 Hz. Using this system, we have been able to determine that the restoring force of the stimulator's suspension system works in concert with the frictional coupling between the electrode array and the surrogate to overcome the 0.42 μN inertial force associated with the lateral motion of the array. The result is a positional stability of the array on the surrogate (in air) of better than 0.2 mm over ~500,000 movement cycles. Design modifications that might lead to improved physiological performance are discussed.
Collapse
Affiliation(s)
- S Viljoen
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Ozturk A, Aygun N, Smith SA, Caffo B, Calabresi PA, Reich DS. Axial 3D gradient-echo imaging for improved multiple sclerosis lesion detection in the cervical spinal cord at 3T. Neuroradiology 2013; 55:431-9. [PMID: 23208410 PMCID: PMC3602327 DOI: 10.1007/s00234-012-1118-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 11/02/2012] [Indexed: 11/28/2022]
Abstract
INTRODUCTION In multiple sclerosis (MS), spinal cord imaging can help in diagnosis and follow-up evaluation. However, spinal cord magnetic resonance imaging (MRI) is technically challenging, and image quality, particularly in the axial plane, is typically poor compared to brain MRI. Because gradient-recalled echo (GRE) images might offer improved contrast resolution within the spinal cord at high magnetic field strength, both without and with a magnetization transfer prepulse, we compared them to T2-weighted fast-spin-echo (T2-FSE) images for the detection of MS lesions in the cervical cord at 3T. METHODS On a clinical 3T MRI scanner, we studied 62 MS cases and 19 healthy volunteers. Axial 3D GRE sequences were performed without and with off-resonance radiofrequency irradiation. To mimic clinical practice, all images were evaluated in conjunction with linked images from a sagittal short tau inversion recovery scan, which is considered the gold standard for lesion detection in MS. Two experienced observers recorded image quality, location and size of focal lesions, atrophy, swelling, and diffuse signal abnormality independently at first and then in consensus. RESULTS The number and volume of lesions detected with high confidence was more than three times as high on both GRE sequences compared to T2-FSE (p < 0.0001). Approximately 5 % of GRE scans were affected by artifacts that interfered with image interpretation, not significantly different from T2W-FSE. CONCLUSIONS Axial 3D GRE sequences are useful for MS lesion detection when compared to 2D T2-FSE sequences in the cervical spinal cord at 3T and should be considered when examining intramedullary spinal cord lesions.
Collapse
Affiliation(s)
- Arzu Ozturk
- Department of Radiology, Johns Hopkins University, 600 N Wolfe St, Baltimore, MD 21287, USA
| | - Nafi Aygun
- Department of Radiology, Johns Hopkins University, 600 N Wolfe St, Baltimore, MD 21287, USA
| | - Seth A. Smith
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, 707 N Broadway, Baltimore, MD 21205, USA
| | - Brian Caffo
- Department of Biostatistics, Johns Hopkins Bloomberg, School of Public Health, 615 N Wolfe St, Baltimore, MD 21205, USA
| | - Peter A. Calabresi
- Department of Neurology, Johns Hopkins University, 600 N Wolfe St, Baltimore, MD 21287, USA
| | - Daniel S. Reich
- Department of Radiology, Johns Hopkins University, 600 N Wolfe St, Baltimore, MD 21287, USA. Department of Biostatistics, Johns Hopkins Bloomberg, School of Public Health, 615 N Wolfe St, Baltimore, MD 21205, USA. Department of Neurology, Johns Hopkins University, 600 N Wolfe St, Baltimore, MD 21287, USA. Translational Neuroradiology Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bldg 10, Rm 5C103; 10 Center Drive, MSC 1400, Bethesda, MD 20892, USA
| |
Collapse
|
29
|
Jäkel A, von Hauenschild P. A systematic review to evaluate the clinical benefits of craniosacral therapy. Complement Ther Med 2012; 20:456-65. [DOI: 10.1016/j.ctim.2012.07.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 04/16/2012] [Accepted: 07/31/2012] [Indexed: 10/28/2022] Open
|
30
|
Abstract
We describe a cardiac gated high in-plane resolution axial human cervical spinal cord diffusion tensor imaging (DTI) protocol. Multiple steps were taken to optimize both image acquisition and image processing. The former includes slice-by-slice cardiac triggering and individually tiltable slices. The latter includes (i) iterative 2D retrospective motion correction, (ii) image intensity outlier detection to minimize the influence of physiological noise, (iii) a non-linear DTI estimation procedure incorporating non-negative eigenvalue priors, and (iv) tract-specific region-of-interest (ROI) identification based on an objective geometry reference. Using these strategies in combination, radial diffusivity (λ(⊥)) was reproducibly measured in white matter (WM) tracts (adjusted mean [95% confidence interval]=0.25 [0.22, 0.29] μm(2)/ms), lower than previously reported λ(⊥) values in the in vivo human spinal cord DTI literature. Radial diffusivity and fractional anisotropy (FA) measured in WM varied from rostral to caudal as did mean translational motion, likely reflecting respiratory motion effect. Given the considerable sensitivity of DTI measurements to motion artifact, we believe outlier detection is indispensable in spinal cord diffusion imaging. We also recommend using a mixed-effects model to account for systematic measurement bias depending on cord segment.
