1
|
Saleem A, Saleem Bhat S, A. Omonijo F, A Ganai N, M. Ibeagha-Awemu E, Mudasir Ahmad S. Immunotherapy in mastitis: state of knowledge, research gaps and way forward. Vet Q 2024; 44:1-23. [PMID: 38973225 PMCID: PMC11232650 DOI: 10.1080/01652176.2024.2363626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/27/2024] [Indexed: 07/09/2024] Open
Abstract
Mastitis is an inflammatory condition that affects dairy cow's mammary glands. Traditional treatment approaches with antibiotics are increasingly leading to challenging scenarios such as antimicrobial resistance. In order to mitigate the unwanted side effects of antibiotics, alternative strategies such as those that harness the host immune system response, also known as immunotherapy, have been implemented. Immunotherapy approaches to treat bovine mastitis aims to enhance the cow's immune response against pathogens by promoting pathogen clearance, and facilitating tissue repair. Various studies have demonstrated the potential of immunotherapy for reducing the incidence, duration and severity of mastitis. Nevertheless, majority of reported therapies are lacking in specificity hampering their broad application to treat mastitis. Meanwhile, advancements in mastitis immunotherapy hold great promise for the dairy industry, with potential to provide effective and sustainable alternatives to traditional antibiotic-based approaches. This review synthesizes immunotherapy strategies, their current understanding and potential future perspectives. The future perspectives should focus on the development of precision immunotherapies tailored to address individual pathogens/group of pathogens, development of combination therapies to address antimicrobial resistance, and the integration of nano- and omics technologies. By addressing research gaps, the field of mastitis immunotherapy can make significant strides in the control, treatment and prevention of mastitis, ultimately benefiting both animal and human health/welfare, and environment health.
Collapse
Affiliation(s)
- Afnan Saleem
- Division of Animal Biotechnology, SKUAST-K, Srinagar, India
| | | | - Faith A. Omonijo
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Canada
| | | | - Eveline M. Ibeagha-Awemu
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Canada
| | | |
Collapse
|
2
|
Munir J, Sadri M, Zempleni J. Tsg101 knockout in the mammary gland leads to a decrease in small extracellular vesicles in milk from C57BL/6J dams and contributes to leakiness of the gut mucosa and reduced postnatal weight gain in suckling pups. J Nutr Biochem 2024; 135:109782. [PMID: 39424203 DOI: 10.1016/j.jnutbio.2024.109782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/21/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
Human milk contains 2.2 ± 1.5×1011 small extracellular vesicles (sEVs) per milliliter and human infants consume 1.7×1014 milk sEVs (sMEVs) daily in 800 mL milk. Infant formula contains trace amounts of sMEVs. To date, eight adverse effects of milk depletion and five beneficial effects of sMEV supplementation have been reported including studies in infants and neonate mice. Formula-fed infants do not realize the benefits of sMEVs. Most of the phenotyping studies reported to date have the limitation that sMEV depletion and supplementation were initiated after mice were weaned. Here, we used a genetics approach for assessing effects of sMEV depletion on the development of suckling mice. Newborn C57BL/6J pups were fostered to Tumor Susceptibility Gene 101 (Tsg101) mammary-specific knockout (KO) dams or C57BL/6J dams (controls) in synchronized pregnancies. Tsg101 KO was associated with an 80% decrease of sMEVs. Postnatal weight gain and gut health (histology, morphology, and barrier function) were assessed until weaning at age three weeks. We observed a significant decrease in weight gain, length of small intestine, villi height, crypt depth, and intestinal barrier function in male and female pups fostered to Tsg101 dams compared to pups fostered to control dams. The effect size varied between 11 and 32 percent. Maternal Tsg101 KO did not affect the dams' health, content of macronutrients and dry mass of milk and had no effect on the amount of milk consumed by pups. We conclude that sMEVs are important for growth and gut health in neonate mice.
Collapse
Affiliation(s)
- Javaria Munir
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Mahrou Sadri
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Janos Zempleni
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
3
|
Ren L, Zhang D, Pang L, Liu S. Extracellular vesicles for cancer therapy: potential, progress, and clinical challenges. Front Bioeng Biotechnol 2024; 12:1476737. [PMID: 39398642 PMCID: PMC11466826 DOI: 10.3389/fbioe.2024.1476737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/16/2024] [Indexed: 10/15/2024] Open
Abstract
Extracellular vesicles (EVs) play an important role in normal life activities and disease treatment. In recent years, there have been abundant relevant studies focusing on EVs for cancer therapy and showing good performance on tumor inhibition. To enhance the effectiveness of EVs, EV analogs have been developed. This review summarizes the classification, origin, production, purification, modification, drug loading and cancer treatment applications of EVs and their analogs. Also, the characteristics of technologies involved are analyzed, which provides the basis for the development and application of biogenic vesicle-based drug delivery platform for cancer therapy. Meanwhile, challenges in translating these vesicles into clinic, such as limited sources, lack of production standards, and insufficient targeting and effectiveness are discussed. With ongoing exploration and clinical studies, EV-based drugs will make great contributions to cancer therapy.
