1
|
Shin JJ, Suk K, Lee WH. LncRNA BRE-AS1 regulates the JAK2/STAT3-mediated inflammatory activation via the miR-30b-5p/SOC3 axis in THP-1 cells. Sci Rep 2024; 14:25726. [PMID: 39468152 PMCID: PMC11519362 DOI: 10.1038/s41598-024-77265-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) have emerged as pivotal regulators in numerous biological processes, including macrophage-mediated inflammatory responses, which play a critical role in the progress of diverse diseases. This study focuses on the regulatory function of lncRNA brain and reproductive organ-expressed protein (BRE) antisense RNA 1 (BRE-AS1) in modulating the inflammatory activation of monocytes/macrophages. Employing the THP-1 cell line as a model, we demonstrate that lipopolysaccharide (LPS) treatment significantly upregulates BRE-AS1 expression. Notably, specific knockdown of BRE-AS1 via siRNA transfection enhances LPS-induced expression of interleukin (IL)-6 and IL-1β, while not affecting tumor necrosis factor (TNF)-α levels. This selective augmentation of pro-inflammatory cytokine production coincides with increased phosphorylation of Janus kinase (JAK)2 and signal transducer and activator of transcription (STAT)3. Furthermore, BRE-AS1 suppression results in the downregulation of suppressor of cytokine signaling (SOCS)3, an established inhibitor of the JAK2/STAT3 pathway. Bioinformatics analysis identified binding sites for miR-30b-5p on both BRE-AS1 and SOCS3 mRNA. Intervention with a miR-30b-5p inhibitor and a synthetic RNA fragment that represents the miR-30b-5p binding site on BRE-AS1 attenuates the pro-inflammatory effects of BRE-AS1 knockdown. Conversely, a miR-30b-5p mimic replicated the BRE-AS1 attenuation outcomes. Our findings elucidate the role of lncRNA BRE-AS1 in modulating inflammatory activation in THP-1 cells via the miR-30b-5p/SOCS3/JAK2/STAT3 signaling pathway, proposing that manipulation of macrophage BRE-AS1 activity may offer a novel therapeutic avenue in diseases characterized by macrophage-driven pathogenesis.
Collapse
Affiliation(s)
- Jae-Joon Shin
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Won-Ha Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
2
|
Romero-Ramírez L, García-Rama C, Mey J. Janus Kinase Inhibitor Brepocitinib Rescues Myelin Phagocytosis Under Inflammatory Conditions: In Vitro Evidence from Microglia and Macrophage Cell Lines. Mol Neurobiol 2024; 61:6423-6434. [PMID: 38308667 DOI: 10.1007/s12035-024-03963-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 01/16/2024] [Indexed: 02/05/2024]
Abstract
Central nervous system (CNS) injuries induce cell death and consequently the release of myelin and other cellular debris. Microglia as well as hematogenous macrophages actively collaborate to phagocyte them and undergo their degradation. However, myelin accumulation persists in the lesion site long after the injury with detrimental effects on axonal regeneration. This might be due to the presence of inhibitors of phagocytosis in the injury site. As we recently published that some proinflammatory stimuli, like interferon-γ (IFNγ) and lipopolysaccharide (LPS), inhibit myelin phagocytosis in macrophages, we have now studied the signaling pathways involved. A phagocytosis assay in Raw264.7 macrophages and N13 microglia cell lines with labeled myelin was developed with the pHrodo reagent that emits fluorescence in acidic cellular compartments (e.g.lysosomes). Pharmacological inhibition of Janus kinases (Jak) with Brepocitinib restored myelin phagocytosis and rescued the expression of genes related to phagocytosis, like triggering receptor expressed on myeloid cells 2 (TREM2), induced by IFNγ or LPS. In addition, while pharmacological inhibition of the signal transducer and activator of transcription 3 (STAT3) rescued myelin phagocytosis and the expression of phagocytosis related genes in the presence of LPS, it did not have any effect on IFNγ-treated cells. Our results show that Jak pathways participate in the inhibition of myelin phagocytosis by IFNγ and LPS. They also indicate that the resolution of inflammation is important for the clearance of cellular debris by macrophages and subsequent regenerative processes.
Collapse
Affiliation(s)
- Lorenzo Romero-Ramírez
- Laboratorio de Regeneración Neuronal, Hospital Nacional de Parapléjicos, SESCAM, Finca La Peraleda S/N, 45071, Toledo, Spain.
| | - Concepción García-Rama
- Laboratorio de Regeneración Neuronal, Hospital Nacional de Parapléjicos, SESCAM, Finca La Peraleda S/N, 45071, Toledo, Spain
| | - Jörg Mey
- Laboratorio de Regeneración Neuronal, Hospital Nacional de Parapléjicos, SESCAM, Finca La Peraleda S/N, 45071, Toledo, Spain
- School of Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
3
|
Kamiya T, Mizuno N, Hayashi K, Otsuka T, Haba M, Abe N, Oyama M, Hara H. Methoxylated Flavones from Casimiroa edulis La Llave Suppress MMP9 Expression via Inhibition of the JAK/STAT3 Pathway and TNFα-Dependent Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14678-14683. [PMID: 38910321 DOI: 10.1021/acs.jafc.4c00965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Matrix metalloproteinase 9 (MMP9), an MMP isozyme, plays a crucial role in tumor progression by degrading basement membranes. It has therefore been proposed that the pharmacological inhibition of MMP9 expression or activity could inhibit tumor metastasis. We previously isolated two novel methoxylated flavones, casedulones A and B, from the leaves and/or roots of Casimiroa edulis La Llave and determined that these casedulones have antitumor activity that acts via the reduction of MMP9. Here, we examined how these casedulones suppress lipopolysaccharide (LPS)-induced MMP9 expression in human monocytic THP-1 cells. The casedulones suppressed the LPS-induced signal transducer and activator of transcription 3 (STAT3) pathway, which participates in MMP9 induction. In addition, AG490 and S3I-201, inhibitors of Janus kinase (JAK) and STAT3, suppressed LPS-mediated MMP9 induction, suggesting that the casedulones suppressed MMP9 induction through the inhibition of JAK/STAT3 pathways. Based on the findings that cycloheximide, an inhibitor of de novo protein synthesis, completely inhibited LPS-mediated MMP9 induction, the role of de novo proteins in MMP9 induction was further investigated. We found that the casedulones inhibited the induction of interleukin-6 (IL-6), a key inflammatory cytokine that participates in STAT3 activation. Moreover, tumor necrosis factor-α (TNFα)-mediated MMP9 induction was significantly suppressed in the presence of the casedulones. Taken together, these findings suggest that casedulones inhibit the IL-6/STAT3 and TNFα pathways, which all involve LPS-mediated MMP9 induction.
Collapse
|
4
|
Habtemariam S. Anti-Inflammatory Therapeutic Mechanisms of Isothiocyanates: Insights from Sulforaphane. Biomedicines 2024; 12:1169. [PMID: 38927376 PMCID: PMC11200786 DOI: 10.3390/biomedicines12061169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Isothiocyanates (ITCs) belong to a group of natural products that possess a highly reactive electrophilic -N=C=S functional group. They are stored in plants as precursor molecules, glucosinolates, which are processed by the tyrosinase enzyme upon plant tissue damage to release ITCs, along with other products. Isolated from broccoli, sulforaphane is by far the most studied antioxidant ITC, acting primarily through the induction of a transcription factor, the nuclear factor erythroid 2-related factor 2 (Nrf2), which upregulates downstream antioxidant genes/proteins. Paradoxically, sulforaphane, as a pro-oxidant compound, can also increase the levels of reactive oxygen species, a mechanism which is attributed to its anticancer effect. Beyond highlighting the common pro-oxidant and antioxidant effects of sulforaphane, the present paper was designed to assess the diverse anti-inflammatory mechanisms reported to date using a variety of in vitro and in vivo experimental models. Sulforaphane downregulates the expression of pro-inflammatory cytokines, chemokines, adhesion molecules, cycloxyhenase-2, and inducible nitric oxide synthase. The signalling pathways of nuclear factor κB, activator protein 1, sirtuins 1, silent information regulator sirtuin 1 and 3, and microRNAs are among those affected by sulforaphane. These anti-inflammatory actions are sometimes due to direct action via interaction with the sulfhydryl structural moiety of cysteine residues in enzymes/proteins. The following are among the topics discussed in this paper: paradoxical signalling pathways such as the immunosuppressant or immunostimulant mechanisms; crosstalk between the oxidative and inflammatory pathways; and effects dependent on health and disease states.
Collapse
Affiliation(s)
- Solomon Habtemariam
- Pharmacognosy Research & Herbal Analysis Services UK, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK
| |
Collapse
|
5
|
Young AP, Denovan-Wright EM. JAK1/2 Regulates Synergy Between Interferon Gamma and Lipopolysaccharides in Microglia. J Neuroimmune Pharmacol 2024; 19:14. [PMID: 38642237 DOI: 10.1007/s11481-024-10115-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/01/2024] [Indexed: 04/22/2024]
Abstract
Microglia, the resident immune cells of the brain, regulate neuroinflammation which can lead to secondary neuronal damage and cognitive impairment under pathological conditions. Two of the many molecules that can elicit an inflammatory response from microglia are lipopolysaccharide (LPS), a component of gram-negative bacteria, and interferon gamma (IFNγ), an endogenous pro-inflammatory cytokine. We thoroughly examined the concentration-dependent relationship between LPS from multiple bacterial species and IFNγ in cultured microglia and macrophages. We measured the effects that these immunostimulatory molecules have on pro-inflammatory activity of microglia and used a battery of signaling inhibitors to identify the pathways that contribute to the microglial response. We found that LPS and IFNγ interacted synergistically to induce a pro-inflammatory phenotype in microglia, and that inhibition of JAK1/2 completely blunted the response. We determined that this synergistic action of LPS and IFNγ was likely dependent on JNK and Akt signaling rather than typical pro-inflammatory mediators such as NF-κB. Finally, we demonstrated that LPS derived from Escherichia coli, Klebsiella pneumoniae, and Akkermansia muciniphila can elicit different inflammatory responses from microglia and macrophages, but these responses could be consistently prevented using ruxolitinib, a JAK1/2 inhibitor. Collectively, this work reveals a mechanism by which microglia may become hyperactivated in response to the combination of LPS and IFNγ. Given that elevations in circulating LPS and IFNγ occur in a wide variety of pathological conditions, it is critical to understand the pharmacological interactions between these molecules to develop safe and effective treatments to suppress this process.
Collapse
Affiliation(s)
- Alexander P Young
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada.
| | | |
Collapse
|
6
|
Sucu S, Basarir KE, Mihaylov P, Balik E, Lee JTC, Fridell JA, Emamaullee JA, Ekser B. Impact of gut microbiota on liver transplantation. Am J Transplant 2023; 23:1485-1495. [PMID: 37277064 DOI: 10.1016/j.ajt.2023.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/26/2023] [Accepted: 05/24/2023] [Indexed: 06/07/2023]
Abstract
The gut microbiota has been gaining attention due to its interactions with the human body and its role in pathophysiological processes. One of the main interactions is the "gut-liver axis," in which disruption of the gut mucosal barrier seen in portal hypertension and liver disease can influence liver allograft function over time. For example, in patients who are undergoing liver transplantation, preexisting dysbiosis, perioperative antibiotic use, surgical stress, and immunosuppressive use have each been associated with alterations in gut microbiota, potentially impacting overall morbidity and mortality. In this review, studies exploring gut microbiota changes in patients undergoing liver transplantation are reviewed, including both human and experimental animal studies. Common themes include an increase in Enterobacteriaceae and Enterococcaceae species and a decrease in Faecalibacterium prausnitzii and Bacteriodes, while a decrease in the overall diversity of gut microbiota after liver transplantation.