Collapse
|
31
|
Napadow V, Dhond RP, Purdon P, Kettner N, Makris N, Kwong KK, Hui KKS. Correlating acupuncture FMRI in the human brainstem with heart rate variability. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2012; 2005:4496-9. [PMID: 17281236 DOI: 10.1109/iembs.2005.1615466] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Past neuroimaging studies of acupuncture have demonstrated variable results for important brainstem nuclei. We have employed cardiac-gated fMRI with T1-variability correction to study the processing of acupuncture by the human brain. Furthermore, our imaging experiments collected simultaneous ECG data in order to correlate heart rate variability (HRV) with fMRI signal intensity. Subjects experienced one of three stimulations over a 31.5 minute fMRI run: (1) electro-acupuncture at 2Hz/15Hz over the acupoint ST-36 (2) electro-acupuncture at a sham non-acupoint, or (3) sensory control tapping over ST-36. The ECG was analyzed with power spectral methods for low frequency and high frequency components, which reflect the balance in the autonomic nervous system. The HRV data was then correlated with the time-varying fMRI signal intensity. Our data suggests that fMRI activity in the hypothalamus, the dorsal raphe nucleus, the periaqueductal gray, and the rostroventral medulla showed significant correlation with LF/HF ratio calculated from simultaneous HRV data. The correlation of time-varying fMRI response with physiological parameters may provide insight into connections between acupuncture modulation of the autonomic nervous system and neuroprocessing.
Collapse
Affiliation(s)
- Vitaly Napadow
- Member IEEE, Massachusetts General Hospital, Department of Radiology, Boston, MA 02129 USA (phone: 617-724-3402; fax: 617-726-7422; e-mail: )
| | | | | | | | | | | | | |
Collapse
|
32
|
Oya H, Howard MA, Shurig R, Gillies GT. Spinal canal surrogate for testing intradural implants. J Med Eng Technol 2012; 36:407-10. [DOI: 10.3109/03091902.2012.712204] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
33
|
Yiannakas MC, Kearney H, Samson RS, Chard DT, Ciccarelli O, Miller DH, Wheeler-Kingshott CAM. Feasibility of grey matter and white matter segmentation of the upper cervical cord in vivo: a pilot study with application to magnetisation transfer measurements. Neuroimage 2012; 63:1054-9. [PMID: 22850571 DOI: 10.1016/j.neuroimage.2012.07.048] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Revised: 07/17/2012] [Accepted: 07/19/2012] [Indexed: 10/28/2022] Open
Abstract
Spinal cord pathology can be functionally very important in neurological disease. Pathological studies have demonstrated the involvement of spinal cord grey matter (GM) and white matter (WM) in several diseases, although the clinical relevance of abnormalities detected histopathologically is difficult to assess without a reliable way to assess cord GM and WM in vivo. In this study, the feasibility of GM and WM segmentation was investigated in the upper cervical spinal cord of 10 healthy subjects, using high-resolution images acquired with a commercially available 3D gradient-echo pulse sequence at 3T. For each healthy subject, tissue-specific (i.e. WM and GM) cross-sectional areas were segmented and total volumes calculated from a 15 mm section acquired at the level of C2-3 intervertebral disc and magnetisation transfer ratio (MTR) values within the extracted volumes were also determined, as an example of GM and WM quantitative measurements in the cervical cord. Mean (± SD) total cord cross-sectional area (TCA) and total cord volume (TCV) of the section studied across 10 healthy subjects were 86.9 (± 7.7) mm(2) and 1302.8 (± 115) mm(3), respectively; mean (±SD) total GM cross-sectional area (TGMA) and total GM volume (TGMV) were 14.6 (± 1.1) mm(2) and 218.3 (± 16.8) mm(3), respectively; mean (± SD) GM volume fraction (GMVF) was 0.17 (± 0.01); mean (± SD) MTR of the total WM volume (WM-MTR) was 51.4 (± 1.5) and mean (± SD) MTR of the total GM volume (GM-MTR) was 49.7 (± 1.6). The mean scan-rescan, intra- and inter-observer % coefficient of variation for measuring the TCA were 0.7%, 0.5% and 0.5% and for measuring the TGMA were 6.5%, 5.4% and 12.7%. The difference between WM-MTR and GM-MTR was found to be statistically significant (p=0.00006). This study has shown that GM and WM segmentation in the cervical cord is possible and the MR imaging protocol and analysis method presented here in healthy controls can be potentially extended to study the cervical cord in disease states, with the option to explore further quantitative measurements alongside MTR.
