1
|
Terrell K, Choi S, Choi S. Calcium's Role and Signaling in Aging Muscle, Cellular Senescence, and Mineral Interactions. Int J Mol Sci 2023; 24:17034. [PMID: 38069357 PMCID: PMC10706910 DOI: 10.3390/ijms242317034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Calcium research, since its pivotal discovery in the early 1800s through the heating of limestone, has led to the identification of its multi-functional roles. These include its functions as a reducing agent in chemical processes, structural properties in shells and bones, and significant role in cells relating to this review: cellular signaling. Calcium signaling involves the movement of calcium ions within or between cells, which can affect the electrochemical gradients between intra- and extracellular membranes, ligand binding, enzyme activity, and other mechanisms that determine cell fate. Calcium signaling in muscle, as elucidated by the sliding filament model, plays a significant role in muscle contraction. However, as organisms age, alterations occur within muscle tissue. These changes include sarcopenia, loss of neuromuscular junctions, and changes in mineral concentration, all of which have implications for calcium's role. Additionally, a field of study that has gained recent attention, cellular senescence, is associated with aging and disturbed calcium homeostasis, and is thought to affect sarcopenia progression. Changes seen in calcium upon aging may also be influenced by its crosstalk with other minerals such as iron and zinc. This review investigates the role of calcium signaling in aging muscle and cellular senescence. We also aim to elucidate the interactions among calcium, iron, and zinc across various cells and conditions, ultimately deepening our understanding of calcium signaling in muscle aging.
Collapse
Affiliation(s)
| | | | - Sangyong Choi
- Department of Nutritional Sciences, College of Agriculture, Health, and Natural Resources, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
2
|
Abstract
Evidence for the importance of zinc for all immune cells and for mounting an efficient and balanced immune response to various environmental stressors has been accumulating in recent years. This article describes the role of zinc in fundamental biological processes and summarizes our current knowledge of zinc's effect on hematopoiesis, including differentiation into immune cell subtypes. In addition, the important role of zinc during activation and function of immune cells is detailed and associated with the specific immune responses to bacteria, parasites, and viruses. The association of zinc with autoimmune reactions and cancers as diseases with increased or decreased immune responses is also discussed. This article provides a broad overview of the manifold roles that zinc, or its deficiency, plays in physiology and during various diseases. Consequently, we discuss why zinc supplementation should be considered, especially for people at risk of deficiency. Expected final online publication date for the Annual Review of Nutrition, Volume 41 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Inga Wessels
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany;
| | | | - Lothar Rink
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany;
| |
Collapse
|
3
|
Guo H, Deng H, Liu H, Jian Z, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L. Nickel carcinogenesis mechanism: cell cycle dysregulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:4893-4901. [PMID: 33230792 DOI: 10.1007/s11356-020-11764-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/18/2020] [Indexed: 06/11/2023]
Abstract
Nickel (Ni) is a widely distributed metal in the environment and an important pollutant due to its widespread industrial applications. Ni has various toxicity in humans and experimental animals, including carcinogenicity. However, the carcinogenic effects of Ni remain troublesome. Cell cycle dysregulation may be an important carcinogenic mechanism and is also a potential molecular mechanism for Ni complexes anti-cancerous effects. Therefore, we conducted a literature review to summarize the effects of Ni on cell cycle. Up to now, there were three different reports on Ni-induced cell cycle arrest: (i) Ni can induce cell cycle arrest in G0/G1 phase, phosphorylation and degradation of IkappaB kinase-alpha (IKKα)-dependent cyclin D1 and phosphoinositide-3-kinase (PI3K)/serine-threonine kinase (Akt) pathway-mediated down-regulation of expressions of cyclin-dependent kinases 4 (CDK4) play important role in it; (ii) Ni can induce cell cycle arrest in S phase, but the molecular mechanism is not known; (iii) G2/M phase is the target of Ni toxicity, and Ni compounds cause G2/M cell cycle phase arrest by reducing cyclinB1/Cdc2 interaction through the activation of the ataxia telangiectasia mutated (ATM)-p53-p21 and ATM-checkpoint kinase inhibitor 1 (Chk1)/Chk2-cell division cycle 25 (Cdc25) pathways. Revealing the mechanisms of cell cycle dysregulation associated with Ni exposure may help in the prevention and treatment of Ni-related carcinogenicity and toxicology.
Collapse
Affiliation(s)
- Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China.
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China.
| | - Huan Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Zhijie Jian
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China.
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China.
- Key Laboratory of Agricultural information engineering of Sichuan Province, Sichuan Agriculture University, Yaan, Sichuan, 625014, China.
