1
|
Liu CC, Zhang Y, Kim YJ, Hamilton EJ, Xu B, Limas J, McCracken SA, Morris JM, Makris A, Hennessy A, Rasmussen HH. β3-adrenergic agonist counters oxidative stress and Na +-K + pump inhibitory S-glutathionylation of placental cells: implications for preeclampsia. Am J Physiol Cell Physiol 2025; 328:C27-C39. [PMID: 39495253 DOI: 10.1152/ajpcell.00379.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024]
Abstract
Oxidative stress from placental ischemia/reperfusion and hypoxia/reoxygenation (H/R) in preeclampsia is accompanied by Na+-K+ pump inhibition and S-glutathionylation of its β1 subunit (GSS-β1), a modification that inhibits the pump. β3-adrenergic receptor (β3-AR) agonists can reverse GSS-β1. We examined the effects of the agonist CL316,243 on GSS-β1 and sources of H/R-induced oxidative stress in immortalized first-trimester human trophoblast (HTR-8/SVneo) and freshly isolated placental explants from normal-term pregnancies. H/R increased GSS-β1 and, reflecting compromised α1/β1 subunit interaction, reduced α1/β1 pump subunit coimmunoprecipitation. H/R increased p47phox/p22phox NADPH oxidase subunit coimmunoprecipitation, reflecting membrane translocation of cytosolic p47phox that is needed to activate NADPH oxidase. Fluorescence of O2•--sensitive dihydroethidium increased in parallel. H/R increased S-glutathionylation of endothelial nitric oxide synthase (GSS-eNOS) that uncouples nitric oxide synthesis toward the synthesis of O2•- and reduced trophoblast migration. Oxidative stress induced by tumor necrosis factor α increased soluble fms-like tyrosine kinase receptor 1 (sFlt-1) trophoblast release, a marker of preeclampsia, and reduced trophoblast integration into endothelial cellular networks. CL316,243 eliminated H/R-induced GSS-β1 and decreases of α1/β1 subunit coimmunoprecipitation, eliminated NADPH oxidase activation and increases in GSS-eNOS, restored trophoblast migration, eliminated increased sFlt-1 release, and restored trophoblast integration in endothelial cell networks. H/R-induced GSS-β1, α1/β1 subunit coimmunoprecipitation, and NADPH oxidase activation of placental explants reflected effects of H/R for trophoblasts and CL316,243 eliminated these changes. We conclude a β3-AR agonist counters key pathophysiological features of preeclampsia in vitro. β3 agonists already in human use for another purpose are potential candidates for repurposing to treat preeclampsia.NEW & NOTEWORTHY H/R-induced oxidative stress and deficient NO-dependent placentation are features of preeclampsia, yet nonspecific antioxidants and NO donors are ineffective. Here, activation of the microdomain-confined signaling pathway with an agonist for the eNOS-coupled β3-AR eliminates inhibitory glutathionylation of the Na+-K+ pump's β1 subunit, uncoupling of eNOS, and activation of NADPH oxidase that are sources of H/R-induced oxidative stress. The agonist also eliminates H/R-induced inhibition of trophoblast migration and their integration into an endothelial network.