Collapse
Affiliation(s)
- Lili Ren
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology and Clinic of Oral Rare Diseases and Genetic Disease, School of Stomatology, The Fourth Military Medical University, Xi’an, China
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Dingmei Zhang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology and Clinic of Oral Rare Diseases and Genetic Disease, School of Stomatology, The Fourth Military Medical University, Xi’an, China
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Long Pang
- College of Basic Medical Science, The Shaanxi Key Laboratory of Brain Disorders, Xi’an Medical University, Xi’an, China
| | - Shiyu Liu
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology and Clinic of Oral Rare Diseases and Genetic Disease, School of Stomatology, The Fourth Military Medical University, Xi’an, China
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
4
|
Melnik BC, Weiskirchen R, Stremmel W, John SM, Schmitz G. Risk of Fat Mass- and Obesity-Associated Gene-Dependent Obesogenic Programming by Formula Feeding Compared to Breastfeeding. Nutrients 2024; 16:2451. [PMID: 39125332 PMCID: PMC11314333 DOI: 10.3390/nu16152451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
It is the purpose of this review to compare differences in postnatal epigenetic programming at the level of DNA and RNA methylation and later obesity risk between infants receiving artificial formula feeding (FF) in contrast to natural breastfeeding (BF). FF bears the risk of aberrant epigenetic programming at the level of DNA methylation and enhances the expression of the RNA demethylase fat mass- and obesity-associated gene (FTO), pointing to further deviations in the RNA methylome. Based on a literature search through Web of Science, Google Scholar, and PubMed databases concerning the dietary and epigenetic factors influencing FTO gene and FTO protein expression and FTO activity, FTO's impact on postnatal adipogenic programming was investigated. Accumulated translational evidence underscores that total protein intake as well as tryptophan, kynurenine, branched-chain amino acids, milk exosomal miRNAs, NADP, and NADPH are crucial regulators modifying FTO gene expression and FTO activity. Increased FTO-mTORC1-S6K1 signaling may epigenetically suppress the WNT/β-catenin pathway, enhancing adipocyte precursor cell proliferation and adipogenesis. Formula-induced FTO-dependent alterations of the N6-methyladenosine (m6A) RNA methylome may represent novel unfavorable molecular events in the postnatal development of adipogenesis and obesity, necessitating further investigations. BF provides physiological epigenetic DNA and RNA regulation, a compelling reason to rely on BF.
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany;
| | - Wolfgang Stremmel
- Praxis for Internal Medicine, Beethovenstrasse 2, D-76530 Baden-Baden, Germany;
| | - Swen Malte John
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany
- Institute for Interdisciplinary Dermatological Prevention and Rehabilitation (iDerm), University of Osnabrück, D-49076 Osnabrück, Germany;
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, D-93053 Regensburg, Germany;
| |
Collapse
|
5
|
Salehi M, Negahdari B, Mehryab F, Shekari F. Milk-Derived Extracellular Vesicles: Biomedical Applications, Current Challenges, and Future Perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8304-8331. [PMID: 38587896 DOI: 10.1021/acs.jafc.3c07899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Extracellular vesicles (EVs) are nano to-micrometer-sized sacs that are released by almost all animal and plant cells and act as intercellular communicators by transferring their cargos between the source and target cells. As a safe and scalable alternative to conditioned medium-derived EVs, milk-derived EVs (miEVs) have recently gained a great deal of popularity. Numerous studies have shown that miEVs have intrinsic therapeutic actions that can treat diseases and enhance human health. Additionally, they can be used as natural drug carriers and novel classes of biomarkers. However, due to the complexity of the milk, the successful translation of miEVs from benchtop to bedside still faces several unfilled gaps, especially a lack of standardized protocols for the isolation of high-purity miEVs. In this work, by comprehensively reviewing the bovine miEVs studies, we provide an overview of current knowledge and research on miEVs while highlighting their challenges and enormous promise as a novel class of theranostics. It is hoped that this study will pave the way for clinical applications of miEVs by addressing their challenges and opportunities.
