1
|
Chau SS, Beutler BD, Grant EG, Tchelepi H. Ultrasound innovations in abdominal radiology: multiparametic imaging in liver transplantation. Abdom Radiol (NY) 2025; 50:679-692. [PMID: 39167237 PMCID: PMC11794643 DOI: 10.1007/s00261-024-04518-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/01/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024]
Abstract
PURPOSE Ultrasound plays a central role in liver transplant evaluation. Acute, subacute, and chronic complications can be readily identified using grayscale and color Doppler ultrasound. Contrast-enhanced ultrasound adds a new dimension to liver transplant evaluation, depicting vascular and parenchymal processes with exquisite detail. In addition, emerging evidence suggests that contrast-enhanced ultrasound may allow for localization of biliary leak in select patients. We aimed to assess the use of multiparametric ultrasound-including grayscale, color and spectral Doppler, and contrast-enhanced ultrasound-in the setting of liver transplantation. METHODS A literature review was performed using the MEDLINE bibliographic database through the National Library of Medicine. The following terms were searched and relevant citations assessed: "abdominal ultrasound," "contrast-enhanced ultrasound," "liver transplant," and "ultrasound." RESULTS Grayscale and color Doppler ultrasound represent the mainstay imaging modalities for postoperative liver transplant evaluation. The addition of contrast enhancement plays a complementary role and can provide valuable information related to the allograft vasculature, parenchyma, and biliary tree. The appropriate implementation of grayscale, color Doppler, and contrast-enhanced ultrasound can optimize sensitivity, specificity, and accuracy for the detection of liver transplantation complications, including hepatic artery stenosis, biliary leakage, and infection. CONCLUSION Multimodal sonographic evaluation is essential to identify postoperative complications in liver transplant recipients. Contrast-enhanced ultrasound may be of value in challenging cases, providing excellent anatomic delineation and reducing the risk of false-positive and false-negative diagnoses. A broad familiarity with appropriate applications of both nonenhanced and contrast-enhanced ultrasound may help radiologists optimize allograft assessment and improve patient outcomes.
Collapse
Affiliation(s)
- Samantha S Chau
- Department of Radiology, University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
| | - Bryce D Beutler
- Department of Radiology, University of Southern California, Keck School of Medicine, Los Angeles, CA, USA.
| | - Edward G Grant
- Department of Radiology, University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
| | - Hisham Tchelepi
- Department of Radiology, Los Angeles General Medical Center, Los Angeles, CA, USA
| |
Collapse
|
2
|
Yasaka K, Nomura T, Kamohara J, Hirakawa H, Kubo T, Kiryu S, Abe O. Classification of Interventional Radiology Reports into Technique Categories with a Fine-Tuned Large Language Model. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024:10.1007/s10278-024-01370-w. [PMID: 39673010 DOI: 10.1007/s10278-024-01370-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/13/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/15/2024]
Abstract
The aim of this study is to develop a fine-tuned large language model that classifies interventional radiology reports into technique categories and to compare its performance with readers. This retrospective study included 3198 patients (1758 males and 1440 females; age, 62.8 ± 16.8 years) who underwent interventional radiology from January 2018 to July 2024. Training, validation, and test datasets involved 2292, 250, and 656 patients, respectively. Input data involved texts in clinical indication, imaging diagnosis, and image-finding sections of interventional radiology reports. Manually classified technique categories (15 categories in total) were utilized as reference data. Fine-tuning of the Bidirectional Encoder Representations model was performed using training and validation datasets. This process was repeated 15 times due to the randomness of the learning process. The best-performed model, which showed the highest accuracy among 15 trials, was selected to further evaluate its performance in the independent test dataset. The report classification involved one radiologist (reader 1) and two radiology residents (readers 2 and 3). The accuracy and macrosensitivity (average of each category's sensitivity) of the best-performed model in the validation dataset were 0.996 and 0.994, respectively. For the test dataset, the accuracy/macrosensitivity were 0.988/0.980, 0.986/0.977, 0.989/0.979, and 0.988/0.980 in the best model, reader 1, reader 2, and reader 3, respectively. The model required 0.178 s required for classification per patient, which was 17.5-19.9 times faster than readers. In conclusion, fine-tuned large language model classified interventional radiology reports into technique categories with high accuracy similar to readers within a remarkably shorter time.
