1
|
Gil KE, Truong V, Liu C, Ibrahim DY, Mikrut K, Satoskar A, Varghese J, Kahwash R, Han Y. Distinguishing hypertensive cardiomyopathy from cardiac amyloidosis in hypertensive patients with heart failure: a CMR study with histological confirmation. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2024:10.1007/s10554-024-03262-0. [PMID: 39417970 DOI: 10.1007/s10554-024-03262-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/06/2024] [Indexed: 10/19/2024]
Abstract
PURPOSE Differentiation of the cause of left ventricular hypertrophy (LVH) is challenging in cases with co-existing hypertension. CMR offers assessment of diffuse myocardial abnormalities via T1 mapping with extracellular volume fraction (ECV) and macroscopic fibrosis via late gadolinium enhancement imaging (LGE). The goal of the study was to understand if CMR parameters can differentiate hypertensive cardiomyopathy (HC) from cardiac amyloidosis (CA) in patients with hypertension and heart failure, using endomyocardial biopsy (EMB) as the gold standard. METHODS We retrospectively analyzed patients with hypertension, LVH, and heart failure undergoing EMB due to uncertain diagnosis. CMR parameters including cine, LGE characteristics, T1 mapping, and ECV were analyzed. RESULTS A total of 34 patients were included (mean age 66.5 ± 10.7 years, 79.4% male). The final EMB-based diagnosis was HC (10, 29%), light chain (AL) CA (7, 21%), and transthyretin (ATTR) CA (17, 50%). There was a significant difference in subendocardial LGE (p = 0.03) and number of AHA segments with subendocardial LGE (p = 0.005). The subendocardial LGE pattern was most common in AL-CA (85.7%) and African American with HC (80%). ECV elevation (≥ 29%) was present in all patients with CA (AL-CA: 57.6 ± 5.2%, ATTR-CA: 59.1 ± 15.3%) and HC (37.3 ± 4.5%). CONCLUSIONS Extensive subendocardial LGE pattern is not pathognomonic for CA but might also be present in African American patients with longstanding or poorly controlled HTN. The ECV elevation in HC with HF might be more significant than previously reported with an overlap of ECV values in HC and CA, particularly in younger African American patients.
Collapse
Affiliation(s)
- Katarzyna Elzbieta Gil
- Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, 452 W 10th Ave Columbus, Columbus, OH, 43210, USA.
| | - Vien Truong
- Department of Internal Medicine, Nazareth Hospital, Philadelphia, PA, USA
| | - Chuanfen Liu
- Department of Cardiology, Peking University People's Hospital, Beijing, China
| | - Dalia Y Ibrahim
- Department of Pathology, University of Toledo Medical Center, Toledo, OH, USA
| | - Katarzyna Mikrut
- Advocate Heart Institute, Advocate Lutheran General Hospital, Chicago, IL, USA
| | - Anjali Satoskar
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Juliet Varghese
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Rami Kahwash
- Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, 452 W 10th Ave Columbus, Columbus, OH, 43210, USA
| | - Yuchi Han
- Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, 452 W 10th Ave Columbus, Columbus, OH, 43210, USA
| |
Collapse
|
2
|
Kravchenko D, Isaak A, Zimmer S, Öztürk C, Mesropyan N, Bischoff LM, Voigt M, Ginzburg D, Attenberger U, Pieper CC, Kuetting D, Luetkens JA. Parametric mapping using cardiovascular magnetic resonance for the differentiation of light chain amyloidosis and transthyretin-related amyloidosis. Eur Heart J Cardiovasc Imaging 2024; 25:1451-1461. [PMID: 38912832 DOI: 10.1093/ehjci/jeae154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/25/2024] [Accepted: 06/14/2024] [Indexed: 06/25/2024] Open
Abstract
AIMS To evaluate different cardiovascular magnetic resonance (CMR) parameters for the differentiation of light chain amyloidosis (AL) and transthyretin-related amyloidosis (ATTR). METHODS AND RESULTS In total, 75 patients, 53 with cardiac amyloidosis {20 patients with AL [66 ± 12 years, 14 males (70%)] and 33 patients with ATTR [78 ± 5 years, 28 males (88%)]} were retrospectively analysed regarding CMR parameters such as T1 and T2 mapping, extracellular volume (ECV), late gadolinium enhancement (LGE) distribution patterns, and myocardial strain, and compared to a control cohort with other causes of left ventricular hypertrophy {LVH; 22 patients [53 ± 16 years, 17 males (85%)]}. One-way ANOVA and receiver operating characteristic analysis were used for statistical analysis. ECV was the single best parameter to differentiate between cardiac amyloidosis and controls [area under the curve (AUC): 0.97, 95% confidence intervals (CI): 0.89-0.99, P < 0.0001, cut-off: >30%]. T2 mapping was the best single parameter to differentiate between AL and ATTR amyloidosis (AL: 63 ± 4 ms, ATTR: 58 ± 2 ms, P < 0.001, AUC: 0.86, 95% CI: 0.74-0.94, cut-off: >61 ms). Subendocardial LGE was predominantly observed in AL patients (10/20 [50%] vs. 5/33 [15%]; P = 0.002). Transmural LGE was predominantly observed in ATTR patients (23/33 [70%] vs. 2/20 [10%]; P < 0.001). The diagnostic performance of T2 mapping to differentiate between AL and ATTR amyloidosis was further increased with the inclusion of LGE patterns [AUC: 0.96, 95% CI: (0.86-0.99); P = 0.05]. CONCLUSION ECV differentiates cardiac amyloidosis from other causes of LVH. T2 mapping combined with LGE differentiates AL from ATTR amyloidosis with high accuracy on a patient level.
Collapse
Affiliation(s)
- Dmitrij Kravchenko
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Quantitative Imaging Lab Bonn (QILaB), University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Alexander Isaak
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Quantitative Imaging Lab Bonn (QILaB), University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Sebastian Zimmer
- Department of Internal Medicine II-Cardiology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Can Öztürk
- Department of Internal Medicine II-Cardiology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Narine Mesropyan
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Quantitative Imaging Lab Bonn (QILaB), University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Leon M Bischoff
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Quantitative Imaging Lab Bonn (QILaB), University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Marilia Voigt
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Quantitative Imaging Lab Bonn (QILaB), University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Daniel Ginzburg
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Ulrike Attenberger
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Claus C Pieper
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Daniel Kuetting
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Quantitative Imaging Lab Bonn (QILaB), University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Julian A Luetkens
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Quantitative Imaging Lab Bonn (QILaB), University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| |
Collapse
|
3
|
Hayashi H, Oda S, Kidoh M, Yamaguchi S, Yoshimura F, Takashio S, Usuku H, Nagayama Y, Nakaura T, Ueda M, Tsujita K, Hirai T. Myocardial extracellular volume quantification in cardiac amyloidosis: a comparative study between cardiac computed tomography and magnetic resonance imaging. Eur Radiol 2024; 34:1016-1025. [PMID: 37597032 DOI: 10.1007/s00330-023-10129-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 08/21/2023]
Abstract
OBJECTIVES Myocardial extracellular volume (ECV) on computed tomography (CT), an alternative to cardiac magnetic resonance (CMR), has significant practical clinical advantages. However, the consistency between ECVs quantified via CT and CMR in cardiac amyloidosis (CA) has not been investigated sufficiently. Therefore, the current study investigated the application of CT-ECV in CA with CMR-ECV as the reference standard. METHODS We retrospectively evaluated 31 patients with CA who underwent cardiac CT and CMR. Pearson correlation analysis was performed to investigate correlations between CT-ECV and CMR-ECV at each segment. Further, correlations between ECV and clinical parameters were assessed. RESULTS There were no significant differences in the mean global ECVs between CT scan and CMR (51.3% ± 10.2% vs 50.0% ± 10.5%). CT-ECV was correlated with CMR-ECV at the septal (r = 0.88), lateral (r = 0.80), inferior (r = 0.79), anterior (r = 0.77) segments, and global (r = 0.87). In both CT and CMR, the ECV had a weak to strong correlation with high-sensitivity cardiac troponin T level, a moderate correlation with global longitudinal strain, and an inverse correlation with left ventricular ejection fraction. Further, the septal ECV and global ECV had a slightly higher correlation with the clinical parameters. CONCLUSIONS Cardiac CT can quantify myocardial ECV and yield results comparable to CMR in patients with CA. Moreover, a significant correlation between CT-ECV and clinical parameters was observed. Thus, CT-ECV can be an imaging biomarker and alternative to CMR-ECV. CLINICAL RELEVANCE STATEMENT Cardiac CT can quantify myocardial ECV and yield results comparable to CMR in patients with CA, and CT-ECV can be used clinically as an imaging biomarker and alternative to CMR-ECV. KEY POINTS • A significant correlation was found between CT myocardial extracellular volume and cardiac MR myocardial extracellular volume in patients with cardiac amyloidosis. • In CT and cardiac MR, the myocardial extracellular volume correlated well with high-sensitivity cardiac troponin T level, global longitudinal strain, and left ventricular ejection fraction. • CT myocardial extracellular volume can be an imaging biomarker and alternative to cardiac MR myocardial extracellular volume.