Collapse
Affiliation(s)
- Mahsa Salehi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 14177-55469, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 14177-55469, Iran
| | - Fatemeh Mehryab
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 14155-6153, Iran
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| |
Collapse
|
6
|
Poinsot V, Pizzinat N, Ong-Meang V. Engineered and Mimicked Extracellular Nanovesicles for Therapeutic Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:639. [PMID: 38607173 PMCID: PMC11013861 DOI: 10.3390/nano14070639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
Exosomes are spherical extracellular nanovesicles with an endosomal origin and unilamellar lipid-bilayer structure with sizes ranging from 30 to 100 nm. They contain a large range of proteins, lipids, and nucleic acid species, depending on the state and origin of the extracellular vesicle (EV)-secreting cell. EVs' function is to encapsulate part of the EV-producing cell content, to transport it through biological fluids to a targeted recipient, and to deliver their cargos specifically within the aimed recipient cells. Therefore, exosomes are considered to be potential biological drug-delivery systems that can stably deliver their cargo into targeted cells. Various cell-derived exosomes are produced for medical issues, but their use for therapeutic purposes still faces several problems. Some of these difficulties can be avoided by resorting to hemisynthetic approaches. We highlight here the uses of alternative exosome-mimes involving cell-membrane coatings on artificial nanocarriers or the hybridization between exosomes and liposomes. We also detail the drug-loading strategies deployed to make them drug-carrier systems and summarize the ongoing clinical trials involving exosomes or exosome-like structures. Finally, we summarize the open questions before considering exosome-like disposals for confident therapeutic delivery.
Collapse
Affiliation(s)
- Verena Poinsot
- Inserm, CNRS, Faculté de Santé, Université Toulouse III—Paul Sabatier, I2MC U1297, 31432 Toulouse, France; (N.P.); (V.O.-M.)
| | | | | |
Collapse
|
7
|
Meng Y, Sun J, Zhang G. Harnessing the power of goat milk-derived extracellular vesicles for medical breakthroughs: A review. Int J Biol Macromol 2024; 262:130044. [PMID: 38340922 DOI: 10.1016/j.ijbiomac.2024.130044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Research into goat milk-derived extracellular vesicles (GMVs) has grown in popularity in recent years owing to their potential uses in several sectors, including medicine. GMVs are tiny, lipid-bound structures that cells secrete and use to transport bioactive substances like proteins, lipids, and nucleic acids. They may be extracted from different body fluids, including blood, urine, and milk, and have been found to play crucial roles in cell-to-cell communication. GMVs are a promising field of study with applications in preventing and treating various disorders. Their immune-modulating properties, for instance, have been investigated, and they have shown promise in treating autoimmune illnesses and cancer. They may be loaded with therapeutic compounds and directed to particular cells or tissues, but they have also been studied for their potential use as drug-delivery vehicles. Goat milk extracellular vesicles are an intriguing study topic with many possible benefits. Although more study is required to thoroughly understand their functioning and prospective applications, they provide a promising path for creating novel medical treatments and technology.
Collapse
Affiliation(s)
- Yiming Meng
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan road, Dadong district, Shenyang 110042, China.
| | - Jing Sun
- Department of Biobank, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan road, Dadong district, Shenyang 110042, China
| | - Guirong Zhang
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan road, Dadong district, Shenyang 110042, China
| |
Collapse
|
8
|
Cui Z, Amevor FK, Zhao X, Mou C, Pang J, Peng X, Liu A, Lan X, Liu L. Potential therapeutic effects of milk-derived exosomes on intestinal diseases. J Nanobiotechnology 2023; 21:496. [PMID: 38115131 PMCID: PMC10731872 DOI: 10.1186/s12951-023-02176-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/25/2023] [Indexed: 12/21/2023] Open
Abstract
Exosomes are extracellular vesicles with the diameter of 30 ~ 150 nm, and are widely involved in intercellular communication, disease diagnosis and drug delivery carriers for targeted disease therapy. Therapeutic application of exosomes as drug carriers is limited due to the lack of sources and methods for obtaining adequate exosomes. Milk contains abundant exosomes, several studies have shown that milk-derived exosomes play crucial roles in preventing and treating intestinal diseases. In this review, we summarized the biogenesis, secretion and structure, current novel methods used for the extraction and identification of exosomes, as well as discussed the role of milk-derived exosomes in treating intestinal diseases, such as inflammatory bowel disease, necrotizing enterocolitis, colorectal cancer, and intestinal ischemia and reperfusion injury by regulating intestinal immune homeostasis, restoring gut microbiota composition and improving intestinal structure and integrity, alleviating conditions such as oxidative stress, cell apoptosis and inflammation, and reducing mitochondrial reactive oxygen species (ROS) and lysosome accumulation in both humans and animals. In addition, we discussed future prospects for the standardization of milk exosome production platform to obtain higher concentration and purity, and complete exosomes derived from milk. Several in vivo clinical studies are needed to establish milk-derived exosomes as an effective and efficient drug delivery system, and promote its application in the treatment of various diseases in both humans and animals.