Collapse
Affiliation(s)
- Serkan Sucu
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Surgery, Koc University School of Medicine, Istanbul, Turkey
| | - Kerem E Basarir
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Plamen Mihaylov
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Emre Balik
- Department of Surgery, Koc University School of Medicine, Istanbul, Turkey
| | - Jason T C Lee
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA; Division of Abdominal Organ Transplantation and Hepatobiliary Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jonathan A Fridell
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Juliet A Emamaullee
- Division of Abdominal Organ Transplantation and Hepatobiliary Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| |
Collapse
|
7
|
Mantov N, Zrounba M, Brollo M, Grassin-Delyle S, Glorion M, David M, Naline E, Devillier P, Salvator H. Ruxolitinib inhibits cytokine production by human lung macrophages without impairing phagocytic ability. Front Pharmacol 2022; 13:896167. [PMID: 36059986 PMCID: PMC9437255 DOI: 10.3389/fphar.2022.896167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The Janus kinase (JAK) 1/2 inhibitor ruxolitinib has been approved in an indication of myelofibrosis and is a candidate for the treatment of a number of inflammatory or autoimmune diseases. We assessed the effects of ruxolitinib on lipopolysaccharide (LPS)- and poly (I:C)-induced cytokine production by human lung macrophages (LMs) and on the LMs’ phagocytic activity.Methods: Human LMs were isolated from patients operated on for lung carcinoma. The LMs were cultured with ruxolitinib (0.5 × 10−7 M to 10–5 M) or budesonide (10–11 to 10–8 M) and then stimulated with LPS (10 ng·ml−1) or poly (I:C) (10 μg·ml−1) for 24 h. Cytokines released by the LMs into the supernatants were measured using ELISAs. The phagocytosis of labelled bioparticles was assessed using flow cytometry.Results: Ruxolitinib inhibited both the LPS- and poly (I:C)-stimulated production of tumor necrosis factor alpha, interleukin (IL)-6, IL-10, chemokines CCL2, and CXCL10 in a concentration-dependent manner. Ruxolitinib also inhibited the poly (I:C)- induced (but not the LPS-induced) production of IL-1ß. Budesonide inhibited cytokine production more strongly than ruxolitinib but failed to mitigate the production of CXCL10. The LMs’ phagocytic activity was not impaired by the highest tested concentration (10–5 M) of ruxolitinib.Conclusion: Clinically relevant concentrations of ruxolitinib inhibited the LPS- and poly (I:C)-stimulated production of cytokines by human LMs but did not impair their phagocytic activity. Overall, ruxolitinib’s anti-inflammatory activities are less intense than (but somewhat different from) those of budesonide—particularly with regard to the production of the corticosteroid-resistant chemokine CXCL-10. Our results indicate that treatment with a JAK inhibitor might be a valuable anti-inflammatory strategy in chronic obstructive pulmonary disease, Th1-high asthma, and both viral and non-viral acute respiratory distress syndromes (including coronavirus disease 2019).
Collapse
Affiliation(s)
- Nikola Mantov
- Laboratory of Research in Respiratory Pharmacology—Virologie et Immunologie Moleculaire (VIM) Suresnes, V2I—UMR-0892 Paris Saclay University, Suresnes, France
| | - Mathilde Zrounba
- Laboratory of Research in Respiratory Pharmacology—Virologie et Immunologie Moleculaire (VIM) Suresnes, V2I—UMR-0892 Paris Saclay University, Suresnes, France
- Respiratory Diseases Department, Foch Hospital, Suresnes, France
| | - Marion Brollo
- Laboratory of Research in Respiratory Pharmacology—Virologie et Immunologie Moleculaire (VIM) Suresnes, V2I—UMR-0892 Paris Saclay University, Suresnes, France
| | - S Grassin-Delyle
- Respiratory Diseases Department, Foch Hospital, Suresnes, France
- Infection and Inflammation, Health Biotechnology Department, Paris-Saclay University, UVSQ, INSERM, Montigny le Bretonneux, France
| | - Matthieu Glorion
- Laboratory of Research in Respiratory Pharmacology—Virologie et Immunologie Moleculaire (VIM) Suresnes, V2I—UMR-0892 Paris Saclay University, Suresnes, France
- Thoracic Surgery Department, Foch Hospital, Suresnes, France
| | - Mélanie David
- Laboratory of Research in Respiratory Pharmacology—Virologie et Immunologie Moleculaire (VIM) Suresnes, V2I—UMR-0892 Paris Saclay University, Suresnes, France
| | - Emmanuel Naline
- Laboratory of Research in Respiratory Pharmacology—Virologie et Immunologie Moleculaire (VIM) Suresnes, V2I—UMR-0892 Paris Saclay University, Suresnes, France
| | - Philippe Devillier
- Laboratory of Research in Respiratory Pharmacology—Virologie et Immunologie Moleculaire (VIM) Suresnes, V2I—UMR-0892 Paris Saclay University, Suresnes, France
- Respiratory Diseases Department, Foch Hospital, Suresnes, France
- Faculté des Sciences de la Santé Simone Veil, UVSQ Paris-Saclay University, Montigny-le-Bretonneux, France
| | - Hélène Salvator
- Laboratory of Research in Respiratory Pharmacology—Virologie et Immunologie Moleculaire (VIM) Suresnes, V2I—UMR-0892 Paris Saclay University, Suresnes, France
- Respiratory Diseases Department, Foch Hospital, Suresnes, France
- Faculté des Sciences de la Santé Simone Veil, UVSQ Paris-Saclay University, Montigny-le-Bretonneux, France
- *Correspondence: Hélène Salvator,
| |
Collapse
|
8
|
Wang L, He C. Nrf2-mediated anti-inflammatory polarization of macrophages as therapeutic targets for osteoarthritis. Front Immunol 2022; 13:967193. [PMID: 36032081 PMCID: PMC9411667 DOI: 10.3389/fimmu.2022.967193] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/27/2022] [Indexed: 12/14/2022] Open
Abstract
Macrophages are the most abundant immune cells within the synovial joints, and also the main innate immune effector cells triggering the initial inflammatory responses in the pathological process of osteoarthritis (OA). The transition of synovial macrophages between pro-inflammatory and anti-inflammatory phenotypes can play a key role in building the intra-articular microenvironment. The pro-inflammatory cascade induced by TNF-α, IL-1β, and IL-6 is closely related to M1 macrophages, resulting in the production of pro-chondrolytic mediators. However, IL-10, IL1RA, CCL-18, IGF, and TGF are closely related to M2 macrophages, leading to the protection of cartilage and the promoted regeneration. The inhibition of NF-κB signaling pathway is central in OA treatment via controlling inflammatory responses in macrophages, while the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway appears not to attract widespread attention in the field. Nrf2 is a transcription factor encoding a large number of antioxidant enzymes. The activation of Nrf2 can have antioxidant and anti-inflammatory effects, which can also have complex crosstalk with NF-κB signaling pathway. The activation of Nrf2 can inhibit the M1 polarization and promote the M2 polarization through potential signaling transductions including TGF-β/SMAD, TLR/NF-κB, and JAK/STAT signaling pathways, with the regulation or cooperation of Notch, NLRP3, PI3K/Akt, and MAPK signaling. And the expression of heme oxygenase-1 (HO-1) and the negative regulation of Nrf2 for NF-κB can be the main mechanisms for promotion. Furthermore, the candidates of OA treatment by activating Nrf2 to promote M2 phenotype macrophages in OA are also reviewed in this work, such as itaconate and fumarate derivatives, curcumin, quercetin, melatonin, mesenchymal stem cells, and low-intensity pulsed ultrasound.
Collapse
Affiliation(s)
- Lin Wang
- Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China,Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Chengqi He
- Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China,Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Chengqi He,
| |
Collapse
|
9
|
Xiang S, Huang R, He Q, Xu L, Wang C, Wang Q. Arginine regulates inflammation response-induced by Fowl Adenovirus serotype 4 via JAK2/STAT3 pathway. BMC Vet Res 2022; 18:189. [PMID: 35590365 PMCID: PMC9118595 DOI: 10.1186/s12917-022-03282-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 05/06/2022] [Indexed: 12/15/2022] Open
Abstract
Background Fowl Adenovirus serotype 4 (FAdV-4) infection causes severe inflammatory response leading to hepatitis-hydropericardium syndrome (HHS) in poultry. As an essential functional amino acid of poultry, arginine plays a critical role in anti-inflammatory and anti-oxidative stress. Results In this study, the differential expression genes (DEGs) were screened by transcriptomic techniques, and the DEGs in gene networks of inflammatory response-induced by FAdV-4 in broiler’s liver were analyzed by Kyoto encyclopedia of genes and genomes (KEGG) enrichment. The results showed that the cytokines pathway and JAK/STAT pathway were significantly enriched, in which the DEGs levels of IL-6, IL-1β, IFN-α, JAK and STAT were significantly up-regulated after FAdV-4 infection. It was further verified with real-time fluorescence quantitative polymerase chain reaction (Real-time qPCR) and Western blotting (WB) in vitro and in vivo. The findings demonstrated that FAdV-4 induced inflammatory response and activated JAK2/STAT3 pathway. Furthermore, we investigated whether arginine could alleviate the liver inflammation induced by FAdV-4. After treatment with 1.92% arginine level diet to broilers or 300 μg/mL arginine culture medium to LMH cell line with FAdV-4 infection at the same time, we found that the mRNA levels of IL-6, IL-1β, IFN-α and the protein levels of p-JAK2, p-STAT3 were down-regulated, compared with FAdV-4 infection group. Furthermore, we confirmed that the inflammation induced by FAdV-4 was ameliorated by pre-treatment with JAK inhibitor AG490 in LMH cells, and it was further alleviated in LMH cells treatment with AG490 and ARG. Conclusions These above results provide new insight that arginine protects hepatocytes against inflammation induced by FAdV-4 through JAK2/STAT3 signaling pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03282-9.
Collapse
Affiliation(s)
- Silin Xiang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, P.R. China
| | - Ruiling Huang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, P.R. China.,Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, 350002, P.R. China
| | - Qing He
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, P.R. China.,Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, 350002, P.R. China
| | - Lihui Xu
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, P.R. China
| | - Changkang Wang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, P.R. China.
| | - Quanxi Wang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, P.R. China. .,Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, 350002, P.R. China. .,University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, Fujian Agriculture and Forestry Univesity, Fuzhou, 350002, P.R. China.
| |
Collapse
|
10
|
Hammoud MK, Dietze R, Pesek J, Finkernagel F, Unger A, Bieringer T, Nist A, Stiewe T, Bhagwat AM, Nockher WA, Reinartz S, Müller-Brüsselbach S, Graumann J, Müller R. Arachidonic acid, a clinically adverse mediator in the ovarian cancer microenvironment, impairs JAK-STAT signaling in macrophages by perturbing lipid raft structures. Mol Oncol 2022; 16:3146-3166. [PMID: 35451191 PMCID: PMC9441005 DOI: 10.1002/1878-0261.13221] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/29/2022] [Accepted: 04/20/2022] [Indexed: 11/08/2022] Open
Abstract
Survival of ovarian carcinoma is associated with the abundance of immunosuppressed CD163highCD206high tumor‐associated macrophages (TAMs) and high levels of arachidonic acid (AA) in the tumor microenvironment. Here, we show that both associations are functionally linked. Transcriptional profiling revealed that high CD163 and CD206/MRC1 expression in TAMs is strongly associated with an inhibition of cytokine‐triggered signaling, mirrored by an impaired transcriptional response to interferons and IL‐6 in monocyte‐derived macrophages by AA. This inhibition of pro‐inflammatory signaling is caused by dysfunctions of the cognate receptors, indicated by the inhibition of JAK1, JAK2, STAT1, and STAT3 phosphorylation, and by the displacement of the interferon receptor IFNAR1, STAT1 and other immune‐regulatory proteins from lipid rafts. AA exposure led to a dramatic accumulation of free AA in lipid rafts, which appears to be mechanistically crucial, as the inhibition of its incorporation into phospholipids did not affect the AA‐mediated interference with STAT1 phosphorylation. Inhibition of interferon‐triggered STAT1 phosphorylation by AA was reversed by water‐soluble cholesterol, known to prevent the perturbation of lipid raft structure by AA. These findings suggest that the pharmacologic restoration of lipid raft functions in TAMs may contribute to the development new therapeutic approaches.