Collapse
Affiliation(s)
- Hidetaka Hayashi
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Seitaro Oda
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan.
| | - Masafumi Kidoh
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Shinpei Yamaguchi
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
- Department of Radiology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, Japan
| | - Fumihiro Yoshimura
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Seiji Takashio
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroki Usuku
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yasunori Nagayama
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Takeshi Nakaura
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Mitsuharu Ueda
- Department of Neurology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kenichi Tsujita
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Toshinori Hirai
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| |
Collapse
|
4
|
Sinitsyn V. Radiomics enhances the prognostic role of magnetic resonance imaging in cardiac amyloidosis. Eur Radiol 2024; 34:400-401. [PMID: 37658145 DOI: 10.1007/s00330-023-10192-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 09/03/2023]
Affiliation(s)
- Valentin Sinitsyn
- Radiology Department, University Medical Center of Moscow Lomonosov State University, Moscow, Russia.
| |
Collapse
|
5
|
Stefani G, Kouvata E, Vassilopoulos G. Light-Chain Amyloidosis: The Great Impostor. Life (Basel) 2023; 14:42. [PMID: 38255657 PMCID: PMC10817319 DOI: 10.3390/life14010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/28/2023] [Accepted: 12/24/2023] [Indexed: 01/24/2024] Open
Abstract
Light-chain amyloidosis (AL) is a disease of protean manifestations due to a wide spectrum of organs that can be affected. The disorder is caused by the deposition of an extracellular amorphous material, the amyloid, which is produced by malignant plasma cells. The latter usually reside in the bone marrow; plasma cell infiltration is often low, in sharp contrast to what we observe in multiple myeloma. The disease may run below the physician's radar for a while before clinical suspicion is raised and targeted tests are performed. In this short review, we try to answer most of the questions that a practicing physician may ask in a relative clinical setting. The text is formed as a series of reader-friendly questions that cover the subject of AL amyloidosis from history to current therapy.
Collapse
Affiliation(s)
- Georgia Stefani
- Department of Hematology, Larisa University Hospital, 41110 Larisa, Greece; (G.S.); (G.V.)
| | - Evangelia Kouvata
- Department of Hematology, Larisa University Hospital, 41110 Larisa, Greece; (G.S.); (G.V.)
| | - George Vassilopoulos
- Department of Hematology, Larisa University Hospital, 41110 Larisa, Greece; (G.S.); (G.V.)
- Cell and Gene Therapy Lab, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
6
|
Chono T, Harada K, Asanuma O. [Incidental Cardiac Uptake in Bone Scintigraphy Establishing a Diagnosis of Transthyretin Amyloid Cardiomyopathy: A Case Report]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2023; 79:1370-1374. [PMID: 37766520 DOI: 10.6009/jjrt.2023-1403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
This is a case of a male patient in his 70s undergoing endocrine therapy for castration-resistant prostate cancer. On follow-up, he underwent whole-body bone scintigraphy for bone metastasis surveillance, and incidental cardiac uptake was identified. The findings were reported by the radiologist to the urologist, which was followed by a cardiac consultation. Late gadolinium enhancement magnetic resonance imaging did not detect typical patterns suggestive of cardiac amyloidosis. However, pyrophosphate scintigraphy identified cardiac uptake. These findings were indicative of transthyretin amyloid cardiomyopathy, and we confirmed the diagnosis by endomyocardial biopsy. In about 0.4-2.0 percentage of elderly patients, incidental cardiac uptake in bone scintigraphy has been reported. Bone scintigraphy is the most commonly utilized techniques among all scintigraphies. Thus, it is crucial that radiologists recognize and report the findings to establish a diagnosis of transthyretin amyloid cardiomyopathy.
Collapse
Affiliation(s)
- Taiki Chono
- Division of Radiology and Nuclear Medicine, Sapporo Medical University Hospital
| | - Kohei Harada
- Division of Radiology and Nuclear Medicine, Sapporo Medical University Hospital
| | - Osamu Asanuma
- Division of Radiology and Nuclear Medicine, Sapporo Medical University Hospital
| |
Collapse
|
7
|
Tavakoli S, Onder O. Four-dimensional Cardiac CT Depicts Coexistent Amyloidosis in Older Adults with Severe Aortic Stenosis. Radiology 2023; 309:e233091. [PMID: 38085085 PMCID: PMC10746845 DOI: 10.1148/radiol.233091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023]
Affiliation(s)
- Sina Tavakoli
- From the Departments of Radiology (S.T., O.O.) and Medicine (S.T.), University of Pittsburgh, Pittsburgh, Pa; Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh Medical Center, Pittsburgh, Pa (S.T.); and Department of Radiology, UPMC Presbyterian Hospital, 200 Lothrop St, Suite E200, Pittsburgh, PA 15213 (S.T.)
| | - Omer Onder
- From the Departments of Radiology (S.T., O.O.) and Medicine (S.T.), University of Pittsburgh, Pittsburgh, Pa; Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh Medical Center, Pittsburgh, Pa (S.T.); and Department of Radiology, UPMC Presbyterian Hospital, 200 Lothrop St, Suite E200, Pittsburgh, PA 15213 (S.T.)
| |
Collapse
|
8
|
Fukushima K, Ito H, Takeishi Y. Comprehensive assessment of molecular function, tissue characterization, and hemodynamic performance by non-invasive hybrid imaging: Potential role of cardiac PETMR. J Cardiol 2023; 82:286-292. [PMID: 37343931 DOI: 10.1016/j.jjcc.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/23/2023]
Abstract
Noninvasive cardiovascular imaging plays a key role in diagnosis and patient management including monitoring treatment efficacy. The usefulness of noninvasive cardiovascular imaging has been extensively studied and shown to have high diagnostic reliability and prognostic significance, while the nondiagnostic results frequently encountered with single imaging modality require complementary or alternative imaging techniques. Hybrid cardiac imaging was initially introduced to integrate anatomical and functional information to enhance the diagnostic performance, and lately employed as a strategy for comprehensive assessment of the underlying pathophysiology of diseases. More recently, the utility of computed tomography has grown in diversity, and emerged from being an exploratory technique allowing functional measurement such as stress dynamic perfusion. Cardiac magnetic resonance imaging (CMR) is widely accepted as a robust tool for evaluation of cardiac function, fibrosis, and edema, yielding high spatial resolution and soft-tissue contrast. However, the use of intravenous contrast materials is typically required for accurate diagnosis with these imaging modalities, despite the associated risk of renal toxicity. Nuclear cardiology, established as a molecular imaging technique, has advantages in visualization of the disease-specific biological process at cellular level using numerous probes without requiring contrast materials. Various imaging modalities should be appropriately used sequentially to assess concomitant disease and the progression over time. Therefore, simultaneous evaluation combining high spatial resolution and disease-specific imaging probe is a useful approach to identify the regional activity and the stage of the disease. Given the recent advance and potential of multiparametric CMR and novel nuclide tracers, hybrid positron emission tomography MR is becoming an ideal tool for disease-specific imaging.
Collapse
Affiliation(s)
- Kenji Fukushima
- Department of Radiology and Nuclear Medicine, Fukushima Medical University, Fukushima, Japan.
| | - Hiroshi Ito
- Department of Radiology and Nuclear Medicine, Fukushima Medical University, Fukushima, Japan
| | - Yasuchika Takeishi
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
9
|
Wali E, Gruca M, Singulane C, Cotella J, Guile B, Johnson R, Mor-Avi V, Addetia K, Lang RM. How Often Does Apical Sparing of Longitudinal Strain Indicate the Presence of Cardiac Amyloidosis? Am J Cardiol 2023; 202:12-16. [PMID: 37413701 PMCID: PMC11529785 DOI: 10.1016/j.amjcard.2023.06.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 07/08/2023]
Abstract
Echocardiographic diagnosis of cardiac amyloidosis (CA) is frequently suggested by the presence of a left ventricular (LV) apical sparing pattern (ASP) on longitudinal strain (LS) assessment, the so-called "cherry on top" pattern, defined by strain magnitude preserved exclusively at the apex. However, it is unclear how frequently this strain pattern truly represents CA. This study aimed to evaluate the predictive value of ASP in the diagnosis of CA. We retrospectively identified consecutive adult patients who had the following studies performed within an 18-month period: (1) transthoracic echocardiogram and (2) either (a) cardiac magnetic resonance imaging, (b) Technetium-Pyrophosphate (PYP) imaging, or (c) endomyocardial biopsy. LS was retrospectively measured in the apical 4-, 3-, and 2-chamber views in patients who had adequate noncontrast images (n = 466). An apical sparing ratio (ASR) was calculated as (average apical strain)/[(average basal strain) + (average midventricular strain)]. Patients with ASR ≥1 were evaluated for the presence/absence of CA, using established criteria. Basic LV parameters were also measured. A total of 33 patients (7.1%) had ASP. Nine of these patients (27%) had "confirmed" CA, 2 (6.1%) "highly probable" CA, 1 (3.0%) "possible" CA, and 21 (64%) no evidence of CA. When comparing patients with and without confirmed CA, there were no significant differences in ASR, average global LS, ejection fraction, or LV mass. Patients with confirmed CA were older (76 ± 9 vs 59 ± 18 years, p = 0.01) and had thicker posterior wall (15 ± 3 vs 11 ± 3 mm, p = 0.004) with a trend toward thicker septal wall (15 ± 2 vs 12 ± 4 mm, p = 0.05). In conclusion, the presence of ASP on LS represents confirmed or highly probable CA in only 1/3 of patients and is more likely to indicate true CA in older patients with increased LV wall thickness. Although a larger, prospective study is needed to confirm these findings, 1/3 should be considered as a large diagnostic yield that justifies further testing, given the poor outcomes associated with CA diagnosis.