Collapse
Affiliation(s)
- Zhifu Cui
- College of Animal Science and Technology, Southwest University, Chongqing, P. R. China
| | - Felix Kwame Amevor
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, P. R. China
| | - Xingtao Zhao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan, P. R. China
| | - Chunyan Mou
- College of Animal Science and Technology, Southwest University, Chongqing, P. R. China
| | - Jiaman Pang
- College of Animal Science and Technology, Southwest University, Chongqing, P. R. China
| | - Xie Peng
- College of Animal Science and Technology, Southwest University, Chongqing, P. R. China
| | - Anfang Liu
- College of Animal Science and Technology, Southwest University, Chongqing, P. R. China
| | - Xi Lan
- College of Animal Science and Technology, Southwest University, Chongqing, P. R. China.
| | - Lingbin Liu
- College of Animal Science and Technology, Southwest University, Chongqing, P. R. China.
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Southwest University, Beibei, Chongqing, 400715, P. R. China.
| |
Collapse
|
9
|
Sukreet S, Braga CP, Adamec J, Cui J, Zempleni J. The absorption of bovine milk small extracellular vesicles largely depends on galectin 3 and galactose ligands in human intestinal cells and C57BL/6J mice. Am J Physiol Cell Physiol 2023; 325:C1421-C1430. [PMID: 37955122 PMCID: PMC10861145 DOI: 10.1152/ajpcell.00282.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 11/14/2023]
Abstract
Small extracellular vesicles in milk (sMEVs) have attracted attention in drug delivery and as bioactive food compounds. Previous studies implicate galactose residues on the sMEV surface in sMEV transport across intestinal and endothelial barriers in humans, but details of glycoprotein-dependent transport are unknown. We used a combination of cell biology and genetics protocols to identify glycoproteins on the sMEV surface that facilitate sMEV absorption. We identified 256 proteins on the bovine sMEVs surface by using LC-MS/MS, and bioinformatics analysis suggested that 42, 13, and 13 surface proteins were N-, O-, and 13 C-glycosylated, respectively. Lectin blots confirmed the presence of mannose, galactose, N-acetyl galactose, fucose, and neuraminate. When surface proteins were removed by various treatment with various proteases, sMEV uptake decreased by up to 58% and 67% in FHs-74 Int and Caco-2 cells, respectively, compared with controls (P < 0.05). When glycans were removed by treatment with various glycosidases, sMEV uptake decreased by up to 54% and 74% in FHs-74 Int and Caco-2 cells, respectively (P < 0.05). When galactose and N-acetyl galactosamine residues were blocked with agglutinins, sMEV uptake decreased by more than 50% in FHs-74 Int cells (P < 0.05). When bovine sMEVs were administered to Galectin-3 knockout mice by oral gavage, hepatic sMEV accumulation decreased by 56% compared with wild-type mice (P < 0.05), consistent with a role of β-galactoside glycan structures in the absorption of sMEVs. We conclude that sMEVs are decorated with glycoproteins, and Galectin-3 and its galactose ligands are particularly important for sMEV absorption.NEW & NOTEWORTHY This is the first paper to assess the role of unique glycans and their Galectin-3 receptor in the transport and distribution of small extracellular vesicles ("exosomes") from milk in mammals. The research assessed milk exosome transport and distribution by using multiple approaches and platforms including cell cultures, various exosome labels, knockout and mutant mice, enzymatic removal of surface proteins and glycans, and lectin blocking of glycans.
Collapse
Affiliation(s)
- Sonal Sukreet
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States
| | - Camila Pereira Braga
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, United States
| | - Jiri Adamec
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, United States
| | - Juan Cui
- School of Computing, University of Nebraska-Lincoln, Lincoln, Nebraska, United States
| | - Janos Zempleni
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States
| |
Collapse
|
10
|
Weiskirchen R, Schröder SK, Weiskirchen S, Buhl EM, Melnik B. Isolation of Bovine and Human Milk Extracellular Vesicles. Biomedicines 2023; 11:2715. [PMID: 37893089 PMCID: PMC10603983 DOI: 10.3390/biomedicines11102715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Extracellular vesicles such as exosomes are small-sized, bilayered extracellular biovesicles generated by almost every cell and released into the surrounding body fluids upon the fusion of multivesicular bodies and the plasma membrane. Based on their origin, they are enriched with a variety of biologically active components including proteins, lipids, nucleic acids, cellular metabolites, and many other constituents. They can either attach or fuse with the membrane of a target cell, or alternatively be taking up via endocytosis by a recipient cell. In particular, milk exosomes have been recently shown to be a fundamental factor supporting infant growth, health, and development. In addition, exosomes derived from different cell types have been shown to possess regenerative, immunomodulatory, and anti-inflammatory properties, suggesting that they are a potential therapeutic tool in modulating the pathogenesis of diverse diseases. Therefore, efficient protocols for the isolation of milk exosomes in a high quantity and purity are the basis for establishing clinical applications. Here, we present an easy-to-follow protocol for exosome isolation from bovine and human milk. Electron microscopic analysis and nanoparticle tracking analysis reveal that the protocols allow the isolation of highly enriched fractions of exosomes. The purified exosomes express the typical exosomal protein markers, CD81 and ALIX.
