1
|
Bogomolova AP, Katrukha IA. Troponins and Skeletal Muscle Pathologies. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:2083-2106. [PMID: 39865025 DOI: 10.1134/s0006297924120010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/19/2024] [Accepted: 12/01/2024] [Indexed: 01/28/2025]
Abstract
Skeletal muscles account for ~30-40% of the total weight of human body and are responsible for its most important functions, including movement, respiration, thermogenesis, and glucose and protein metabolism. Skeletal muscle damage negatively impacts the whole-body functioning, leading to deterioration of the quality of life and, in severe cases, death. Therefore, timely diagnosis and therapy for skeletal muscle dysfunction are important goals of modern medicine. In this review, we focused on the skeletal troponins that are proteins in the thin filaments of muscle fibers. Skeletal troponins play a key role in regulation of muscle contraction. Biochemical properties of these proteins and their use as biomarkers of skeletal muscle damage are described in this review. One of the most convenient and sensitive methods of protein biomarker measurement in biological liquids is immunochemical analysis; hence, we examined the factors that influence immunochemical detection of skeletal troponins and should be taken into account when developing diagnostic test systems. Also, we reviewed the available data on the skeletal troponin mutations that are considered to be associated with pathologies leading to the development of diseases and discussed utilization of troponins as drug targets for treatment of the skeletal muscle disorders.
Collapse
Affiliation(s)
- Agnessa P Bogomolova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
- Hytest Ltd., Turku, Finland
| | - Ivan A Katrukha
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Hytest Ltd., Turku, Finland
| |
Collapse
|
2
|
Martin G, Al-Sajee D, Gingrich M, Chattha R, Akcan M, Monaco CMF, Hughes MC, Perry CGR, Rebalka IA, Tarnopolsky MA, Hawke TJ. Skeletal muscle mitochondrial morphology negatively affected in mice lacking Xin. Biochem Cell Biol 2024; 102:373-384. [PMID: 38843556 DOI: 10.1139/bcb-2024-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024] Open
Abstract
Altered mitochondrial structure and function are implicated in the functional decline of skeletal muscle. Numerous cytoskeletal proteins are known to affect mitochondrial homeostasis, but this complex network is still being unraveled. Here, we investigated mitochondrial alterations in mice lacking the cytoskeletal adapter protein, XIN (XIN-/-). XIN-/- and wild-type littermate male and female mice were fed a chow or high-fat diet (HFD; 60% kcal fat) for 8 weeks before analyses of their skeletal muscles were conducted. Immuno-electron microscopy (EM) and immunofluorescence staining revealed XIN in the mitochondria and peri-mitochondrial areas, as well as the myoplasm. Intermyofibrillar mitochondria in chow-fed XIN-/- mice were notably different from wild-type (large, and/or swollen in appearance). Succinate dehydrogenase and Cytochrome Oxidase IV staining indicated greater evidence of mitochondrial enzyme activity in XIN-/- mice. No difference in body mass gains or glucose handling was observed between cohorts with HFD. However, EM revealed significantly greater mitochondrial density with evident structural abnormalities (swelling, reduced cristae density) in XIN-/- mice. Absolute Complex I and II-supported respiration was not different between groups, but relative to mitochondrial density, was significantly lower in XIN-/-. These results provide the first evidence for a role of XIN in maintaining mitochondrial morphology and function.