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Junliang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Yinglun Li
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Xun Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Ling Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| |
Collapse
|
4
|
Growth Modulatory Role of Zinc in Prostate Cancer and Application to Cancer Therapeutics. Int J Mol Sci 2020; 21:ijms21082991. [PMID: 32340289 PMCID: PMC7216164 DOI: 10.3390/ijms21082991] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 02/06/2023] Open
Abstract
Zinc is a group IIB heavy metal. It is an important regulator of major cell signaling pathways in most mammalian cells, functions as an antioxidant and plays a role in maintaining genomic stability. Zinc deficiency leads to severe diseases in the brain, pancreas, liver, kidneys and reproductive organs. Zinc loss occurs during tumor development in a variety of cancers. The prostate normally contains abundant intracellular zinc and zinc loss is a hallmark of the development of prostate cancer development. The underlying mechanism of this loss is not clearly understood. The knowledge that excess zinc prevents the growth of prostate cancers suggests that zinc-mediated therapeutics could be an effective approach for cancer prevention and treatment, although challenges remain. This review summarizes the specific roles of zinc in several cancer types focusing on prostate cancer. The relationship between prostate cancer and the dysregulation of zinc homeostasis is examined in detail in an effort to understand the role of zinc in prostate cancer.
Collapse
|
5
|
Hara H, Kobayashi M, Shiiba M, Kamiya T, Adachi T. Sublethal treatment with plasma-activated medium induces senescence-like growth arrest of A549 cells: involvement of intracellular mobile zinc. J Clin Biochem Nutr 2019; 65:16-22. [PMID: 31379409 PMCID: PMC6667388 DOI: 10.3164/jcbn.19-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 03/13/2019] [Indexed: 11/29/2022] Open
Abstract
Plasma-activated medium (PAM) is a solution produced by exposing a liquid medium to non-thermal atmospheric pressure plasma (NTAPP). A number of reactive molecules, such as reactive oxygen species and reactive nitrogen species, are contained in PAM. Therefore, exposure to high doses of PAM results in cell death. We previously demonstrated that intracellular zinc (Zn2+) serves as an important mediator in PAM-induced cell death; however, the effects of sublethal treatment with PAM on cell functions are not fully understood. In the present study, we found that sublethal PAM treatment suppressed cell proliferation and induced senescence-like changes in lung adenocarcinoma A549 cells. Cell cycle analysis revealed that PAM induced cell cycle arrest at the G2/M phase. PAM increased the level of intracellular free Zn2+ and the Zn2+ chelator TPEN counteracted PAM-induced growth suppression, suggesting that Zn2+ functions in PAM-induced growth suppression. In addition, sublethal treatment with PAM induced phosphorylation of ATM kinase, accumulation of p53 protein, and expression of p21 and GADD45A, which are known p53 target genes, in a Zn2+-dependent manner. These results suggest that the induction of growth arrest and cellular senescence by sublethal PAM treatment is mediated by Zn2+-dependent activation of the ATM/p53 pathway.
Collapse
Affiliation(s)
- Hirokazu Hara
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Mari Kobayashi
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Moe Shiiba
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Tetsuro Kamiya
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Tetsuo Adachi
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| |
Collapse
|
6
|
Cai X, Guo L, Pei F, Chang X, Zhang R. Polyphyllin G exhibits antimicrobial activity and exerts anticancer effects on human oral cancer OECM-1 cells by triggering G2/M cell cycle arrest by inactivating cdc25C-cdc2. Arch Biochem Biophys 2018; 644:93-99. [PMID: 29352966 DOI: 10.1016/j.abb.2018.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/09/2018] [Accepted: 01/12/2018] [Indexed: 11/29/2022]
Abstract
Plant natural products have long been considered to be important sources of bioactive molecules. A large number of antimicrobial and anticancer agents have been isolated form plants. In the present study we evaluated the antimicrobial and anticancer activity of a plant derived secondery metabolite, Polyphyllin G. The results of antibacterial assays showed that Polyphyllin G prevented the growth of both Gram-positive and Gram-negative bacteria with minimum inhibitory concentrations (MICs) ranging from 13.1 to 78 μg/ml. Antifungal activity measured as inhibition of mycelium growth ranged between 38.32 and 56.50%. Further Polyphyllin G was also evaluated against a panel of cancer cell lines. The IC50 of Polyphyllin G ranged from 10 to 65 μM. However the IC50 of Polyphyllin G was found to be comparatively high (120 μM) against the normal FR2 cancer cell line. The lowest IC50 of 10 μM was found against the oral cancer cell line OECM-1. Therefore further studies were carried out on this cell line only. Our results indicated that Polyphyllin G induced cell arrest in oral cancer OECM-1 cells by inactivation of cdc25C-cdc22 via ATM-Chk 1/2 stimulation. Therefore, we propose that Polyphyllin G might prove a lead molecule in the management of oral cancers and at the same time may prevent the growth of opportunistic microbes.