Collapse
Affiliation(s)
- Chia-Chi Liu
- Cellular Membrane Biology Group, Kolling Medical Research Institute, University of Sydney, New South Wales, Australia
- Vascular Immunology Research Laboratory, The Heart Research Institute, New South Wales, Australia
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, New South Wales, Australia
- School of Medicine, Western Sydney University, New South Wales, Australia
| | - Yunjia Zhang
- Cellular Membrane Biology Group, Kolling Medical Research Institute, University of Sydney, New South Wales, Australia
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, New South Wales, Australia
| | - Yeon Jae Kim
- Cellular Membrane Biology Group, Kolling Medical Research Institute, University of Sydney, New South Wales, Australia
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, New South Wales, Australia
| | - Elisha J Hamilton
- Cellular Membrane Biology Group, Kolling Medical Research Institute, University of Sydney, New South Wales, Australia
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, New South Wales, Australia
| | - Bei Xu
- Cellular Membrane Biology Group, Kolling Medical Research Institute, University of Sydney, New South Wales, Australia
| | - Jane Limas
- Cellular Membrane Biology Group, Kolling Medical Research Institute, University of Sydney, New South Wales, Australia
- Division of Perinatal Research, Northern Sydney Local Health District, New South Wales, Australia
| | - Sharon A McCracken
- Division of Perinatal Research, Northern Sydney Local Health District, New South Wales, Australia
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, New South Wales, Australia
| | - Jonathan M Morris
- Division of Perinatal Research, Northern Sydney Local Health District, New South Wales, Australia
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, New South Wales, Australia
| | - Angela Makris
- Vascular Immunology Research Laboratory, The Heart Research Institute, New South Wales, Australia
- School of Medicine, Western Sydney University, New South Wales, Australia
- Renal Unit, Liverpool Hospital, New South Wales, Australia
| | - Annemarie Hennessy
- Vascular Immunology Research Laboratory, The Heart Research Institute, New South Wales, Australia
- School of Medicine, Western Sydney University, New South Wales, Australia
- Campbelltown Hospital, South Western Sydney Local Health District, New South Wales, Australia
| | - Helge H Rasmussen
- Cellular Membrane Biology Group, Kolling Medical Research Institute, University of Sydney, New South Wales, Australia
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, New South Wales, Australia
- Department of Cardiology, Royal North Shore Hospital, New South Wales, Australia
| |
Collapse
|
2
|
Zhou M, Hanschmann EM, Römer A, Linn T, Petry SF. The significance of glutaredoxins for diabetes mellitus and its complications. Redox Biol 2024; 71:103043. [PMID: 38377787 PMCID: PMC10891345 DOI: 10.1016/j.redox.2024.103043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/13/2024] [Indexed: 02/22/2024] Open
Abstract
Diabetes mellitus is a non-communicable metabolic disease hallmarked by chronic hyperglycemia caused by beta-cell failure. Diabetic complications affect the vasculature and result in macro- and microangiopathies, which account for a significantly increased morbidity and mortality. The rising incidence and prevalence of diabetes is a major global health burden. There are no feasible strategies for beta-cell preservation available in daily clinical practice. Therefore, patients rely on antidiabetic drugs or the application of exogenous insulin. Glutaredoxins (Grxs) are ubiquitously expressed and highly conserved members of the thioredoxin family of proteins. They have specific functions in redox-mediated signal transduction, iron homeostasis and biosynthesis of iron-sulfur (FeS) proteins, and the regulation of cell proliferation, survival, and function. The involvement of Grxs in chronic diseases has been a topic of research for several decades, suggesting them as therapeutic targets. Little is known about their role in diabetes and its complications. Therefore, this review summarizes the available literature on the significance of Grxs in diabetes and its complications. In conclusion, Grxs are differentially expressed in the endocrine pancreas and in tissues affected by diabetic complications, such as the heart, the kidneys, the eye, and the vasculature. They are involved in several pathways essential for insulin signaling, metabolic inflammation, glucose and fatty acid uptake and processing, cell survival, and iron and mitochondrial metabolism. Most studies describe significant changes in glutaredoxin expression and/or activity in response to the diabetic metabolism. In general, mitigated levels of Grxs are associated with oxidative distress, cell damage, and even cell death. The induced overexpression is considered a potential part of the cellular stress-response, counteracting oxidative distress and exerting beneficial impact on cell function such as insulin secretion, cytokine expression, and enzyme activity.
Collapse
Affiliation(s)
- Mengmeng Zhou
- Clinical Research Unit, Medical Clinic and Polyclinic III, Center of Internal Medicine, Justus Liebig University, Giessen, Germany
| | - Eva-Maria Hanschmann
- Experimental and Translational Research, Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | - Axel Römer
- Clinical Research Unit, Medical Clinic and Polyclinic III, Center of Internal Medicine, Justus Liebig University, Giessen, Germany
| | - Thomas Linn
- Clinical Research Unit, Medical Clinic and Polyclinic III, Center of Internal Medicine, Justus Liebig University, Giessen, Germany
| | - Sebastian Friedrich Petry
- Clinical Research Unit, Medical Clinic and Polyclinic III, Center of Internal Medicine, Justus Liebig University, Giessen, Germany.