Collapse
MESH Headings
- Animals
- Mice
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Male
- Female
- Mice, Knockout
- Mitochondria, Muscle/metabolism
- Mitochondria, Muscle/ultrastructure
- Diet, High-Fat/adverse effects
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/deficiency
- Mice, Inbred C57BL
- Electron Transport Complex IV/metabolism
- Cell Cycle Proteins
Collapse
Affiliation(s)
- Grace Martin
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Centre for Metabolism, Obesity, and Diabetes Research (MODR), McMaster University, Hamilton, ON, Canada
| | - Dhuha Al-Sajee
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Centre for Metabolism, Obesity, and Diabetes Research (MODR), McMaster University, Hamilton, ON, Canada
| | - Molly Gingrich
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Centre for Metabolism, Obesity, and Diabetes Research (MODR), McMaster University, Hamilton, ON, Canada
| | - Rimsha Chattha
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Centre for Metabolism, Obesity, and Diabetes Research (MODR), McMaster University, Hamilton, ON, Canada
| | - Michael Akcan
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Centre for Metabolism, Obesity, and Diabetes Research (MODR), McMaster University, Hamilton, ON, Canada
| | - Cynthia M F Monaco
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Centre for Metabolism, Obesity, and Diabetes Research (MODR), McMaster University, Hamilton, ON, Canada
| | - Megan C Hughes
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON, Canada
| | - Christopher G R Perry
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON, Canada
| | - Irena A Rebalka
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Centre for Metabolism, Obesity, and Diabetes Research (MODR), McMaster University, Hamilton, ON, Canada
| | - Mark A Tarnopolsky
- Centre for Metabolism, Obesity, and Diabetes Research (MODR), McMaster University, Hamilton, ON, Canada
- Department of Pediatrics, McMaster University, Hamilton, ON, Canada
| | - Thomas J Hawke
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Centre for Metabolism, Obesity, and Diabetes Research (MODR), McMaster University, Hamilton, ON, Canada
| |
Collapse
|
3
|
Karlsen A, Gonzalez-Franquesa A, Jakobsen JR, Krogsgaard MR, Koch M, Kjaer M, Schiaffino S, Mackey AL, Deshmukh AS. The proteomic profile of the human myotendinous junction. iScience 2022; 25:103836. [PMID: 35198892 PMCID: PMC8851264 DOI: 10.1016/j.isci.2022.103836] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/12/2022] [Accepted: 01/24/2022] [Indexed: 11/24/2022] Open
Abstract
Proteomics analysis of skeletal muscle has recently progressed from whole muscle tissue to single myofibers. Here, we further focus on a specific myofiber domain crucial for force transmission from muscle to tendon, the myotendinous junction (MTJ). To overcome the anatomical constraints preventing the isolation of pure MTJs, we performed in-depth analysis of the MTJ by progressive removal of the muscle component in semitendinosus muscle-tendon samples. Using detergents with increasing stringency, we quantified >3000 proteins across all samples, and identified 112 significantly enriched MTJ proteins, including 24 known MTJ-enriched proteins. Of the 88 novel MTJ markers, immunofluorescence analysis confirmed the presence of tetraspanin-24 (CD151), kindlin-2 (FERMT2), cartilage intermediate layer protein 1 (CILP), and integrin-alpha10 (ITGA10), at the human MTJ. Together, these human data constitute the first detailed MTJ proteomics resource that will contribute to advance understanding of the biology of the MTJ and its failure in pathological conditions.
Collapse
Affiliation(s)
- Anders Karlsen
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Denmark and Part of IOC Research Center, Copenhagen, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Alba Gonzalez-Franquesa
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jens R Jakobsen
- Section for Sports Traumatology M51, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Denmark and Part of IOC Research Center, Copenhagen, Denmark
| | - Michael R Krogsgaard
- Section for Sports Traumatology M51, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Denmark and Part of IOC Research Center, Copenhagen, Denmark
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Biology, Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Michael Kjaer
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Denmark and Part of IOC Research Center, Copenhagen, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Denmark and Part of IOC Research Center, Copenhagen, Denmark.,Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Atul S Deshmukh
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Li C, Zhang H, Xie Y, Liu S, Zhao R, Huang J, Huang J, Wei Y. Effects of CMYA1 overexpression on cardiac structure and function in mice. Acta Biochim Biophys Sin (Shanghai) 2021; 53:593-600. [PMID: 33792654 PMCID: PMC8047858 DOI: 10.1093/abbs/gmab029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Indexed: 12/11/2022] Open
Abstract
CMYA1 (cardiomyopathy-associated protein 1, also termed Xin) localizes to the intercalated disks (ICDs) of the myocardium and functions to maintain ICD structural integrity and support signal transduction among cardiomyocytes. Our previous study showed that CMYA1 overexpression impairs the function of gap junction intercellular communication processes. Successful model generation was verified based on PCR, western blot analysis, immunohistochemistry, and immunofluorescence analysis. Myocardial CMYA1 expression was confirmed at both the mRNA and the protein levels in the CMYA1-OE transgenic mice. Masson's trichrome staining and electron microscopy revealed myocardial fibrosis and uneven bead width or the interruption of ICDs in the hearts of the CMYA1-OE transgenic mice. Furthermore, the Cx43 protein level was reduced in the CMYA1-OE mice, and co-immunoprecipitation assays of heart tissue protein extracts revealed a physical interaction between CMYA1 and Cx43. Electrocardiogram analysis enabled the detection of an obvious ventricular bigeminy for the CMYA1-OE mice. In summary, analysis of our mouse model indicates that elevated CMYA1 levels may induce myocardial fibrosis, impair ICDs, and downregulate the expression of Cx43. The observed ventricular bigeminy in the CMYA1-OE mice may be mediated by the reduced Cx43 protein level.