Collapse
Affiliation(s)
- Eisha Wali
- Department of Medicine, Section of Cardiology, The University of Chicago Medical Center, Chicago, Illinois
| | - Martin Gruca
- Department of Medicine, Section of Cardiology, The University of Chicago Medical Center, Chicago, Illinois
| | - Cristiane Singulane
- Department of Medicine, Section of Cardiology, The University of Chicago Medical Center, Chicago, Illinois
| | - Juan Cotella
- Department of Medicine, Section of Cardiology, The University of Chicago Medical Center, Chicago, Illinois
| | - Brittney Guile
- Department of Medicine, Section of Cardiology, The University of Chicago Medical Center, Chicago, Illinois
| | - Roydell Johnson
- Department of Medicine, Section of Cardiology, The University of Chicago Medical Center, Chicago, Illinois
| | - Victor Mor-Avi
- Department of Medicine, Section of Cardiology, The University of Chicago Medical Center, Chicago, Illinois
| | - Karima Addetia
- Department of Medicine, Section of Cardiology, The University of Chicago Medical Center, Chicago, Illinois
| | - Roberto M Lang
- Department of Medicine, Section of Cardiology, The University of Chicago Medical Center, Chicago, Illinois.
| |
Collapse
|
10
|
Rajiah PS, Moore A, Broncano J, Anand V, Kolluri N, Shah DJ, Flamm SD, François CJ. Diastology with Cardiac MRI: A Practical Guide. Radiographics 2023; 43:e220144. [PMID: 37535462 DOI: 10.1148/rg.220144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Diastolic filling of the ventricle is a complex interplay of volume and pressure, contingent on active energy-dependent myocardial relaxation and myocardial stiffness. Abnormal diastolic function is the hallmark of the clinical entity of heart failure with preserved ejection fraction (HFpEF), which is now the dominant type of heart failure and is associated with significant morbidity and mortality. Although echocardiography is the current first-line imaging modality used in evaluation of diastolic function, cardiac MRI (CMR) is emerging as an important technique. The principal role of CMR is to categorize the cause of diastolic dysfunction (DD) and distinguish other entities that manifest similarly to HFpEF, particularly infiltrative and pericardial disorders. CMR also provides prognostic information and risk stratification based on late gadolinium enhancement and parametric mapping techniques. Advances in hardware, sequences, and postprocessing software now enable CMR to diagnose and grade DD accurately, a role traditionally assigned to echocardiography. Two-dimensional or four-dimensional velocity-encoded phase-contrast sequences can measure flow and velocities at the mitral inflow, mitral annulus, and pulmonary veins to provide diastolic functional metrics analogous to those at echocardiography. The commonly used cine steady-state free-precession sequence can provide clues to DD including left ventricular mass, left ventricular filling curves, and left atrial size and function. MR strain imaging provides information on myocardial mechanics that further aids in diagnosis and prognosis of diastolic function. Research sequences such as MR elastography and MR spectroscopy can help evaluate myocardial stiffness and metabolism, respectively, providing additional insights on diastolic function. The authors review the physiology of diastolic function, mechanics of diastolic heart failure, and CMR techniques in the evaluation of diastolic function. ©RSNA, 2023 Quiz questions for this article are available in the supplemental material.
Collapse
Affiliation(s)
- Prabhakar Shantha Rajiah
- From the Departments of Radiology (P.S.R., C.J.F.) and Cardiology (V.A., N.K.), Mayo Clinic, 200 1st St SW, Rochester, MN 55905; Department of Radiology, Baylor Health System, Dallas, Tex (A.M.); Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, HT-RESALTA, HT Médica, Córdoba, Spain (J.B.); Department of Cardiology, Houston Methodist Hospital, Houston, Tex (D.J.S.); and Cardiovascular Imaging Laboratory, Cleveland Clinic Foundation, Cleveland, Ohio (S.D.F.)
| | - Alastair Moore
- From the Departments of Radiology (P.S.R., C.J.F.) and Cardiology (V.A., N.K.), Mayo Clinic, 200 1st St SW, Rochester, MN 55905; Department of Radiology, Baylor Health System, Dallas, Tex (A.M.); Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, HT-RESALTA, HT Médica, Córdoba, Spain (J.B.); Department of Cardiology, Houston Methodist Hospital, Houston, Tex (D.J.S.); and Cardiovascular Imaging Laboratory, Cleveland Clinic Foundation, Cleveland, Ohio (S.D.F.)
| | - Jordi Broncano
- From the Departments of Radiology (P.S.R., C.J.F.) and Cardiology (V.A., N.K.), Mayo Clinic, 200 1st St SW, Rochester, MN 55905; Department of Radiology, Baylor Health System, Dallas, Tex (A.M.); Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, HT-RESALTA, HT Médica, Córdoba, Spain (J.B.); Department of Cardiology, Houston Methodist Hospital, Houston, Tex (D.J.S.); and Cardiovascular Imaging Laboratory, Cleveland Clinic Foundation, Cleveland, Ohio (S.D.F.)
| | - Vidhu Anand
- From the Departments of Radiology (P.S.R., C.J.F.) and Cardiology (V.A., N.K.), Mayo Clinic, 200 1st St SW, Rochester, MN 55905; Department of Radiology, Baylor Health System, Dallas, Tex (A.M.); Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, HT-RESALTA, HT Médica, Córdoba, Spain (J.B.); Department of Cardiology, Houston Methodist Hospital, Houston, Tex (D.J.S.); and Cardiovascular Imaging Laboratory, Cleveland Clinic Foundation, Cleveland, Ohio (S.D.F.)
| | - Nikhil Kolluri
- From the Departments of Radiology (P.S.R., C.J.F.) and Cardiology (V.A., N.K.), Mayo Clinic, 200 1st St SW, Rochester, MN 55905; Department of Radiology, Baylor Health System, Dallas, Tex (A.M.); Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, HT-RESALTA, HT Médica, Córdoba, Spain (J.B.); Department of Cardiology, Houston Methodist Hospital, Houston, Tex (D.J.S.); and Cardiovascular Imaging Laboratory, Cleveland Clinic Foundation, Cleveland, Ohio (S.D.F.)
| | - Dipan J Shah
- From the Departments of Radiology (P.S.R., C.J.F.) and Cardiology (V.A., N.K.), Mayo Clinic, 200 1st St SW, Rochester, MN 55905; Department of Radiology, Baylor Health System, Dallas, Tex (A.M.); Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, HT-RESALTA, HT Médica, Córdoba, Spain (J.B.); Department of Cardiology, Houston Methodist Hospital, Houston, Tex (D.J.S.); and Cardiovascular Imaging Laboratory, Cleveland Clinic Foundation, Cleveland, Ohio (S.D.F.)
| | - Scott D Flamm
- From the Departments of Radiology (P.S.R., C.J.F.) and Cardiology (V.A., N.K.), Mayo Clinic, 200 1st St SW, Rochester, MN 55905; Department of Radiology, Baylor Health System, Dallas, Tex (A.M.); Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, HT-RESALTA, HT Médica, Córdoba, Spain (J.B.); Department of Cardiology, Houston Methodist Hospital, Houston, Tex (D.J.S.); and Cardiovascular Imaging Laboratory, Cleveland Clinic Foundation, Cleveland, Ohio (S.D.F.)
| | - Christopher J François
- From the Departments of Radiology (P.S.R., C.J.F.) and Cardiology (V.A., N.K.), Mayo Clinic, 200 1st St SW, Rochester, MN 55905; Department of Radiology, Baylor Health System, Dallas, Tex (A.M.); Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, HT-RESALTA, HT Médica, Córdoba, Spain (J.B.); Department of Cardiology, Houston Methodist Hospital, Houston, Tex (D.J.S.); and Cardiovascular Imaging Laboratory, Cleveland Clinic Foundation, Cleveland, Ohio (S.D.F.)
| |
Collapse
|
11
|
Senecal JB, Abou-Akl R, Allevato P, Mazzetti I, Hamm C, Parikh R, Woldie I. Amyloidosis: a case series and review of the literature. J Med Case Rep 2023; 17:184. [PMID: 37081462 PMCID: PMC10120233 DOI: 10.1186/s13256-023-03886-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 03/10/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND Systemic amyloidosis is group of disorders characterized by the accumulation of insoluble proteins in tissues. The most common form of systemic amyloidosis is light chain amyloidosis, which results from the accumulation of misfolded immunoglobulins. The disease is progressive, with treatment targeted at the underlying plasma cell dyscrasia. Since essentially any organ system can be affected, the presentation is variable and delays in diagnosis are common. Given this diagnostic difficulty, we discuss four different manifestations of light chain amyloidosis. CASE PRESENTATIONS In this case series, we discuss four cases of light chain amyloidosis. These include cardiac, hepatic, and gastrointestinal as well as autonomic and peripheral nerve involvement with amyloidosis. The patients in our series are of Caucasian background and include a 69-year-old female, a 29-year-old female, a 68-year-old male, and a 70-year-old male, respectively. The case discussions highlight variability in presentation and diagnostic challenges. CONCLUSIONS Amyloidosis is a rare but serious disease that is often complicated by long delays in diagnosis. Morbidity and mortality can sometimes be limited if diagnosed earlier. We hope our real life cases will contribute to understanding and to early suspicion that can lead to early diagnosis and management.