Collapse
Affiliation(s)
- Koichiro Yasaka
- Department of Radiology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan.
| | - Takuto Nomura
- Department of Radiology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Jun Kamohara
- Department of Radiology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Hiroshi Hirakawa
- Department of Radiology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Takatoshi Kubo
- Department of Radiology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Shigeru Kiryu
- Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita, Chiba, 286-0124, Japan
| | - Osamu Abe
- Department of Radiology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| |
Collapse
|
3
|
Lu X, Yu J, Ruan L, Numata K, Zhang D, Wang F. The value of contrast-enhance ultrasound in the diagnosis of hepatic post-transplant lymphoproliferative disease: Four case reports. Intractable Rare Dis Res 2024; 13:245-250. [PMID: 39628622 PMCID: PMC11609044 DOI: 10.5582/irdr.2024.01032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 07/11/2024] [Revised: 08/22/2024] [Accepted: 09/20/2024] [Indexed: 12/06/2024] Open
Abstract
Post-transplant lymphoproliferative disease (PTLD) is a rare but life-threatening disease that occurs after organ transplantation. Histopathology is the gold standard for the diagnosis of PTLD. Because of its rarity and atypical symptoms, many patients are misdiagnosed with liver abscess, liver cancer, or missed diagnosis long before pathological diagnosis is obtained, thus delaying treatment. Early and accurate diagnosis, in addition to histopathological examination, is difficult. Contrast-enhanced ultrasound (CEUS) imaging techniques have overwhelming advantages of being safe (noninvasive, radiation-free) and sensitive for evaluating the microcirculation of lesions, thus making them widely used in the diagnosis of hepatic lesions. Unfortunately, there are few reports of CEUS data on hepatic PTLD (HPTLD). This study reported and analyzed four cases of HPTLD in detail, all of which underwent pre-biopsy CEUS examinations and had a complete diagnosis and treatment process. By offering readers comprehensive knowledge of CEUS in the diagnosis of HPTLD, our study aims to help reduce misdiagnoses and missed diagnoses, thereby improving patient treatment and prognosis.
Collapse
Affiliation(s)
- Xingqi Lu
- Department of Ultrasound, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
- Department of Ultrasound, Baoji Hospital of Traditional Chinese Medicine, Shaanxi, China
| | - Jingtong Yu
- Department of Ultrasound, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
- Department of Ultrasound, Baoji Hospital of Traditional Chinese Medicine, Shaanxi, China
| | - Litao Ruan
- Department of Ultrasound, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Kazushi Numata
- Gastroenterological Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Dong Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Feiqian Wang
- Department of Ultrasound, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| |
Collapse
|
4
|
Zulfiqar M, Sugi M, Venkatesh SK, Loh JT, Ludwig DR, Ballard DH, Jayasekera C, Pannala R, Aqel B, Yano M. Imaging of Ischemic Cholangiopathy Following Donation after Circulatory Death Liver Transplant. Radiographics 2024; 44:e240031. [PMID: 39361529 DOI: 10.1148/rg.240031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/05/2024]
Abstract
Ischemic cholangiopathy (IC) is the leading cause of inferior long-term outcomes following donation after circulatory death (DCD) liver transplant. Biliary strictures related to IC are nonanastomotic strictures (NASs) by definition and involve the donor hepatic ducts proximal to the anastomosis, compared with postsurgical anastomotic strictures that form due to fibrotic healing. IC-related NASs can be microangiopathic with patent hepatic artery or macroangiopathic with occluded or stenotic hepatic artery. Recently, IC with NASs have been described to have four distinct patterns at imaging: diffuse necrosis, multifocal progressive, confluence dominant, and minor form, which correlate clinically with graft prognosis. Severe IC can lead to ductal wall breakdown with subsequent bile leaks that can cause significant patient morbidity, with imaging playing a vital role in diagnosis and guiding intervention. IC also predisposes the transplanted liver to biliary stasis and subsequent formation of stones, casts, and sludge. Some cases of posttransplant biliary stricturing are not IC but are a sequela of reflux cholangitis seen with choledochojejunal anastomosis. Other biliary findings in the posttransplant liver can be explained by sphincter of Oddi dysfunction that results from denervation. The authors describe and comprehensively categorize the various IC types and their imaging patterns at MRI and MR cholangiopancreatography, review the prognostic significance of these imaging patterns, and discuss imaging features of additional biliary complications associated with IC after DCD liver transplant. ©RSNA, 2024 Supplemental material is available for this article.