Collapse
Affiliation(s)
- Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, D-52074 Aachen, Germany; (S.K.S.); (S.W.)
| | - Sarah K. Schröder
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, D-52074 Aachen, Germany; (S.K.S.); (S.W.)
| | - Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, D-52074 Aachen, Germany; (S.K.S.); (S.W.)
| | - Eva Miriam Buhl
- Electron Microscopy Facility, Institute of Pathology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Hospital, D-52074 Aachen, Germany;
| | - Bodo Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany;
| |
Collapse
|
11
|
Ngu A, Munir J, Zempleni J. Milk-borne small extracellular vesicles: kinetics and mechanisms of transport, distribution, and elimination. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:339-346. [PMID: 37829291 PMCID: PMC10568984 DOI: 10.20517/evcna.2023.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Small extracellular vesicles (sEVs) in milk have the qualities desired for delivering therapeutics to diseased tissues. The production of bovine milk sEVs is scalable (1021 annually per cow), and they resist degradation in the gastrointestinal tract. Most cells studied to date internalize milk sEVs by a saturable process that follows Michaelis-Menten kinetics. The bioavailability of oral milk sEVs is approximately 50%. In addition to crossing the intestinal mucosa, milk sEVs also cross barriers such as the placenta and blood-brain barrier, thereby enabling the delivery of therapeutics to hard-to-reach tissues. In time course studies, levels of milk sEVs peaked in the intestinal mucosa, plasma, and urine approximately 6 h and returned to baseline 24 h after oral gavage in mice. In tissues, milk sEV levels peaked 12 h after gavage. Milk sEVs appear to be biologically safe. No cytokine storm was observed when milk sEVs were added to cultures of human peripheral blood mononuclear cells or administered orally to rats. Liver and kidney function and erythropoiesis were not impaired when milk sEVs were administered to rats by oral gavage for up to 15 days. Protocols for loading milk sEVs with therapeutic cargo are available. Currently, the use of milk sEVs (and other nanoparticles) in the delivery of therapeutics is limited by their rapid elimination through internalization by macrophages and lysosomal degradation in target cells. This mini review discusses the current knowledge base of sEV tissue distribution, excretion in feces and urine, internalization by macrophages, and degradation in lysosomes.
Collapse
Affiliation(s)
- Alice Ngu
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583-0806, USA
| | - Javaria Munir
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583-0806, USA
| | - Janos Zempleni
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583-0806, USA
| |
Collapse
|
12
|
De Ciucis CG, Fruscione F, De Paolis L, Mecocci S, Zinellu S, Guardone L, Franzoni G, Cappelli K, Razzuoli E. Toll-like Receptors and Cytokine Modulation by Goat Milk Extracellular Vesicles in a Model of Intestinal Inflammation. Int J Mol Sci 2023; 24:11096. [PMID: 37446274 DOI: 10.3390/ijms241311096] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Extracellular vesicles (EVs) are nanometric spherical structures, enclosed in a lipid bilayer membrane and secreted by multiple cell types under specific physiologic and pathologic conditions. Their complex cargo modulates immune cells within an inflammatory microenvironment. Milk is one of the most promising sources of EVs in terms of massive recovery, and milk extracellular vesicles (mEVs) have immunomodulatory and anti-inflammatory effects. The aim of this study was to characterize goat mEVs' immunomodulating activities on Toll-like receptors (TLRs) and related immune genes, including cytokines, using a porcine intestinal epithelial cell line (IPEC-J2) after the establishment of a pro-inflammatory environment. IPEC-J2 was exposed for 2 h to pro-inflammatory stimuli as a model of inflammatory bowel disease (IBD), namely LPS for Crohn's disease (CD) and H2O2 for ulcerative colitis (UC); then, cells were treated with goat mEVs for 48 h. RT-qPCR and ELISA data showed that cell exposure to LPS or H2O2 caused a pro-inflammatory response, with increased gene expression of CXCL8, TNFA, NOS2 and the release of pro-inflammatory cytokines. In the LPS model, the treatment with mEVs after LPS determined the down-regulation of NOS2, MMP9, TLR5, TGFB1, IFNB, IL18 and IL12A gene expressions, as well as lower release of IL-18 in culture supernatants. At the same time, we observed the increased expression of TLR1, TLR2, TLR8 and EBI3. On the contrary, the treatment with mEVs after H2O2 exposure, the model of UC, determined the increased expression of MMP9 alongside the decrease in TGFB1, TLR8 and DEFB1, with a lower release of IL-1Ra in culture supernatants. Overall, our data showed that a 48 h treatment with mEVs after a pro-inflammatory stimulus significantly modulated the expression of several TLRs and cytokines in swine intestinal cells, in association with a decreased inflammation. These results further highlight the immunomodulatory potential of these nanosized structures and suggest their potential application in vivo.