Collapse
Affiliation(s)
- Xiaoqing Cai
- Oral and Maxillofacial Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, 450000, PR China.
| | - Lele Guo
- Oral and Maxillofacial Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, 450000, PR China
| | - Fei Pei
- Oral and Maxillofacial Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, 450000, PR China
| | - Xiaoyun Chang
- Oral and Maxillofacial Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, 450000, PR China
| | - Rui Zhang
- Oral and Maxillofacial Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, 450000, PR China
| |
Collapse
|
7
|
Tsai YL, Ko WS, Hsiao JL, Pan HH, Chiou YL. Zinc sulfate improved the unbalanced T cell profiles in Der p-allergic asthma: An ex vivo study. CLINICAL RESPIRATORY JOURNAL 2016; 12:563-571. [PMID: 27727525 DOI: 10.1111/crj.12563] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/31/2016] [Accepted: 09/11/2016] [Indexed: 11/30/2022]
Abstract
INTRODUCTION In the pathogenesis of asthma, an imbalance between helper T (Th) 1/Th2 and Th17/Treg cells is believed to play a key role in asthmatic inflammatory responses. Some studies indicated that zinc deficiency increases inflammatory factor production and worsens asthma. However, the effects of zinc on T cell profiles to reduce inflammatory response remain unclear. OBJECTIVES We investigated the beneficial effects of zinc on isolated cell populations and cytokine levels from patients with asthma. METHODS Thirty-six individuals Dermatophagoides pteronyssinus (Der p)-allergic and 31 healthy subjects were enrolled in the study, and peripheral blood mononuclear cells (PBMCs) were collected. Harvested PBMCs were stimulated with recombinant Der p antigen in the presence or absence of zinc sulfate (25 μM or 50 μM) for 48 h. Cell surface markers and intracellular cytokine levels were examined by flow cytometry. The pro-inflammatory factors in plasma and culture supernatants were measured by commercial enzyme-linked immunosorbent assay. RESULTS Zinc sulfate dramatically reduced the proportions of Th2 and Th17 cells, but increased that of Th1 and Treg cells. Zinc sulfate also markedly reduced the levels of interleukin (IL)-4 and IL-17, but increased the levels of IFN-γ. CONCLUSIONS Zinc ameliorates the imbalance in T cell profiles and could be a potential adjuvant therapy for Der p-induced allergic hypersensitivity.
Collapse
Affiliation(s)
- Yu Lin Tsai
- Department of Internal Medicine, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan, Republic of China
| | - Wang-Sheng Ko
- Department of Internal Medicine, Kuang-Tien General Hospital, Taichung, Taiwan, Republic of China
| | - Jung-Lung Hsiao
- Department of Critical Care Medicine, Kuang-Tien General Hospital, Taichung, Taiwan, Republic of China
| | - Hsin-Hung Pan
- Department of Internal Medicine, Kuang-Tien General Hospital, Taichung, Taiwan, Republic of China
| | - Ya-Ling Chiou
- Department of Nutrition and Institute of Biomedical Nutrition, Hungkuang University, Taichung, Taiwan, Republic of China.,Department of Nursing, Hungkuang University, Taichung, Taiwan, Republic of China
| |
Collapse
|
8
|
Schneberger D, Cloonan D, DeVasure JM, Bailey KL, Romberger DJ, Wyatt TA. Effect of elevated carbon dioxide on bronchial epithelial innate immune receptor response to organic dust from swine confinement barns. Int Immunopharmacol 2015; 27:76-84. [PMID: 25921030 PMCID: PMC4465527 DOI: 10.1016/j.intimp.2015.04.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 03/27/2015] [Accepted: 04/14/2015] [Indexed: 01/25/2023]
Abstract
Hypercapnia is known to have immunoregulatory effects within the lung. Cell culture systems demonstrate this in both macrophages and alveolar cell lines, suggesting that the alveoli are affected by changes in CO2 levels. We hypothesized that hypercapnia would also modulate human bronchial epithelial cell immune responses. Innate immune responses to Pam3CSK4 (TLR2 ligand), LPS (TLR4 ligand) and a complex innate immune stimulus, an extract from the organic dust of swine confinement barns (barn dust extract or BDE), were tested in a human bronchial epithelial cell line, BEAS-2B. Both TLR ligands showed a decrease in IL-6 and IL-8 production, and an increase in MCP-1 in response to elevated CO2 indicating an enhancement in cytokine production to hypercapnia. This change was not reflected in expression levels of TLR receptor RNA which remained unchanged in response to elevated CO2. Interestingly, barn dust showed an increase in IL-6, IL-8 and MCP-1 response at 9% CO2, suggesting that elevated CO2 exerts different effects on different stimuli. Our results show that airway epithelial cell immune responses to barn dust respond differently to hypercapnic conditions than individual TLR ligands.