Collapse
Affiliation(s)
- Maria Zulfiqar
- From the Departments of Radiology (M.Z., M.S., M.Y.) and Gastroenterology and Hepatology (C.J., R.P., B.A.), Mayo Clinic Arizona, 13400 E Shea Blvd, Scottsdale, AZ 85259; Department of Radiology, Mayo Clinic Rochester, Rochester, Minn (S.K.V.); Department of Anatomical Pathology, Singapore General Hospital, Singapore (J.T.L.); and Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Mo (D.R.L., D.H.B.)
| | - Mark Sugi
- From the Departments of Radiology (M.Z., M.S., M.Y.) and Gastroenterology and Hepatology (C.J., R.P., B.A.), Mayo Clinic Arizona, 13400 E Shea Blvd, Scottsdale, AZ 85259; Department of Radiology, Mayo Clinic Rochester, Rochester, Minn (S.K.V.); Department of Anatomical Pathology, Singapore General Hospital, Singapore (J.T.L.); and Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Mo (D.R.L., D.H.B.)
| | - Sudhakar K Venkatesh
- From the Departments of Radiology (M.Z., M.S., M.Y.) and Gastroenterology and Hepatology (C.J., R.P., B.A.), Mayo Clinic Arizona, 13400 E Shea Blvd, Scottsdale, AZ 85259; Department of Radiology, Mayo Clinic Rochester, Rochester, Minn (S.K.V.); Department of Anatomical Pathology, Singapore General Hospital, Singapore (J.T.L.); and Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Mo (D.R.L., D.H.B.)
| | - Jiezhen Tracy Loh
- From the Departments of Radiology (M.Z., M.S., M.Y.) and Gastroenterology and Hepatology (C.J., R.P., B.A.), Mayo Clinic Arizona, 13400 E Shea Blvd, Scottsdale, AZ 85259; Department of Radiology, Mayo Clinic Rochester, Rochester, Minn (S.K.V.); Department of Anatomical Pathology, Singapore General Hospital, Singapore (J.T.L.); and Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Mo (D.R.L., D.H.B.)
| | - Daniel R Ludwig
- From the Departments of Radiology (M.Z., M.S., M.Y.) and Gastroenterology and Hepatology (C.J., R.P., B.A.), Mayo Clinic Arizona, 13400 E Shea Blvd, Scottsdale, AZ 85259; Department of Radiology, Mayo Clinic Rochester, Rochester, Minn (S.K.V.); Department of Anatomical Pathology, Singapore General Hospital, Singapore (J.T.L.); and Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Mo (D.R.L., D.H.B.)
| | - David H Ballard
- From the Departments of Radiology (M.Z., M.S., M.Y.) and Gastroenterology and Hepatology (C.J., R.P., B.A.), Mayo Clinic Arizona, 13400 E Shea Blvd, Scottsdale, AZ 85259; Department of Radiology, Mayo Clinic Rochester, Rochester, Minn (S.K.V.); Department of Anatomical Pathology, Singapore General Hospital, Singapore (J.T.L.); and Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Mo (D.R.L., D.H.B.)
| | - Channa Jayasekera
- From the Departments of Radiology (M.Z., M.S., M.Y.) and Gastroenterology and Hepatology (C.J., R.P., B.A.), Mayo Clinic Arizona, 13400 E Shea Blvd, Scottsdale, AZ 85259; Department of Radiology, Mayo Clinic Rochester, Rochester, Minn (S.K.V.); Department of Anatomical Pathology, Singapore General Hospital, Singapore (J.T.L.); and Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Mo (D.R.L., D.H.B.)