Collapse
Affiliation(s)
- Chunyan Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Department of Clinical Laboratory, Beijing Jishuitan Hospital, Beijing 100032, China
| | - Hongliang Zhang
- Department of Cardiology, The First Affiliated Hospital of Jiamusi University, Jiamusi 154002, China
| | - Yuanyuan Xie
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Shenghua Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Ranxu Zhao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Jian Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Jie Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Yingjie Wei
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| |
Collapse
|
5
|
Holt I, Fuller HR, Schindler RFR, Shirran SL, Brand T, Morris GE. An interaction of heart disease-associated proteins POPDC1/2 with XIRP1 in transverse tubules and intercalated discs. BMC Mol Cell Biol 2020; 21:88. [PMID: 33261556 PMCID: PMC7709239 DOI: 10.1186/s12860-020-00329-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/18/2020] [Indexed: 11/25/2022] Open
Abstract
Background Popeye domain-containing proteins 1 and 2 (POPDC1 and POPDC2) are transmembrane proteins involved in cyclic AMP-mediated signalling processes and are required for normal cardiac pacemaking and conduction. In order to identify novel protein interaction partners, POPDC1 and 2 proteins were attached to beads and compared by proteomic analysis with control beads in the pull-down of proteins from cultured human skeletal myotubes. Results There were highly-significant interactions of both POPDC1 and POPDC2 with XIRP1 (Xin actin binding repeat-containing protein 1), actin and, to a lesser degree, annexin A5. In adult human skeletal muscle, both XIRP1 and POPDC1/2 were present at the sarcolemma and in T-tubules. The interaction of POPDC1 with XIRP1 was confirmed in adult rat heart extracts. Using new monoclonal antibodies specific for POPDC1 and POPDC2, both proteins, together with XIRP1, were found mainly at intercalated discs but also at T-tubules in adult rat and human heart. Conclusions Mutations in human POPDC1, POPDC2 and in human XIRP1, all cause pathological cardiac arrhythmias, suggesting a possible role for POPDC1/2 and XIRP1 interaction in normal cardiac conduction. Supplementary Information The online version contains supplementary material available at 10.1186/s12860-020-00329-3.
Collapse
Affiliation(s)
- Ian Holt
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, SY10 7AG, UK. .,School of Pharmacy and Bioengineering, Keele University, Keele, ST5 5BG, UK.