Collapse
Affiliation(s)
- Mohamad K Hammoud
- Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Raimund Dietze
- Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Jelena Pesek
- Medical Mass Spectrometry Core Facility, Philipps University, Marburg, Germany
| | - Florian Finkernagel
- Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Annika Unger
- Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Tim Bieringer
- Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany.,Hochschule Landshut, 84036, Landshut, Germany
| | - Andrea Nist
- Genomics Core Facility, Philipps University, Marburg, Germany
| | - Thorsten Stiewe
- Genomics Core Facility, Philipps University, Marburg, Germany
| | - Aditya M Bhagwat
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany.,The German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - W Andreas Nockher
- Medical Mass Spectrometry Core Facility, Philipps University, Marburg, Germany
| | - Silke Reinartz
- Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | | | - Johannes Graumann
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany.,The German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Institute for Translational Proteomics, Philipps University, Marburg, Germany
| | - Rolf Müller
- Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| |
Collapse
|
11
|
Hsieh WC, Lai CY, Lin HW, Tu DG, Shen TJ, Lee YJ, Hsieh MC, Chen CC, Han HH, Chang YY. Luteolin attenuates PM2.5-induced inflammatory responses by augmenting HO-1 and JAK-STAT expression in murine alveolar macrophages. FOOD AGR IMMUNOL 2022. [DOI: 10.1080/09540105.2021.2022605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Wen-Che Hsieh
- Chinese Medicine Department, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chia-Yi, Taiwan
| | - Chane-Yu Lai
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung, Taiwan
- Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hui-Wen Lin
- Department of Optometry, Asia University, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Genetics Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Dom-Gene Tu
- Department of Nuclear Medicine, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chia-Yi, Taiwan
- Department of Food Science and Technology, Chia Nan University of Pharmacy & Science, Tainan, Taiwan
- College of Health Sciences, Chang Jung Christian University, Tainan, Taiwan
| | - Ting-Jing Shen
- Department of Microbiology and Immunology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Ju Lee
- Department of Pathology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Pathology, Chung-Shan Medical University Hospital, Taichung, Taiwan
| | - Ming-Chang Hsieh
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | | | - Hsin-Hsuan Han
- College of Health Sciences, Chang Jung Christian University, Tainan, Taiwan
| | - Yuan-Yen Chang
- Department of Microbiology and Immunology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
12
|
Zhou Q, Ren Q, Jiao L, Huang J, Yi J, Chen J, Lai J, Ji G, Zheng T. The potential roles of JAK/STAT signaling in the progression of osteoarthritis. Front Endocrinol (Lausanne) 2022; 13:1069057. [PMID: 36506076 PMCID: PMC9729341 DOI: 10.3389/fendo.2022.1069057] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022] Open
Abstract
Osteoarthritis (OA) is an age-related chronic progressive degenerative disease that induces persistent pain and disabilities. The development of OA is a complex process, and the risk factors are various, including aging, genetics, trauma and altered biomechanics. Inflammation and immunity play an important role in the pathogenesis of OA. JAK/STAT pathway is one of the most prominent intracellular signaling pathways, regulating cell proliferation, differentiation, and apoptosis. Inflammatory factors can act as the initiators of JAK/STAT pathway, which is implicated in the pathophysiological activity of chondrocyte. In this article, we provide a review on the importance of JAK/STAT pathway in the pathological development of OA. Potentially, JAK/STAT pathway becomes a therapeutic target for managing OA.
Collapse
Affiliation(s)
- Qingluo Zhou
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Qun Ren
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Linhui Jiao
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Jishang Huang
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jun Yi
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jincai Chen
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jinliang Lai
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Guanglin Ji
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Guanglin Ji, ; Tiansheng Zheng,
| | - Tiansheng Zheng
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Guanglin Ji, ; Tiansheng Zheng,
| |
Collapse
|
13
|
Iglesias M, Khalifian S, Oh BC, Zhang Y, Miller D, Beck S, Brandacher G, Raimondi G. A short course of tofacitinib sustains the immunoregulatory effect of CTLA4-Ig in the presence of inflammatory cytokines and promotes long-term survival of murine cardiac allografts. Am J Transplant 2021; 21:2675-2687. [PMID: 33331121 DOI: 10.1111/ajt.16456] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 01/25/2023]
Abstract
Costimulation blockade-based regimens are a promising strategy for management of transplant recipients. However, maintenance immunosuppression via CTLA4-Ig monotherapy is characterized by high frequency of rejection episodes. Recent evidence suggests that inflammatory cytokines contribute to alloreactive T cell activation in a CD28-independent manner, a reasonable contributor to the limited efficacy of CTLA4-Ig. In this study, we investigated the possible synergism of a combined short-term inhibition of cytokine signaling and CD28 engagement on the modulation of rejection. Our results demonstrate that the JAK/STAT inhibitor tofacitinib restored the immunomodulatory effect of CTLA4-Ig on mouse alloreactive T cells in the presence of inflammatory cytokines. Tofacitinib exposure conferred dendritic cells with a tolerogenic phenotype reducing their cytokine secretion and costimulatory molecules expression. JAK inhibition also directly affected T cell activation. In vivo, the combination of CTLA4-Ig and tofacitinib induced long-term survival of heart allografts and, importantly, it was equally effective when using grafts subjected to prolonged ischemia. Transplant survival correlated with a reduction in effector T cells and intragraft accumulation of regulatory T cells. Collectively, our studies demonstrate a powerful synergism between CTLA4-Ig and tofacitinib and suggest their combined use is a promising strategy for improved management of transplanted patients.
Collapse
Affiliation(s)
- Marcos Iglesias
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Saami Khalifian
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Byoung C Oh
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yichuan Zhang
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Devin Miller
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sarah Beck
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Gerald Brandacher
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Giorgio Raimondi
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Kang DY, Sp N, Jo ES, Rugamba A, Kim HD, Kim IH, Park JC, Bae SW, Jang KJ, Yang YM. Non-toxic sulfur inhibits LPS-induced inflammation by regulating TLR-4 and JAK2/STAT3 through IL-6 signaling. Mol Med Rep 2021; 24:485. [PMID: 33907855 PMCID: PMC8127030 DOI: 10.3892/mmr.2021.12124] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 03/29/2021] [Indexed: 01/22/2023] Open
Abstract
Janus kinase 2 (JAK2) and STAT3 signaling is considered a major pathway in lipopolysaccharide (LPS)‑induced inflammation. Toll‑like receptor 4 (TLR‑4) is an inflammatory response receptor that activates JAK2 during inflammation. STAT3 is a transcription factor for the pro‑inflammatory cytokine IL‑6 in inflammation. Sulfur is an essential element in the amino acids and is required for growth and development. Non‑toxic sulfur (NTS) can be used in livestock feeds as it lacks toxicity. The present study aimed to inhibit LPS‑induced inflammation in C2C12 myoblasts using NTS by regulating TLR‑4 and JAK2/STAT3 signaling via the modulation of IL‑6. The 3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium bromide assay was conducted to analyze cell viability and reverse transcription polymerase chain reaction and western blotting performed to measure mRNA and protein expression levels. Chromatin immunoprecipitation and enzyme‑linked immunosorbent assays were used to determine the binding activity of proteins. The results indicated that NTS demonstrated a protective effect against LPS‑induced cell death and inhibited LPS‑induced expression of TLR‑4, JAK2, STAT3 and IL‑6. In addition, NTS inhibited the expression of nuclear phosphorylated‑STAT3 and its binding to the IL‑6 promoter. Therefore, NTS may be a potential candidate drug for the treatment of inflammation.
Collapse
Affiliation(s)
- Dong Young Kang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju, North Chungcheong 27478, Republic of Korea
| | - Nipin Sp
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju, North Chungcheong 27478, Republic of Korea
| | - Eun Seong Jo
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju, North Chungcheong 27478, Republic of Korea
| | - Alexis Rugamba
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju, North Chungcheong 27478, Republic of Korea
| | - Hyoung Do Kim
- Nara Bio Co., Ltd., Gunsan, Jeollabuk-do 54006, Republic of Korea
| | - Il Ho Kim
- Nara Bio Co., Ltd., Gunsan, Jeollabuk-do 54006, Republic of Korea
| | - Jong-Chan Park
- Plant Genome Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong, Daejeon 34141, Republic of Korea
| | - Se Won Bae
- Department of Chemistry and Cosmetics, Jeju National University, Jeju-si, Jeju-do 63243, Republic of Korea
| | - Kyoung-Jin Jang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju, North Chungcheong 27478, Republic of Korea
| | - Young Mok Yang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju, North Chungcheong 27478, Republic of Korea
| |
Collapse
|
15
|
Jin BR, Chung KS, Hwang S, Hwang SN, Rhee KJ, Lee M, An HJ. Rosmarinic acid represses colitis-associated colon cancer: A pivotal involvement of the TLR4-mediated NF-κB-STAT3 axis. Neoplasia 2021; 23:561-573. [PMID: 34077834 PMCID: PMC8180929 DOI: 10.1016/j.neo.2021.05.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/17/2021] [Accepted: 05/03/2021] [Indexed: 01/07/2023]
Abstract
Previously, we found that rosmarinic acid (RA) exerted anti-inflammatory activities in a dextran sulfate sodium (DSS)-induced colitis model. Here, we investigated the anti-tumor effects of RA on colitis-associated colon cancer (CAC) and the underlying molecular mechanisms. We established an azoxymethane (AOM)/DSS-induced CAC murine model for in vivo studies and used a conditioned media (CM) culture system in vitro. H&E staining, immunohistochemistry, western blot assay, enzyme-linked immunosorbent assay, molecular docking, co-immunoprecipitation, and immunofluorescence assay were utilized to investigate how RA prevented colorectal cancer. In the AOM/DSS-induced CAC murine model, RA significantly reduced colitis severity, inflammation-related protein expression, tumor incidence, and colorectal adenoma development. It significantly modulated toll-like receptor-4 (TLR4)-mediated nuclear factor-kappa B (NF-κB) and signal transducer and activator of transcription 3 (STAT3) activation, thus attenuating the expression of anti-apoptotic factors, which mediate transcription factor-dependent tumor growth. In vitro, RA inhibited CM-induced TLR4 overexpression and competitively inhibited TLR4-myeloid differentiation factor 2 complex in an inflammatory microenvironment. Thus, RA suppressed NF-κB and STAT3 activation in colon cancer cells in an inflammatory microenvironment. Therefore, RA suppressed colitis-associated tumorigenesis in the AOM/DSS-induced CAC murine model and abrogated human colon cancer progression in an inflammatory microenvironment by propitiating TLR4-mediated NF-κB and STAT3 activation, pleiotropically.
Collapse
Affiliation(s)
- Bo-Ram Jin
- Department of Pharmacology, College of Korean Medicine, Sangji University, Wonju-si, Gangwon-do, Korea
| | - Kyung-Sook Chung
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Soonjae Hwang
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University at Wonju, Wonju-si, Gangwon-do, Republic of Korea
| | - Sam Noh Hwang
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University at Wonju, Wonju-si, Gangwon-do, Republic of Korea
| | - Ki-Jong Rhee
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University at Wonju, Wonju-si, Gangwon-do, Republic of Korea
| | - Minho Lee
- Department of Life Science, Dongguk University-Seoul, Goyang-si, Gyeonggi-do, Republic of Korea.
| | - Hyo-Jin An
- Department of Pharmacology, College of Korean Medicine, Sangji University, Wonju-si, Gangwon-do, Korea.
| |
Collapse
|
16
|
Liu J, Zhu T, Niu Q, Yang X, Suo H, Zhang H. Dendrobium nobile Alkaloids Protects against H 2O 2-Induced Neuronal Injury by Suppressing JAK-STATs Pathway Activation in N2A Cells. Biol Pharm Bull 2020; 43:716-724. [PMID: 32238714 DOI: 10.1248/bpb.b19-01083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to investigate the preventive effect and mechanism of Dendrobium alkaloids (DNLA) on oxidative stress-related death in neuronal cells. Our results demonstrated that DNLA has a direct neuroprotective effect through oxidative stress in N2A cells induced by hydrogen peroxide (H2O2). CCK8, lactate dehydrogenase (LDH), intracellular Ca2+, intracellular reactive oxygen species (ROS), and mitochondrial membrane potential (MMP) were used to evaluate the mechanism of DNLA neutralization by H2O2-induced injury. Results presented in the paper indicate that treatment with DNLA (35 ng/mL) significantly attenuated decreases in cell viability, release of LDH, and apoptosis after H2O2-induced neuronal injury. Furthermore, DNLA significantly reduced intracellular Ca2+ up-regulation, ROS production, and inhibited mitochondrial depolarization. Moreover, DNLA treatment significantly downregulated expressions of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, IL-6, nitric oxide synthase, janus kinase-signal transducer and activators of transcription (JAK-STATs) signaling in N2A cells, all of which were H2O2-induced. Taken together, our findings suggested that DNLA may inhibit the expression of pro-inflammatory and pro-apoptotic factors by blocking JAK-STATs signaling after oxidative stress injury. This research provides a potential experimental basis for further application of DNLA to prevent various human nervous system diseases caused by oxidative stress.