Collapse
Affiliation(s)
- D Schneberger
- Pulmonary, Critical Care, Sleep & Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center, 985910 The Nebraska Medical Center, Omaha, NE 68198-5910, United States
| | - D Cloonan
- Pulmonary, Critical Care, Sleep & Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center, 985910 The Nebraska Medical Center, Omaha, NE 68198-5910, United States
| | - J M DeVasure
- Pulmonary, Critical Care, Sleep & Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center, 985910 The Nebraska Medical Center, Omaha, NE 68198-5910, United States
| | - K L Bailey
- Research Service, Veterans Administration Nebraska Western Iowa Health Care System, Omaha, NE 68105, United States; Pulmonary, Critical Care, Sleep & Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center, 985910 The Nebraska Medical Center, Omaha, NE 68198-5910, United States
| | - D J Romberger
- Research Service, Veterans Administration Nebraska Western Iowa Health Care System, Omaha, NE 68105, United States; Pulmonary, Critical Care, Sleep & Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center, 985910 The Nebraska Medical Center, Omaha, NE 68198-5910, United States
| | - T A Wyatt
- Research Service, Veterans Administration Nebraska Western Iowa Health Care System, Omaha, NE 68105, United States; Pulmonary, Critical Care, Sleep & Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center, 985910 The Nebraska Medical Center, Omaha, NE 68198-5910, United States; Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, 985910 The Nebraska Medical Center, Omaha, NE 68198-5910, United States.
| |
Collapse
|
9
|
Uski O, Jalava PI, Happo MS, Torvela T, Leskinen J, Mäki-Paakkanen J, Tissari J, Sippula O, Lamberg H, Jokiniemi J, Hirvonen MR. Effect of fuel zinc content on toxicological responses of particulate matter from pellet combustion in vitro. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 511:331-340. [PMID: 25553547 DOI: 10.1016/j.scitotenv.2014.12.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 12/08/2014] [Accepted: 12/18/2014] [Indexed: 06/04/2023]
Abstract
Significant amounts of transition metals such as zinc, cadmium and copper can become enriched in the fine particle fraction during biomass combustion with Zn being one of the most abundant transition metals in wood combustion. These metals may have an important role in the toxicological properties of particulate matter (PM). Indeed, many epidemiological studies have found associations between mortality and PM Zn content. The role of Zn toxicity on combustion PM was investigated. Pellets enriched with 170, 480 and 2300 mg Zn/kg of fuel were manufactured. Emission samples were generated using a pellet boiler and the four types of PM samples; native, Zn-low, Zn-medium and Zn-high were collected with an impactor from diluted flue gas. The RAW 264.7 macrophage cell line was exposed for 24h to different doses (15, 50,150 and 300 μg ml(-1)) of the emission samples to investigate their ability to cause cytotoxicity, to generate reactive oxygen species (ROS), to altering the cell cycle and to trigger genotoxicity as well as to promote inflammation. Zn enriched pellets combusted in a pellet boiler produced emission PM containing ZnO. Even the Zn-low sample caused extensive cell cycle arrest and there was massive cell death of RAW 264.7 macrophages at the two highest PM doses. Moreover, only the Zn-enriched emission samples induced a dose dependent ROS response in the exposed cells. Inflammatory responses were at a low level but macrophage inflammatory protein 2 reached a statistically significant level after exposure of RAW 264.7 macrophages to ZnO containing emission particles. ZnO content of the samples was associated with significant toxicity in almost all measured endpoints. Thus, ZnO may be a key component producing toxicological responses in the PM emissions from efficient wood combustion. Zn as well as the other transition metals, may contribute a significant amount to the ROS responses evoked by ambient PM.
Collapse
Affiliation(s)
- O Uski
- University of Eastern Finland, Department of Environmental Science, P.O. Box 1627, FI-70211 Kuopio, Finland; National Institute for Health and Welfare, Department of Environmental Health, P.O. Box 95, FI-70701 Kuopio, Finland.
| | - P I Jalava
- University of Eastern Finland, Department of Environmental Science, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | - M S Happo
- University of Eastern Finland, Department of Environmental Science, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | - T Torvela
- University of Eastern Finland, Department of Environmental Science, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | - J Leskinen
- University of Eastern Finland, Department of Environmental Science, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | - J Mäki-Paakkanen
- National Institute for Health and Welfare, Department of Environmental Health, P.O. Box 95, FI-70701 Kuopio, Finland.
| | - J Tissari
- University of Eastern Finland, Department of Environmental Science, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | - O Sippula
- University of Eastern Finland, Department of Environmental Science, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | - H Lamberg
- University of Eastern Finland, Department of Environmental Science, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | - J Jokiniemi
- University of Eastern Finland, Department of Environmental Science, P.O. Box 1627, FI-70211 Kuopio, Finland; VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT, Espoo, Finland.
| | - M-R Hirvonen
- University of Eastern Finland, Department of Environmental Science, P.O. Box 1627, FI-70211 Kuopio, Finland; National Institute for Health and Welfare, Department of Environmental Health, P.O. Box 95, FI-70701 Kuopio, Finland.