Collapse
Affiliation(s)
- M C Yiannakas
- NMR Research Unit, UCL Institute of Neurology, London, UK.
| | | | | | | | | | | | | |
Collapse
|
34
|
Assessment of physiological noise modelling methods for functional imaging of the spinal cord. Neuroimage 2012; 60:1538-49. [DOI: 10.1016/j.neuroimage.2011.11.077] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 10/26/2011] [Accepted: 11/25/2011] [Indexed: 11/22/2022] Open
|
35
|
Abstract
PURPOSE The objective of this study was to review past studies that have used engineering analysis to examine cerebrospinal fluid hydrodynamics in cranial and spinal subarachnoid spaces in both healthy humans and those affected by type I Chiari malformation. METHODS A PubMed search of literature pertaining to cerebrospinal fluid hydrodynamics was performed with a particular focus on those that utilized methods such as computational fluid dynamics or experimental flow modeling. DISCUSSION From the engineer's perspective, type I Chiari malformation is an abnormal geometry of the cerebellum that causes increased resistance to cerebrospinal fluid flow between the intracranial and spinal subarachnoid space. As such, understanding the hydrodynamics of cerebrospinal fluid in the craniospinal subarachnoid space has long been thought to be important in the diagnosis and management of type I Chiari malformation. Hydrodynamic quantification of cerebrospinal fluid motion in the subarachnoid space may better reflect the pathophysiology of the disorder and serve as a prognostic indicator in conjunction with geometric magnetic resonance measurements that are currently used clinically. This review discusses the results of studies that have sought to quantify the hydrodynamics of cerebrospinal fluid motion using computational and experimental modeling and critiques the methods by which the results were obtained. CONCLUSION Researchers have found differences in cerebrospinal fluid velocities and pressures in type I Chiari malformation patients compared to healthy subjects. However, further research is necessary to determine the causal relationship between changes to hydrodynamic parameters such as cerebrospinal fluid velocity, pressure, resistance to flow, and craniospinal compliance and clinical aspects such as neurological symptoms, radiological evidence of severity, and surgical success.