Collapse
Affiliation(s)
- Jing Liu
- School of Life Science and Bioengineering, Henan University of Urban Construction
| | - Tao Zhu
- School of Life Science and Bioengineering, Henan University of Urban Construction
| | - Qingqing Niu
- School of Life Science and Bioengineering, Henan University of Urban Construction
| | - Xiaoxing Yang
- School of Life Science and Bioengineering, Henan University of Urban Construction
| | - Hao Suo
- School of Life Science and Bioengineering, Henan University of Urban Construction
| | - Hao Zhang
- School of Life Science and Bioengineering, Henan University of Urban Construction.,Institute of Biomedical and Pharmaceutical sciences, Guangdong University of Technology
| |
Collapse
|
17
|
Mukhopadhyay S, Heinz E, Porreca I, Alasoo K, Yeung A, Yang HT, Schwerd T, Forbester JL, Hale C, Agu CA, Choi YH, Rodrigues J, Capitani M, Jostins-Dean L, Thomas DC, Travis S, Gaffney D, Skarnes WC, Thomson N, Uhlig HH, Dougan G, Powrie F. Loss of IL-10 signaling in macrophages limits bacterial killing driven by prostaglandin E2. J Exp Med 2020; 217:132614. [PMID: 31819956 PMCID: PMC7041704 DOI: 10.1084/jem.20180649] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/09/2019] [Accepted: 10/25/2019] [Indexed: 12/19/2022] Open
Abstract
Cytokines and lipid mediators are key regulators of inflammation; but how they are mechanistically linked is poorly understood. Here, Mukhopadhyay et al. show a novel regulation between cytokine IL-10 and lipid mediator PGE2 that functionally connects them to intestinal inflammation. Loss of IL-10 signaling in macrophages (Mφs) leads to inflammatory bowel disease (IBD). Induced pluripotent stem cells (iPSCs) were generated from an infantile-onset IBD patient lacking a functional IL10RB gene. Mφs differentiated from IL-10RB−/− iPSCs lacked IL-10RB mRNA expression, were unable to phosphorylate STAT3, and failed to reduce LPS induced inflammatory cytokines in the presence of exogenous IL-10. IL-10RB−/− Mφs exhibited a striking defect in their ability to kill Salmonella enterica serovar Typhimurium, which was rescuable after experimentally introducing functional copies of the IL10RB gene. Genes involved in synthesis and receptor pathways for eicosanoid prostaglandin E2 (PGE2) were more highly induced in IL-10RB−/− Mφs, and these Mφs produced higher amounts of PGE2 after LPS stimulation compared with controls. Furthermore, pharmacological inhibition of PGE2 synthesis and PGE2 receptor blockade enhanced bacterial killing in Mφs. These results identify a regulatory interaction between IL-10 and PGE2, dysregulation of which may drive aberrant Mφ activation and impaired host defense contributing to IBD pathogenesis.
Collapse
Affiliation(s)
- Subhankar Mukhopadhyay
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK.,Medical Research Council Centre for Transplantation, Peter Gorer Department of Immunobiology, King's College London, London, UK
| | - Eva Heinz
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | | | - Kaur Alasoo
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Amy Yeung
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Huei-Ting Yang
- Translational Gastroenterology Unit, Experimental Medicine Division, Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK.,Swiss Precision Dignostics Development Company Limited, Bedford, UK
| | - Tobias Schwerd
- Translational Gastroenterology Unit, Experimental Medicine Division, Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK.,Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Jessica L Forbester
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK.,Division of Infection and Immunity, Cardiff University, Cardiff, UK
| | | | | | - Yoon Ha Choi
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | | | - Melania Capitani
- Translational Gastroenterology Unit, Experimental Medicine Division, Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Luke Jostins-Dean
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - David C Thomas
- Department of Medicine, University of Cambridge, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Simon Travis
- Translational Gastroenterology Unit, Experimental Medicine Division, Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | | | - William C Skarnes
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK.,The Jackson Laboratory for Genomic Medicine, Farmington, CT
| | - Nicholas Thomson
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK.,Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Holm H Uhlig
- Translational Gastroenterology Unit, Experimental Medicine Division, Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK.,Department of Paediatrics, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Gordon Dougan
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK.,Department of Medicine, University of Cambridge, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Fiona Powrie
- Translational Gastroenterology Unit, Experimental Medicine Division, Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK.,The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| |
Collapse
|
18
|
Markotic A, Flegar D, Grcevic D, Sucur A, Lalic H, Turcic P, Kovacic N, Lukac N, Pravdic D, Vukojevic K, Cavar I, Kelava T. LPS-induced inflammation desensitizes hepatocytes to Fas-induced apoptosis through Stat3 activation-The effect can be reversed by ruxolitinib. J Cell Mol Med 2020; 24:2981-2992. [PMID: 32022429 PMCID: PMC7077556 DOI: 10.1111/jcmm.14930] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 12/05/2019] [Accepted: 12/15/2019] [Indexed: 12/12/2022] Open
Abstract
Recent studies have established a concept of tumour necrosis factor‐α (TNF‐α)/Fas signalling crosstalk, highlighting TNF‐α as a critical cytokine in sensitizing hepatocytes to death induced by Fas activation. However, in the exact inflammatory response, besides TNF‐α, many other mediators, that might modulate apoptotic response differentially, are released. To resolve the issue, we studied the effects of lipopolysaccharide (LPS), one of the crucial inductors of inflammation in the liver, on apoptotic outcome. We show that LPS‐induced inflammation diminishes the sensitivity of hepatocytes to Fas stimulus in vivo at caspase‐8 level. Analysis of molecular mechanisms revealed an increased expression of various pro‐inflammatory cytokines in non‐parenchymal liver cells and hepatocyte‐specific increase in Bcl‐xL, associated with signal transducer and activator of transcription 3 (Stat3) phosphorylation. Pre‐treatment with ruxolitinib, a selective Janus kinase (JAK) 1/2 inhibitor, prevented the LPS‐induced Stat3 phosphorylation and restored the sensitivity of hepatocytes to Fas‐mediated apoptosis. Furthermore, ruxolitinib pre‐treatment diminished the LPS‐induced Bcl‐xL up‐regulation without an inhibitory effect on LPS‐induced expression of pro‐inflammatory cytokines. In summary, although the reports are showing that the effects of isolated pro‐inflammatory mediators, such as TNF‐α or neutrophils, are pro‐apoptotic, the overall effect of inflammatory milieu on hepatocytes in vivo is Stat3‐dependent desensitization to Fas‐mediated apoptosis.
Collapse
Affiliation(s)
- Antonio Markotic
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.,Center for Clinical Pharmacology, University Clinical Hospital Mostar, Mostar, Bosnia and Herzegovina
| | - Darja Flegar
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.,Department of Physiology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Danka Grcevic
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.,Department of Physiology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Alan Sucur
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.,Department of Physiology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Hrvoje Lalic
- Department of Physiology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Petra Turcic
- Department of Pharmacology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Natasa Kovacic
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.,Department of Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Nina Lukac
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.,Department of Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Danijel Pravdic
- Department of Physiology, School of Medicine, University of Mostar, Mostar, Bosnia and Herzegovina.,University Clinical Hospital Mostar, Mostar, Bosnia and Herzegovina
| | - Katarina Vukojevic
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, Split, Croatia.,Department of Medical Genetics, School of Medicine, University of Mostar, Mostar, Bosnia and Herzegovina
| | - Ivan Cavar
- Department of Physiology, School of Medicine, University of Mostar, Mostar, Bosnia and Herzegovina.,University Clinical Hospital Mostar, Mostar, Bosnia and Herzegovina
| | - Tomislav Kelava
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.,Department of Physiology, School of Medicine, University of Zagreb, Zagreb, Croatia.,Department of Physiology, School of Medicine, University of Mostar, Mostar, Bosnia and Herzegovina
| |
Collapse
|
19
|
Kabiri M, Hemmatpour A, Zare F, Hadinedoushan H, Karimollah A. Paroxetine modulates immune responses by activating a JAK2/STAT3 signaling pathway. J Biochem Mol Toxicol 2020; 34:e22464. [DOI: 10.1002/jbt.22464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/15/2020] [Accepted: 01/22/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Mahdieh Kabiri
- Department of Pharmacology, School of Pharmacy Shahid Sadoughi University of Medical Sciences and Health Services Yazd Iran
| | - Anahid Hemmatpour
- Department of Biochemistry, School of Medicine Shahid Sadoughi University of Medical Sciences and Health Services Yazd Iran
| | - Fatemeh Zare
- Reproductive Immunology Research Center Shahid Sadoughi University of Medical Sciences and Health Services Yazd Iran
| | - Hossein Hadinedoushan
- Reproductive Immunology Research Center Shahid Sadoughi University of Medical Sciences and Health Services Yazd Iran
| | - Alireza Karimollah
- Department of Pharmacology, School of Pharmacy Shahid Sadoughi University of Medical Sciences and Health Services Yazd Iran
| |
Collapse
|
20
|
Huang SP, Guan X, Kai GY, Xu YZ, Xu Y, Wang HJ, Pang T, Zhang LY, Liu Y. Broussonin E suppresses LPS-induced inflammatory response in macrophages via inhibiting MAPK pathway and enhancing JAK2-STAT3 pathway. Chin J Nat Med 2020; 17:372-380. [PMID: 31171272 DOI: 10.1016/s1875-5364(19)30043-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Indexed: 02/07/2023]
Abstract
Macrophages play an important role in inflammation, and excessive and chronic activation of macrophages leads to systemic inflammatory diseases, such as atherosclerosis and rheumatoid arthritis. In this paper, we explored the anti-inflammatory effect of broussonin E, a novel phenolic compound isolated from the barks ofBroussonetia kanzinoki, and its underlying molecular mechanisms. We discovered that Broussonin E could suppress the LPS-induced pro-inflammatory production in RAW264.7 cells, involving TNF-α, IL-1β, IL-6, COX-2 and iNOS. And broussonin E enhanced the expressions of anti-inflammatory mediators such as IL-10, CD206 and arginase-1 (Arg-1) in LPS-stimulated RAW264.7 cells. Further, we demonstrated that broussonin E inhibited the LPS-stimulated phosphorylation of ERK and p38 MAPK. Moreover, we found that broussonin E could activate janus kinase (JAK) 2, signal transducer and activator of transcription (STAT) 3. Downregulated pro-inflammatory cytokines and upregulated anti-inflammatory factors by broussonin E were abolished by using the inhibitor of JAK2-STAT3 pathway, WP1066. Taken together, our results showed that broussonin E could suppress inflammation by modulating macrophages activation statevia inhibiting the ERK and p38 MAPK and enhancing JAK2-STAT3 signaling pathway, and can be further developed as a promising drug for the treatment of inflammation-related diseases such as atherosclerosis.
Collapse
Affiliation(s)
- Shao-Peng Huang
- School of Basic Medicine, Center for Drug Screening and Pharmacodynamics Evaluation, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006,China
| | - Xin Guan
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 311402, China; Jiangsu Key Laboratory of Drug Screening, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Guo-Yin Kai
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Ya-Zhou Xu
- Jiangsu Key Laboratory of Drug Screening, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yuan Xu
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hao-Jie Wang
- Jiangsu Key Laboratory of Drug Screening, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Tao Pang
- Jiangsu Key Laboratory of Drug Screening, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Lu-Yong Zhang
- School of Basic Medicine, Center for Drug Screening and Pharmacodynamics Evaluation, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006,China; Jiangsu Key Laboratory of Drug Screening, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Ying Liu
- School of Basic Medicine, Center for Drug Screening and Pharmacodynamics Evaluation, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006,China.
| |
Collapse
|
21
|
Pardali E, Dimmeler S, Zeiher AM, Rieger MA. Clonal hematopoiesis, aging, and cardiovascular diseases. Exp Hematol 2019; 83:95-104. [PMID: 31891750 DOI: 10.1016/j.exphem.2019.12.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/09/2019] [Accepted: 12/25/2019] [Indexed: 12/31/2022]
Abstract
Cardiovascular diseases (CVDs) remain the leading cause of death worldwide. Many studies have provided evidence that both genetic and environmental factors induce atherosclerosis, leading thus to cardiovascular complications. Atherosclerosis is an inflammatory disease, and aging is strongly associated with the development of atherosclerosis. Recent experimental evidence suggests that clonal hematopoiesis (CH) is an emerging cardiovascular risk factor that contributes to the development of atherosclerosis and cardiac dysfunction and exacerbates cardiovascular diseases. CH is caused by somatic mutations in recurrent genes in hematopoietic stem cells, leading to the clonal expansion of mutated blood cell clones. Many of the mutated genes are known in the context of myeloid neoplasms. However, only some individuals carrying CH mutations develop hematologic abnormalities. CH is clearly age dependent and is not rare: at least 10%-20% of people >70 years old carry CH. The newly discovered association between myeloid leukemia-driver mutations and the progression of CVDs has raised medical interest. In this review, we summarize the current view on the contribution of CH in different cardiovascular diseases, CVD risk assessment, patient stratification, and the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Evangelia Pardali
- Department of Medicine, Hematology/Oncology, Goethe University Hospital, Frankfurt, Germany
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Goethe University, Frankfurt, Germany; Partner Site Rhine-Main, German Center for Cardiovascular Research (DZHK), Berlin, Germany
| | - Andreas M Zeiher
- Partner Site Rhine-Main, German Center for Cardiovascular Research (DZHK), Berlin, Germany; Department of Medicine, Cardiology, Goethe University Hospital, Frankfurt, Germany
| | - Michael A Rieger
- Department of Medicine, Hematology/Oncology, Goethe University Hospital, Frankfurt, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany; Frankfurt Cancer Institute, Frankfurt, Germany.