| |
Collapse
|
10
|
Amin A, Bajbouj K, Koch A, Gandesiri M, Schneider-Stock R. Defective autophagosome formation in p53-null colorectal cancer reinforces crocin-induced apoptosis. Int J Mol Sci 2015; 16:1544-61. [PMID: 25584615 PMCID: PMC4307319 DOI: 10.3390/ijms16011544] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/22/2014] [Indexed: 12/19/2022] Open
Abstract
Crocin, a bioactive molecule of saffron, inhibited proliferation of both HCT116 wild-type and HCT116 p53(-/-) cell lines at a concentration of 10 mM. Flow cytometric analysis of cell cycle distribution revealed that there was an accumulation of HCT116 wild-type cells in G1 (55.9%, 56.1%) compared to the control (30.4%) after 24 and 48 h of crocin treatment, respectively. However, crocin induced only mild G2 arrest in HCT116 p53(-/-) after 24 h. Crocin induced inefficient autophagy in HCT116 p53(-/-) cells, where crocin induced the formation of LC3-II, which was combined with a decrease in the protein levels of Beclin 1 and Atg7 and no clear p62 degradation. Autophagosome formation was not detected in HCT116 p53(-/-) after crocin treatment predicting a nonfunctional autophagosome formation. There was a significant increase of p62 after treating the cells with Bafilomycin A1 (Baf) and crocin compared to crocin exposure alone. Annexin V staining showed that Baf-pretreatment enhanced the induction of apoptosis in HCT116 wild-type cells. Baf-exposed HCT116 p53(-/-) cells did not, however, show any enhancement of apoptosis induction despite an increase in the DNA damage-sensor accumulation, γH2AX indicating that crocin induced an autophagy-independent classical programmed cell death.
Collapse
Affiliation(s)
- Amr Amin
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain 15551, United Arab Emirates.
| | - Khuloud Bajbouj
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain 15551, United Arab Emirates.
| | - Adrian Koch
- Experimental Tumor Pathology, Institute of Pathology, University of Erlangen, Erlangen 91054, Germany.
| | - Muktheshwar Gandesiri
- Experimental Tumor Pathology, Institute of Pathology, University of Erlangen, Erlangen 91054, Germany.
| | - Regine Schneider-Stock
- Experimental Tumor Pathology, Institute of Pathology, University of Erlangen, Erlangen 91054, Germany.
| |
Collapse
|
11
|
Torvela T, Uski O, Karhunen T, Lähde A, Jalava P, Sippula O, Tissari J, Hirvonen MR, Jokiniemi J. Reference Particles for Toxicological Studies of Wood Combustion: Formation, Characteristics, and Toxicity Compared to Those of Real Wood Combustion Particulate Mass. Chem Res Toxicol 2014; 27:1516-27. [DOI: 10.1021/tx500142f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Tiina Torvela
- Department
of Environmental Science, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Oskari Uski
- Department
of Environmental Science, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
- Department
of Environmental Health, National Institute for Health and Welfare, P.O. Box 95, FI-70701 Kuopio, Finland
| | - Tommi Karhunen
- Department
of Environmental Science, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Anna Lähde
- Department
of Environmental Science, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Pasi Jalava
- Department
of Environmental Science, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
- Department
of Environmental Health, National Institute for Health and Welfare, P.O. Box 95, FI-70701 Kuopio, Finland
| | - Olli Sippula
- Department
of Environmental Science, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Jarkko Tissari
- Department
of Environmental Science, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Maija-Riitta Hirvonen
- Department
of Environmental Science, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
- Department
of Environmental Health, National Institute for Health and Welfare, P.O. Box 95, FI-70701 Kuopio, Finland
| | - Jorma Jokiniemi
- Department
of Environmental Science, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
- VTT Technical
Research
Centre of Finland, P.O. Box 1000, FI-02044 VTT Espoo, Finland
| |
Collapse
|
12
|
Xu X, Jiang C, Wang S, Tai Y, Wang T, Kang L, Fan Z, Li S, Li L, Fu J, Liu J, Ji Q, Wang X, Wei L, Ye Q. HPIP is upregulated in liver cancer and promotes hepatoma cell proliferation via activation of G2/M transition. IUBMB Life 2013; 65:873-82. [PMID: 24038948 DOI: 10.1002/iub.1202] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 07/18/2013] [Indexed: 11/08/2022]
Abstract
Hematopoietic pre-B-cell leukemia transcription factor (PBX)-interacting protein (HPIP) has been shown to play a role in cancer development and progression. However, the detailed role of HPIP in cancer cell growth and the exact mechanism by which HPIP regulates cancer cell proliferation remains unclear. Here, we report that HPIP is overexpressed in most of 328 liver cancer patients and regulates hepatoma cell proliferation through G2/M checkpoint activation. HPIP increased anchorage-dependent and -independent growth of human liver cancer cell lines. The amino acid region 531-631 of HPIP was important for its modulation of liver cancer cell growth. The increased effects of HPIP on liver cancer cell proliferation were associated with activation of the G2/M cell-cycle concomitant with a marked increase of cyclin B1 and the inhibition of the negative G2/M phase regulator GADD45α. HPIP knockdown dramatically suppressed the growth of HepG2 liver cancer cells in nude mice. These data highlight the important role of HPIP in liver cancer cell growth and suggest that HPIP may be a good target for liver cancer therapy.