Collapse
Affiliation(s)
- Nicholas Shaffer
- Department of Mechanical Engineering, University of Akron, OH 44325-3903, USA
| | | | | |
Collapse
|
36
|
Lawrence JM, Kornelsen J, Stroman PW. Noninvasive observation of cervical spinal cord activity in children by functional MRI during cold thermal stimulation. Magn Reson Imaging 2011; 29:813-8. [DOI: 10.1016/j.mri.2011.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 01/07/2011] [Accepted: 02/20/2011] [Indexed: 11/24/2022]
|
37
|
White ML, Zhang Y, Healey K. Cervical spinal cord multiple sclerosis: evaluation with 2D multi-echo recombined gradient echo MR imaging. J Spinal Cord Med 2011; 34:93-8. [PMID: 21528632 PMCID: PMC3066479 DOI: 10.1179/107902610x12911165975025] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
OBJECTIVE The two-dimensional multi-echo recombined gradient echo (MERGE) technique automatically acquires and sums multiple gradient echoes at various echo times in cervical spine magnetic resonance (MR) imaging. This technique increases the grey-white matter contrast within the spinal cord and should also improve the depiction of cervical cord lesions. The aim of this study was to qualitatively and quantitatively evaluate MERGE imaging compared with T2-weighted fast spin-echo (T2WFSE) imaging for depicting multiple sclerosis (MS) lesions in the cervical cord. METHODS Nineteen consecutive patients (10 males and 9 females; age range 22-62 years, mean age 43.6 years) with clinically diagnosed MS were examined with cervical spinal cord MR imaging at 3 T including both MERGE and T2WFSE imaging. Qualitative evaluation for MS lesion conspicuity was performed. The quantitative criterion utilized to compare MERGE imaging with T2WFSE imaging was the lesion-to-background contrast-to-noise ratio (CNR). RESULTS MERGE imaging showed 79 lesions and missed 1 that was depicted on T2WFSE imaging. T2WFSE imaging showed 46 lesions and missed 34 that were depicted on MERGE imaging. MERGE imaging was markedly superior to T2WFSE imaging in rendering greater lesion conspicuity. In the quantitative evaluation, the lesion-to-background CNR upon MERGE imaging was significantly higher than that upon T2WFSE imaging (P < 0.001, paired t-test). CONCLUSIONS MERGE imaging in the cervical spinal cord increases detection and conspicuity of MS lesions. Strong consideration should be given to utilizing axial MERGE images in the diagnosis and follow-up study of cervical cord MS.
Collapse
Affiliation(s)
- Matthew L. White
- Radiology Department, University of Nebraska Medical Center, Omaha, NE, USA,Correspondence to: Matthew L. White, Associate Professor, Radiology Department, 981045 Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Yan Zhang
- Radiology Department, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kathleen Healey
- Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
38
|
Hentschel S, Mardal KA, Løvgren AE, Linge S, Haughton V. Characterization of cyclic CSF flow in the foramen magnum and upper cervical spinal canal with MR flow imaging and computational fluid dynamics. AJNR Am J Neuroradiol 2010; 31:997-1002. [PMID: 20223887 DOI: 10.3174/ajnr.a1995] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
CSF flow has been shown to exhibit complex patterns in MR images in both healthy subjects and in patients with Chiari I. Abnormal CSF flow oscillations, according to prevailing opinion, cause syringomyelia and other clinical manifestations that affect some patients with the Chiari I malformation. For this article, we reviewed the literature on PC MR of CSF flow, collected the published CFD studies relevant to CSF flow, and performed flow simulations. PC MR creates cine and still images of CSF flow and measurements of flow velocities. CFD, a technique used to compute flow and pressure in liquid systems, simulates the CSF flow patterns that occur in a specific geometry or anatomy of the SAS and a specific volume of flow. Published PC MR studies show greater peak CSF velocities and more complex flow patterns in patients with Chiari I than in healthy subjects, with synchronous bidirectional flow one of the characteristic markers of pathologic flow. In mathematic models of the SAS created from high-resolution MR images, CFD displays complex CSF flow patterns similar to those shown in PC MR in patients. CFD shows that the pressure and flow patterns vary from level to level in the upper spinal canal and differ between patients with Chiari and healthy volunteers. In models in which elasticity and motion are incorporated, CFD displays CSF pressure waves in the SAS. PC MR and CFD studies to date demonstrate significant alterations of CSF flow and pressure patterns in patients with Chiari I. CSF flow has nonlaminar complex spatial and temporal variations and associated pressure waves and pressure gradients. Additional simulations of CSF flow supplemented by PC MR will lead to better measures for distinguishing pathologic flow abnormalities that cause syringomyelia, headaches, and other clinical manifestations in Chiari I malformations.