| |
Collapse
|
3
|
Pasha A, Tondo A, Favre C, Calvani M. Inside the Biology of the β3-Adrenoceptor. Biomolecules 2024; 14:159. [PMID: 38397396 PMCID: PMC10887351 DOI: 10.3390/biom14020159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/24/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
Since the first discovery in 1989, the β3-adrenoceptor (β3-AR) has gained great attention because it showed the ability to regulate many physiologic and metabolic activities, such as thermogenesis and lipolysis in brown and white adipose tissue, respectively (BAT, WAT), negative inotropic effects in cardiomyocytes, and relaxation of the blood vessels and the urinary bladder. The β3-AR has been suggested as a potential target for cancer treatment, both in adult and pediatric tumors, since under hypoxia its upregulation in the tumor microenvironment (TME) regulates stromal cell differentiation, tumor growth and metastases, signifying that its agonism/antagonism could be useful for clinical benefits. Promising results in cancer research have proposed the β3-AR being targeted for the treatment of many conditions, with some drugs, at present, undergoing phase II and III clinical trials. In this review, we report the scientific journey followed by the research from the β3-Ars' discovery, with focus on the β3-Ars' role in cancer initiation and progression that elects it an intriguing target for novel antineoplastic approaches. The overview highlights the great potential of the β3-AR, both in physiologic and pathologic conditions, with the intention to display the possible benefits of β3-AR modulation in cancer reality.
Collapse
Affiliation(s)
- Amada Pasha
- Department of Pediatric Hematology–Oncology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (A.P.); (A.T.); (C.F.)
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy
| | - Annalisa Tondo
- Department of Pediatric Hematology–Oncology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (A.P.); (A.T.); (C.F.)
| | - Claudio Favre
- Department of Pediatric Hematology–Oncology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (A.P.); (A.T.); (C.F.)
| | - Maura Calvani
- Department of Pediatric Hematology–Oncology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (A.P.); (A.T.); (C.F.)
| |
Collapse
|
4
|
Balligand JL, Michel LYM. Clinical pharmacology of β-3 adrenergic receptor agonists for cardiovascular diseases. Expert Rev Clin Pharmacol 2023; 16:1073-1084. [PMID: 37728503 DOI: 10.1080/17512433.2023.2193681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/17/2023] [Indexed: 09/21/2023]
Abstract
INTRODUCTION Few agonists of the third isotype of beta-adrenergic receptors, the β3-adrenoreceptor, are currently used clinically, and new agonists are under development for the treatment of overactive bladder disease. As the receptor is expressed in human cardiac and vascular tissues, it is important to understand their beneficial (or adverse) effect(s) on these targets. AREAS COVERED We discuss the most recent results of clinical trials testing the benefit and safety of β3-adrenoreceptor activation on cardiovascular outcomes in light of current knowledge on the receptor biology, genetic polymorphisms, and agonist pharmacology. EXPERT OPINION While evidence from small clinical trials is limited so far, the β3-agonist, mirabegron seems to be safe in patients at high cardiovascular risk but produces benefits on selected cardiovascular outcomes only at higher than standard doses. Activation of cardiovascular β3-adrenoreceptors deserves to be tested with more potent agonists, such as vibegron.
Collapse
Affiliation(s)
- Jean-Luc Balligand
- Pole of Pharmacology and Therapeutics, Institut de Recherche Experimentale et Clinique (IREC) and Cliniques Universitaires Saint-Luc, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Lauriane Y M Michel
- Pole of Pharmacology and Therapeutics, Institut de Recherche Experimentale et Clinique (IREC) and Cliniques Universitaires Saint-Luc, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
5
|
Zhang JY, Zhao Q, Li XM, Liu F, Zhao Q, Men L, Chen QJ, Zhai H, Yang YN. Association of an ADRB3 Variant with Coronary Artery Disease Within the Chinese Han Population: Construction of a Predictive Nomogram Model. Genet Test Mol Biomarkers 2023; 27:81-89. [PMID: 36989522 DOI: 10.1089/gtmb.2022.0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
Objective: Coronary artery disease (CAD) is a the most common type of heart disease, and is associated with the highest mortality rate. The role of the β3-adrenergic receptor gene (ADRB3) in energy homeostasis and lipolysis suggests that it may be associated with obesity, insulin resistance, diabetes, and hypertension. Herein, we sought to examine the relationship between CAD and variants of the ADRB3 gene in individuals with Han and Uygur ethnicities in China. Methods: All 1022 participants were genotyped for two ADRB3 single nucleotide polymorphisms (SNPs; rs1892818 and rs9693898) using real-time polymerase chain reaction (TaqMan). Uygur (259 CAD patients, 161 control group) and Han (308 CAD patients, 294 control group) were included in two case-control studies. We subsequently developed a predictive model using ADRB3 genetic variation and clinical variables to predict risk of CAD. Results: The rs1892818 CT genotype (8.5% vs 3.9%, p = 0.019) and T allele (4.3% vs 1.9%, p = 0.021) were more frequently detected in the control subjects compared to CAD patients of the Han population but not in the Uygur population. The rs9693898 was not associated with CAD in either ethnic population. Logistic regression analysis further demonstrated that carriers of the rs1892818 CT genotype had a lower risk of CAD than did those with the CC genotype (CT vs CC, p = 0.044, odds ratio [OR] = 0.441, 95% confidence interval [CI]: 0.199-0.976). Using this data, we constructed a predictive nomogram model for CAD with an area under the curve (95% CI) of 0.722 (0.682, 0.761). Conclusions: Our results suggest that rs1892818 is associated with CAD in the Han population and that the CT genotype of rs1892818 may serve as a protective factor for CAD in Han individuals. The proposed nomograms can be used for the prediction of CAD in this population.