| |
Collapse
|
22
|
Zhang B, Gan L, Shahid MS, Lv Z, Fan H, Liu D, Guo Y. In vivo and in vitro protective effect of arginine against intestinal inflammatory response induced by Clostridium perfringens in broiler chickens. J Anim Sci Biotechnol 2019; 10:73. [PMID: 31428367 PMCID: PMC6697915 DOI: 10.1186/s40104-019-0371-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 06/07/2019] [Indexed: 01/29/2023] Open
Abstract
Background Necrotic enteritis is a widespread disease in poultry caused by Clostridium perfringens. We previously reported that dietary arginine supplementation protected the intestinal mucosa of broiler chickens with necrotic enteritis, but the related protective mechanisms remain unclear. The in vivo trial was designed as a 2 × 2 factorial arrangement to evaluated the effects of arginine supplementation on inflammatory responses, arginine transporters, arginine catabolism and JAK-STAT signalling pathway in broiler chickens challenged with C. perfringens or without C. perfringens. Furthermore, we validated the in vivo results using intestinal epithelial cells of chicken embryos. Results C. perfringens infection markedly increased gut gross pathological and histopathological lesion scores, promoted liver C. perfringens invasion, reduced serum arginine levels, and elevated jejunal mucosal lysozyme activities (P < 0.05), but these effects were significantly reversed by arginine supplementation in vivo (P < 0.05). The challenge significantly increased serum procalcitonin levels, jejunal mucosal iNOS activities and jejunal IL-6, TGF-β3, cationic amino acid transporter (CAT)-1, and CAT-3 mRNA expression (P < 0.05), whereas arginine supplementation significantly reduced jejunal IFN-γ, IL-1β, IL-6, IL-10, TGF-β3, and CAT-3 mRNA expression (P < 0.05). Arginine supplementation significantly attenuated the C. perfringens challenge-induced increases in jejunal iNOS, arginase 2, arginine decarboxylase, arginine:glycine amidinotransferase, JAK1, JAK3, STAT1, and STAT6 mRNA expression (P < 0.05). The in vitro experiment showed that C. perfringens challenge markedly increased cellular cytotoxicity and the mRNA expression of IL-1β, IL-8, IL-10, CAT-1 and CAT-3 (P < 0.05), which were significantly reversed by 50 μmol/L and/or 400 μmol/L arginine pre-treatment (P < 0.05). Conclusions Arginine prevented C. perfringens challenge-induced circulated arginine deficiency, normalized intestinal arginine transport and catabolism, down-regulated JAK-STAT signalling pathway and attenuated the inflammatory response, which exerted protective effects on the intestine of broiler chickens.
Collapse
Affiliation(s)
- Beibei Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Liping Gan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Muhammad Suhaib Shahid
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Zengpeng Lv
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Hao Fan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Dan Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 People's Republic of China
| |
Collapse
|
23
|
Fuster JJ, Walsh K. Somatic Mutations and Clonal Hematopoiesis: Unexpected Potential New Drivers of Age-Related Cardiovascular Disease. Circ Res 2019; 122:523-532. [PMID: 29420212 DOI: 10.1161/circresaha.117.312115] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Increasing evidence shows that conventional cardiovascular risk factors are incompletely predictive of cardiovascular disease, particularly in elderly individuals, suggesting that there may still be unidentified causal risk factors. Although the accumulation of somatic DNA mutations is a hallmark of aging, its relevance in cardiovascular disease or other age-related conditions has been, with the exception of cancer, largely unexplored. Here, we review recent clinical and preclinical studies that have identified acquired mutations in hematopoietic stem cells and subsequent clonal hematopoiesis as a new cardiovascular risk factor and a potential major driver of atherosclerosis. Understanding the mechanisms underlying the connection between somatic mutation-driven clonal hematopoiesis and cardiovascular disease will be highly relevant in the context of personalized medicine, as it may provide key information for the design of diagnostic, preventive, or therapeutic strategies tailored to the effects of specific somatic mutations.
Collapse
Affiliation(s)
- José J Fuster
- From the Molecular Cardiology Unit, Whitaker Cardiovascular Institute, Boston University School of Medicine, MA.
| | - Kenneth Walsh
- From the Molecular Cardiology Unit, Whitaker Cardiovascular Institute, Boston University School of Medicine, MA.
| |
Collapse
|
24
|
Zhang N, Han L, Xue Y, Deng Q, Wu Z, Peng H, Zhang Y, Xuan L, Pan G, Fu Q. The Protective Effect of Magnesium Lithospermate B on Hepatic Ischemia/Reperfusion via Inhibiting the Jak2/Stat3 Signaling Pathway. Front Pharmacol 2019; 10:620. [PMID: 31231218 PMCID: PMC6558428 DOI: 10.3389/fphar.2019.00620] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 05/15/2019] [Indexed: 12/15/2022] Open
Abstract
Acute inflammation is an important component of the pathogenesis of hepatic ischemia/reperfusion injury (HIRI). Magnesium lithospermate B (MLB) has strong neuroprotective and cardioprotective effects. The purpose of this study was to determine whether MLB had underlying protective effects against hepatic I/R injury and to reveal the potential mechanisms related to the hepatoprotective effects. In this study, we first examined the protective effect of MLB on HIRI in mice that underwent 1 h ischemia followed by 6 h reperfusion. MLB pretreatment alleviated the abnormal liver function and hepatocyte damage induced by I/R injury. We found that serum inflammatory cytokines, including IL-6, IL-1β, and TNF-α, were significantly decreased by MLB during hepatic ischemia/reperfusion (I/R) injury, suggesting that MLB may alleviate hepatic I/R injury via inhibiting inflammatory signaling pathways. Second, we investigated the protein level of p-Jak2/Jak2 and p-Stat3/Stat3 using Western blotting and found that MLB could significantly inhibit the activation of the Jak2/Stat3 signaling pathway, which was further verified by AG490 in a mouse model. Finally, the effect of MLB on the Jak2/Stat3 pathway was further assessed in an in vitro model of RAW 264.7 cells; 1 µg/ml LPS induced the secretion of inflammatory mediators, including IL-6, TNF-α, and activation of the Jak2/Stat3 signaling pathway. MLB significantly inhibited the abnormal secretion of inflammatory factors and the activation of the Jak2/Stat3 signaling pathway in RAW264.7 cells. In conclusion, MLB was found for the first time to reduce inflammation induced by hepatic I/R via suppressing the Jak2/Stat3 pathway.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
| | - Li Han
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yaru Xue
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qiangqiang Deng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhitao Wu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Huige Peng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yiting Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lijiang Xuan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Guoyu Pan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qiang Fu
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
25
|
Sureshchandra S, Raus A, Jankeel A, Ligh BJK, Walter NAR, Newman N, Grant KA, Messaoudi I. Dose-dependent effects of chronic alcohol drinking on peripheral immune responses. Sci Rep 2019; 9:7847. [PMID: 31127176 PMCID: PMC6534547 DOI: 10.1038/s41598-019-44302-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/09/2019] [Indexed: 12/13/2022] Open
Abstract
It is well established that chronic heavy alcohol drinking (CHD) results in significant organ damage, increased susceptibility to infections, and poor outcomes following injury. In contrast, chronic moderate drinking (CMD) has been associated with improved cardiovascular health and immunity. These differential outcomes have been linked to alterations in both innate and adaptive branches of the immune system; however, the mechanisms remain poorly understood. To address this question, we determined the impact of chronic drinking on the transcriptional and functional responses of peripheral blood mononuclear cells (PBMC) collected from male rhesus macaques classified as CMD or CHD after 12 months of voluntary ethanol self-administration. Our analysis suggests that chronic alcohol drinking, regardless of dose alters resting transcriptomes of PBMC, with the largest impact seen in innate immune cells. These transcriptional changes are partially explained by alterations in microRNA profiles. Additionally, chronic alcohol drinking is associated with a dose dependent heightened inflammatory profiled at resting and following LPS stimulation. Moreover, we observed a dose-dependent shift in the kinetics of transcriptional responses to LPS. These findings may explain the dichotomy in clinical and immunological outcomes observed with moderate versus heavy alcohol drinking.
Collapse
Affiliation(s)
- Suhas Sureshchandra
- Department of Molecular Biology and Biochemistry, University of California-Irvine, Irvine, CA, 92697, USA
| | - Anthony Raus
- Department of Molecular Biology and Biochemistry, University of California-Irvine, Irvine, CA, 92697, USA
| | - Allen Jankeel
- Department of Molecular Biology and Biochemistry, University of California-Irvine, Irvine, CA, 92697, USA
| | - Brian Jin Kee Ligh
- Department of Biomedical Engineering, University of California-Irvine, 92697, Irvine, CA, USA
| | - Nicole A R Walter
- Oregon National Primate Research Center, Oregon Health & Science University, 97006, Beaverton, OR, USA
| | - Natali Newman
- Oregon National Primate Research Center, Oregon Health & Science University, 97006, Beaverton, OR, USA
| | - Kathleen A Grant
- Oregon National Primate Research Center, Oregon Health & Science University, 97006, Beaverton, OR, USA
| | - Ilhem Messaoudi
- Department of Molecular Biology and Biochemistry, University of California-Irvine, Irvine, CA, 92697, USA.
- Oregon National Primate Research Center, Oregon Health & Science University, 97006, Beaverton, OR, USA.
| |
Collapse
|
26
|
Geng L, Hu W, Liu Y, Wang J, Zhang Q. A heteropolysaccharide from Saccharina japonica with immunomodulatory effect on RAW 264.7 cells. Carbohydr Polym 2018; 201:557-565. [PMID: 30241853 DOI: 10.1016/j.carbpol.2018.08.096] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/23/2018] [Accepted: 08/23/2018] [Indexed: 12/28/2022]
Abstract
A heteropolysaccharide (SHP) with a strong immunomodulatory effect on RAW 264.7 cells was prepared from Saccharina japonica. Chemical analysis demonstrated that SHP was primarily composed of mannose, glucuronic acid, glucose, fucose, galactose, xylose and rahmnose with a molar ratio of 1.00:0.85:0.84:0.58:0.30:0.37:0.15. ESI-MS showed that depolymerized SHP produced oligo-glucuronan, oligo-glucuronomannan, sulfated fuco-oligosaccharides and other hetero-oligosaccharides. The in vitro immunomodulatory results showed that SHP could increase NO production and up-regulate the expression of many immune effectors, including iNOS, COX-2 and TNF-α, displaying an apparent immune enhancement activities. Western blot analysis proved that SHP activated the expression levels of many key components involved in NF-κB, MAPK and Akt signaling pathways. Our results together indicated that SHP has the potential to be developed as a novel immunomodulator for activating immune system.
Collapse
Affiliation(s)
- Lihua Geng
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Lab for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Weicheng Hu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, 223300, China
| | - Yingjuan Liu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Lab for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Wang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Lab for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Quanbin Zhang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Lab for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| |
Collapse
|
27
|
Lee HH, Lee SG, Shin JS, Lee HY, Yoon K, Ji YW, Jang DS, Lee KT. p-Coumaroyl Anthocyanin Mixture Isolated from Tuber Epidermis of Solanum tuberosum Attenuates Reactive Oxygen Species and Pro-inflammatory Mediators by Suppressing NF-κB and STAT1/3 Signaling in LPS-Induced RAW264.7 Macrophages. Biol Pharm Bull 2018; 40:1894-1902. [PMID: 29093336 DOI: 10.1248/bpb.b17-00362] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previously, we first reported the identification of four p-coumaroyl anthocyanins (petanin, peonanin, malvanin, and pelanin) from the tuber epidermis of colored potato (Solanum tuberosum L. cv JAYOUNG). In this study, we investigated the anti-oxidative and anti-inflammatory effects of a mixture of peonanin, malvanin, and pelanin (10 : 3 : 3; CAJY). CAJY displayed considerable radical scavenging capacity of 1, 1-diphenyl-2-picryl-hydrazyl (DPPH), increased mRNA levels of the catalytic and modulatory subunit of glutamate cysteine ligase, and subsequent cellular glutathione content. These increases preceded the inhibition of lipopolysaccharide (LPS)-induced intracellular reactive oxygen species (ROS) production. CAJY inhibited inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in a concentration-dependent manner at the protein, mRNA, and promoter activity levels. These inhibitions caused attendant decreases in the production of prostaglandin E2 (PGE2). CAJY suppressed the production and mRNA expression of tumor necrosis factor (TNF)-α and interleukin (IL)-6. Molecular data revealed that CAJY inhibited the transcriptional activity and translocation of nuclear factor κB (NF-κB) and phosphorylation of signal transducer and activator of transcription 1 (STAT1) and STAT3. Taken together, these results suggest that the anthocyanin mixture exerts anti-inflammatory effects in macrophages, at least in part by reducing ROS production and inactivating NF-κB and STAT 1/3.