Collapse
Affiliation(s)
- Chiara Grazia De Ciucis
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Piazza Borgo Pila 39-24, 16129 Genova, Italy
| | - Floriana Fruscione
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Piazza Borgo Pila 39-24, 16129 Genova, Italy
| | - Livia De Paolis
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Piazza Borgo Pila 39-24, 16129 Genova, Italy
| | - Samanta Mecocci
- Department of Veterinary Medicine, University of Perugia, 06123 Perugia, Italy
| | - Susanna Zinellu
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy
| | - Lisa Guardone
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Piazza Borgo Pila 39-24, 16129 Genova, Italy
| | - Giulia Franzoni
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy
| | - Katia Cappelli
- Department of Veterinary Medicine, University of Perugia, 06123 Perugia, Italy
| | - Elisabetta Razzuoli
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Piazza Borgo Pila 39-24, 16129 Genova, Italy
| |
Collapse
|
13
|
Fratantonio D, Munir J, Shu J, Howard K, Baier SR, Cui J, Zempleni J. The RNA cargo in small extracellular vesicles from chicken eggs is bioactive in C57BL/6 J mice and human peripheral blood mononuclear cells ex vivo. Front Nutr 2023; 10:1162679. [PMID: 37305095 PMCID: PMC10249500 DOI: 10.3389/fnut.2023.1162679] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/28/2023] [Indexed: 06/13/2023] Open
Abstract
Small extracellular vesicles (sEVs) and their RNA cargo in milk are bioavailable in humans, pigs, and mice, and their dietary depletion and supplementation elicits phenotypes. Little is known about the content and biological activity of sEVs in foods of animal origin other than milk. Here we tested the hypothesis that sEVs in chicken eggs (Gallus gallus) facilitate the transfer of RNA cargo from an avian species to humans and mice, and their dietary depletion elicits phenotypes. sEVs were purified from raw egg yolk by ultracentrifugation and authenticated by transmission electron microscopy, nano-tracking device, and immunoblots. The miRNA profile was assessed by RNA-sequencing. Bioavailability of these miRNAs in humans was assessed by egg feeding study in adults, and by culturing human peripheral blood mononuclear cells (PBMCs) with fluorophore-labeled egg sEVs ex vivo. To further assess bioavailability, fluorophore-labeled miRNAs, encapsulated in egg sEVs, were administered to C57BL/6 J mice by oral gavage. Phenotypes of sEV RNA cargo depletion were assessed by feeding egg sEV and RNA-defined diets to mice and using spatial learning and memory in the Barnes and water mazes as experimental readouts. Egg yolk contained 6.30 × 1010 ± 6.06 × 109 sEVs/mL, which harbored eighty-three distinct miRNAs. Human PBMCs internalized sEVs and their RNA cargo. Egg sEVs, loaded with fluorophore-labeled RNA and administered orally to mice, accumulated primarily in brain, intestine and lungs. Spatial learning and memory (SLM) was compromised in mice fed on egg sEV- and RNA-depleted diet compared to controls. Egg consumption elicited an increase of miRNAs in human plasma. We conclude that egg sEVs and their RNA cargo probably are bioavailable. The human study is registered as a clinical trial and accessible at https://www.isrctn.com/ISRCTN77867213.
Collapse
Affiliation(s)
- Deborah Fratantonio
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE, United States
| | - Javaria Munir
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE, United States
| | - Jiang Shu
- School of Computing, University of Nebraska, Lincoln, NE, United States
| | - Katherine Howard
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE, United States
| | - Scott R. Baier
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE, United States
| | - Juan Cui
- School of Computing, University of Nebraska, Lincoln, NE, United States
| | - Janos Zempleni
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE, United States
| |
Collapse
|
14
|
Neville MC, Demerath EW, Hahn-Holbrook J, Hovey RC, Martin-Carli J, McGuire MA, Newton ER, Rasmussen KM, Rudolph MC, Raiten DJ. Parental factors that impact the ecology of human mammary development, milk secretion, and milk composition-a report from "Breastmilk Ecology: Genesis of Infant Nutrition (BEGIN)" Working Group 1. Am J Clin Nutr 2023; 117 Suppl 1:S11-S27. [PMID: 37173058 PMCID: PMC10232333 DOI: 10.1016/j.ajcnut.2022.11.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 05/15/2023] Open
Abstract
The goal of Working Group 1 in the Breastmilk Ecology: Genesis of Infant Nutrition (BEGIN) Project was to outline factors influencing biological processes governing human milk secretion and to evaluate our current knowledge of these processes. Many factors regulate mammary gland development in utero, during puberty, in pregnancy, through secretory activation, and at weaning. These factors include breast anatomy, breast vasculature, diet, and the lactating parent's hormonal milieu including estrogen, progesterone, placental lactogen, cortisol, prolactin, and growth hormone. We examine the effects of time of day and postpartum interval on milk secretion, along with the role and mechanisms of lactating parent-infant interactions on milk secretion and bonding, with particular attention to the actions of oxytocin on the mammary gland and the pleasure systems in the brain. We then consider the potential effects of clinical conditions including infection, pre-eclampsia, preterm birth, cardiovascular health, inflammatory states, mastitis, and particularly, gestational diabetes and obesity. Although we know a great deal about the transporter systems by which zinc and calcium pass from the blood stream into milk, the interactions and cellular localization of transporters that carry substrates such as glucose, amino acids, copper, and the many other trace metals present in human milk across plasma and intracellular membranes require more research. We pose the question of how cultured mammary alveolar cells and animal models can help answer lingering questions about the mechanisms and regulation of human milk secretion. We raise questions about the role of the lactating parent and the infant microbiome and the immune system during breast development, secretion of immune molecules into milk, and protection of the breast from pathogens. Finally, we consider the effect of medications, recreational and illicit drugs, pesticides, and endocrine-disrupting chemicals on milk secretion and composition, emphasizing that this area needs much more research attention.