Collapse
Affiliation(s)
- Jin-Yu Zhang
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Clinical Medical Research Institute of The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Department of Rehabilitation, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Qian Zhao
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Clinical Medical Research Institute of The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xiao-Mei Li
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Clinical Medical Research Institute of The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Fen Liu
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Clinical Medical Research Institute of The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Qiang Zhao
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Clinical Medical Research Institute of The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Li Men
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Clinical Medical Research Institute of The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Qing-Jie Chen
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Clinical Medical Research Institute of The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hui Zhai
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Clinical Medical Research Institute of The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yi-Ning Yang
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Clinical Medical Research Institute of The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
6
|
Jiang J, Ni L, Zhang X, Gokulnath P, Vulugundam G, Li G, Wang H, Xiao J. Moderate-Intensity Exercise Maintains Redox Homeostasis for Cardiovascular Health. Adv Biol (Weinh) 2023; 7:e2200204. [PMID: 36683183 DOI: 10.1002/adbi.202200204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/27/2022] [Indexed: 01/24/2023]
Abstract
It is well known that exercise is beneficial for cardiovascular health. Oxidative stress is the common pathological basis of many cardiovascular diseases. The overproduction of free radicals, both reactive oxygen species and reactive nitrogen species, can lead to redox imbalance and exacerbate oxidative damage to the cardiovascular system. Maintaining redox homeostasis and enhancing anti-oxidative capacity are critical mechanisms by which exercise protects against cardiovascular diseases. Moderate-intensity exercise is an effective means to maintain cardiovascular redox homeostasis. Moderate-intensity exercise reduces the risk of cardiovascular disease by improving mitochondrial function and anti-oxidative capacity. It also attenuates adverse cardiac remodeling and enhances cardiac function. This paper reviews the primary mechanisms of moderate-intensity exercise-mediated redox homeostasis in the cardiovascular system. Exploring the role of exercise-mediated redox homeostasis in the cardiovascular system is of great significance to the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Jizong Jiang
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.,Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Lingyan Ni
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.,Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Xinxin Zhang
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.,Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Priyanka Gokulnath
- Cardiovascular Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | | | - Guoping Li
- Cardiovascular Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Hongyun Wang
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.,Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.,Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
7
|
Karimi Galougahi K, Zhang Y, Kienzle V, Liu C, Quek L, Patel S, Lau E, Cordina R, Figtree GA, Celermajer DS. β3 adrenergic agonism: A novel pathway which improves right ventricular-pulmonary arterial hemodynamics in pulmonary arterial hypertension. Physiol Rep 2023; 11:e15549. [PMID: 36597221 PMCID: PMC9810839 DOI: 10.14814/phy2.15549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023] Open
Abstract
Efficacy of therapies that target the downstream nitric oxide (NO) pathway in pulmonary arterial hypertension (PAH) depends on the bioavailability of NO. Reduced NO level in PAH is secondary to "uncoupling" of endothelial nitric oxide synthase (eNOS). Stimulation of β3 adrenergic receptors (β3 ARs) may lead to the recoupling of NOS and therefore be beneficial in PAH. We aimed to examine the efficacy of β3 AR agonism as a novel pathway in experimental PAH. In hypoxia (5 weeks) and Sugen hypoxia (hypoxia for 5 weeks + SU5416 injection) models of PAH, we examined the effects of the selective β3 AR agonist CL316243. We measured echocardiographic indices and invasive right ventricular (RV)-pulmonary arterial (PA) hemodynamics and compared CL316243 with riociguat and sildenafil. We assessed treatment effects on RV-PA remodeling, oxidative stress, and eNOS glutathionylation, an oxidative modification that uncouples eNOS. Compared with normoxic mice, RV systolic pressure was increased in the control hypoxic mice (p < 0.0001) and Sugen hypoxic mice (p < 0.0001). CL316243 reduced RV systolic pressure, to a similar degree to riociguat and sildenafil, in both hypoxia (p < 0.0001) and Sugen hypoxia models (p < 0.03). CL316243 reversed pulmonary vascular remodeling, decreased RV afterload, improved RV-PA coupling efficiency and reduced RV stiffness, hypertrophy, and fibrosis. Although all treatments decreased oxidative stress, CL316243 significantly reduced eNOS glutathionylation. β3 AR stimulation improved RV hemodynamics and led to beneficial RV-PA remodeling in experimental models of PAH. β3 AR agonists may be effective therapies in PAH.