| | - Heidi R Fuller
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, SY10 7AG, UK.,School of Pharmacy and Bioengineering, Keele University, Keele, ST5 5BG, UK
| | - Roland F R Schindler
- Imperial Centre of Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College, 4th Floor, Du Cane Road, London, W12 0NN, UK
| | - Sally L Shirran
- BSRC Mass Spectrometry and Proteomics Facility, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, UK
| | - Thomas Brand
- Imperial Centre of Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College, 4th Floor, Du Cane Road, London, W12 0NN, UK
| | - Glenn E Morris
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, SY10 7AG, UK.,School of Pharmacy and Bioengineering, Keele University, Keele, ST5 5BG, UK
| |
Collapse
|
6
|
Xin X, Wang T, Liu X, Sui G, Jin C, Yue Y, Yang S, Guo H. A yeast two-hybrid assay reveals CMYA1 interacting proteins. C R Biol 2017; 340:314-323. [DOI: 10.1016/j.crvi.2017.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 05/19/2017] [Accepted: 06/13/2017] [Indexed: 10/19/2022]
|
7
|
Kebir S, Orfanos Z, Schuld J, Linhart M, Lamberz C, van der Ven PFM, Schrickel J, Kirfel G, Fürst DO, Meyer R. Sarcomeric lesions and remodeling proximal to intercalated disks in overload-induced cardiac hypertrophy. Exp Cell Res 2016; 348:95-105. [PMID: 27639425 DOI: 10.1016/j.yexcr.2016.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/09/2016] [Accepted: 09/13/2016] [Indexed: 10/21/2022]
Abstract
Pressure overload induces cardiac remodeling involving both the contractile machinery and intercalated disks (IDs). Filamin C (FlnC) and Xin actin-binding repeat-containing proteins (XIRPs) are multi-adapters localizing in IDs of higher vertebrates. Knockout of the gene encoding Xin (Xirp1) in mice leads to a mild cardiac phenotype with ID mislocalization. In order to amplify this phenotype, we performed transverse aortic constriction (TAC) on control and Xirp1-deficient mice. TAC induced similar left ventricular hypertrophy in both genotypes, suggesting that the lack of Xin does not lead to higher susceptibility to cardiac overload. However, in both genotypes, FlnC appeared in "streaming" localizations across multiple sarcomeres proximal to the IDs, suggesting a remodeling response. Furthermore, FlnC-positive areas of remodeling, reminiscent of sarcomeric lesions previously described for skeletal muscles (but so far unreported in the heart), were also observed. These adaptations reflect a similarly strong effect of the pressure induced by TAC in both genotypes. However, 2 weeks post-operation TAC-treated knockout hearts had reduced levels of connexin43 and slightly increased incidents of ventricular tachycardia compared to their wild-type (WT) counterparts. Our findings highlight the FlnC-positive sarcomeric lesions and ID-proximal streaming as general remodeling responses in cardiac overload-induced hypertrophy.
Collapse
Affiliation(s)
- Sied Kebir
- Institute of Physiology II, University Hospital Bonn, Nussallee 11, 53115 Bonn, Germany.
| | - Zacharias Orfanos
- Institute for Cell Biology, Department of Molecular Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany.
| | - Julia Schuld
- Institute for Cell Biology, Department of Molecular Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany.
| | - Markus Linhart
- Department of Medicine-Cardiology, University of Bonn Medical Center, Sigmund-Freud-Straße 25, 53127 Bonn, Germany.
| | - Christian Lamberz
- Institute for Cell Biology, Department of Molecular Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany.
| | - Peter F M van der Ven
- Institute for Cell Biology, Department of Molecular Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany.
| | - Jan Schrickel
- Department of Medicine-Cardiology, University of Bonn Medical Center, Sigmund-Freud-Straße 25, 53127 Bonn, Germany.
| | - Gregor Kirfel
- Institute for Cell Biology, Department of Molecular Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany.
| | - Dieter O Fürst
- Institute for Cell Biology, Department of Molecular Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany.
| | - Rainer Meyer
- Institute of Physiology II, University Hospital Bonn, Nussallee 11, 53115 Bonn, Germany.
| |
Collapse
|
8
|
TNNT1, TNNT2, and TNNT3: Isoform genes, regulation, and structure-function relationships. Gene 2016; 582:1-13. [PMID: 26774798 DOI: 10.1016/j.gene.2016.01.006] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/31/2015] [Accepted: 01/05/2016] [Indexed: 12/18/2022]
Abstract
Troponin T (TnT) is a central player in the calcium regulation of actin thin filament function and is essential for the contraction of striated muscles. Three homologous genes have evolved in vertebrates to encode three muscle type-specific TnT isoforms: TNNT1 for slow skeletal muscle TnT, TNNT2 for cardiac muscle TnT, and TNNT3 for fast skeletal muscle TnT. Alternative splicing and posttranslational modifications confer additional structural and functional variations of TnT during development and muscle adaptation to various physiological and pathological conditions. This review focuses on the TnT isoform genes and their molecular evolution, alternative splicing, developmental regulation, structure-function relationships of TnT proteins, posttranslational modifications, and myopathic mutations and abnormal splicing. The goal is to provide a concise summary of the current knowledge and some perspectives for future research and translational applications.