| | - Rahul Pannala
- From the Departments of Radiology (M.Z., M.S., M.Y.) and Gastroenterology and Hepatology (C.J., R.P., B.A.), Mayo Clinic Arizona, 13400 E Shea Blvd, Scottsdale, AZ 85259; Department of Radiology, Mayo Clinic Rochester, Rochester, Minn (S.K.V.); Department of Anatomical Pathology, Singapore General Hospital, Singapore (J.T.L.); and Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Mo (D.R.L., D.H.B.)
| | - Bashar Aqel
- From the Departments of Radiology (M.Z., M.S., M.Y.) and Gastroenterology and Hepatology (C.J., R.P., B.A.), Mayo Clinic Arizona, 13400 E Shea Blvd, Scottsdale, AZ 85259; Department of Radiology, Mayo Clinic Rochester, Rochester, Minn (S.K.V.); Department of Anatomical Pathology, Singapore General Hospital, Singapore (J.T.L.); and Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Mo (D.R.L., D.H.B.)
| | - Motoyo Yano
- From the Departments of Radiology (M.Z., M.S., M.Y.) and Gastroenterology and Hepatology (C.J., R.P., B.A.), Mayo Clinic Arizona, 13400 E Shea Blvd, Scottsdale, AZ 85259; Department of Radiology, Mayo Clinic Rochester, Rochester, Minn (S.K.V.); Department of Anatomical Pathology, Singapore General Hospital, Singapore (J.T.L.); and Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Mo (D.R.L., D.H.B.)
| |
Collapse
|
5
|
Khorasanizadeh F, Azizi N, Cannella R, Brancatelli G. An exploration of radiological signs in post-intervention liver complications. Eur J Radiol 2024; 180:111668. [PMID: 39180784 DOI: 10.1016/j.ejrad.2024.111668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/09/2024] [Revised: 07/28/2024] [Accepted: 08/02/2024] [Indexed: 08/26/2024]
Abstract
The advent and progression of radiological techniques in the past few decades have revolutionized the diagnostic and therapeutic landscape for liver diseases. These minimally invasive interventions, ranging from biopsies to complex therapeutic procedures like transjugular intrahepatic portosystemic shunt placement and transarterial embolization, offer substantial benefits for the treatment of patients with liver diseases. They provide accurate tissue diagnosis, allow real-time visualization, and render targeted treatment for hepatic lesions with enhanced precision. Despite their advantages, these procedures are not without risks, with the potential for complications that can significantly impact patient outcomes. It is imperative for radiologists to recognize the signs of these complications promptly to mitigate further health deterioration. Ultrasound, CT, and MRI are widely utilized examinations for monitoring the complications. This article presents an overarching review of the most commonly encountered hepatobiliary complications post-radiological interventions, emphasizing their imaging characteristics to improve patient post-procedure management.
Collapse
Affiliation(s)
- Faezeh Khorasanizadeh
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Science, Tehran, Iran
| | - Narges Azizi
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Science, Tehran, Iran
| | - Roberto Cannella
- Section of Radiology - Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy.
| | - Giuseppe Brancatelli
- Section of Radiology - Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| |
Collapse
|
6
|
Xu Y, Wang XS, Zhou XL, Lu WM, Tang XK, Jin Y, Ye JS. Mesenchymal stem cell therapy for liver fibrosis need "partner": Results based on a meta-analysis of preclinical studies. World J Gastroenterol 2024; 30:3766-3782. [PMID: 39221071 PMCID: PMC11362880 DOI: 10.3748/wjg.v30.i32.3766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 05/03/2024] [Revised: 06/22/2024] [Accepted: 08/06/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND The efficacy of mesenchymal stem cells (MSCs) in treating liver fibrosis has been demonstrated in several clinical studies. However, their low survival and liver implantation rates remain problematic. In recent years, a large number of studies in animal models of liver fibrosis have shown that MSCs combined with drugs can improve the efficacy of MSCs in the treatment of liver fibrosis alone and inhibit its progression to end-stage liver disease. This has inspired new ways of thinking about treating liver fibrosis. AIM To investigate the effectiveness and mechanisms of MSCs combined with drugs in treating liver fibrosis. METHODS Data sources included four electronic databases and were constructed until January 2024. The subjects, interventions, comparators, outcomes, and study design principle were used to screen the literature, and the quality of the literature was evaluated to assess the risk of bias. Relevant randomised controlled trials were selected, and the final 13 studies were included in the final study. RESULTS A total of 13 studies were included after screening. Pooled analysis showed that MSCs combined with drug therapy significantly improved liver function, promoted the repair of damaged liver tissues, reduced the level of liver fibrosis-related indexes, and effectively ameliorated hepatic fibrosis by modulating the hepatic inflammatory microenvironment, promoting the homing of MSCs, and regulating the relevant signaling pathways, and the treatment efficacy was superior to MSCs alone. However, the combined treatment statistics showed no ame-lioration in serum albumin levels (standardized mean difference = 0.77, 95% confidence interval: -0.13 to 1.68, P = 0.09). CONCLUSION In conclusion, MSCs combined with drugs for treating liver fibrosis effectively make up for the shortcomings of MSCs in their therapeutic effects. However, due to the different drugs, the treatment mechanism and effect also differ. Therefore, more randomized controlled trials are needed to compare the therapeutic efficacy of different drugs in combination with MSCs, aiming to select the "best companion" of MSCs in treating hepatic fibrosis.