Collapse
Affiliation(s)
- S Hentschel
- Scientific Computing Department, Simula Research Laboratory, Lysaker, Norway
| | | | | | | | | |
Collapse
|
39
|
Zhong X, Meyer CH, Schlesinger DJ, Sheehan JP, Epstein FH, Larner JM, Benedict SH, Read PW, Sheng K, Cai J. Tracking brain motion during the cardiac cycle using spiral cine-DENSE MRI. Med Phys 2009; 36:3413-9. [PMID: 19746774 DOI: 10.1118/1.3157109] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Cardiac-synchronized brain motion is well documented, but the accurate measurement of such motion on the pixel-by-pixel basis has been hampered by the lack of proper imaging technique. In this article, the authors present the implementation of an autotracking spiral cine displacement-encoded stimulation echo (DENSE) magnetic resonance imaging (MRI) technique for the measurement of pulsatile brain motion during the cardiac cycle. Displacement-encoded dynamic MR images of three healthy volunteers were acquired throughout the cardiac cycle using the spiral cine-DENSE pulse sequence gated to the R wave of an electrocardiogram. Pixelwise Lagrangian displacement maps were computed, and 2D displacement as a function of time was determined for selected regions of interests. Different intracranial structures exhibited characteristic motion amplitude, direction, and pattern throughout the cardiac cycle. Time-resolved displacement curves revealed the pathway of pulsatile motion from brain stem to peripheral brain lobes. These preliminary results demonstrated that the spiral cine-DENSE MRI technique can be used to measure cardiac-synchronized pulsatile brain motion on the pixel-by-pixel basis with high temporal/spatial resolution and sensitivity.
Collapse
Affiliation(s)
- Xiaodong Zhong
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Linge SO, Haughton V, Løvgren AE, Mardal KA, Langtangen HP. CSF flow dynamics at the craniovertebral junction studied with an idealized model of the subarachnoid space and computational flow analysis. AJNR Am J Neuroradiol 2009; 31:185-92. [PMID: 19729542 DOI: 10.3174/ajnr.a1766] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE How CSF flow varies with the anatomy of the subarachnoid space has not been sufficiently well studied. The goal of this study was to develop an idealized 3D computational model of the subarachnoid space and then to use this model to study the detailed spatiotemporal effects of anatomic variations on CSF pressures and velocities. MATERIALS AND METHODS We created a geometric model with a computer-assisted design program. The model contained a central structure for the brain and spinal cord axis and a second surrounding structure for the peripheral borders of the subarachnoid space. Model dimensions were adjusted to capture the main characteristics of the normal human posterior fossa and cervical spinal anatomy. CSF flow was modeled as water with a sinusoidal flow pattern in time. Velocities and pressures during craniocaudal and caudocranial flow were calculated with computational fluid dynamics (CFD) software. Simulated flow was compared with published phase-contrast MR imaging measurements of CSF flow in healthy human subjects. RESULTS The model contained geometric characteristics of the posterior fossa and spinal canal. Flow velocities varied with the time in the cycle and location in space. Flow velocities had spatial variations that resembled those in healthy human subjects. Reynolds numbers were moderate, showing a laminar flow regime. Pressure varied uniformly along the long axis of the model during craniocaudal and caudocranial flow. CONCLUSIONS In an idealized geometric approximation of the human subarachnoid space, CSF velocities and pressures can be studied in spatiotemporal detail with mathematic models.
Collapse
Affiliation(s)
- S O Linge
- Telemark University College, Porsgrunn, Norway.
| | | | | | | | | |
Collapse
|
41
|
Thurnher MM, Law M. Diffusion-weighted imaging, diffusion-tensor imaging, and fiber tractography of the spinal cord. Magn Reson Imaging Clin N Am 2009; 17:225-44. [PMID: 19406356 DOI: 10.1016/j.mric.2009.02.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In the brain, diffusion-weighted imaging (DWI) is an established and reliable method for the characterization of neurologic lesions. Although the diagnostic value of DWI in the early detection of ischemia has not diminished with time, many new clinical applications of DWI have also emerged. Diffusion-tensor imaging and fiber tractography have more recently been developed and optimized, allowing quantification of the magnitude and direction of diffusion along three principal eigenvectors. Diffusion-tensor imaging and fiber tractography are proving to be useful in clinical neuroradiology practice, with application to several categories of disease, and to be a powerful research tool. This article describes some of the applications of DWI and diffusion-tensor imaging in the evaluation of the diseases of the spinal cord.
Collapse
Affiliation(s)
- Majda M Thurnher
- Department of Radiology, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
42
|
Bot JCJ, Barkhof F. Spinal-cord MRI in multiple sclerosis: conventional and nonconventional MR techniques. Neuroimaging Clin N Am 2009; 19:81-99. [PMID: 19064202 DOI: 10.1016/j.nic.2008.09.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Multiple sclerosis is a diffuse disease of the central nervous system, and MRI of the spinal cord is highly recommended in the clinical evaluation of patients suspected of having multiple sclerosis. Within the new diagnostic criteria, spinal cord MRI increases sensitivity and possibly specificity for MS, but further work is needed to investigate other criteria that may give greater weight to the presence of cord lesions in patients with clinically isolated syndromes or suspected relapsing-remitting multiple sclerosis. Techniques should be further studied and validated in studies comparing these techniques with clinical status and histopathology, however.
