1
|
Escalon JG, Girvin F. Smoking-Related Interstitial Lung Disease and Emphysema. Clin Chest Med 2024; 45:461-473. [PMID: 38816100 DOI: 10.1016/j.ccm.2023.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Diagnosis and treatment of patients with smoking-related lung diseases often requires multidisciplinary contributions to optimize care. Imaging plays a key role in characterizing the underlying disease, quantifying its severity, identifying potential complications, and directing management. The primary goal of this article is to provide an overview of the imaging findings and distinguishing features of smoking-related lung diseases, specifically, emphysema/chronic obstructive pulmonary disease, respiratory bronchiolitis-interstitial lung disease, smoking-related interstitial fibrosis, desquamative interstitial pneumonitis, combined pulmonary fibrosis and emphysema, pulmonary Langerhans cell histiocytosis, and E-cigarette or vaping related lung injury.
Collapse
Affiliation(s)
- Joanna G Escalon
- Department of Radiology, New York-Presbyterian Hospital-Weill Cornell Medical College, 525 E 68th Street, New York, NY 10065, USA.
| | - Francis Girvin
- Department of Radiology, New York-Presbyterian Hospital-Weill Cornell Medical College, 525 E 68th Street, New York, NY 10065, USA
| |
Collapse
|
2
|
Chen F, Li J, Li L, Tong L, Wang G, Zou X. Multidimensional biological characteristics of ground glass nodules. Front Oncol 2024; 14:1380527. [PMID: 38841161 PMCID: PMC11150621 DOI: 10.3389/fonc.2024.1380527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/07/2024] [Indexed: 06/07/2024] Open
Abstract
The detection rate of ground glass nodules (GGNs) has increased in recent years because of their malignant potential but relatively indolent biological behavior; thus, correct GGN recognition and management has become a research focus. Many scholars have explored the underlying mechanism of the indolent progression of GGNs from several perspectives, such as pathological type, genomic mutational characteristics, and immune microenvironment. GGNs have different major mutated genes at different stages of development; EGFR mutation is the most common mutation in GGNs, and p53 mutation is the most abundant mutation in the invasive stage of GGNs. Pure GGNs have fewer genomic alterations and a simpler genomic profile and exhibit a gradually evolving genomic mutation profile as the pathology progresses. Compared to advanced lung adenocarcinoma, GGN lung adenocarcinoma has a higher immune cell percentage, is under immune surveillance, and has less immune escape. However, as the pathological progression and solid component increase, negative immune regulation and immune escape increase gradually, and a suppressive immune environment is established gradually. Currently, regular computer tomography monitoring and surgery are the main treatment strategies for persistent GGNs. Stereotactic body radiotherapy and radiofrequency ablation are two local therapeutic alternatives, and systemic therapy has been progressively studied for lung cancer with GGNs. In the present review, we discuss the characterization of the multidimensional molecular evolution of GGNs that could facilitate more precise differentiation of such highly heterogeneous lesions, laying a foundation for the development of more effective individualized treatment plans.
Collapse
Affiliation(s)
- Furong Chen
- Department of Oncology, The First People’s Hospital of Shuangliu District/West China (Airport) Hospital, Sichuan University, Chengdu, China
| | - Jiangtao Li
- Department of Oncology, The First People’s Hospital of Shuangliu District/West China (Airport) Hospital, Sichuan University, Chengdu, China
| | - Lei Li
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China
- Department of State Key Laboratory of Respiratory Health and Multimobidity, West China Hospital, Sichuan University, Chengdu, China
| | - Lunbing Tong
- Department of Respiratory Medicine, Chengdu Seventh People’s Hospital/Affiliated Cancer Hospital of Chengdu Medical College, Chengdu, China
| | - Gang Wang
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China
- Department of State Key Laboratory of Respiratory Health and Multimobidity, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelin Zou
- Department of Respiratory Medicine, Chengdu Seventh People’s Hospital/Affiliated Cancer Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
3
|
Fisher DA, Murphy MC, Montesi SB, Hariri LP, Hallowell RW, Keane FK, Lanuti M, Mooradian MJ, Fintelmann FJ. Diagnosis and Treatment of Lung Cancer in the Setting of Interstitial Lung Disease. Radiol Clin North Am 2022; 60:993-1002. [PMID: 36202484 PMCID: PMC9969995 DOI: 10.1016/j.rcl.2022.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Interstitial lung disease (ILD) including idiopathic pulmonary fibrosis increases the risk of developing lung cancer. Diagnosing and staging lung cancer in patients with ILD is challenging and requires careful interpretation of computed tomography (CT) and fluorodeoxyglucose PET/CT to distinguish nodules from areas of fibrosis. Minimally invasive tissue sampling is preferred but may be technically challenging given tumor location, coexistent fibrosis, and pneumothorax risk. Current treatment options include surgery, radiation therapy, percutaneous thermal ablation, and systemic therapy; however, ILD increases the risks associated with each treatment option, especially acute ILD exacerbation.