Collapse
Affiliation(s)
- Yan Xu
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
| | - Xue-Song Wang
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
| | - Xiao-Lei Zhou
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
| | - Wen-Ming Lu
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
| | - Xing-Kun Tang
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
- Department of Medical Genetics, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yu Jin
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
| | - Jun-Song Ye
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cere-brovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
- Jiangxi Provincal Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
| |
Collapse
|
7
|
Lindner C, Riquelme R, San Martín R, Quezada F, Valenzuela J, Maureira JP, Einersen M. Improving the radiological diagnosis of hepatic artery thrombosis after liver transplantation: Current approaches and future challenges. World J Transplant 2024; 14:88938. [PMID: 38576750 PMCID: PMC10989478 DOI: 10.5500/wjt.v14.i1.88938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/16/2023] [Revised: 12/03/2023] [Accepted: 12/29/2023] [Indexed: 03/15/2024] Open
Abstract
Hepatic artery thrombosis (HAT) is a devastating vascular complication following liver transplantation, requiring prompt diagnosis and rapid revascularization treatment to prevent graft loss. At present, imaging modalities such as ultrasound, computed tomography, and magnetic resonance play crucial roles in diagnosing HAT. Although imaging techniques have improved sensitivity and specificity for HAT diagnosis, they have limitations that hinder the timely diagnosis of this complication. In this sense, the emergence of artificial intelligence (AI) presents a transformative opportunity to address these diagnostic limitations. The develo pment of machine learning algorithms and deep neural networks has demon strated the potential to enhance the precision diagnosis of liver transplant com plications, enabling quicker and more accurate detection of HAT. This article examines the current landscape of imaging diagnostic techniques for HAT and explores the emerging role of AI in addressing future challenges in the diagnosis of HAT after liver transplant.
Collapse
Affiliation(s)
- Cristian Lindner
- Department of Radiology, Faculty of Medicine, University of Concepción, Concepción 4030000, Chile
- Department of Radiology, Hospital Clínico Regional Guillermo Grant Benavente, Concepción 4030000, Chile
| | - Raúl Riquelme
- Department of Radiology, Faculty of Medicine, University of Concepción, Concepción 4030000, Chile
- Department of Radiology, Hospital Clínico Regional Guillermo Grant Benavente, Concepción 4030000, Chile
| | - Rodrigo San Martín
- Department of Radiology, Faculty of Medicine, University of Concepción, Concepción 4030000, Chile
- Department of Radiology, Hospital Clínico Regional Guillermo Grant Benavente, Concepción 4030000, Chile
| | - Frank Quezada
- Department of Radiology, Faculty of Medicine, University of Concepción, Concepción 4030000, Chile
- Department of Radiology, Hospital Clínico Regional Guillermo Grant Benavente, Concepción 4030000, Chile
| | - Jorge Valenzuela
- Department of Radiology, Faculty of Medicine, University of Concepción, Concepción 4030000, Chile
- Department of Radiology, Hospital Clínico Regional Guillermo Grant Benavente, Concepción 4030000, Chile
| | - Juan P Maureira
- Department of Statistics, Catholic University of Maule, Talca 3460000, Chile
| | - Martín Einersen
- Department of Radiology, Faculty of Medicine, University of Concepción, Concepción 4030000, Chile
- Neurovascular Unit, Department of Radiology, Hospital Clínico Regional Guillermo Grant Benavente, Concepción 4030000, Chile
| |
Collapse
|
8
|
Buros C, Dave AA, Furlan A. Immediate and Late Complications After Liver Transplantation. Radiol Clin North Am 2023; 61:785-795. [PMID: 37495287 DOI: 10.1016/j.rcl.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 07/28/2023]
Abstract
Other than rejection, hepatic artery and portal vein thrombosis are the most common complications in the immediate postoperative period with hepatic arterial thrombosis more common and more devastating. Hepatic artery stenosis is more common 1 month after transplantation, whereas portal and hepatic vein stenosis is more often seen as a late complication. Ultrasound is the first-line imaging examination to diagnose vascular complications with contrast-enhanced CT useful if ultrasound findings are equivocal. MR cholangiography is often most helpful in diagnosing bile leaks, biliary strictures, and biliary stones.