Collapse
Affiliation(s)
| | - Romel Abou-Akl
- Schulich School of Medicine and Dentistry, London, ON, Canada
| | | | | | | | | | - Indryas Woldie
- Windsor Regional Hospital, Windsor, ON, Canada
- Karmanos Cancer Center, Detroit, MI, USA
| |
Collapse
|
12
|
Kidoh M, Oda S, Takashio S, Kawano Y, Hayashi H, Morita K, Emoto T, Shigematsu S, Yoshimura F, Nakaura T, Nagayama Y, Matsuoka M, Ueda M, Tsujita K, Hirai T. Cardiac MRI-derived Extracellular Volume Fraction versus Myocardium-to-Lumen R1 Ratio at Postcontrast T1 Mapping for Detecting Cardiac Amyloidosis. Radiol Cardiothorac Imaging 2023; 5:e220327. [PMID: 37124644 PMCID: PMC10141336 DOI: 10.1148/ryct.220327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/02/2023] [Accepted: 03/14/2023] [Indexed: 05/02/2023]
Abstract
Purpose To evaluate the diagnostic performance of myocardium-to-lumen R1 (1/T1) ratio on postcontrast T1 maps for the detection of cardiac amyloidosis in a large patient sample. Materials and Methods This retrospective study included consecutive patients who underwent MRI-derived extracellular volume fraction (MRI ECV) analysis between March 2017 and July 2021 because of known or suspected heart failure or cardiomyopathy. Pre- and postcontrast T1 maps were generated using the modified Look-Locker inversion recovery sequence. Diagnostic performances of MRI ECV and myocardium-to-lumen R1 ratio on postcontrast T1 maps (a simplified index not requiring a native T1 map and hematocrit level data) for detecting cardiac amyloidosis were evaluated using the area under the receiver operating characteristic curve (AUC), sensitivity, and specificity. Results Of 352 patients (mean age, 63 years ± 16 [SD]; 235 men), 136 had cardiac amyloidosis. MRI ECV showed 89.0% (121 of 136; 95% CI: 82%, 94%) sensitivity and 98.6% (213 of 216; 95% CI: 96%, 100%) specificity for helping detect cardiac amyloidosis (cutoff value of 40% [AUC, 0.99 {95% CI: 0.97, 1.00}; P < .001]). Postcontrast myocardium-to-lumen R1 ratio showed 92.6% (126 of 136; 95% CI: 89%, 96%) sensitivity and 93.1% (201 of 216; 95% CI: 89%, 96%) specificity (cutoff value of 0.84 [AUC, 0.98 {95% CI: 0.95, 0.99}; P < .001]). There was no evidence of a difference in AUCs for each parameter (P = .10). Conclusion Postcontrast myocardium-to-lumen R1 ratio showed excellent diagnostic performance comparable to that of MRI ECV in the detection of cardiac amyloidosis.Keywords: MR Imaging, Cardiac, Heart, Cardiomyopathies Supplemental material is available for this article. © RSNA, 2023.
Collapse
|
13
|
Panda A, Homb AC, Krumm P, Nikolaou K, Huang SS, Jaber W, Bolen MA, Rajiah PS. Cardiac Nuclear Medicine: Techniques, Applications, and Imaging Findings. Radiographics 2023; 43:e220027. [PMID: 36490208 DOI: 10.1148/rg.220027] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ananya Panda
- From the Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 559905 (A.P., A.C.H., P.S.R.); Department of Radiology, All India Institute of Medical Sciences, Jodhpur, India (A.P); Department of Radiology, University of Tubingen, Tubingen, Germany (P.K., K.N.); and Department of Radiology, Cleveland Clinic Foundation, Cleveland, Ohio (S.S.H., W.J., M.A.B.)
| | - Andrew C Homb
- From the Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 559905 (A.P., A.C.H., P.S.R.); Department of Radiology, All India Institute of Medical Sciences, Jodhpur, India (A.P); Department of Radiology, University of Tubingen, Tubingen, Germany (P.K., K.N.); and Department of Radiology, Cleveland Clinic Foundation, Cleveland, Ohio (S.S.H., W.J., M.A.B.)
| | - Patrick Krumm
- From the Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 559905 (A.P., A.C.H., P.S.R.); Department of Radiology, All India Institute of Medical Sciences, Jodhpur, India (A.P); Department of Radiology, University of Tubingen, Tubingen, Germany (P.K., K.N.); and Department of Radiology, Cleveland Clinic Foundation, Cleveland, Ohio (S.S.H., W.J., M.A.B.)
| | - Konstantin Nikolaou
- From the Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 559905 (A.P., A.C.H., P.S.R.); Department of Radiology, All India Institute of Medical Sciences, Jodhpur, India (A.P); Department of Radiology, University of Tubingen, Tubingen, Germany (P.K., K.N.); and Department of Radiology, Cleveland Clinic Foundation, Cleveland, Ohio (S.S.H., W.J., M.A.B.)
| | - Steve S Huang
- From the Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 559905 (A.P., A.C.H., P.S.R.); Department of Radiology, All India Institute of Medical Sciences, Jodhpur, India (A.P); Department of Radiology, University of Tubingen, Tubingen, Germany (P.K., K.N.); and Department of Radiology, Cleveland Clinic Foundation, Cleveland, Ohio (S.S.H., W.J., M.A.B.)
| | - Wael Jaber
- From the Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 559905 (A.P., A.C.H., P.S.R.); Department of Radiology, All India Institute of Medical Sciences, Jodhpur, India (A.P); Department of Radiology, University of Tubingen, Tubingen, Germany (P.K., K.N.); and Department of Radiology, Cleveland Clinic Foundation, Cleveland, Ohio (S.S.H., W.J., M.A.B.)
| | - Michael A Bolen
- From the Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 559905 (A.P., A.C.H., P.S.R.); Department of Radiology, All India Institute of Medical Sciences, Jodhpur, India (A.P); Department of Radiology, University of Tubingen, Tubingen, Germany (P.K., K.N.); and Department of Radiology, Cleveland Clinic Foundation, Cleveland, Ohio (S.S.H., W.J., M.A.B.)
| | - Prabhakar Shantha Rajiah
- From the Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 559905 (A.P., A.C.H., P.S.R.); Department of Radiology, All India Institute of Medical Sciences, Jodhpur, India (A.P); Department of Radiology, University of Tubingen, Tubingen, Germany (P.K., K.N.); and Department of Radiology, Cleveland Clinic Foundation, Cleveland, Ohio (S.S.H., W.J., M.A.B.)
| |
Collapse
|
14
|
Rempakos A, Papamichail A, Loritis K, Androulakis E, Lama N, Briasoulis A. Non-LGE Cardiac Magnetic Resonance Imaging in Patients with Cardiac Amyloidosis. Curr Pharm Des 2023; 29:527-534. [PMID: 36515044 DOI: 10.2174/1381612829666221212100114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/02/2022] [Accepted: 11/12/2022] [Indexed: 12/15/2022]
Abstract
Cardiac involvement is the leading cause of death in patients with cardiac amyloidosis. Early recognition is crucial as it can significantly change the course of the disease. Until now, the imaging modality of choice for diagnosing cardiac amyloidosis has been cardiac magnetic resonance imaging (CMR) with late gadolinium enhancement (LGE). LGE-CMR in patients with cardiac amyloidosis reveals characteristic LGE patterns that lead to a diagnosis while also correlating well with disease prognosis. However, LGE-CMR has numerous drawbacks that the newer CMR modality, T1 mapping, aims to improve. T1 mapping can be further subdivided into native T1 mapping, which does not require the use of contrast, and ECV measurement, which requires the use of contrast. Numerous T1 mapping techniques have been developed, each one with its own advantages and disadvantages when it comes to procedure difficulty and image quality. A literature review to identify relevant published articles was performed by two authors. This review aimed to present the value of T1 mapping in diagnosing cardiac amyloidosis, quantifying the amyloid burden, and evaluating the prognosis of patients with amyloidosis with cardiac involvement.
Collapse
Affiliation(s)
- Athanasios Rempakos
- Medical School of Athens, National and Kapodistrian University of Athens, Athens, Greece
| | - Adamantia Papamichail
- Medical School of Athens, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Loritis
- Medical School of Athens, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Nikki Lama
- Medical School of Athens, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexandros Briasoulis
- Medical School of Athens, National and Kapodistrian University of Athens, Athens, Greece
- Division of Cardiovascular Diseases, Section of Heart Failure and Transplant, University of Iowa College of Medicine, Iowa City, IA, USA
| |
Collapse
|
15
|
Rajaraman S, Antani S. Editorial on Special Issue "Artificial Intelligence in Image-Based Screening, Diagnostics, and Clinical Care of Cardiopulmonary Diseases". Diagnostics (Basel) 2022; 12:2615. [PMID: 36359459 PMCID: PMC9689170 DOI: 10.3390/diagnostics12112615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 09/08/2024] Open
Abstract
Cardiopulmonary diseases are a significant cause of mortality and morbidity worldwide [...].
Collapse
Affiliation(s)
| | - Sameer Antani
- Computational Health Research Branch, National Library of Medicine, 8600 Rockville Pike, Bethesda, MD 20894, USA
| |
Collapse
|
16
|
Timóteo AT, Rosa SA, Brás PG, Ferreira MJV, Bettencourt N. Multimodality imaging in cardiac amyloidosis: State-of-the-art review. JOURNAL OF CLINICAL ULTRASOUND : JCU 2022; 50:1084-1096. [PMID: 36218201 DOI: 10.1002/jcu.23271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 06/16/2023]
Abstract
Amyloidosis is a systemic disease, characterized by deposition of amyloid fibrils in various organs, including the heart. For the diagnosis of cardiac amyloidosis (CA) it is required a high level of clinical suspicion and in the presence of clinical, laboratorial, and electrocardiographic red flags, a comprehensive multimodality imaging evaluation is warranted, including echocardiography, magnetic resonance, scintigraphy, and computed tomography, that will confirm diagnosis and define the CA subtype, which is of the utmost importance to plan a treatment strategy. We will review the use of multimodality imaging in the evaluation of CA, including the latest applications, and a practical flow-chart will sum-up this evidence.