Collapse
|
9
|
Feng HZ, Chen X, Malek MH, Jin JP. Slow recovery of the impaired fatigue resistance in postunloading mouse soleus muscle corresponding to decreased mitochondrial function and a compensatory increase in type I slow fibers. Am J Physiol Cell Physiol 2015; 310:C27-40. [PMID: 26447205 DOI: 10.1152/ajpcell.00173.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 10/05/2015] [Indexed: 02/08/2023]
Abstract
Unloading or disuse rapidly results in skeletal muscle atrophy, switching to fast-type fibers, and decreased resistance to fatigue. The recovery process is of major importance in rehabilitation for various clinical conditions. Here we studied mouse soleus muscle during 60 days of reloading after 4 wk of hindlimb suspension. Unloading produced significant atrophy of soleus muscle with decreased contractile force and fatigue resistance, accompanied by switches of myosin isoforms from IIa to IIx and IIb and fast troponin T to more low-molecular-weight splice forms. The total mass, fiber size, and contractile force of soleus muscle recovered to control levels after 15 days of reloading. However, the fatigue resistance showed a trend of worsening during this period with significant infiltration of inflammatory cells at days 3 and 7, indicating reloading injuries that were accompanied by active regeneration with upregulations of filamin-C, αB-crystallin, and desmin. The fatigue resistance partially recovered after 30-60 days of reloading. The expression of peroxisome proliferator-activated receptor γ coactivator 1α and mitofusin-2 showed changes parallel to that of fatigue resistance after unloading and during reloading, suggesting a causal role of decreased mitochondrial function. Slow fiber contents in the soleus muscle were increased after 30-60 days of reloading to become significantly higher than the normal level, indicating a secondary adaption to compensate for the slow recovery of fatigue resistance.
Collapse
Affiliation(s)
- Han-Zhong Feng
- Department of Physiology, Wayne State University, Detroit, Michigan
| | - Xuequn Chen
- Department of Physiology, Wayne State University, Detroit, Michigan
| | - Moh H Malek
- Department of Health Care Sciences, Wayne State University, Detroit, Michigan
| | - J-P Jin
- Department of Physiology, Wayne State University, Detroit, Michigan;
| |
Collapse
|
10
|
Al-Sajee D, Nissar AA, Coleman SK, Rebalka IA, Chiang A, Wathra R, van der Ven PFM, Orfanos Z, Hawke TJ. Xin-deficient mice display myopathy, impaired contractility, attenuated muscle repair and altered satellite cell functionality. Acta Physiol (Oxf) 2015; 214:248-60. [PMID: 25582411 DOI: 10.1111/apha.12455] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 09/20/2014] [Accepted: 01/07/2015] [Indexed: 12/26/2022]
Abstract
AIM Xin is an F-actin-binding protein expressed during development of cardiac and skeletal muscle. We used Xin-/- mice to determine the impact of Xin deficiency on different aspects of skeletal muscle health, including functionality and regeneration. METHODS Xin-/- skeletal muscles and their satellite cell (SC) population were investigated for the presence of myopathic changes by a series of histological and immunofluorescent stains on resting uninjured muscles. To further understand the effect of Xin loss on muscle health and its SCs, we studied SCs responses following cardiotoxin-induced muscle injury. Functional data were determined using in situ muscle stimulation protocol. RESULTS Compared to age-matched wild-type (WT), Xin-/- muscles exhibited generalized myopathy and increased fatigability with a significantly decreased force recovery post-fatiguing contractions. Muscle regeneration was attenuated in Xin-/- mice. This impaired regeneration prompted an investigation into SC content and functionality. Although SC content was not different, significantly more activated SCs were present in Xin-/- vs. WT muscles. Primary Xin-/- myoblasts displayed significant reductions (approx. 50%) in proliferative capacity vs. WT; a finding corroborated by significantly decreased MyoD-positive nuclei in 3 days post-injury Xin-/- muscle vs. WT. As more activated SCs did not translate to more proliferating myoblasts, we investigated whether Xin-/- SCs displayed an exaggerated loss by apoptosis. More apoptotic SCs (TUNEL+/Pax7+) were present in Xin-/- muscle vs. WT. Furthermore, more Xin-/- myoblasts were expressing nuclear caspase-3 compared to WT at 3 days post-injury. CONCLUSION Xin deficiency leads to a myopathic condition characterized by increased muscle fatigability, impaired regeneration and SC dysfunction.