Collapse
Affiliation(s)
- Christopher Buros
- Department of Radiology, University of Pittsburgh Medical Center, Radiology Suite 200 East Wing, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Atman Ashwin Dave
- Department of Radiology, University of Pittsburgh Medical Center, Radiology Suite 200 East Wing, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Alessandro Furlan
- Department of Radiology, University of Pittsburgh Medical Center, Radiology Suite 200 East Wing, 200 Lothrop Street, Pittsburgh, PA 15213, USA.
| |
Collapse
|
9
|
Rinaldi L, Giorgione C, Mormone A, Esposito F, Rinaldi M, Berretta M, Marfella R, Romano C. Non-Invasive Measurement of Hepatic Fibrosis by Transient Elastography: A Narrative Review. Viruses 2023; 15:1730. [PMID: 37632072 PMCID: PMC10459581 DOI: 10.3390/v15081730] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/10/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Transient elastography by FibroScan® (Echosens, Paris, France) is a non-invasive method that can provide a reliable measurement of liver fibrosis through the evaluation of liver stiffness. Despite its limitations and risks, liver biopsy has thus far been the only procedure able to provide data to quantify fibrosis. Scientific evidence and clinical practice have made it possible to use FibroScan® in the diagnostic work-up of several liver diseases to monitor patients' long-term treatment response and for complication prevention. For these reasons, this procedure is widely used in clinical practice and is still being investigated for further applications. The aim of this narrative review is to provide a comprehensive overview of the main applications of transient elastography in the current clinical practice.
Collapse
Affiliation(s)
- Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, “Luigi Vanvitelli” University of Campania, 80131 Naples, Italy; (L.R.); (R.M.)
| | - Chiara Giorgione
- Department of Advanced Medical and Surgical Sciences, “Luigi Vanvitelli” University of Campania, 80131 Naples, Italy; (L.R.); (R.M.)
| | - Andrea Mormone
- Department of Advanced Medical and Surgical Sciences, “Luigi Vanvitelli” University of Campania, 80131 Naples, Italy; (L.R.); (R.M.)
| | - Francesca Esposito
- Department of Advanced Medical and Surgical Sciences, “Luigi Vanvitelli” University of Campania, 80131 Naples, Italy; (L.R.); (R.M.)
| | - Michele Rinaldi
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, “Federico II” University of Naples, 80131 Naples, Italy;
| | - Massimiliano Berretta
- Department of Clinical and Experimental Medicine, University of Messina, 98121 Messina, Italy;
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, “Luigi Vanvitelli” University of Campania, 80131 Naples, Italy; (L.R.); (R.M.)
| | - Ciro Romano
- Department of Advanced Medical and Surgical Sciences, “Luigi Vanvitelli” University of Campania, 80131 Naples, Italy; (L.R.); (R.M.)