Collapse
Affiliation(s)
- Ana Teresa Timóteo
- Cardiology Department, Santa Marta Hospital, Centro Hospitalar Universitário Lisboa Central, Lisbon, Portugal
- NOVA Medical School, Lisbon, Portugal
| | - Silvia Aguiar Rosa
- Cardiology Department, Santa Marta Hospital, Centro Hospitalar Universitário Lisboa Central, Lisbon, Portugal
- Heart Center, Hospital Cruz Vermelha Portuguesa, Lisbon, Portugal
| | - Pedro Garcia Brás
- Cardiology Department, Santa Marta Hospital, Centro Hospitalar Universitário Lisboa Central, Lisbon, Portugal
| | - Maria João Vidigal Ferreira
- Faculty of Medicine, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra University, Coimbra, Portugal
- Cardiology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | | |
Collapse
|
17
|
Cha MJ, Kim C, Park CH, Hong YJ, Shin JM, Kim TH, Cha YJ, Park CH. Differential Diagnosis of Thick Myocardium according to Histologic Features Revealed by Multiparametric Cardiac Magnetic Resonance Imaging. Korean J Radiol 2022; 23:581-597. [PMID: 35555885 PMCID: PMC9174501 DOI: 10.3348/kjr.2021.0815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/21/2022] [Accepted: 02/27/2022] [Indexed: 11/16/2022] Open
Abstract
Left ventricular (LV) wall thickening, or LV hypertrophy (LVH), is common and occurs in diverse conditions including hypertrophic cardiomyopathy (HCM), hypertensive heart disease, aortic valve stenosis, lysosomal storage disorders, cardiac amyloidosis, mitochondrial cardiomyopathy, sarcoidosis and athlete’s heart. Cardiac magnetic resonance (CMR) imaging provides various tissue contrasts and characteristics that reflect histological changes in the myocardium, such as cellular hypertrophy, cardiomyocyte disarray, interstitial fibrosis, extracellular accumulation of insoluble proteins, intracellular accumulation of fat, and intracellular vacuolar changes. Therefore, CMR imaging may be beneficial in establishing a differential diagnosis of LVH. Although various diseases share LV wall thickening as a common feature, the histologic changes that underscore each disease are distinct. This review focuses on CMR multiparametric myocardial analysis, which may provide clues for the differentiation of thickened myocardium based on the histologic features of HCM and its phenocopies.
Collapse
Affiliation(s)
- Min Jae Cha
- Department of Radiology, Chung-Ang University Hospital, Seoul, Korea
| | - Cherry Kim
- Department of Radiology, Korea University Ansan Hospital, Ansan, Korea
| | - Chan Ho Park
- Department of Radiology, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Yoo Jin Hong
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Min Shin
- Department of Radiology and Research Institute of Radiological Science, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Tae Hoon Kim
- Department of Radiology and Research Institute of Radiological Science, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Yoon Jin Cha
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| | - Chul Hwan Park
- Department of Radiology and Research Institute of Radiological Science, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
18
|
Fadl SA, Revels JW, Rezai Gharai L, Hanneman K, Dana F, Proffitt EK, Grizzard JD. Cardiac MRI of Hereditary Cardiomyopathy. Radiographics 2022; 42:625-643. [PMID: 35275782 DOI: 10.1148/rg.210147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Hereditary cardiomyopathy comprises a heterogeneous group of diseases of the cardiac muscle that are characterized by the presence of genetic mutations. Cardiac MRI is central to evaluation of patients with cardiomyopathy owing to its ability to allow evaluation of many different tissue properties in a single examination. For example, cine MRI is the standard of care for assessment of myocardial structure and function. It clearly shows regions of asymmetric wall thickening that are typical of hypertrophic cardiomyopathy and allows it to be differentiated from other hereditary disorders such as Fabry disease or transthyretin cardiac amyloidosis that produce concentric hypertrophy. Late gadolinium enhancement provides a different tissue property and allows these latter two causes of concentric hypertrophy to be distinguished on the basis of their enhancement appearances (Fabry disease shows midwall basal inferolateral enhancement, and amyloidosis shows global subendocardial enhancement). Native T1 mapping may similarly allow differentiation between Fabry disease and amyloidosis without the use of contrast material. T2*-weighted MRI is important in the detection and quantification of iron overload cardiomyopathy. Other hereditary entities for which comprehensive MRI has proven essential include Danon disease, familial dilated cardiomyopathy, hereditary muscular dystrophy, arrhythmogenic right ventricular cardiomyopathy, and ventricular noncompaction. As a result of the diagnostic power of cardiac MRI, cardiac MRI examinations are being requested with increasing frequency, not only in academic centers but also in community practices. The genetic background, pathophysiologic characteristics, and clinical presentation of patients with hereditary cardiomyopathy are described; the characteristic cardiac MRI features of hereditary cardiomyopathy are discussed; and the role of MRI in risk stratification, treatment, and prognostication in patients with cardiomyopathy is reviewed. ©RSNA, 2022 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Shaimaa A Fadl
- From the Department of Radiology, Virginia Commonwealth University Health Systems, 1250 E Marshall St, Richmond, VA 23219 (S.A.F., L.R.G., F.D., E.K.P., J.D.G.); Department of Radiology, University of New Mexico, Albuquerque, NM (J.W.R.); and Department of Medical Imaging, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ont, Canada (K.H.)
| | - Jonathan W Revels
- From the Department of Radiology, Virginia Commonwealth University Health Systems, 1250 E Marshall St, Richmond, VA 23219 (S.A.F., L.R.G., F.D., E.K.P., J.D.G.); Department of Radiology, University of New Mexico, Albuquerque, NM (J.W.R.); and Department of Medical Imaging, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ont, Canada (K.H.)
| | - Leila Rezai Gharai
- From the Department of Radiology, Virginia Commonwealth University Health Systems, 1250 E Marshall St, Richmond, VA 23219 (S.A.F., L.R.G., F.D., E.K.P., J.D.G.); Department of Radiology, University of New Mexico, Albuquerque, NM (J.W.R.); and Department of Medical Imaging, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ont, Canada (K.H.)
| | - Kate Hanneman
- From the Department of Radiology, Virginia Commonwealth University Health Systems, 1250 E Marshall St, Richmond, VA 23219 (S.A.F., L.R.G., F.D., E.K.P., J.D.G.); Department of Radiology, University of New Mexico, Albuquerque, NM (J.W.R.); and Department of Medical Imaging, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ont, Canada (K.H.)
| | - Franklin Dana
- From the Department of Radiology, Virginia Commonwealth University Health Systems, 1250 E Marshall St, Richmond, VA 23219 (S.A.F., L.R.G., F.D., E.K.P., J.D.G.); Department of Radiology, University of New Mexico, Albuquerque, NM (J.W.R.); and Department of Medical Imaging, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ont, Canada (K.H.)
| | - Elizabeth Kate Proffitt
- From the Department of Radiology, Virginia Commonwealth University Health Systems, 1250 E Marshall St, Richmond, VA 23219 (S.A.F., L.R.G., F.D., E.K.P., J.D.G.); Department of Radiology, University of New Mexico, Albuquerque, NM (J.W.R.); and Department of Medical Imaging, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ont, Canada (K.H.)
| | - John D Grizzard
- From the Department of Radiology, Virginia Commonwealth University Health Systems, 1250 E Marshall St, Richmond, VA 23219 (S.A.F., L.R.G., F.D., E.K.P., J.D.G.); Department of Radiology, University of New Mexico, Albuquerque, NM (J.W.R.); and Department of Medical Imaging, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ont, Canada (K.H.)
| |
Collapse
|
19
|
Rimbas RC, Balinisteanu A, Magda SL, Visoiu SI, Ciobanu AO, Beganu E, Nicula AI, Vinereanu D. New Advanced Imaging Parameters and Biomarkers-A Step Forward in the Diagnosis and Prognosis of TTR Cardiomyopathy. J Clin Med 2022; 11:2360. [PMID: 35566485 PMCID: PMC9101617 DOI: 10.3390/jcm11092360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022] Open
Abstract
Transthyretin amyloid cardiomyopathy (ATTR-CM) is an infiltrative disorder characterized by extracellular myocardial deposits of amyloid fibrils, with poor outcome, leading to heart failure and death, with significant treatment expenditure. In the era of a novel therapeutic arsenal of disease-modifying agents that target a myriad of pathophysiological mechanisms, timely and accurate diagnosis of ATTR-CM is crucial. Recent advances in therapeutic strategies shown to be most beneficial in the early stages of the disease have determined a paradigm shift in the screening, diagnostic algorithm, and risk classification of patients with ATTR-CM. The aim of this review is to explore the utility of novel specific non-invasive imaging parameters and biomarkers from screening to diagnosis, prognosis, risk stratification, and monitoring of the response to therapy. We will summarize the knowledge of the most recent advances in diagnostic, prognostic, and treatment tailoring parameters for early recognition, prediction of outcome, and better selection of therapeutic candidates in ATTR-CM. Moreover, we will provide input from different potential pathways involved in the pathophysiology of ATTR-CM, on top of the amyloid deposition, such as inflammation, endothelial dysfunction, reduced nitric oxide bioavailability, oxidative stress, and myocardial fibrosis, and their diagnostic, prognostic, and therapeutic implications.