Collapse
Affiliation(s)
- Joseph C J Bot
- Department of Radiology, MR Center for MS Research, VU Medical Center, 1007 MB Amsterdam, The Netherlands.
| | | |
Collapse
|
43
|
Saritas EU, Cunningham CH, Lee JH, Han ET, Nishimura DG. DWI of the spinal cord with reduced FOV single-shot EPI. Magn Reson Med 2008; 60:468-73. [PMID: 18666126 DOI: 10.1002/mrm.21640] [Citation(s) in RCA: 203] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Single-shot echo-planar imaging (ss-EPI) has not been used widely for diffusion-weighted imaging (DWI) of the spinal cord, because of the magnetic field inhomogeneities around the spine, the small cross-sectional size of the spinal cord, and the increased motion in that area due to breathing, swallowing, and cerebrospinal fluid (CSF) pulsation. These result in artifacts with the usually long readout duration of the ss-EPI method. Reduced field-of-view (FOV) methods decrease the required readout duration for ss-EPI, thereby enabling its practical application to imaging of the spine. In this work, a reduced FOV single-shot diffusion-weighted echo-planar imaging (ss-DWEPI) method is proposed, in which a 2D spatially selective echo-planar RF excitation pulse and a 180 degrees refocusing pulse reduce the FOV in the phase-encode (PE) direction, while suppressing the signal from fat simultaneously. With this method, multi slice images with higher in-plane resolutions (0.94 x 0.94 mm(2) for sagittal and 0.62 x 0.62 mm(2) for axial images) are achieved at 1.5 T, without the need for a longer readout.
Collapse
Affiliation(s)
- Emine Ulku Saritas
- Magnetic Resonance Systems Research Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California, USA.
| | | | | | | | | |
Collapse
|
44
|
Smith SA, Edden RAE, Farrell JAD, Barker PB, Van Zijl PCM. Measurement of T1 and T2 in the cervical spinal cord at 3 tesla. Magn Reson Med 2008; 60:213-9. [PMID: 18581383 DOI: 10.1002/mrm.21596] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
T(1) and T(2) were measured for white matter (WM) and gray matter (GM) in the human cervical spinal cord at 3T. T(1) values were calculated using an inversion-recovery (IR) and B(1)-corrected double flip angle gradient echo (GRE) and show significant differences (p = 0.002) between WM (IR = 876 +/- 27 ms, GRE = 838 +/- 54 ms) and GM (IR = 973 +/- 33 ms, GRE = 994 +/- 54 ms). IR showed significant difference between lateral and dorsal column WM (863 +/- 23 ms and 899 +/- 18 ms, respectively, p = 0.01) but GRE did not (p = 0.40). There was no significant difference (p = 0.31) in T(2) between WM (73 +/- 6 ms) and GM (76 +/- 3 ms) or between lateral and dorsal columns (lateral: 73 +/- 6 ms, dorsal: 72 +/- 7 ms, p = 0.59). WM relaxation times were similar to brain structures with very dense fiber packing (e.g., corpus callosum), while GM values resembled deep GM in brain. Optimized sequence parameters for maximal contrast between WM and GM, and between WM and cerebrospinal fluid (CSF) were derived. Since the spinal cord has rostral-caudal symmetry, we expect these findings to be applicable to the whole cord.