Collapse
Affiliation(s)
- Margaret C Neville
- Department of Obstetrics and Gynecology, University of Colorado, Aurora, CO, USA.
| | - Ellen W Demerath
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, United States
| | - Jennifer Hahn-Holbrook
- Department of Psychological Sciences, University of California Merced, Merced, CA, United States
| | - Russell C Hovey
- Department of Animal Science, University of California Davis, Davis, CA, United States
| | - Jayne Martin-Carli
- Department of Pediatrics, University of Colorado, Aurora, CO, United States
| | - Mark A McGuire
- Idaho Agricultural Experiment Station, University of Idaho, Moscow, ID, United States
| | - Edward R Newton
- Department of Obstetrics and Gynecology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Kathleen M Rasmussen
- Nancy Schlegel Meinig Professor of Maternal and Child Nutrition, Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States
| | - Michael C Rudolph
- The University of Oklahoma Health Science Center, Oklahoma City, OK, United States
| | - Daniel J Raiten
- Pediatric Growth and Nutrition Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
15
|
Melnik BC, Stadler R, Weiskirchen R, Leitzmann C, Schmitz G. Potential Pathogenic Impact of Cow’s Milk Consumption and Bovine Milk-Derived Exosomal MicroRNAs in Diffuse Large B-Cell Lymphoma. Int J Mol Sci 2023; 24:ijms24076102. [PMID: 37047075 PMCID: PMC10094152 DOI: 10.3390/ijms24076102] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/05/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
Epidemiological evidence supports an association between cow’s milk consumption and the risk of diffuse large B-cell lymphoma (DLBCL), the most common non-Hodgkin lymphoma worldwide. This narrative review intends to elucidate the potential impact of milk-related agents, predominantly milk-derived exosomes (MDEs) and their microRNAs (miRs) in lymphomagenesis. Upregulation of PI3K-AKT-mTORC1 signaling is a common feature of DLBCL. Increased expression of B cell lymphoma 6 (BCL6) and suppression of B lymphocyte-induced maturation protein 1 (BLIMP1)/PR domain-containing protein 1 (PRDM1) are crucial pathological deviations in DLBCL. Translational evidence indicates that during the breastfeeding period, human MDE miRs support B cell proliferation via epigenetic upregulation of BCL6 (via miR-148a-3p-mediated suppression of DNA methyltransferase 1 (DNMT1) and miR-155-5p/miR-29b-5p-mediated suppression of activation-induced cytidine deaminase (AICDA) and suppression of BLIMP1 (via MDE let-7-5p/miR-125b-5p-targeting of PRDM1). After weaning with the physiological termination of MDE miR signaling, the infant’s BCL6 expression and B cell proliferation declines, whereas BLIMP1-mediated B cell maturation for adequate own antibody production rises. Because human and bovine MDE miRs share identical nucleotide sequences, the consumption of pasteurized cow’s milk in adults with the continued transfer of bioactive bovine MDE miRs may de-differentiate B cells back to the neonatal “proliferation-dominated” B cell phenotype maintaining an increased BLC6/BLIMP1 ratio. Persistent milk-induced epigenetic dysregulation of BCL6 and BLIMP1 expression may thus represent a novel driving mechanism in B cell lymphomagenesis. Bovine MDEs and their miR cargo have to be considered potential pathogens that should be removed from the human food chain.