Collapse
Affiliation(s)
- Roxana Cristina Rimbas
- Cardiology and Cardiovascular Surgery Department, University and Emergency Hospital, 050098 Bucharest, Romania; (R.C.R.); (A.B.); (A.O.C.); (E.B.); (D.V.)
- Cardiology Department, University of Medicine and Pharmacy Carol Davila, 020021 Bucharest, Romania; (S.I.V.); (A.I.N.)
| | - Anca Balinisteanu
- Cardiology and Cardiovascular Surgery Department, University and Emergency Hospital, 050098 Bucharest, Romania; (R.C.R.); (A.B.); (A.O.C.); (E.B.); (D.V.)
- Cardiology Department, University of Medicine and Pharmacy Carol Davila, 020021 Bucharest, Romania; (S.I.V.); (A.I.N.)
| | - Stefania Lucia Magda
- Cardiology and Cardiovascular Surgery Department, University and Emergency Hospital, 050098 Bucharest, Romania; (R.C.R.); (A.B.); (A.O.C.); (E.B.); (D.V.)
- Cardiology Department, University of Medicine and Pharmacy Carol Davila, 020021 Bucharest, Romania; (S.I.V.); (A.I.N.)
| | - Simona Ionela Visoiu
- Cardiology Department, University of Medicine and Pharmacy Carol Davila, 020021 Bucharest, Romania; (S.I.V.); (A.I.N.)
| | - Andrea Olivia Ciobanu
- Cardiology and Cardiovascular Surgery Department, University and Emergency Hospital, 050098 Bucharest, Romania; (R.C.R.); (A.B.); (A.O.C.); (E.B.); (D.V.)
- Cardiology Department, University of Medicine and Pharmacy Carol Davila, 020021 Bucharest, Romania; (S.I.V.); (A.I.N.)
| | - Elena Beganu
- Cardiology and Cardiovascular Surgery Department, University and Emergency Hospital, 050098 Bucharest, Romania; (R.C.R.); (A.B.); (A.O.C.); (E.B.); (D.V.)
| | - Alina Ioana Nicula
- Cardiology Department, University of Medicine and Pharmacy Carol Davila, 020021 Bucharest, Romania; (S.I.V.); (A.I.N.)
- Radiology Department, University and Emergency Hospital, 050098 Bucharest, Romania
| | - Dragos Vinereanu
- Cardiology and Cardiovascular Surgery Department, University and Emergency Hospital, 050098 Bucharest, Romania; (R.C.R.); (A.B.); (A.O.C.); (E.B.); (D.V.)
- Cardiology Department, University of Medicine and Pharmacy Carol Davila, 020021 Bucharest, Romania; (S.I.V.); (A.I.N.)
| |
Collapse
|
20
|
Zhou XY, Tang CX, Guo YK, Tao XW, Chen WC, Guo JZ, Ren GS, Li X, Luo S, Li JH, Huang WW, Lu GM, Zhang LJ, Huang XH, Wang YN, Yang GF. Diagnosis of Cardiac Amyloidosis Using a Radiomics Approach Applied to Late Gadolinium-Enhanced Cardiac Magnetic Resonance Images: A Retrospective, Multicohort, Diagnostic Study. Front Cardiovasc Med 2022; 9:818957. [PMID: 35433852 PMCID: PMC9005767 DOI: 10.3389/fcvm.2022.818957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 02/28/2022] [Indexed: 11/24/2022] Open
Abstract
Objectives To assess the potential of a radiomics approach of late gadolinium enhancement (LGE) cardiac magnetic resonance (CMR) in the diagnosis of cardiac amyloidosis (CA). Materials and Methods This retrospective study included 200 patients with biopsy-proven light-chain (AL) amyloidosis. CA was diagnosed on the basis of systemic amyloidosis confirmed with evidence of cardiac involvement by imaging and clinical biomarkers. A total of 139 patients [54 ± 8 years, 75 (54%) men] in our institution were divided into training cohort [n = 97, mean age of 53 ± 8 years, 54 (56%) men] and internal validation cohort [n = 42, mean age: 56 ± 8 years, 21 (50%) men] with a ratio of 7:3, while 61 patients [mean age: 60 ± 9 years, 42 (69%) men] from the other two institutions were enrolled for external validation. Radiomics features were extracted from global (all short-axis images from base-to-apex) left ventricular (LV) myocardium and three different segments (basal, midventricular, and apex) on short-axis LGE images using the phase-sensitive reconstruction (PSIR) sequence. The Boruta algorithm was used to select the radiomics features. This model was built using the XGBoost algorithm. The two readers performed qualitative and semiquantitative assessment of the LGE images based on the visual LGE patterns, while the quantitative assessment was measured using a dedicated semi-automatic CMR software. The diagnostic performance of the radiomics and other qualitative and quantitative parameters were compared by a receiver operating characteristic (ROC) curve analysis. A correlation between radiomics and the degree of myocardial involvement by amyloidosis was tested. Results A total of 1,906 radiomics features were extracted for each LV section. No statistical significance was indicated between any two slices for diagnosing CA, and the highest area under the curve (AUC) was found in basal section {0.92 [95% confidence interval (CI), 0.86–0.97] in the LGE images in the training set, 0.89 (95% CI, 0.79–1.00) in the internal validation set, and 0.92 (95% CI, 0.85–0.99) in the external validation set}, which was superior to the visual assessment and quantitative LGE parameters. Moderate correlations between global or basal radiomics scores (Rad-scores) and Mayo stage in all patients were reported (Spearman’s Rho = 0.61, 0.62; all p < 0.01). Conclusion A radiomics analysis of the LGE images provides incremental information compared with the visual assessment and quantitative parameters on CMR to diagnose CA. Radiomics was moderately correlated with the severity of CA. Further studies are needed to assess the prognostic significance of radiomics in patients with CA.
Collapse
Affiliation(s)
- Xi Yang Zhou
- Department of Nuclear Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Diagnostic Radiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Chun Xiang Tang
- Department of Diagnostic Radiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Ying Kun Guo
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
| | | | - Wen Cui Chen
- National Clinical Research Center of Kidney Disease, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Jin Zhou Guo
- National Clinical Research Center of Kidney Disease, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Gui Sheng Ren
- National Clinical Research Center of Kidney Disease, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Xiao Li
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Song Luo
- Department of Diagnostic Radiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jun Hao Li
- Department of Nuclear Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Diagnostic Radiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wei Wei Huang
- Department of Diagnostic Radiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Guang Ming Lu
- Department of Diagnostic Radiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Long Jiang Zhang
- Department of Diagnostic Radiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiang Hua Huang
- Bayer Healthcare, Shanghai, China
- *Correspondence: Xiang Hua Huang,
| | - Yi Ning Wang
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Yi Ning Wang,
| | - Gui Fen Yang
- Department of Nuclear Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- Gui Fen Yang,
| |
Collapse
|
21
|
Adhyapak S, Thomas G, Gupta A, Shaikh J, Jose T, Kramadhari H, Varghese K. Multimodality Imaging Clues for Restrictive Cardiomyopathy. JOURNAL OF THE INDIAN ACADEMY OF ECHOCARDIOGRAPHY & CARDIOVASCULAR IMAGING 2022. [DOI: 10.4103/jiae.jiae_55_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
22
|
Ensako T, Norikane T, Yamamoto Y, Takami Y, Mitamura K, Maeda Y, Noma T, Nishiyama Y. Focal myocardial perfusion abnormalities in cardiac amyloidosis as compared with CMR, bone scintigraphy, and 11C-PiB PET. J Nucl Cardiol 2021; 28:2408-2411. [PMID: 32909242 DOI: 10.1007/s12350-020-02349-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Toshiya Ensako
- Department of Radiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Takashi Norikane
- Department of Radiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan.
| | - Yuka Yamamoto
- Department of Radiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Yasukage Takami
- Department of Radiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Katsuya Mitamura
- Department of Radiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Yukito Maeda
- Department of Radiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Takahisa Noma
- Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Yoshihiro Nishiyama
- Department of Radiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| |
Collapse
|
23
|
Sugi MD, Kawashima A, Salomao MA, Bhalla S, Venkatesh SK, Pickhardt PJ. Amyloidosis: Multisystem Spectrum of Disease with Pathologic Correlation. Radiographics 2021; 41:1454-1474. [PMID: 34357805 DOI: 10.1148/rg.2021210006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Amyloidosis is a group of conditions defined by extracellular deposition of insoluble proteins that can lead to multiorgan dysfunction and failure. The systemic form of the disease is often associated with a plasma cell dyscrasia but may also occur in the setting of chronic inflammation, long-term dialysis, malignancy, or multiple hereditary conditions. Localized forms of the disease most often involve the skin, tracheobronchial tree, and urinary tract and typically require tissue sampling for diagnosis, as they may mimic many conditions including malignancy at imaging alone. Advancements in MRI and nuclear medicine have provided greater specificity for the diagnosis of amyloidosis involving the central nervous system and heart, potentially obviating the need for biopsy of the affected organ in certain circumstances. Specifically, a combination of characteristic findings at noninvasive cardiac MRI and skeletal scintigraphy in patients without an underlying plasma cell dyscrasia is diagnostic for cardiac transthyretin amyloidosis. Histologically, the presence of amyloid is denoted by staining with Congo red and a characteristic apple green birefringence under polarized light microscopy. The imaging features of amyloid vary across each organ system but share some common patterns, such as soft-tissue infiltration and calcification, that may suggest the diagnosis in the appropriate clinical context. The availability of novel therapeutics that target amyloid protein fibrils such as transthyretin highlights the importance of early diagnosis. Online supplemental material is available for this article. ©RSNA, 2021.