Collapse
Affiliation(s)
- Hwi-Ho Lee
- Department of Pharmaceutical Biochemistry College of Pharmacy, Kyung Hee University.,Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University
| | - Suel-Gie Lee
- Department of Pharmaceutical Biochemistry College of Pharmacy, Kyung Hee University.,Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University
| | - Ji-Sun Shin
- Department of Pharmaceutical Biochemistry College of Pharmacy, Kyung Hee University
| | - Ho-Young Lee
- Department of Pharmaceutical Biochemistry College of Pharmacy, Kyung Hee University
| | - Kyungwon Yoon
- Department of Pharmaceutical Biochemistry College of Pharmacy, Kyung Hee University
| | - Yong Woo Ji
- Institute of Vision Research, Department of Opthalmology, Yonsei University
| | - Dae Sik Jang
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry College of Pharmacy, Kyung Hee University.,Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University
| |
Collapse
|
28
|
Wang F, Dang Y, Wang J, Zhou T, Zhu Y. Gypenosides attenuate lipopolysaccharide-induced optic neuritis in rats. Acta Histochem 2018; 120:340-346. [PMID: 29559175 DOI: 10.1016/j.acthis.2018.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 12/12/2022]
Abstract
PURPOSE To evaluate the effect of gypenosides (GPs) on lipopolysaccharide (LPS)-induced optic neuritis rats. METHODS Optic neuritis was induced by a single microinjection of LPS into the optic nerve of Sprague Dawley rats. GPs (400 mg/kg) was administrated by gavage for 21 days. The optic nerve structure changes and demyelination were observed after hematoxylin & eosin and Luxol-fast blue staining. Apoptosis of retinal ganglion cells (RGCs) was evaluated using Brn3a-TUNEL double staining. Expression of CD68 and glial fibrillary acidic protein (GFAP) were detected using immunofluorescence staining. The mRNA levels of inflammatory factors were measured using quantitative real-time PCR. The protein expression levels in the signal transducer and activator of transcription (STAT) and nuclear factor-κB (NF-κB) pathways were detected using Western blot. RESULTS GPs treatment prevented the optic nerve structure changes and demyelination in the rats with optic neuritis. GPs treatment downregulated LPS-induced overexpressions of CD68, GFAP and pro-inflammatory factors. GPs treatment inhibited STAT1 and 3 phosphorylation and NF-κB nuclear translocation in the optic nerve and retina of rats with optic neuritis. CONCLUSION GPs attenuate LPS-induced inflammation, demyelination and optic nerve damage which may be associated with the inhibition of the NF-κB and STAT pathways.
Collapse
|
29
|
Perfluorooctanesulfonate induces neuroinflammation through the secretion of TNF-α mediated by the JAK2/STAT3 pathway. Neurotoxicology 2018. [DOI: 10.1016/j.neuro.2018.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Mortazavi-Jahromi SS, Farazmand A, Motamed N, Navabi SS, Mirshafiey A. Effects of guluronic acid (G2013) on SHIP1, SOCS1 induction and related molecules in TLR4 signaling pathway. Int Immunopharmacol 2018; 55:323-329. [DOI: 10.1016/j.intimp.2018.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 12/18/2017] [Accepted: 01/03/2018] [Indexed: 12/19/2022]
|
31
|
Kyungheechunggan-Tang-01, a New Herbal Medication, Suppresses LPS-Induced Inflammatory Responses through JAK/STAT Signaling Pathway in RAW 264.7 Macrophages. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:7383104. [PMID: 29348772 PMCID: PMC5733936 DOI: 10.1155/2017/7383104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/03/2017] [Accepted: 11/09/2017] [Indexed: 01/26/2023]
Abstract
Medicinal plants have been used as alternative therapeutic tools to alleviate inflammatory diseases. The objective of this study was to evaluate anti-inflammatory properties of Kyungheechunggan-tang- (KCT-) 01, KCT-02, and Injinchunggan-tang (IJCGT) as newly developed decoctions containing 3–11 herbs in LPS-induced macrophages. KCT-01 showed the most potent inhibitory effects on LPS-induced NO, PGE2, TNF-α, and IL-6 production among those three herbal formulas. In addition, KCT-01 significantly inhibited LPS-induced iNOS and COX-2 at protein levels and expression of iNOS, COX-2, TNF-α, and IL-6 at mRNA levels. Molecular data revealed that KCT-01 attenuated the activation of JAK/STAT signaling cascade without affecting NF-κB or AP-1 activation. In ear inflammation induced by croton oil, KCT-01 significantly reduced edema, MPO activity, expression levels of iNOS and COX-2, and STAT3 phosphorylation in ear tissues. Taken together, our findings suggest that KCT-01 can downregulate the expression of proinflammatory genes by inhibiting JAK/STAT signaling pathway under inflammatory conditions. This study provides useful data for further exploration and application of KCT-01 as a potential anti-inflammatory medicine.
Collapse
|
32
|
Kim SH, Park SY, Park YL, Myung DS, Rew JS, Joo YE. Chlorogenic acid suppresses lipopolysaccharide‑induced nitric oxide and interleukin‑1β expression by inhibiting JAK2/STAT3 activation in RAW264.7 cells. Mol Med Rep 2017; 16:9224-9232. [PMID: 28990048 DOI: 10.3892/mmr.2017.7686] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 08/03/2017] [Indexed: 11/05/2022] Open
Abstract
Chlorogenic acid (CA) is a phenolic compound purified from coffee, fruits and their associated beverages, which possess various biological properties, such as antioxidant and anticarcinogenic activities. The present study evaluated the effects of CA on lipopolysaccharide (LPS)‑induced inflammation in RAW264.7 cells and the associated intracellular signaling pathways using reverse transcription‑quantitative polymerase chain reaction, western blotting and enzyme‑linked immunosorbent assays. CA pretreatment inhibited LPS‑induced expression of inducible nitric oxide synthase (iNOS), nitric oxide (NO) and pro‑inflammatory mediators including interleukin (IL)‑6, tumor necrosis factor‑α (TNF‑α), macrophage inflammatory protein‑2 (MIP‑2) and IL‑1β in RAW264.7 cells. In addition, phosphorylation of Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) with LPS was inhibited by CA pretreatment. CA and STAT3 inhibitor (STAT3i) pretreatment inhibited LPS‑induced nuclear translocation of phosphorylated STAT3. In addition, STAT3i inhibited the LPS‑induced expression of iNOS, NO and IL‑1β similar to the results of CA pretreatment. By contrast, STAT3i did not inhibit the LPS‑induced increase in IL‑6, TNF‑α and MIP‑2 expression. These results indicate that CA may suppress LPS‑induced NO and IL‑1β expression by inhibiting JAK2/STAT3 activation in RAW264.7 cells.
Collapse
Affiliation(s)
- Sang-Hun Kim
- Department of Internal Medicine, Chonnam National University Medical School, Dong‑Ku, Gwangju 501‑757, Republic of Korea
| | - Sun-Young Park
- Department of Internal Medicine, Chonnam National University Medical School, Dong‑Ku, Gwangju 501‑757, Republic of Korea
| | - Young-Lan Park
- Department of Internal Medicine, Chonnam National University Medical School, Dong‑Ku, Gwangju 501‑757, Republic of Korea
| | - Dae-Seong Myung
- Department of Internal Medicine, Chonnam National University Medical School, Dong‑Ku, Gwangju 501‑757, Republic of Korea
| | - Jong-Sun Rew
- Department of Internal Medicine, Chonnam National University Medical School, Dong‑Ku, Gwangju 501‑757, Republic of Korea
| | - Young-Eun Joo
- Department of Internal Medicine, Chonnam National University Medical School, Dong‑Ku, Gwangju 501‑757, Republic of Korea
| |
Collapse
|
33
|
Macrophage JAK2 deficiency protects against high-fat diet-induced inflammation. Sci Rep 2017; 7:7653. [PMID: 28794431 PMCID: PMC5550513 DOI: 10.1038/s41598-017-07923-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 07/03/2017] [Indexed: 02/06/2023] Open
Abstract
During obesity, macrophages can infiltrate metabolic tissues, and contribute to chronic low-grade inflammation, and mediate insulin resistance and diabetes. Recent studies have elucidated the metabolic role of JAK2, a key mediator downstream of various cytokines and growth factors. Our study addresses the essential role of macrophage JAK2 in the pathogenesis to obesity-associated inflammation and insulin resistance. During high-fat diet (HFD) feeding, macrophage-specific JAK2 knockout (M-JAK2−/−) mice gained less body weight compared to wildtype littermate control (M-JAK2+/+) mice and were protected from HFD-induced systemic insulin resistance. Histological analysis revealed smaller adipocytes and qPCR analysis showed upregulated expression of some adipogenesis markers in visceral adipose tissue (VAT) of HFD-fed M-JAK2−/− mice. There were decreased crown-like structures in VAT along with reduced mRNA expression of some macrophage markers and chemokines in liver and VAT of HFD-fed M-JAK2−/− mice. Peritoneal macrophages from M-JAK2−/− mice and Jak2 knockdown in macrophage cell line RAW 264.7 also showed lower levels of chemokine expression and reduced phosphorylated STAT3. However, leptin-dependent effects on augmenting chemokine expression in RAW 264.7 cells did not require JAK2. Collectively, our findings show that macrophage JAK2 deficiency improves systemic insulin sensitivity and reduces inflammation in VAT and liver in response to metabolic stress.
Collapse
|
34
|
Pinus densiflora needle supercritical fluid extract suppresses the expression of pro-inflammatory mediators iNOS, IL-6 and IL-1β, and activation of inflammatory STAT1 and STAT3 signaling proteins in bacterial lipopolysaccharide-challenged murine macrophages. ACTA ACUST UNITED AC 2017; 25:18. [PMID: 28778215 PMCID: PMC5544993 DOI: 10.1186/s40199-017-0184-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/27/2017] [Indexed: 12/17/2022]
Abstract
Background Regulation of a persistently-activated inflammatory response in macrophages is an important target for treatment of various chronic diseases. Pine needle extracts are well known to have potent immunomodulatory effects. The current study was designed to evaluate the effects of Pinus densiflora needle supercritical fluid extract (PDN-SCFE) on bacterial lipopolysaccharide (LPS)-induced inflammatory response in RAW 264.7 murine macrophages. Methods Cytotoxic effect of PDN-SCFE was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The levels of nitric oxide (NO) and the corresponding enzyme, inducible nitric oxide synthase (iNOS), were quantified by Griess and immunoblotting methods, respectively. The levels of cytokines were quantified using commercial ELISA kits. Quantitative real-time PCR (qRT-PCR) analysis was performed to assess the mRNA expression of iNOS and cytokines. To elucidate the mechanism of action, the involvement of nuclear transcription factor-kappa B (NFκB), mitogen activated protein kinases (MAPKs) and Janus kinase-signal transducers and activators of transcription (JAK-STAT) pathways were examined by an immunoblotting method. In addition, the cellular localization of NFκB was analyzed by immunofluorescence staining. Results MTT assay results indicated that PDN-SCFE is non-toxic to RAW 264.7 cells up to a maximum assayed concentration of 40 μg/mL. The PDN-SCFE exhibited a concentration-dependent inhibitory effect on LPS-induced NO production by down regulating the expression of iNOS. In addition, the extract suppressed the LPS-induced expression of interleukin-6 (IL-6) and interleukin-1β (IL-1β) but not tumour necrosis factor-α (TNFα). Mechanistic studies revealed that PDN-SCFE does not influence the NFκB and MAPK pathways. However, it showed a significant inhibitory effect on LPS-induced activation of STAT1 and STAT3 proteins in macrophages. Conclusion The present findings revealed that the anti-inflammatory activity of PDN-SCFE in LPS-challenged RAW 264.7 macrophages is probably caused by the suppression of the JAK-STAT signaling pathway. Graphical Abstract ![]()
Collapse
|
35
|
Okamoto M, Suzuki T, Mizukami Y, Ikeda T. The membrane-type estrogen receptor G-protein-coupled estrogen receptor suppresses lipopolysaccharide-induced interleukin 6 via inhibition of nuclear factor-kappa B pathway in murine macrophage cells. Anim Sci J 2017; 88:1870-1879. [PMID: 28722236 DOI: 10.1111/asj.12868] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/23/2017] [Indexed: 12/20/2022]
Abstract
The female sex hormone estrogen exerts anti-inflammatory effects. The G-protein-coupled estrogen receptor (GPER) has been recently identified as a novel membrane-type estrogen receptor that can mediate non-genomic estrogenic effects on many cell types. We previously demonstrated that GPER inhibits tumor necrosis factor alpha-induced expression of interleukin 6 (IL-6) through repression of nuclear factor-kappa B (NF-κB) promoter activity using human breast cancer cells. Although several reports have indicated that GPER suppresses Toll-like receptor-induced inflammatory cytokine expression in macrophages, the molecular mechanisms of the inhibition of cytokine production via GPER remain poorly understood. In the present study, we examined GPER-mediated inhibition of IL-6 expression induced by lipopolysaccharide (LPS) stimulation in a mouse macrophage cell line. We found that the GPER agonist G-1 inhibited LPS-induced IL-6 expression in macrophage cells, and this inhibition was due to the repression of NF-κB promoter activity by GPER. G-1 treatment also decreased the phosphorylation of inhibitor of κB kinases. Among the mitogen-activated protein kinases, the phosphorylation of c-jun N-terminal kinase (JNK) was increased by G-1. These findings delineate the novel mechanism of the inhibition of LPS-induced IL-6 through GPER-activated JNK-mediated negative regulation of the NF-κB pathway in murine macrophage cells, which links anti-inflammatory effects to estrogen.