Collapse
|
16
|
Review: Milk Small Extracellular Vesicles for Use in the Delivery of Therapeutics. Pharm Res 2022; 40:909-915. [PMID: 36198923 DOI: 10.1007/s11095-022-03404-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/23/2022] [Indexed: 10/10/2022]
Abstract
Small extracellular vesicles (sEVs, "exosomes") in milk have attracted considerable attention for use in delivering therapeutics to diseased tissues because of the following qualities. The production of milk sEVs is scalable, e.g., more than 1021 sEVs may be obtained annually from a single cow. Milk EVs protect their cargo against degradation in the gastrointestinal tract and during industrial processing. Milk sEVs and their cargo are absorbed following oral administration and they cross barriers such as intestinal mucosa, placenta and the blood-brain barrier in humans, pigs, and mice. Milk sEVs do no alter variables of liver and kidney function, or hematology, and do not elicit immune responses in humans, rats, and mice. Protocols are available for loading milk sEVs with therapeutic cargo, and a cell line is available for assessing effects of milk sEV modifications on drug delivery. Future research will need to assess and optimize sEV shelf-life and storage and effects of milk sEV modifications on the delivery of therapeutic cargo to diseased tissues.
Collapse
|
17
|
Melnik BC, Schmitz G. Milk Exosomal microRNAs: Postnatal Promoters of β Cell Proliferation but Potential Inducers of β Cell De-Differentiation in Adult Life. Int J Mol Sci 2022; 23:ijms231911503. [PMID: 36232796 PMCID: PMC9569743 DOI: 10.3390/ijms231911503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Pancreatic β cell expansion and functional maturation during the birth-to-weaning period is driven by epigenetic programs primarily triggered by growth factors, hormones, and nutrients provided by human milk. As shown recently, exosomes derived from various origins interact with β cells. This review elucidates the potential role of milk-derived exosomes (MEX) and their microRNAs (miRs) on pancreatic β cell programming during the postnatal period of lactation as well as during continuous cow milk exposure of adult humans to bovine MEX. Mechanistic evidence suggests that MEX miRs stimulate mTORC1/c-MYC-dependent postnatal β cell proliferation and glycolysis, but attenuate β cell differentiation, mitochondrial function, and insulin synthesis and secretion. MEX miR content is negatively affected by maternal obesity, gestational diabetes, psychological stress, caesarean delivery, and is completely absent in infant formula. Weaning-related disappearance of MEX miRs may be the critical event switching β cells from proliferation to TGF-β/AMPK-mediated cell differentiation, whereas continued exposure of adult humans to bovine MEX miRs via intake of pasteurized cow milk may reverse β cell differentiation, promoting β cell de-differentiation. Whereas MEX miR signaling supports postnatal β cell proliferation (diabetes prevention), persistent bovine MEX exposure after the lactation period may de-differentiate β cells back to the postnatal phenotype (diabetes induction).
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany
- Correspondence: ; Tel.: +49-52-4198-8060
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, University of Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
18
|
Human Milk Extracellular Vesicles: A Biological System with Clinical Implications. Cells 2022; 11:cells11152345. [PMID: 35954189 PMCID: PMC9367292 DOI: 10.3390/cells11152345] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 12/10/2022] Open
Abstract
The consumption of human milk by a breastfeeding infant is associated with positive health outcomes, including lower risk of diarrheal disease, respiratory disease, otitis media, and in later life, less risk of chronic disease. These benefits may be mediated by antibodies, glycoproteins, glycolipids, oligosaccharides, and leukocytes. More recently, human milk extracellular vesicles (hMEVs) have been identified. HMEVs contain functional cargos, i.e., miRNAs and proteins, that may transmit information from the mother to promote infant growth and development. Maternal health conditions can influence hMEV composition. This review summarizes hMEV biogenesis and functional contents, reviews the functional evidence of hMEVs in the maternal–infant health relationship, and discusses challenges and opportunities in hMEV research.
Collapse
|
19
|
Therapeutic Strategy of Mesenchymal-Stem-Cell-Derived Extracellular Vesicles as Regenerative Medicine. Int J Mol Sci 2022; 23:ijms23126480. [PMID: 35742923 PMCID: PMC9224400 DOI: 10.3390/ijms23126480] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayer membrane particles that play critical roles in intracellular communication through EV-encapsulated informative content, including proteins, lipids, and nucleic acids. Mesenchymal stem cells (MSCs) are pluripotent stem cells with self-renewal ability derived from bone marrow, fat, umbilical cord, menstruation blood, pulp, etc., which they use to induce tissue regeneration by their direct recruitment into injured tissues, including the heart, liver, lung, kidney, etc., or secreting factors, such as vascular endothelial growth factor or insulin-like growth factor. Recently, MSC-derived EVs have been shown to have regenerative effects against various diseases, partially due to the post-transcriptional regulation of target genes by miRNAs. Furthermore, EVs have garnered attention as novel drug delivery systems, because they can specially encapsulate various target molecules. In this review, we summarize the regenerative effects and molecular mechanisms of MSC-derived EVs.
Collapse
|