Collapse
Affiliation(s)
- Mark D Sugi
- From the Department of Radiology and Biomedical Imaging, University of California, 505 Parnassus Ave, 3rd Floor, M391, Box 0628, San Francisco, CA 94143 (M.D.S.); Departments of Radiology (A.K.) and Laboratory Medicine and Pathology (M.A.S.), Mayo Clinic Arizona, Scottsdale, Ariz; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (S.B.); Department of Radiology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minn (S.K.V.); and Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wis (P.J.P.)
| | - Akira Kawashima
- From the Department of Radiology and Biomedical Imaging, University of California, 505 Parnassus Ave, 3rd Floor, M391, Box 0628, San Francisco, CA 94143 (M.D.S.); Departments of Radiology (A.K.) and Laboratory Medicine and Pathology (M.A.S.), Mayo Clinic Arizona, Scottsdale, Ariz; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (S.B.); Department of Radiology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minn (S.K.V.); and Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wis (P.J.P.)
| | - Marcela A Salomao
- From the Department of Radiology and Biomedical Imaging, University of California, 505 Parnassus Ave, 3rd Floor, M391, Box 0628, San Francisco, CA 94143 (M.D.S.); Departments of Radiology (A.K.) and Laboratory Medicine and Pathology (M.A.S.), Mayo Clinic Arizona, Scottsdale, Ariz; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (S.B.); Department of Radiology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minn (S.K.V.); and Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wis (P.J.P.)
| | - Sanjeev Bhalla
- From the Department of Radiology and Biomedical Imaging, University of California, 505 Parnassus Ave, 3rd Floor, M391, Box 0628, San Francisco, CA 94143 (M.D.S.); Departments of Radiology (A.K.) and Laboratory Medicine and Pathology (M.A.S.), Mayo Clinic Arizona, Scottsdale, Ariz; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (S.B.); Department of Radiology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minn (S.K.V.); and Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wis (P.J.P.)
| | - Sudhakar K Venkatesh
- From the Department of Radiology and Biomedical Imaging, University of California, 505 Parnassus Ave, 3rd Floor, M391, Box 0628, San Francisco, CA 94143 (M.D.S.); Departments of Radiology (A.K.) and Laboratory Medicine and Pathology (M.A.S.), Mayo Clinic Arizona, Scottsdale, Ariz; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (S.B.); Department of Radiology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minn (S.K.V.); and Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wis (P.J.P.)
| | - Perry J Pickhardt
- From the Department of Radiology and Biomedical Imaging, University of California, 505 Parnassus Ave, 3rd Floor, M391, Box 0628, San Francisco, CA 94143 (M.D.S.); Departments of Radiology (A.K.) and Laboratory Medicine and Pathology (M.A.S.), Mayo Clinic Arizona, Scottsdale, Ariz; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (S.B.); Department of Radiology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minn (S.K.V.); and Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wis (P.J.P.)
| |
Collapse
|
24
|
Deux JF, Nouri R, Tacher V, Zaroui A, Derbel H, Sifaoui I, Chevance V, Ridouani F, Galat A, Kharoubi M, Oghina S, Guendouz S, Audureau E, Teiger E, Kobeiter H, Damy T. Diagnostic Value of Extracellular Volume Quantification and Myocardial Perfusion Analysis at CT in Cardiac Amyloidosis. Radiology 2021; 300:326-335. [PMID: 34100681 DOI: 10.1148/radiol.2021204192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background CT can provide information regarding myocardial perfusion and expansion of the extracellular space, which is relevant to patients with cardiac amyloidosis (CA). Purpose To evaluate the role of CT in the diagnosis and prognosis of CA. Materials and Methods In this prospective study (Commission National de l'Informatique et des Libertés registration no. 1431858), participants with CA, participants with nonamyloid cardiac hypertrophy (NACH), and participants without hypertrophy were included between April 2017 and December 2018. The confirmed diagnosis of CA was determined according to established criteria (ie, proven with positive bone scintigraphy or endomyocardial biopsy). All participants were imaged with dynamic CT perfusion imaging at whole-heart cardiac CT. Extracellular volume measured at CT and myocardial perfusion parameters calculated on CT perfusion maps were compared among different participant groups. Differences between continuous data were tested using the unpaired t test, Mann-Whitney rank-sum test, or the Kruskal-Wallis test. Results A total of 84 participants with CA, 43 participants with NACH, and 33 participants without hypertrophy were included. Participants with CA exhibited a higher value of extracellular volume measured at CT (mean, 54.7% ± 9.7 [standard deviation]) than participants with NACH (mean, 34.6% ± 9.1; P < .001) and participants without hypertrophy (mean, 35.9% ± 9.9; P = .001). Mean myocardial blood volume and mean myocardial blood flow were lower in participants with CA (mean myocardial blood volume: 4.05 mL/100 g of myocardium ± 0.80; mean myocardial blood flow: 73.2 mL/100 g of myocardium per minute ± 25.7) compared to participants with NACH (mean myocardial blood volume: 5.38 mL/100 g of myocardium ± 1.20, P < .001; mean myocardial blood flow: 89.6 mL/100 g of myocardium per minute ± 31.3, P = .007) and participants without hypertrophy (mean myocardial blood volume: 5.68 mL/100 g of myocardium ± 1.05; mean myocardial blood flow: 106.3 mL/100 g of myocardium per minute ± 29.8; P < .001 for both). Extracellular volume measured at CT (hazard ratio >0.56 vs ≤0.56 = 4.2 [95% CI: 1.4, 11.8]), mean slope (hazard ratio ≤3.0 sec-1 vs >3.0 sec-1 = 0.2 [95% CI: 0.1, 0.8]), and time to peak (hazard ratio >20 seconds vs ≤20 seconds = 11.6 [95% CI: 1.3, 101.6]) were predictive of mortality in participants with CA. Conclusion Participants with cardiac amyloidosis exhibited an increase in extracellular volume at CT and abnormal CT perfusion parameters. Extracellular volume and several perfusion parameters were predictive of mortality. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Zimmerman in this issue.
Collapse
Affiliation(s)
- Jean-François Deux
- From the Department of Radiology (J.F.D., R.N., V.T., H.D., I.S., V.C., F.R., H.K.), Department of Cardiology (A.Z., A.G., M.K., S.O., S.G., E.T., T.D.), National Referral Centre for Cardiac Amyloidosis (J.F.D., A.Z., A.G., M.K., S.O., S.G., E.T., T.D.), and Department of Public Health (E.A.), Henri Mondor Hospital, University Paris Est Créteil, Assistance Publique-Hôpitaux de Paris, 51 av Mal de Lattre de Tassigny, 94000 Créteil, France
| | - Refaat Nouri
- From the Department of Radiology (J.F.D., R.N., V.T., H.D., I.S., V.C., F.R., H.K.), Department of Cardiology (A.Z., A.G., M.K., S.O., S.G., E.T., T.D.), National Referral Centre for Cardiac Amyloidosis (J.F.D., A.Z., A.G., M.K., S.O., S.G., E.T., T.D.), and Department of Public Health (E.A.), Henri Mondor Hospital, University Paris Est Créteil, Assistance Publique-Hôpitaux de Paris, 51 av Mal de Lattre de Tassigny, 94000 Créteil, France
| | - Vania Tacher
- From the Department of Radiology (J.F.D., R.N., V.T., H.D., I.S., V.C., F.R., H.K.), Department of Cardiology (A.Z., A.G., M.K., S.O., S.G., E.T., T.D.), National Referral Centre for Cardiac Amyloidosis (J.F.D., A.Z., A.G., M.K., S.O., S.G., E.T., T.D.), and Department of Public Health (E.A.), Henri Mondor Hospital, University Paris Est Créteil, Assistance Publique-Hôpitaux de Paris, 51 av Mal de Lattre de Tassigny, 94000 Créteil, France
| | - Amira Zaroui
- From the Department of Radiology (J.F.D., R.N., V.T., H.D., I.S., V.C., F.R., H.K.), Department of Cardiology (A.Z., A.G., M.K., S.O., S.G., E.T., T.D.), National Referral Centre for Cardiac Amyloidosis (J.F.D., A.Z., A.G., M.K., S.O., S.G., E.T., T.D.), and Department of Public Health (E.A.), Henri Mondor Hospital, University Paris Est Créteil, Assistance Publique-Hôpitaux de Paris, 51 av Mal de Lattre de Tassigny, 94000 Créteil, France
| | - Haytham Derbel
- From the Department of Radiology (J.F.D., R.N., V.T., H.D., I.S., V.C., F.R., H.K.), Department of Cardiology (A.Z., A.G., M.K., S.O., S.G., E.T., T.D.), National Referral Centre for Cardiac Amyloidosis (J.F.D., A.Z., A.G., M.K., S.O., S.G., E.T., T.D.), and Department of Public Health (E.A.), Henri Mondor Hospital, University Paris Est Créteil, Assistance Publique-Hôpitaux de Paris, 51 av Mal de Lattre de Tassigny, 94000 Créteil, France