Collapse
Affiliation(s)
- Xiaojie Xu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Jaceosidin, isolated from dietary mugwort (Artemisia princeps), induces G2/M cell cycle arrest by inactivating cdc25C-cdc2 via ATM-Chk1/2 activation. Food Chem Toxicol 2013; 55:214-21. [DOI: 10.1016/j.fct.2012.12.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 12/15/2012] [Accepted: 12/18/2012] [Indexed: 11/20/2022]
|
14
|
Micronutrient (Zn, Cu, Fe)-gene interactions in ageing and inflammatory age-related diseases: implications for treatments. Ageing Res Rev 2012; 11:297-319. [PMID: 22322094 DOI: 10.1016/j.arr.2012.01.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 01/20/2012] [Accepted: 01/23/2012] [Indexed: 02/07/2023]
Abstract
In ageing, alterations in inflammatory/immune response and antioxidant capacity lead to increased susceptibility to diseases and loss of mobility and agility. Various essential micronutrients in the diet are involved in age-altered biological functions. Micronutrients (zinc, copper, iron) play a pivotal role either in maintaining and reinforcing the immune and antioxidant performances or in affecting the complex network of genes (nutrigenomic approach) involved in encoding proteins for a correct inflammatory/immune response. By the other side, the genetic inter-individual variability may affect the absorption and uptake of the micronutrients (nutrigenetic approach) with subsequent altered effects on inflammatory/immune response and antioxidant activity. Therefore, the individual micronutrient-gene interactions are fundamental to achieve healthy ageing. In this review, we report and discuss the role of micronutrients (Zn, Cu, Fe)-gene interactions in relation to the inflammatory status and the possibility of a supplement in the event of a micronutrient deficiency or chelation in presence of micronutrient overload in relation to specific polymorphisms of inflammatory proteins or proteins related of the delivery of the micronutriemts to various organs and tissues. In this last context, we report the protein-metal speciation analysis in order to have, coupled with micronutrient-gene interactions, a more complete picture of the individual need in micronutrient supplementation or chelation to achieve healthy ageing and longevity.
Collapse
|
15
|
Janjetovic K, Harhaji-Trajkovic L, Misirkic-Marjanovic M, Vucicevic L, Stevanovic D, Zogovic N, Sumarac-Dumanovic M, Micic D, Trajkovic V. In vitro and in vivo anti-melanoma action of metformin. Eur J Pharmacol 2011; 668:373-82. [PMID: 21806981 DOI: 10.1016/j.ejphar.2011.07.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2011] [Revised: 05/20/2011] [Accepted: 07/07/2011] [Indexed: 02/07/2023]
Abstract
The in vitro and in vivo anti-melanoma effect of antidiabetic drug metformin was investigated using B16 mouse melanoma cell line. Metformin caused a G(2)/M cell cycle arrest associated with apoptotic death of melanoma cells, as confirmed by the flow cytometric analysis of cell cycle/DNA fragmentation, phosphatidylserine exposure and caspase activation. Metformin-mediated apoptosis of melanoma cells was preceded by induction of oxidative stress and mitochondrial membrane depolarization, measured by flow cytometry in cells stained with appropriate fluorescent reporter dyes. The expression of tumor suppressor protein p53 was increased, while the mRNA levels of anti-apoptotic Bcl-2 were reduced by metformin, as revealed by cell-based ELISA and real-time RT-PCR, respectively. Treatment with metformin did not stimulate expression of the cycle blocker p21, indicating that p21 was dispensable for the observed cell cycle arrest. The activation of AMP-activated protein kinase (AMPK) was not required for the anti-melanoma action of metformin, as AMPK inhibitor compound C completely failed to restore viability of metformin-treated B16 cells. Metformin induced autophagy in B16 cells, as demonstrated by flow cytometry-detected increase in intracellular acidification and immunoblot-confirmed upregulation of autophagosome-associated LC3-II. Autophagy inhibitors ammonium chloride and wortmannin partly restored the viability of metformin-treated melanoma cells. Finally, oral administration of metformin led to a significant reduction in tumor size in a B16 mouse melanoma model. These data suggest that anti-melanoma effects of metformin are mediated through p21- and AMPK-independent cell cycle arrest, apoptosis and autophagy associated with p53/Bcl-2 modulation, mitochondrial damage and oxidative stress.