| |
Collapse
|
10
|
A feasibility study of different GSI noise indexes and concentrations of contrast medium in hepatic CT angiography of overweight patients: image quality, radiation dose, and iodine intake. Jpn J Radiol 2023; 41:669-679. [PMID: 36607550 DOI: 10.1007/s11604-022-01384-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/23/2022] [Accepted: 12/28/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE To conduct a comparative study of image quality, radiation dose, and iodine intake in hepatic computed tomographic angiography (CTA) of overweight patients with different Gemstone Spectral Imaging (GSI) noise indexes combined with different concentrations of contrast medium. MATERIALS AND METHODS Ninety patients with a body mass index of ≥ 25 kg/m2 were divided into three groups (A, B and C), each with 30 patients. The three groups underwent hepatic CTA with different NI of 7, 11 and 15, respectively, and were injected with different iodine concentrations of 370, 350 and 320 mgI/mL, respectively. Five sets of images at 40-60 keV (interval, 5 keV) were reconstructed in each group. The CT value, image noise, contrast-to-noise ratio (CNR) and subjective score of the hepatic artery and vein, and portal vein in different monochromatic image sets were analyzed to select the optimal energy level in each group. The differences in CT value, image noise, CNR and a subjective score of hepatic artery and vein, portal vein in the optimal monochromatic images among the three groups were compared, the volume CT dose index (CTDIvol) and dose-length product (DLP) were recorded, and the effective dose and iodine intake were calculated. RESULTS The 40 keV was determined to be the optimal energy level for the monochromatic image sets in each group. No significant group differences were noted in the CT value, image noise, CNR, and subjective image scores of the hepatic artery and vein, and portal vein for the optimal monochromatic images (P > 0.05). Compared with group A, the effective dose and iodine intake in group B were reduced by 50.18% and 9.3%, and by 58.12% and 14.23% in group C, respectively. CONCLUSION A low-concentration contrast medium combined with a high-noise GSI index in hepatic CTA of overweight patients can reduce the radiation dose and iodine intake while ensuring image quality.
Collapse
|
11
|
Khot R, Morgan MA, Nair RT, Ludwig DR, Arif-Tiwari H, Bhati CS, Itani M. Radiologic findings of biliary complications post liver transplantation. ABDOMINAL RADIOLOGY (NEW YORK) 2023; 48:166-185. [PMID: 36289069 DOI: 10.1007/s00261-022-03714-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/26/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 01/27/2023]
Abstract
Liver transplantation is a potentially curative treatment for patients with acute liver failure, end-stage liver disease, and primary hepatic malignancy. Despite tremendous advancements in surgical techniques and immunosuppressive management, there remains a high rate of post-transplant complications, with one of the main complications being biliary complications. In addition to anastomotic leak and stricture, numerous additional biliary complications are encountered, including ischemic cholangiopathy due to the sole arterial supply of the bile ducts, recurrence of primary biliary disease, infections, biliary obstruction from stones, cast, or hemobilia, and less commonly cystic duct remnant mucocele, vanishing duct syndrome, duct discrepancy and kinking, post-transplant lymphoproliferative disorder, retained stent, and ampullary dysfunction. This article presents an overview of biliary anatomy and surgical techniques in liver transplantation, followed by a detailed review of post-transplant biliary complications with their corresponding imaging findings on multiple modalities with emphasis on magnetic resonance imaging and MR cholangiopancreatography.
Collapse
Affiliation(s)
- Rachita Khot
- Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA.
| | - Matthew A Morgan
- Department of Radiology, University of Pennsylvania Health System, Philadelphia, PA, USA
| | - Rashmi T Nair
- Department of Radiology, University of Kentucky, Lexington, KY, USA
| | - Daniel R Ludwig
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Hina Arif-Tiwari
- Department of Medical Imaging, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Chandra S Bhati
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Malak Itani
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| |
Collapse
|
12
|
Bhargava P. Invited Commentary: Imaging of Complications in Liver Transplant-What Every Radiologist Should Know. Radiographics 2022; 42:E90-E91. [PMID: 35245107 DOI: 10.1148/rg.220024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/11/2022]
Affiliation(s)
- Puneet Bhargava
- From the Department of Radiology, University of Washington, 1959 NE Pacific St, Room BB308, Box 357115, Seattle, WA 98195-7115
| |
Collapse
|