Collapse
Affiliation(s)
- Dane A Fisher
- Department of Radiology, Division of Thoracic Imaging and Intervention, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Mark C Murphy
- Department of Radiology, Division of Thoracic Imaging and Intervention, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Sydney B Montesi
- Division of Pulmonology and Critical Care Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Lida P Hariri
- Department of Pathology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Robert W Hallowell
- Division of Pulmonology and Critical Care Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Florence K Keane
- Department of Radiation Oncology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Michael Lanuti
- Department of Surgery, Division of Thoracic Surgery, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Meghan J Mooradian
- Massachusetts General Hospital Cancer Center, 55 Fruit Street, Boston, MA 02114, USA
| | - Florian J Fintelmann
- Department of Radiology, Division of Thoracic Imaging and Intervention, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA.
| |
Collapse
|
4
|
Bashour SI, Lazarus DR. Therapeutic bronchoscopy for malignant central airway obstruction: impact on quality of life and risk-benefit analysis. Curr Opin Pulm Med 2022; 28:288-293. [PMID: 35749792 DOI: 10.1097/mcp.0000000000000883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Malignant central airway obstruction (CAO) is a common complication in cancer and confers significant symptom burden and reduction in quality of life. Multiple bronchoscopic interventions exist for malignant CAO. In this review, we discuss the role of therapeutic bronchoscopy in the management of malignant CAO, emphasizing its impact on symptom control and quality of life while balancing the risks and benefits of intervention. RECENT FINDINGS Significant practice variations exist among practitioners of therapeutic bronchoscopy, and limited data exist to guide real-time clinical decision-making. Recent analyses demonstrate that therapeutic bronchoscopy is effective for symptoms associated with malignant CAO with infrequent complications. These studies also show that many of the improvements in symptoms and quality of life are sustained after intervention and are associated with improved overall survival in patients with malignant CAO. Recent data have also shown that the improvement in symptoms associated with therapeutic bronchoscopy may enable more definitive cancer treatment, further improving patient outcomes. SUMMARY Therapeutic bronchoscopy is safe and effective at improving patient-centered outcomes in malignant CAO. Research is ongoing to better understand its optimal role in this setting, refine decision-making regarding advanced bronchoscopic interventions, and further improve patient outcomes.
Collapse
Affiliation(s)
- Sami I Bashour
- Pulmonary, Critical Care, and Sleep Medicine Section, Baylor College of Medicine and Michael E. DeBakey VA Medical Center, Houston, Texas, USA
| | | |
Collapse
|
5
|
Wayne MT, Prescott HC, De Cardenas J. Invited Commentary: Better Together-Interventional Pulmonology and Thoracic Radiology. Radiographics 2021; 41:E202-E203. [PMID: 34723707 DOI: 10.1148/rg.2021210197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Max T Wayne
- From the Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine (M.T.W., H.C.P., J.D.C.), and Section of Thoracic Surgery, Department of Surgery (J.D.C.), University of Michigan, 39160 Taubman Center, 1500 East Medical Center Drive SPC 5360, Ann Arbor, MI 48109-5361; and VA Center for Clinical Management Research, Ann Arbor, MI (H.C.P.)
| | - Hallie C Prescott
- From the Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine (M.T.W., H.C.P., J.D.C.), and Section of Thoracic Surgery, Department of Surgery (J.D.C.), University of Michigan, 39160 Taubman Center, 1500 East Medical Center Drive SPC 5360, Ann Arbor, MI 48109-5361; and VA Center for Clinical Management Research, Ann Arbor, MI (H.C.P.)
| | - José De Cardenas
- From the Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine (M.T.W., H.C.P., J.D.C.), and Section of Thoracic Surgery, Department of Surgery (J.D.C.), University of Michigan, 39160 Taubman Center, 1500 East Medical Center Drive SPC 5360, Ann Arbor, MI 48109-5361; and VA Center for Clinical Management Research, Ann Arbor, MI (H.C.P.)
| |
Collapse
|