Collapse
Affiliation(s)
- Mariko Okamoto
- Laboratory of Veterinary Immunology, Department of Veterinary Medicine, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Takuto Suzuki
- Laboratory of Veterinary Immunology, Department of Veterinary Medicine, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Yoichi Mizukami
- Center for Gene Research, Yamaguchi University, Yamaguchi, Japan
| | - Teruo Ikeda
- Laboratory of Veterinary Immunology, Department of Veterinary Medicine, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| |
Collapse
|
36
|
Xanthotoxin suppresses LPS-induced expression of iNOS, COX-2, TNF-α, and IL-6 via AP-1, NF-κB, and JAK-STAT inactivation in RAW 264.7 macrophages. Int Immunopharmacol 2017; 49:21-29. [PMID: 28550731 DOI: 10.1016/j.intimp.2017.05.021] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/16/2017] [Accepted: 05/19/2017] [Indexed: 12/22/2022]
Abstract
Although xanthotoxin has been reported to possess skin-protective and anti-oxidative properties, its anti-inflammatory capacity has not been studied to date. Therefore, we investigated this role as well as the molecular mechanisms of xanthotoxin in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. Xanthotoxin inhibited production of nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor (TNF-α), and interleukin-6 (IL-6) by the LPS-induced macrophages in a concentration-dependent manner. It also suppressed the LPS-induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression at the protein levels and iNOS, COX-2, TNF-α, and IL-6 at the mRNA levels. At a molecular level, the effects were related to xanthotoxin-mediated attenuation of the LPS-induced transcriptional and DNA-binding activity of activator protein-1 (AP-1). This attenuation was associated with decreased phosphorylation of c-Fos, but not c-Jun. Xanthotoxin also displayed a suppressive effect on the transcriptional and DNA-binding activity of nuclear transcription factor kappa-B (NF-κB) by inhibiting p65 nuclear translocation. In addition, xanthotoxin significantly reduced the phosphorylation at signal transducers and activators of transcription 1 (STAT1, Ser 727 and Tyr 701) and STAT3 (Tyr 705), as well as Janus kinase (JAK) 1 and 2 in LPS-induced RAW 264.7 macrophages. Finally, xanthotoxin suppressed the LPS-induced phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 and p38 mitogen-activated protein kinase (MAPK). Taken together, these results indicate that xanthotoxin decreases NO, PGE2, TNF-α, and IL-6 production by downregulation of the NF-κB, AP-1, and JAK/STAT signaling pathways in LPS-induced RAW 264.7 macrophages.
Collapse
|
37
|
Chen LL, Zhang HJ, Chao J, Liu JF. Essential oil of Artemisia argyi suppresses inflammatory responses by inhibiting JAK/STATs activation. JOURNAL OF ETHNOPHARMACOLOGY 2017; 204:107-117. [PMID: 28438564 DOI: 10.1016/j.jep.2017.04.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 04/16/2017] [Accepted: 04/20/2017] [Indexed: 05/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Artemisia argyi is a herbal medicine traditionally used in Asia for the treatment of bronchitis, dermatitis and arthritis. Recent studies revealed the anti-inflammatory effect of essential oil in this plant. However, the mechanisms underlying the therapeutic potential have not been well elucidated. The present study is aimed to verify its anti-inflammatory effect and investigate the probable mechanisms. MATERIALS AND METHODS The essential oil from Artemisia argyi (AAEO) was initially tested against LPS-induced production of inflammatory mediators and cytokines in RAW264.7 macrophages. Protein and mRNA expressions of iNOS and COX-2 were determined by Western blotting and RT-PCR analysis, respectively. The effects on the activation of MAPK/NF-κB/AP-1 and JAK/STATs pathway were also investigated by western blot. Meanwhile, in vivo anti-inflammatory effect was examined by histologic and immunohistochemical analysis in TPA-induced mouse ear edema model. RESULTS The results of in vitro experiments showed that AAEO dose-dependently suppressed the release of pro-inflammatory mediators (NO, PGE2 and ROS) and cytokines (TNF-α, IL-6, IFN-β and MCP-1) in LPS-induced RAW264.7 macrophages. It down-regulated iNOS and COX-2 protein and mRNA expression but did not affect the activity of these two enzymes. AAEO significantly inhibited the phosphorylation of JAK2 and STAT1/3, but not the activation of MAPK and NF-κB cascades. In animal model, oral administration of AAEO significantly attenuated TPA-induced mouse ear edema and decreased the protein level of COX-2. CONCLUSION AAEO suppresses inflammatory responses via down-regulation of the JAK/STATs signaling and ROS scavenging, which could contribute, at least in part, to the anti-inflammatory effect of AAEO.
Collapse
Affiliation(s)
- Lin-Lin Chen
- Key Laboratory of Traditional Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065, PR China.
| | - Hao-Jun Zhang
- Department of Pharmacology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jung Chao
- Department and Institute of Pharmacology, National Yang-Ming University, Taipei 112, Taiwan
| | - Jun-Feng Liu
- Key Laboratory of Traditional Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| |
Collapse
|
38
|
Daphnetin reduces endotoxin lethality in mice and decreases LPS-induced inflammation in Raw264.7 cells via suppressing JAK/STATs activation and ROS production. Inflamm Res 2017; 66:579-589. [DOI: 10.1007/s00011-017-1039-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/20/2017] [Accepted: 03/25/2017] [Indexed: 12/21/2022] Open
|
39
|
Metabolic adaptation to the aqueous leaf extract of Moringa oleifera Lam.-supplemented diet is related to the modulation of gut microbiota in mice. Appl Microbiol Biotechnol 2017; 101:5115-5130. [PMID: 28382453 DOI: 10.1007/s00253-017-8233-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/05/2017] [Accepted: 03/09/2017] [Indexed: 12/12/2022]
Abstract
The aqueous leaf extract of Moringa oleifera Lam. (LM-A) is reported to have many health beneficial bioactivities and no obvious toxicity, but have mild adverse effects. Little is known about the mechanism of these reported adverse effects. Notably, there has been no report about the influence of LM-A on intestinal microecology. In this study, animal experiments were performed to explore the relationships between metabolic adaptation to an LM-A-supplemented diet and gut microbiota changes. After 8-week feeding with normal chow diet, the body weight of mice entered a stable period, and one of the group received daily doses of 750-mg/kg body weight LM-A by gavage for 4 weeks (assigned as LM); the other group received the vehicle (assigned as NCD). The liver weight to body weight ratio was enhanced, and the ceca were enlarged in the LM group compared with the NCD group. LM-A-supplemented-diet mice elicited a uniform metabolic adaptation, including slightly influenced fasting glucose and blood lipid profiles, significantly reduced liver triglycerides content, enhanced serum lipopolysaccharide level, activated inflammatory responses in the intestine and liver, compromised gut barrier function, and broken intestinal homeostasis. Many metabolic changes in mice were significantly correlated with altered specific gut bacteria. Changes in Firmicutes, Eubacterium rectale/Clostridium coccoides group, Faecalibacterium prausnitzii, Akkermansia muciniphila, segmented filamentous bacteria, Enterococcus spp., and Sutterella spp. may play an important role in the process of host metabolic adaptation to LM-A administration. Our research provides an explanation of the adverse effects of LM-A administration on normal adult individuals in the perspective of microecology.
Collapse
|
40
|
Sallam MY, El-Gowilly SM, Abdel-Galil AGA, El-Mas MM. Cyclosporine counteracts endotoxemia-evoked reductions in blood pressure and cardiac autonomic dysfunction via central sGC/MAPKs signaling in rats. Eur J Pharmacol 2017; 797:143-152. [DOI: 10.1016/j.ejphar.2017.01.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/13/2017] [Accepted: 01/19/2017] [Indexed: 12/23/2022]
|
41
|
Lyu JH, Huang B, Park DW, Baek SH. Regulation of PHLDA1 Expression by JAK2-ERK1/2-STAT3 Signaling Pathway. J Cell Biochem 2016; 117:483-90. [PMID: 26239656 DOI: 10.1002/jcb.25296] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 07/30/2015] [Indexed: 02/05/2023]
Abstract
Toll-like receptor 2 (TLR2)-mediated signaling cascades and gene regulation are mainly involved in diseases, such as immunity and inflammation. In this study, microarray analysis was performed using bone marrow-derived macrophages (BMDM) and Raw 264.7 cells to identify novel proteins involved in the TLR2-mediated cellular response. We found that pleckstrin homology-like domain family, member 1 (PHLDA1) is a novel gene up-regulated by TLR2 stimulation and determined the unique signaling pathway for its expression. Treatment with TLR2 agonist Pam3 CSK4 increased mRNA, protein, and fluorescence staining of PHLDA1. Induction of PHLDA1 by TLR2 stimulation disappeared from TLR2 KO mice-derived BMDM. Among janus kinase (JAK) family members, JAK2 was involved in TLR2-stimulated PHLDA1 expression. Signal transducer and activator of transcription 3 (STAT3) also participated in PHLDA1 expression downstream of the JAK2. Interestingly, ERK1/2 was an intermediate between JAK2 and STAT3. In silico analysis revealed the presence of highly conserved γ-activated sites within mouse PHLDA1 promoter and confirmed the JAK2-STAT3 pathway is important to Pam3 CSK4 -induced PHLDA1 transcription. These findings suggest that the JAK2-ERK1/2-STAT3 pathway is an important signaling pathway for PHLDA1 expression and that these proteins may play a critical role in eliciting TLR2-mediated immune and inflammatory response.
Collapse
Affiliation(s)
- Ji Hyo Lyu
- Department of Biochemistry and Molecular Biology, College of Medicine, Yeungnam University, 170 Hyeonchung-ro, Nam-gu, Daegu, 705-703, South Korea
| | - Bin Huang
- Department of Biochemistry and Molecular Biology, College of Medicine, Yeungnam University, 170 Hyeonchung-ro, Nam-gu, Daegu, 705-703, South Korea
| | - Dae-Weon Park
- Department of Biochemistry and Molecular Biology, College of Medicine, Yeungnam University, 170 Hyeonchung-ro, Nam-gu, Daegu, 705-703, South Korea
| | - Suk-Hwan Baek
- Department of Biochemistry and Molecular Biology, College of Medicine, Yeungnam University, 170 Hyeonchung-ro, Nam-gu, Daegu, 705-703, South Korea
| |
Collapse
|
42
|
González-Guerrero C, Cannata-Ortiz P, Guerri C, Egido J, Ortiz A, Ramos AM. TLR4-mediated inflammation is a key pathogenic event leading to kidney damage and fibrosis in cyclosporine nephrotoxicity. Arch Toxicol 2016; 91:1925-1939. [PMID: 27585667 DOI: 10.1007/s00204-016-1830-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/24/2016] [Indexed: 01/12/2023]
Abstract
Cyclosporine A (CsA) successfully prevents allograft rejection, but nephrotoxicity is still a dose-limiting adverse effect. TLR4 activation promotes kidney damage but whether this innate immunity receptor mediates CsA nephrotoxicity is unknown. The in vivo role of TLR4 during CsA nephrotoxicity was studied in mice co-treated with CsA and the TLR4 inhibitor TAK242 and also in TLR4-/- mice. CsA-induced renal TLR4 expression in wild-type mice. Pharmacological or genetic targeting of TLR4 reduced the activation of proinflammatory signaling, including JNK/c-jun, JAK2/STAT3, IRE1α and NF-κB and the expression of Fn14. Expression of proinflammatory factors and cytokines was also decreased, and kidney monocyte and lymphocyte influx was prevented. TLR4 inhibition also reduced tubular damage and drastically prevented the development of kidney fibrosis. In vivo and in vitro CsA promoted secretion of the TLR ligand HMGB1 by tubular cells upstream of TLR4 activation, and prevention of HMGB1 secretion significantly reduced CsA-induced synthesis of MCP-1, suggesting that HMGB1 may be one of the mediators of CsA-induced TLR4 activation. These results suggest that TLR4 is a potential pharmacological target in CsA nephrotoxicity.