| | - Islem Sifaoui
- From the Department of Radiology (J.F.D., R.N., V.T., H.D., I.S., V.C., F.R., H.K.), Department of Cardiology (A.Z., A.G., M.K., S.O., S.G., E.T., T.D.), National Referral Centre for Cardiac Amyloidosis (J.F.D., A.Z., A.G., M.K., S.O., S.G., E.T., T.D.), and Department of Public Health (E.A.), Henri Mondor Hospital, University Paris Est Créteil, Assistance Publique-Hôpitaux de Paris, 51 av Mal de Lattre de Tassigny, 94000 Créteil, France
| | - Virgile Chevance
- From the Department of Radiology (J.F.D., R.N., V.T., H.D., I.S., V.C., F.R., H.K.), Department of Cardiology (A.Z., A.G., M.K., S.O., S.G., E.T., T.D.), National Referral Centre for Cardiac Amyloidosis (J.F.D., A.Z., A.G., M.K., S.O., S.G., E.T., T.D.), and Department of Public Health (E.A.), Henri Mondor Hospital, University Paris Est Créteil, Assistance Publique-Hôpitaux de Paris, 51 av Mal de Lattre de Tassigny, 94000 Créteil, France
| | - Fourat Ridouani
- From the Department of Radiology (J.F.D., R.N., V.T., H.D., I.S., V.C., F.R., H.K.), Department of Cardiology (A.Z., A.G., M.K., S.O., S.G., E.T., T.D.), National Referral Centre for Cardiac Amyloidosis (J.F.D., A.Z., A.G., M.K., S.O., S.G., E.T., T.D.), and Department of Public Health (E.A.), Henri Mondor Hospital, University Paris Est Créteil, Assistance Publique-Hôpitaux de Paris, 51 av Mal de Lattre de Tassigny, 94000 Créteil, France
| | - Arnault Galat
- From the Department of Radiology (J.F.D., R.N., V.T., H.D., I.S., V.C., F.R., H.K.), Department of Cardiology (A.Z., A.G., M.K., S.O., S.G., E.T., T.D.), National Referral Centre for Cardiac Amyloidosis (J.F.D., A.Z., A.G., M.K., S.O., S.G., E.T., T.D.), and Department of Public Health (E.A.), Henri Mondor Hospital, University Paris Est Créteil, Assistance Publique-Hôpitaux de Paris, 51 av Mal de Lattre de Tassigny, 94000 Créteil, France
| | - Mounira Kharoubi
- From the Department of Radiology (J.F.D., R.N., V.T., H.D., I.S., V.C., F.R., H.K.), Department of Cardiology (A.Z., A.G., M.K., S.O., S.G., E.T., T.D.), National Referral Centre for Cardiac Amyloidosis (J.F.D., A.Z., A.G., M.K., S.O., S.G., E.T., T.D.), and Department of Public Health (E.A.), Henri Mondor Hospital, University Paris Est Créteil, Assistance Publique-Hôpitaux de Paris, 51 av Mal de Lattre de Tassigny, 94000 Créteil, France
| | - Silvia Oghina
- From the Department of Radiology (J.F.D., R.N., V.T., H.D., I.S., V.C., F.R., H.K.), Department of Cardiology (A.Z., A.G., M.K., S.O., S.G., E.T., T.D.), National Referral Centre for Cardiac Amyloidosis (J.F.D., A.Z., A.G., M.K., S.O., S.G., E.T., T.D.), and Department of Public Health (E.A.), Henri Mondor Hospital, University Paris Est Créteil, Assistance Publique-Hôpitaux de Paris, 51 av Mal de Lattre de Tassigny, 94000 Créteil, France
| | - Soulef Guendouz
- From the Department of Radiology (J.F.D., R.N., V.T., H.D., I.S., V.C., F.R., H.K.), Department of Cardiology (A.Z., A.G., M.K., S.O., S.G., E.T., T.D.), National Referral Centre for Cardiac Amyloidosis (J.F.D., A.Z., A.G., M.K., S.O., S.G., E.T., T.D.), and Department of Public Health (E.A.), Henri Mondor Hospital, University Paris Est Créteil, Assistance Publique-Hôpitaux de Paris, 51 av Mal de Lattre de Tassigny, 94000 Créteil, France
| | - Etienne Audureau
- From the Department of Radiology (J.F.D., R.N., V.T., H.D., I.S., V.C., F.R., H.K.), Department of Cardiology (A.Z., A.G., M.K., S.O., S.G., E.T., T.D.), National Referral Centre for Cardiac Amyloidosis (J.F.D., A.Z., A.G., M.K., S.O., S.G., E.T., T.D.), and Department of Public Health (E.A.), Henri Mondor Hospital, University Paris Est Créteil, Assistance Publique-Hôpitaux de Paris, 51 av Mal de Lattre de Tassigny, 94000 Créteil, France
| | - Emmanuel Teiger
- From the Department of Radiology (J.F.D., R.N., V.T., H.D., I.S., V.C., F.R., H.K.), Department of Cardiology (A.Z., A.G., M.K., S.O., S.G., E.T., T.D.), National Referral Centre for Cardiac Amyloidosis (J.F.D., A.Z., A.G., M.K., S.O., S.G., E.T., T.D.), and Department of Public Health (E.A.), Henri Mondor Hospital, University Paris Est Créteil, Assistance Publique-Hôpitaux de Paris, 51 av Mal de Lattre de Tassigny, 94000 Créteil, France
| | - Hicham Kobeiter
- From the Department of Radiology (J.F.D., R.N., V.T., H.D., I.S., V.C., F.R., H.K.), Department of Cardiology (A.Z., A.G., M.K., S.O., S.G., E.T., T.D.), National Referral Centre for Cardiac Amyloidosis (J.F.D., A.Z., A.G., M.K., S.O., S.G., E.T., T.D.), and Department of Public Health (E.A.), Henri Mondor Hospital, University Paris Est Créteil, Assistance Publique-Hôpitaux de Paris, 51 av Mal de Lattre de Tassigny, 94000 Créteil, France
| | - Thibaud Damy
- From the Department of Radiology (J.F.D., R.N., V.T., H.D., I.S., V.C., F.R., H.K.), Department of Cardiology (A.Z., A.G., M.K., S.O., S.G., E.T., T.D.), National Referral Centre for Cardiac Amyloidosis (J.F.D., A.Z., A.G., M.K., S.O., S.G., E.T., T.D.), and Department of Public Health (E.A.), Henri Mondor Hospital, University Paris Est Créteil, Assistance Publique-Hôpitaux de Paris, 51 av Mal de Lattre de Tassigny, 94000 Créteil, France
| |
Collapse
|
25
|
Sascău R, Anghel L, Clement A, Bostan M, Radu R, Stătescu C. The Importance of Multimodality Imaging in the Diagnosis and Management of Patients with Infiltrative Cardiomyopathies: An Update. Diagnostics (Basel) 2021; 11:diagnostics11020256. [PMID: 33562254 PMCID: PMC7915769 DOI: 10.3390/diagnostics11020256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 12/16/2022] Open
Abstract
Infiltrative cardiomyopathies (ICMs) comprise a broad spectrum of inherited and acquired conditions (mainly amyloidosis, sarcoidosis, and hemochromatosis), where the progressive buildup of abnormal substances within the myocardium results in left ventricular hypertrophy and manifests as restrictive physiology. Noninvasive multimodality imaging has gradually eliminated endomyocardial biopsy from the diagnostic workup of infiltrative cardiac deposition diseases. However, even with modern imaging techniques’ widespread availability, these pathologies persist in being largely under- or misdiagnosed. Considering the advent of novel, revolutionary pharmacotherapies for cardiac amyloidosis, the archetypal example of ICM, a standardized diagnostic approach is warranted. Therefore, this review aims to emphasize the importance of contemporary cardiac imaging in identifying specific ICM and improving outcomes via the prompt initiation of a targeted treatment.
Collapse
Affiliation(s)
- Radu Sascău
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700503 Iași, Romania; (R.S.); (R.R.); (C.S.)
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I.M.Georgescu”, 700503 Iași, Romania
| | - Larisa Anghel
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700503 Iași, Romania; (R.S.); (R.R.); (C.S.)
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I.M.Georgescu”, 700503 Iași, Romania
- Correspondence: (L.A.); (A.C.); (M.B.); Tel.: +40-0232-211834 (L.A.); +40-0232-211834 (A.C.); +40-0232-211834 (M.B.)
| | - Alexandra Clement
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I.M.Georgescu”, 700503 Iași, Romania
- Correspondence: (L.A.); (A.C.); (M.B.); Tel.: +40-0232-211834 (L.A.); +40-0232-211834 (A.C.); +40-0232-211834 (M.B.)
| | - Mădălina Bostan
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700503 Iași, Romania; (R.S.); (R.R.); (C.S.)
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I.M.Georgescu”, 700503 Iași, Romania
- Correspondence: (L.A.); (A.C.); (M.B.); Tel.: +40-0232-211834 (L.A.); +40-0232-211834 (A.C.); +40-0232-211834 (M.B.)
| | - Rodica Radu
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700503 Iași, Romania; (R.S.); (R.R.); (C.S.)
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I.M.Georgescu”, 700503 Iași, Romania
| | - Cristian Stătescu
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700503 Iași, Romania; (R.S.); (R.R.); (C.S.)
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I.M.Georgescu”, 700503 Iași, Romania
| |
Collapse
|
26
|
Toy D, Groner LK, Escalon JG, Ersahin D, Weisman SV, Legasto AC, Naeger DM. Updates on the Role of Imaging in Cardiac Amyloidosis. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2021. [DOI: 10.1007/s11936-020-00890-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|