Collapse
Affiliation(s)
- Seth A Smith
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | | | | | |
Collapse
|
45
|
Figley CR, Yau D, Stroman PW. Attenuation of lower-thoracic, lumbar, and sacral spinal cord motion: implications for imaging human spinal cord structure and function. AJNR Am J Neuroradiol 2008; 29:1450-4. [PMID: 18524976 DOI: 10.3174/ajnr.a1154] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Recent literature indicates that cervical and upper-thoracic spinal cord motion adversely affect both structural and functional MR imaging (fMRI; particularly diffusion tensor imaging [DTI] and spinal fMRI), ultimately reducing the reliability of these methods for both research and clinical applications. In the present study, we investigated motion of the lower-thoracic, lumbar, and sacral cord segments to evaluate the incidence of similar motion-related confounds in these regions. MATERIALS AND METHODS Recently developed methods, used previously for measuring cervical and upper-thoracic spinal cord motion, were employed in the present study to examine anteroposterior (A/P) and left-right (L/R) spinal cord motion in caudal regions. Segmented cinematic imaging was applied with a gradient-echo, turbo fast low-angle shot (turbo-FLASH) pulse sequence to acquire midline images of the cord at 24 cardiac phases throughout the lower-thoracic, lumbar, and sacral spinal cord regions. RESULTS The magnitude of A/P motion was found to be largest in rostral cord regions, whereas in caudal regions (at the level of the T4/T5 vertebrae and below), peak cord motion was uniformly small (routinely < or =0.10 mm). L/R motion, however, was found to be minimal throughout the thoracic, lumbar, and sacral regions. CONCLUSION Motion-related errors in spinal fMRI and DTI are expected to be significantly reduced throughout caudal regions of the spinal cord, thus yielding higher sensitivity and specificity compared with rostral regions. The paucity of such errors is expected to provide a means of observing the specific impact of motion (in rostral regions) and to enable the acquisition of uncorrupted DTI and fMRI data for studies of structure and function throughout lumbar and sacral regions.
Collapse
Affiliation(s)
- C R Figley
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | | | | |
Collapse
|
46
|
Figley CR, Stroman PW. Investigation of human cervical and upper thoracic spinal cord motion: implications for imaging spinal cord structure and function. Magn Reson Med 2007; 58:185-189. [PMID: 17659610 DOI: 10.1002/mrm.21260] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Spinal cord (SC) motion is thought to be the dominant source of error in current diffusion and spinal functional MRI (fMRI) methods. However, until now, such motion has not been well characterized in three dimensions. While previous studies have predominantly examined motion in the superior/inferior (S/I) direction, the foci of the present study were the anterior/posterior (A/P) and right/left (R/L) components of human cervical and upper thoracic SC motion. Cardiac-gated, turbofast low-angle shot (turbo-FLASH) cinematic MRI was employed at 3T to acquire images of the cord at 24 phases throughout the cardiac cycle. Time-dependent signal fluctuations within voxels adjacent to the cord/cerebrospinal fluid (CSF) interface were then used to measure SC motion, which was found to occur predictably as a function of cardiac activity. Cord movement was largest in the A/P direction, for which principal components of motion were calculated, thereby indicating consistent patterns of SC oscillation that can potentially be used to improve SC imaging.
Collapse
Affiliation(s)
- C R Figley
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - P W Stroman
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
- Department of Diagnostic Radiology, Queen's University, Kingston, Ontario, Canada
- Department of Physics, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
47
|
Cai J, Sheng K, Sheehan JP, Benedict SH, Larner JM, Read PW. Evaluation of thoracic spinal cord motion using dynamic MRI. Radiother Oncol 2007; 84:279-82. [PMID: 17692979 DOI: 10.1016/j.radonc.2007.06.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 06/07/2007] [Accepted: 06/18/2007] [Indexed: 12/31/2022]
Abstract
The aim of study was to assess the thoracic spinal cord motion during normal breathing using dynamic magnetic resonance imaging (dMRI). We found that the mean motion range at different thoracic levels is typically within 0.5mm. The good stability makes this an excellent position for stereotactic radiotherapy (SBRT).
Collapse
Affiliation(s)
- Jing Cai
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | | | |
Collapse
|
48
|
Kharbanda HS, Alsop DC, Anderson AW, Filardo G, Hackney DB. Effects of cord motion on diffusion imaging of the spinal cord. Magn Reson Med 2006; 56:334-9. [PMID: 16804888 DOI: 10.1002/mrm.20959] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Measurement of diffusion and its dependence on direction has become an important tool for clinical and research studies of the brain. Diffusion imaging of the spinal cord may likewise prove useful as an indicator of tissue damage and axonal integrity; however, it is more challenging to perform diffusion imaging in the cord than in the brain. Here we report a study of the effects of motion on single-shot fast spin echo (FSE) diffusion tensor imaging (DTI) of the spinal cord. Diffusion imaging was performed at four different times in the cardiac cycle both without and with velocity compensation of the diffusion gradients. Uncompensated diffusion images demonstrated substantial signal loss artifacts in the cord that were strongly dependent on the delay after the pulse-oximeter trigger. Quantitative diffusion analysis was also strongly affected by this motion artifact. The use of flow-compensated gradients helped to restore normal signal in the cord, especially at particular trigger delays. Theoretical arguments suggest that improved spatial resolution may help eliminate this signal loss. Even with higher spatial resolution, motion-related signal attenuation may still occur in diffusion imaging of pathologies that alter the motion of the cord. However, this same cord motion may contain diagnostically valuable information when probed using appropriate diffusion imaging approaches.