Collapse
Affiliation(s)
- Keyvan Karimi Galougahi
- Heart Research InstituteSydneyAustralia
- Royal Prince Alfred HospitalSydneyAustralia
- Sydney Medical SchoolFaculty of Medicine and HealthUniversity of SydneySydneyAustralia
| | | | | | - Chia‐Chi Liu
- Heart Research InstituteSydneyAustralia
- Sydney Medical SchoolFaculty of Medicine and HealthUniversity of SydneySydneyAustralia
- Kolling Institute for Medical ResearchSydneyAustralia
| | - Lake‐Ee Quek
- Charles Perkins CenterUniversity of SydneySydneyAustralia
| | - Sanjay Patel
- Heart Research InstituteSydneyAustralia
- Royal Prince Alfred HospitalSydneyAustralia
- Sydney Medical SchoolFaculty of Medicine and HealthUniversity of SydneySydneyAustralia
| | - Edmund Lau
- Sydney Medical SchoolFaculty of Medicine and HealthUniversity of SydneySydneyAustralia
- Department of Respiratory MedicineRoyal Prince Alfred HospitalSydneyAustralia
| | - Rachael L. Cordina
- Royal Prince Alfred HospitalSydneyAustralia
- Sydney Medical SchoolFaculty of Medicine and HealthUniversity of SydneySydneyAustralia
| | - Gemma A. Figtree
- Sydney Medical SchoolFaculty of Medicine and HealthUniversity of SydneySydneyAustralia
- Kolling Institute for Medical ResearchSydneyAustralia
- Department of CardiologyRoyal North Shore HospitalSydneyAustralia
| | - David S. Celermajer
- Heart Research InstituteSydneyAustralia
- Royal Prince Alfred HospitalSydneyAustralia
- Sydney Medical SchoolFaculty of Medicine and HealthUniversity of SydneySydneyAustralia
| |
Collapse
|
8
|
Liu CC, Zhang Y, Makris A, Rasmussen HH, Hennessy A. S-glutathionylation of the Na+-K+ Pump: A Novel Redox Mechanism in Preeclampsia. J Clin Endocrinol Metab 2021; 106:1091-1100. [PMID: 33382878 DOI: 10.1210/clinem/dgaa918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Indexed: 11/19/2022]
Abstract
CONTEXT Reduced Na+-K+ pump activity is widely reported in preeclampsia and may be caused by a reversible oxidative modification that is a novel pathological feature of preeclampsia. OBJECTIVE This work aims to determine whether β 1 subunit (GSS-β 1) protein glutathionylation of the Na+-K + pump occurs in preeclampsia. METHODS The GSS-β1 of the Na+-K+ pump and its subunit expression in human placentas were compared between women with healthy pregnancies and women with preeclampsia. Human placental samples of pregnant women with preeclampsia (n = 11, mean gestational age 36.5 weeks) were used to examine the GSS-β 1 of the Na+-K+ pump, compared to healthy pregnancies (n = 11, mean gestational age 39 weeks).The potential pathogenetic role of GSS-β 1-mediated Na+-K+ pump dysfunction in preeclampsia was investigated. RESULTS Protein expression of the β 1 subunit was unchanged in placentas from women with preeclampsia vs those with normotensive pregnancies. Preeclamptic placentas had a significantly increased GSS-β 1 of the Na+-K+ pump compared to those from healthy pregnancies, and this was linked to a decrease in α 1/β 1 subunit coimmunoprecipitation. The cytosolic p47phox nicotinamide adenine dinucleotide phosphate hydrogen (NADPH) oxidase subunit and its coimmunoprecipitation with the α 1 Na+-K+ pump subunit was increased in preeclamptic placentas, thus implicating NADPH oxidase-dependent pump inhibition. CONCLUSIONS The high level of β 1 pump subunit glutathionylation provides new insights into the mechanism of Na+-K+ pump dysfunction in preeclampsia.