Collapse
Affiliation(s)
- Cristian González-Guerrero
- Laboratory of Nephrology and Vascular Pathology, IIS-Fundación Jiménez Díaz, School of Medicine, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Pablo Cannata-Ortiz
- REDINREN, Madrid, Spain.,Pathology, IIS-Fundación Jiménez Díaz, School of Medicine, UAM, Madrid, Spain
| | - Consuelo Guerri
- Department of Cellular Pathology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Jesús Egido
- Laboratory of Nephrology and Vascular Pathology, IIS-Fundación Jiménez Díaz, School of Medicine, Madrid, Spain.,Fundación Renal Íñigo Álvarez de Toledo (FRIAT), Madrid, Spain
| | - Alberto Ortiz
- Laboratory of Nephrology and Vascular Pathology, IIS-Fundación Jiménez Díaz, School of Medicine, Madrid, Spain.,REDINREN, Madrid, Spain.,Fundación Renal Íñigo Álvarez de Toledo (FRIAT), Madrid, Spain
| | - Adrián M Ramos
- Laboratory of Nephrology and Vascular Pathology, IIS-Fundación Jiménez Díaz, School of Medicine, Madrid, Spain. .,REDINREN, Madrid, Spain. .,Laboratorio de Patología Renal y Vascular (Investigación, 4° planta), Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Av. Reyes Católicos N°2, CP28040, Madrid, Spain.
| |
Collapse
|
43
|
Mao J, Yang J, Zhang Y, Li T, Wang C, Xu L, Hu Q, Wang X, Jiang S, Nie X, Chen G. Arsenic trioxide mediates HAPI microglia inflammatory response and subsequent neuron apoptosis through p38/JNK MAPK/STAT3 pathway. Toxicol Appl Pharmacol 2016; 303:79-89. [DOI: 10.1016/j.taap.2016.05.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/18/2016] [Accepted: 05/05/2016] [Indexed: 01/12/2023]
|
44
|
Macrophage Immune Response Suppression by Recombinant Mycobacterium tuberculosis Antigens, the ESAT-6, CFP-10, and ESAT-6/CFP-10 Fusion Proteins. IRANIAN JOURNAL OF MEDICAL SCIENCES 2016; 41:296-304. [PMID: 27365551 PMCID: PMC4912648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Macrophage immune responses are affected by the secretory proteins of Mycobacterium tuberculosis (Mtb). This study aimed to examine the immune responses of macrophages to Mtb secretory antigens, namely ESAT-6, CFP-10, and ESAT-6/CFP-10. METHODS THP-1 cells (a human monocytic cell line) were cultured and differentiated to macrophages by phorbol 12-myristate 13-acetate. The cytotoxicity of the recombinant Mtb proteins was assessed using the MTT assay. Two important immune responses of macrophages, namely NO and ROS production, were measured in response to the ESAT-6, CFP-10, and ESAT-6/CFP-10 antigens. The data were analyzed using one-way ANOVA with SPSS, version 16, and considered significant at P<0.05. RESULTS The results showed that the ESAT-6, CFP-10, and ESAT-6/CFP-10 proteins markedly reduced macrophage immune response. The treatment of the THP-1-differentiated cells with ESAT-6, CFP-10, and ESAT-6/CFP-10 reduced NO and ROS production. The treated THP-1-differentiated cells exhibited less inducible NO synthase activity than did the untreated cells. No toxic effect on macrophage viability was observed for the applied proteins at the different concentrations. CONCLUSION It seems that the decline in macrophage immune response is due to the suppression of NO and ROS production pathways without any effect on cell viability.
Collapse
|
45
|
Pal S, Yadav P, Sainis KB, Shankar BS. TNF-α and IGF-1 differentially modulate ionizing radiation responses of lung cancer cell lines. Cytokine 2016; 101:89-98. [PMID: 27344406 DOI: 10.1016/j.cyto.2016.06.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 06/08/2016] [Accepted: 06/10/2016] [Indexed: 11/16/2022]
Abstract
The mechanism by which tumor microenvironment derived cytokine network modulates therapy response is of great concern in lung cancer but is not completely understood. In this study, we evaluated the effects of tumor necrosis factor α (TNF-α) and insulin-like growth factor 1 (IGF-1) on response of lung cancer cell lines to ionizing radiation (IR). While TNF-α increased radio sensitivity and inhibited cell migration, treatment with IGF-1 promoted cell growth and increased migration. These effects of TNF- α were mediated by increased immediate activation of stress-activated protein kinases (SAPK)/jun amino-terminal kinases (JNK) and p38. IR induced DNA damage was increased by TNF- α and not altered by IGF-1. However, in IGF-1 treated cells, there was decreased γ- H2AX along with an increase in mitotic index, resulting in abnormal chromosomal segregation in the cells. Bio informatics analysis of 982 lung cancer patients revealed that higher expression of TNF- α was associated with low risk of cancer progression while overexpression of IGF-1 was correlated with high risk. Collectively, these results reveal that the cytokines in the tumor microenvironment differentially modulate radiation therapy through a variety of signaling mechanisms.
Collapse
Affiliation(s)
- Shyama Pal
- Immunology Section, Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Poonam Yadav
- Immunology Section, Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - K B Sainis
- Immunology Section, Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Bhavani S Shankar
- Immunology Section, Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai 400 085, India.
| |
Collapse
|
46
|
Resokaempferol-mediated anti-inflammatory effects on activated macrophages via the inhibition of JAK2/STAT3, NF-κB and JNK/p38 MAPK signaling pathways. Int Immunopharmacol 2016; 38:104-14. [PMID: 27261558 DOI: 10.1016/j.intimp.2016.05.010] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 05/16/2016] [Accepted: 05/16/2016] [Indexed: 11/21/2022]
Abstract
The excessive or prolonged production of inflammatory mediators can result in numerous chronic diseases, such as rheumatoid arthritis, atherosclerosis, diabetes, and cancer. Therefore, for many inflammatory-related diseases, pharmaceutical intervention is required to restrain the excessive release of such inflammatory mediators. Novel therapeutics and mechanistic insight are sought for the management of chronic inflammatory diseases. Resokaempferol (RES) is a type of flavonoid recently reported to demonstrate anti-cancer properties. However, the anti-inflammatory capacity of RES has not been studied to date. Therefore, this study investigated whether RES is capable of suppressing the inflammatory response to lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages and the mechanism by which this is achieved. We found that RES attenuated the LPS-induced production of nitric oxide (NO), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), interleukin (IL)-1β, tumor necrosis factor-α (TNF-α), monocyte chemotactic protein 1 (MCP-1) and IL-6. RES also inhibited the nuclear translocation of signal transducer and activator of transcription (STAT) 3 and reduced the LPS-mediated phosphorylation of Janus kinase (JAK) 2 and STAT3 at the sites of Ser727 and Tyr705. RES also inhibited the activation of NF-κB and JNK/p38 MAPK signaling pathways in LPS-induced RAW264.7 cells. Additionally, RES inhibited the activation of the JAK2/STAT3 pathway in exogenous IL-6-activated RAW264.7 macrophages. We conclude that RES inhibits the inflammatory response in activated macrophages by blocking the activation of the JAK2/STAT3 pathway by both LPS and IL-6 signaling.
Collapse
|
47
|
MiR-101 targets DUSP1 to regulate the TGF-β secretion in sorafenib inhibits macrophage-induced growth of hepatocarcinoma. Oncotarget 2016; 6:18389-405. [PMID: 26158762 PMCID: PMC4621898 DOI: 10.18632/oncotarget.4089] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 05/18/2015] [Indexed: 11/25/2022] Open
Abstract
Hepatocellular carcinoma (HCC)-associated macrophages accelerate tumor progression via growth factor release. Therefore, tumor-associated macrophages (TAMs)-initiated signaling cascades are potential therapeutic targets. To better understand anticancer effects of systemic HCC therapy, we studied sorafenib's effect on macrophage function, focusing on macrophage-related growth factor secretion. We found that dual specificity phosphatase 1 (DUSP1) is a direct target of miR-101. Transfection of miR-101 reduced DUSP1 induction in M2 macrophages and prolonged ERK1/2, p38 and JNK activation, whereas inhibition of miR-101 enhanced DUSP1 expression and decreased ERK1/2, p38 and JNK activation. miR-101 expression was decreased by sorafenib, and inhibition of PI3K/AKT blocked induction of miR-101 by LPS in M2 cells. M2 cells with greater TGF-β and CD206 mRNA expression compared to M1 cells had increased hepatoma growth, metastases and EMT. Sorafenib inhibited miR-101 expression and enhanced DUSP1 expression and lowered TGF-β and CD206 release in M2 cells, slowing macrophage-driven HCC. Our studies demonstrate miR-101 regulates macrophage innate immune responses to LPS via targeting DUSP1. Sorafenib alters macrophage polarization, reduces TGF-β driven cancer growth, metastases and EMT in vitro, and partially inhibits macrophage activation in vivo. Thus, macrophage modulation might explain the anticancer effects of sorafenib.
Collapse
|
48
|
Tan WS, Arulselvan P, Karthivashan G, Fakurazi S. Moringa oleifera Flower Extract Suppresses the Activation of Inflammatory Mediators in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages via NF-κB Pathway. Mediators Inflamm 2015; 2015:720171. [PMID: 26609199 PMCID: PMC4644847 DOI: 10.1155/2015/720171] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/16/2015] [Accepted: 09/17/2015] [Indexed: 01/28/2023] Open
Abstract
Aim of Study. Moringa oleifera Lam. (M. oleifera) possess highest concentration of antioxidant bioactive compounds and is anticipated to be used as an alternative medicine for inflammation. In the present study, we investigated the anti-inflammatory activity of 80% hydroethanolic extract of M. oleifera flower on proinflammatory mediators and cytokines produced in lipopolysaccharide- (LPS-) induced RAW 264.7 macrophages. Materials and Methods. Cell cytotoxicity was conducted by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Nitric oxide (NO) production was quantified through Griess reaction while proinflammatory cytokines and other key inflammatory markers were assessed through enzyme-linked immunosorbent assay (ELISA) and immunoblotting. Results. Hydroethanolic extract of M. oleifera flower significantly suppressed the secretion and expression of NO, prostaglandin E2 (PGE2), interleukin- (IL-) 6, IL-1β, tumor necrosis factor-alpha (TNF-α), nuclear factor-kappa B (NF-κB), inducible NO synthase (iNOS), and cyclooxygenase-2 (COX-2). However, it significantly increased the production of IL-10 and IκB-α (inhibitor of κB) in a concentration dependent manner (100 μg/mL and 200 μg/mL). Conclusion. These results suggest that 80% hydroethanolic extract of M. oleifera flower has anti-inflammatory action related to its inhibition of NO, PGE2, proinflammatory cytokines, and inflammatory mediator's production in LPS-stimulated macrophages through preventing degradation of IκB-α in NF-κB signaling pathway.
Collapse
Affiliation(s)
- Woan Sean Tan
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Palanisamy Arulselvan
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Govindarajan Karthivashan
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Sharida Fakurazi
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
49
|
Antosz H, Wojciechowska K, Sajewicz J, Choroszyńska D, Marzec-Kotarska B, Osiak M, Pająk N, Tomczak W, Jargiełło-Baszak M, Baszak J. IL-6, IL-10, c-Jun and STAT3 expression in B-CLL. Blood Cells Mol Dis 2015; 54:258-65. [DOI: 10.1016/j.bcmd.2014.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 09/09/2014] [Accepted: 11/13/2014] [Indexed: 11/25/2022]
|
50
|
KE XIAO, HU GUANGHONG, FANG WENYI, CHEN JINTUAN, ZHANG XIN, YANG CHUNBO, PENG JUN, CHEN YOUQIN, SFERRA THOMASJ. Qing Hua Chang Yin inhibits the LPS-induced activation of the IL-6/STAT3 signaling pathway in human intestinal Caco-2 cells. Int J Mol Med 2015; 35:1133-7. [DOI: 10.3892/ijmm.2015.2083] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 01/21/2015] [Indexed: 11/05/2022] Open
|