Collapse
|
49
|
Govers N, Béghin J, Van Goethem JWM, Michiels J, van den Hauwe L, Vandervliet E, Parizel PM. Functional MRI of the cervical spinal cord on 1.5 T with fingertapping: to what extent is it feasible? Neuroradiology 2006; 49:73-81. [PMID: 17119948 DOI: 10.1007/s00234-006-0162-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Accepted: 09/07/2006] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Until recently, functional magnetic resonance imaging (fMRI) with blood oxygen level-dependent (BOLD) contrast, was mainly used to study brain physiology. The activation signal measured with fMRI is based upon the changes in the concentration of deoxyhaemoglobin that arise from an increase in blood flow in the vicinity of neuronal firing. Technical limitations have impeded such research in the human cervical spinal cord. The purpose of this investigation was to determine whether a reliable fMRI signal can be elicited from the cervical spinal cord during fingertapping, a complex motor activity. Furthermore, we wanted to determine whether the fMRI signal could be spatially localized to the particular neuroanatomical location specific for this task. METHODS A group of 12 right-handed healthy volunteers performed the complex motor task of fingertapping with their right hand. T2*-weighted gradient-echo echo-planar imaging on a 1.5-T clinical unit was used to image the cervical spinal cord. Motion correction was applied. Cord activation was measured in the transverse imaging plane, between the spinal cord levels C5 and T1. RESULTS In all subjects spinal cord responses were found, and in most of them on the left and the right side. The distribution of the activation response showed important variations between the subjects. While regions of activation were distributed throughout the spinal cord, concentrated activity was found at the anatomical location of expected motor innervation, namely nerve root C8, in 6 of the 12 subjects. CONCLUSION fMRI of the human cervical spinal cord on an 1.5-T unit detects neuronal activity related to a complex motor task. The location of the neuronal activation (spinal cord segment C5 through T1 with a peak on C8) corresponds to the craniocaudal anatomical location of the neurons that activate the muscles in use.
Collapse
Affiliation(s)
- N Govers
- University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | | | | | | | | | | | | |
Collapse
|
50
|
Kolstad F, Rygh OM, Selbekk T, Unsgaard G, Nygaard OP. Three-dimensional ultrasonography navigation in spinal cord tumor surgery. J Neurosurg Spine 2006; 5:264-70. [PMID: 16961090 DOI: 10.3171/spi.2006.5.3.264] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The authors describe the technical application of three-dimensional (3D) ultrasonography navigation in spinal cord tumor surgery. The spinal cord is a complex neurological structure in which there is the potential for causing neurological morbidity during tumor resection. Standard neuronavigation systems based on computed tomography or C-arm images are not adapted to tumor surgery in the spinal cord. Since 2004 the authors have been using a 3D ultrasonography-based neuronavigation system. During surgery, two-dimensional ultrasound images were acquired and reconstructed into 3D image data to assist in tumor resection. The navigation cameras read the position of a patient reference frame attached to a spinous process, the ultrasonography probe, and surgical instruments. Five- and 10-MHz phased-array ultrasonography probes equipped with optical tracking frames were used for image data acquisition. Spinal cord tumors were visualized using ultrasonography, and 3D ultrasonography-guided tumor biopsy sampling and resection were performed. The practice of attaching the reference frame to a spinous process adjacent to the spinal cord tumor, as well as performing image acquisition just before starting the resection, reduced the possible sources of inaccuracy. The technical application of a navigation system based on intraoperative 3D ultrasound image reconstruction seems feasible and may have the potential of improving functional outcome in association with spinal cord tumor surgery.
Collapse
Affiliation(s)
- Frode Kolstad
- National Center of Spinal Disorders, National Center for 3D Ultrasound in Surgery, and Department of Neurosurgery, St. Olav University Hospital, Norway.
| | | | | | | | | |
Collapse
|