Collapse
Affiliation(s)
- D. Al-Sajee
- Pathology and Molecular Medicine; McMaster University; Hamilton ON Canada
| | - A. A. Nissar
- Pathology and Molecular Medicine; McMaster University; Hamilton ON Canada
| | - S. K. Coleman
- Pathology and Molecular Medicine; McMaster University; Hamilton ON Canada
| | - I. A. Rebalka
- Pathology and Molecular Medicine; McMaster University; Hamilton ON Canada
| | - A. Chiang
- Pathology and Molecular Medicine; McMaster University; Hamilton ON Canada
| | - R. Wathra
- Pathology and Molecular Medicine; McMaster University; Hamilton ON Canada
| | | | - Z. Orfanos
- Institute for Cell Biology; University of Bonn; Bonn Germany
| | - T. J. Hawke
- Pathology and Molecular Medicine; McMaster University; Hamilton ON Canada
| |
Collapse
|
11
|
Molt S, Bührdel JB, Yakovlev S, Schein P, Orfanos Z, Kirfel G, Winter L, Wiche G, van der Ven PFM, Rottbauer W, Just S, Belkin AM, Fürst DO. Aciculin interacts with filamin C and Xin and is essential for myofibril assembly, remodeling and maintenance. J Cell Sci 2014; 127:3578-92. [PMID: 24963132 DOI: 10.1242/jcs.152157] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Filamin C (FLNc) and Xin actin-binding repeat-containing proteins (XIRPs) are multi-adaptor proteins that are mainly expressed in cardiac and skeletal muscles and which play important roles in the assembly and repair of myofibrils and their attachment to the membrane. We identified the dystrophin-binding protein aciculin (also known as phosphoglucomutase-like protein 5, PGM5) as a new interaction partner of FLNc and Xin. All three proteins colocalized at intercalated discs of cardiac muscle and myotendinous junctions of skeletal muscle, whereas FLNc and aciculin also colocalized in mature Z-discs. Bimolecular fluorescence complementation experiments in developing cultured mammalian skeletal muscle cells demonstrated that Xin and aciculin also interact in FLNc-containing immature myofibrils and areas of myofibrillar remodeling and repair induced by electrical pulse stimulation (EPS). Fluorescence recovery after photobleaching (FRAP) experiments showed that aciculin is a highly dynamic and mobile protein. Aciculin knockdown in myotubes led to failure in myofibril assembly, alignment and membrane attachment, and a massive reduction in myofibril number. A highly similar phenotype was found upon depletion of aciculin in zebrafish embryos. Our results point to a thus far unappreciated, but essential, function of aciculin in myofibril formation, maintenance and remodeling.