Collapse
Affiliation(s)
- Kristina Janjetovic
- Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade, Serbia
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Maritz MF, van der Watt PJ, Holderness N, Birrer MJ, Leaner VD. Inhibition of AP-1 suppresses cervical cancer cell proliferation and is associated with p21 expression. Biol Chem 2011; 392:439-48. [DOI: 10.1515/bc.2011.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractAP-1, a transcription factor comprised primarily of Jun and Fos family proteins, regulates genes involved in proliferation, differentiation and oncogenesis. Previous studies demonstrated that elevated expression of Jun and Fos family member proteins is associated with numerous human cancers and in cancer-relevant biological processes. In this study we used a dominant-negative mutant of c-Jun, Tam67, which interferes with the functional activity of all AP-1 complexes, to investigate the requirement of AP-1 in the proliferation and cell cycle progression of cervical cancer cells. Transient and stable expression of Tam67 in CaSki cervical cancer cells resulted in decreased AP-1 activity that correlated with a significant inhibition of cell proliferation and anchorage-independent colony formation. Inhibiting AP-1 activity resulted in a two-fold increase in cells located in the G2/M phase of the cell cycle and an accompanying increase in the expression of the cell cycle regulatory protein, p21. The increase in p21 was associated with a decrease in HPV E6 expression and an increase in p53. Importantly, blocking the induction of p21 in CaSki-Tam67-expressing cells accelerated their proliferation rate to that of CaSki, implicating p21 as a key player in the growth arrest induced by Tam67. Our results suggest a role for AP-1 in the proliferation, G2/M progression and inhibition of p21 expression in cervical cancer.
Collapse
|
17
|
Cho JH, Lee JG, Yang YI, Kim JH, Ahn JH, Baek NI, Lee KT, Choi JH. Eupatilin, a dietary flavonoid, induces G2/M cell cycle arrest in human endometrial cancer cells. Food Chem Toxicol 2011; 49:1737-44. [PMID: 21554918 DOI: 10.1016/j.fct.2011.04.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/13/2011] [Accepted: 04/18/2011] [Indexed: 10/18/2022]
Abstract
This study is the first to investigate the antiproliferative effect of eupatilin in human endometrial cancer cells. Eupatilin, a naturally occurring flavonoid isolated from Artemisia princeps, has anti-inflammatory, anti-oxidative, and anti-tumor activities. In the present study, we investigated the potential effect of eupatilin on cell growth and its molecular mechanism of action in human endometrial cancer cells. Eupatilin was more potent than cisplatin in inhibiting cell viability in the human endometrial cancer cell lines Hec1A and KLE. Eupatilin showed relatively low cytotoxicity in normal human endometrial cells HES and HESC cells when compared to cisplatin. Eupatilin induced G2/M phase cell cycle arrest in a time- and dose-dependent manner, as indicated by flow cytometry analysis. In addition, treatment of Hec1A cells with eupatilin resulted in a significant increase in the expression of p21(WAF1/CIP1) and in the phosphorylation of Cdc25C and Cdc2. Knockdown of p21 using specific siRNAs significantly compromised eupatilin-induced cell growth inhibition. Interestingly, levels of mutant p53 in Hec1A cells decreased markedly upon treatment with eupatilin, and p53 siRNA significantly increased p21 expression. Moreover, eupatilin modulated the phosphorylation of protein kinases ERK1/2, Akt, ATM, and Chk2. These results suggest that eupatilin inhibits the growth of human endometrial cancer cells via G2/M phase cell cycle arrest through the up-regulation of p21 by the inhibition of mutant p53 and the activation of the ATM/Chk2/Cdc25C/Cdc2 checkpoint pathway.
Collapse
Affiliation(s)
- Jung-Hoon Cho
- College of Oriental Medicine, Kyung Hee University, Seoul, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Wise SS, Holmes AL, Qin Q, Xie H, Katsifis SP, Thompson WD, Wise JP. Comparative genotoxicity and cytotoxicity of four hexavalent chromium compounds in human bronchial cells. Chem Res Toxicol 2010; 23:365-72. [PMID: 20000473 DOI: 10.1021/tx900363j] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hexavalent chromium (Cr(VI)) compounds are well-established human lung carcinogens. Solubility plays an important role in their carcinogenicity with the particulate Cr(VI) compounds being the most carcinogenic. Epidemiology and animal studies suggest that zinc chromate is the most potent particulate Cr(VI) compound; however, there are few comparative data to support these observations. The purpose of this study was to compare the genotoxicity of zinc chromate with two other particulate Cr(VI) compounds, barium chromate and lead chromate, and one soluble Cr(VI) compound, sodium chromate. The clastogenic effects of barium chromate and zinc chromate were similar, but lead chromate induced significantly less damage. The levels of DNA damage measured by gamma-H2A.X foci formation were similar for the three particulate chromium compounds. Corrected for chromium uptake differences, we found that zinc chromate and barium chromate were the most cytotoxic, and lead chromate and sodium chromate were less cytotoxic. Zinc chromate was more clastogenic than all other chromium compounds, and lead chromate was the least clastogenic. There was no significant difference between any of the compounds for the induction of DNA double strand breaks. All together, these data suggest that the difference in the carcinogenic potency of zinc chromate over the other chromium compounds is not due solely to a difference in chromium ion uptake and that the zinc cation may in fact have an important role in its carcinogenicity.