Collapse
Affiliation(s)
- Sibylle Molt
- Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - John B Bührdel
- Department of Internal Medicine II, University of Ulm, 89081 Ulm, Germany
| | - Sergiy Yakovlev
- University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Peter Schein
- Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | | | - Gregor Kirfel
- Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - Lilli Winter
- Department of Biochemistry and Molecular Cell Biology, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | - Gerhard Wiche
- Department of Biochemistry and Molecular Cell Biology, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | | | - Wolfgang Rottbauer
- Department of Internal Medicine II, University of Ulm, 89081 Ulm, Germany
| | - Steffen Just
- Department of Internal Medicine II, University of Ulm, 89081 Ulm, Germany
| | - Alexey M Belkin
- University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Dieter O Fürst
- Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| |
Collapse
|
12
|
Rivas DA, Lessard SJ, Rice NP, Lustgarten MS, So K, Goodyear LJ, Parnell LD, Fielding RA. Diminished skeletal muscle microRNA expression with aging is associated with attenuated muscle plasticity and inhibition of IGF-1 signaling. FASEB J 2014; 28:4133-47. [PMID: 24928197 DOI: 10.1096/fj.14-254490] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 06/02/2014] [Indexed: 12/17/2022]
Abstract
Older individuals have a reduced capacity to induce muscle hypertrophy with resistance exercise (RE), which may contribute to the age-induced loss of muscle mass and function, sarcopenia. We tested the novel hypothesis that dysregulation of microRNAs (miRNAs) may contribute to reduced muscle plasticity with aging. Skeletal muscle expression profiling of protein-coding genes and miRNA was performed in younger (YNG) and older (OLD) men after an acute bout of RE. 21 miRNAs were altered by RE in YNG men, while no RE-induced changes in miRNA expression were observed in OLD men. This striking absence in miRNA regulation in OLD men was associated with blunted transcription of mRNAs, with only 42 genes altered in OLD men vs. 175 in YNG men following RE, demonstrating a reduced adaptability of aging muscle to exercise. Integrated bioinformatics analysis identified miR-126 as an important regulator of the transcriptional response to exercise and reduced lean mass in OLD men. Manipulation of miR-126 levels in myocytes, in vitro, revealed its direct effects on the expression of regulators of skeletal muscle growth and activation of insulin growth factor 1 (IGF-1) signaling. This work identifies a mechanistic role of miRNA in the adaptation of muscle to anabolic stimulation and reveals a significant impairment in exercise-induced miRNA/mRNA regulation with aging.
Collapse
Affiliation(s)
- Donato A Rivas
- Nutrition, Exercise Physiology, and Sarcopenia Laboratory and
| | - Sarah J Lessard
- Research Division, Joslin Diabetes Center, and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Nicholas P Rice
- Nutrition, Exercise Physiology, and Sarcopenia Laboratory and
| | | | - Kawai So
- Nutrition, Exercise Physiology, and Sarcopenia Laboratory and
| | - Laurie J Goodyear
- Research Division, Joslin Diabetes Center, and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Laurence D Parnell
- Nutritional Genomics Laboratory, U.S. Department of Agriculture Jean Mayer Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA; and
| | | |
Collapse
|
13
|
Wang Q, Lin JLC, Erives AJ, Lin CI, Lin JJC. New insights into the roles of Xin repeat-containing proteins in cardiac development, function, and disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 310:89-128. [PMID: 24725425 DOI: 10.1016/b978-0-12-800180-6.00003-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since the discovery of Xin repeat-containing proteins in 1996, the importance of Xin proteins in muscle development, function, regeneration, and disease has been continuously implicated. Most Xin proteins are localized to myotendinous junctions of the skeletal muscle and also to intercalated discs (ICDs) of the heart. The Xin gene is only found in vertebrates, which are characterized by a true chambered heart. This suggests that the evolutionary origin of the Xin gene may have played a key role in vertebrate origins. Diverse vertebrates including mammals possess two paralogous genes, Xinα (or Xirp1) and Xinβ (or Xirp2), and this review focuses on the role of their encoded proteins in cardiac muscles. Complete loss of mouse Xinβ (mXinβ) results in the failure of forming ICD, severe growth retardation, and early postnatal lethality. Deletion of mouse Xinα (mXinα) leads to late-onset cardiomyopathy with conduction defects. Molecular studies have identified three classes of mXinα-interacting proteins: catenins, actin regulators/modulators, and ion-channel subunits. Thus, mXinα acts as a scaffolding protein modulating the N-cadherin-mediated adhesion and ion-channel surface expression. Xin expression is significantly upregulated in early stages of stressed hearts, whereas Xin expression is downregulated in failing hearts from various human cardiomyopathies. Thus, mutations in these Xin loci may lead to diverse cardiomyopathies and heart failure.
Collapse
Affiliation(s)
- Qinchuan Wang
- Department of Biology, University of Iowa, Iowa City, Iowa, USA
| | | | - Albert J Erives
- Department of Biology, University of Iowa, Iowa City, Iowa, USA
| | - Cheng-I Lin
- Institute of Physiology, National Defense Medical Center, Taipei, Taiwan, ROC
| | | |
Collapse
|