Collapse
Affiliation(s)
- Sandra S Wise
- Wise Laboratory of Environmental and Genetic Toxicology, Maine Center for Toxicology and Environmental Health, Department of Applied Medical Science, University of Southern Maine, 96 Falmouth Street, Portland, Maine 04104-9300, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Pellizzari Tregno F, Sau A, Pezzola S, Geroni C, Lapenta C, Spada M, Filomeni G, Bonanno E, Federici G, Caccuri AM. In vitro and in vivo efficacy of 6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol (NBDHEX) on human melanoma. Eur J Cancer 2009; 45:2606-17. [DOI: 10.1016/j.ejca.2009.06.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 06/18/2009] [Accepted: 06/25/2009] [Indexed: 12/21/2022]
|
20
|
Li Y, Maret W. Transient fluctuations of intracellular zinc ions in cell proliferation. Exp Cell Res 2009; 315:2463-70. [DOI: 10.1016/j.yexcr.2009.05.016] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 05/05/2009] [Accepted: 05/19/2009] [Indexed: 01/28/2023]
|
21
|
Cheng WH. Impact of inorganic nutrients on maintenance of genomic stability. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2009; 50:349-360. [PMID: 19326466 DOI: 10.1002/em.20489] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Maintenance of genome stability is of fundamental importance for counteracting carcinogenesis. Many human genome instability syndromes exhibit a predisposition to cancer. An increasing body of epidemiological evidence has suggested a link between nutrient status and risk of cancer. Like other chemicals, nutrients can be toxic when consumed in excess. It has become clear that both nutritional deficiency and toxicity can compromise the integrity of the genome. This article focuses on roles of inorganic trace nutrients, including selenium, copper, zinc, and iron, in the redox regulation of genome stability and how they relate to the pathologies of genomic instability syndromes and cancer.
Collapse
Affiliation(s)
- Wen-Hsing Cheng
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, USA.
| |
Collapse
|
22
|
Xie CX, Ren JL. Cumulating researches on the relationship between P38 MAPK signaling pathway and gastric carcinoma. Shijie Huaren Xiaohua Zazhi 2008; 16:3427-3432. [DOI: 10.11569/wcjd.v16.i30.3427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The cascade reaction of mitogen-activated protein kinases (MAPKs) is one of the vital intracellular signal transduction systems, participating in many physiological progressions, such as cell growth, proliferation, differentiation and apoptosis. P38 is a member of MAPKs, mediating many cell reactions induced by stress, inflammatory cytokines or bacterial products and playing a key role in the regulation of cell cycle. For different cell lines of gastric carcinoma, P38 has different functions. The same phenomenon can be seen when the cells are presented under different stimulus. P38 pathway may be one candidate target of cancer therapy.
Collapse
|
23
|
Smith PJ, Wiltshire M, Furon E, Beattie JH, Errington RJ. Impact of overexpression of metallothionein-1 on cell cycle progression and zinc toxicity. Am J Physiol Cell Physiol 2008; 295:C1399-408. [PMID: 18815222 DOI: 10.1152/ajpcell.00342.2008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Metallothioneins (MTs) have an important role in zinc homeostasis and may counteract the impact of oversupply. Both intracellular zinc and MT expression have been implicated in proliferation control and resistance to cellular stress, although the interdependency is unclear. The study addresses the consequences of a steady-state overexpression of MT-1 for intracellular zinc levels, cell cycle progression, and protection from zinc toxicity using a panel of cell lines with differential expression of MT-1. The panel comprised parental Chinese hamster ovary-K1 cells with low endogenous expression of MT and transfectants with enhanced expression of mouse MT-1 on an autonomously replicating expression vector with a noninducible promoter. Cell cycle progression, determined by flow cytometry and time-lapse microscopy, revealed that enhanced cytoplasmic expression of MT-1 does not impact on normal cell cycle operation, suggesting that basal levels of MT-1 expression are not limiting for background levels of oxidative stress. MT-1 overexpression correlated with a steady-state increase in cytoplasmic free Zn(2+), assessed using the fluorescent zinc-sensor Zinquin, particularly at high levels of overexpression, further suggesting that zinc availability is normally not limiting for cell cycle progression. Enhanced MT-1 expression, over a 10-fold range, had a clear impact on resistance to Cd(2+) and Zn(2+) toxicity. In the case of Zn(2+), the degree of protection afforded was less, indicating that MT-1 has a limited range and saturable capacity for effecting resistance. The results have implications for the use of cellular stress responses to exogenously supplied zinc and zinc-based systemic therapies.
Collapse
Affiliation(s)
- Paul J Smith
- Dept. of Pathology, Tenovus Bldg., School of Medicine, Cardiff Univ., Heath Park, Cardiff CF14 4XN, UK.
| | | | | | | | | |
Collapse
|