Collapse
Affiliation(s)
- Chia-Chi Liu
- Vascular Immunology Research Laboratory, The Heart Research Institute, University of Sydney, Newtown, NSW, Australia
- North Shore Heart Research Group, Kolling Medical Research Institute, University of Sydney, St Leonards, NSW, Australia
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - YunJia Zhang
- Clinical Research Laboratory, The Heart Research Institute, Newtown, NSW, Australia
| | - Angela Makris
- Vascular Immunology Research Laboratory, The Heart Research Institute, University of Sydney, Newtown, NSW, Australia
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- Renal Unit, Liverpool Hospital, Liverpool, NSW, Australia
| | - Helge H Rasmussen
- North Shore Heart Research Group, Kolling Medical Research Institute, University of Sydney, St Leonards, NSW, Australia
- Department of Cardiology, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Annemarie Hennessy
- Vascular Immunology Research Laboratory, The Heart Research Institute, University of Sydney, Newtown, NSW, Australia
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- Campbelltown Hospital, South Western Sydney Local Health District, Campbelltown, NSW, Australia
| |
Collapse
|
9
|
Kamiya M, Asai K, Maejima Y, Shirakabe A, Murai K, Noma S, Komiyama H, Sato N, Mizuno K, Shimizu W. β 3-Adrenergic Receptor Agonist Prevents Diastolic Dysfunction in an Angiotensin II-Induced Cardiomyopathy Mouse Model. J Pharmacol Exp Ther 2020; 376:473-481. [PMID: 33318077 DOI: 10.1124/jpet.120.000140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 11/11/2020] [Indexed: 01/01/2023] Open
Abstract
β3-Adrenergic receptor expression is enhanced in the failing heart, but its functional effects are unclear. We tested the hypothesis that a β3-agonist improves left ventricular (LV) performance in heart failure. We examined the chronic effects of a β3-agonist in the angiotensin II (Ang II)-induced cardiomyopathy mouse model. C57BL/6J mice were treated with Ang II alone or Ang II + BRL 37344 (β3-agonist, BRL) for 4 weeks. Systolic blood pressure in conscious mice was significantly elevated in Ang II and Ang II + BRL mice compared with control mice. Heart rate was not different among the three groups. Systolic performance parameters that were measured by echocardiography and an LV catheter were similar among the groups. LV end-diastolic pressure and end-diastolic pressure-volume relationships were higher in Ang II mice compared with control mice. However, the increase in these parameters was prevented in Ang II + BRL mice, which suggested improvement in myocardial stiffness by BRL. Pathologic analysis showed that LV hypertrophy was induced in Ang II mice and failed to be prevented by BRL. However, increased collagen I/III synthesis, cardiac fibrosis, and lung congestion observed in Ang II mice were inhibited by BRL treatment. The cardioprotective benefits of BRL were associated with downregulation of transforming growth factor-β1 expression and phosphorylated-Smad2/3. Chronic infusion of a β3-agonist has a beneficial effect on LV diastolic function independent of blood pressure in the Ang II-induced cardiomyopathy mouse model. SIGNIFICANCE STATEMENT: Chronic infusion of a β3-adrenergic receptor agonist attenuates cardiac fibrosis and improves diastolic dysfunction independently of blood pressure in an angiotensin II-induced hypertensive mouse model. This drug might be an effective treatment of heart failure with preserved ejection fraction.
Collapse
Affiliation(s)
- Masataka Kamiya
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan (M.K., K.M., S.N., H.K., N.S., W.S.); Intensive Care Unit, Nippon Medical School Chiba-Hokusou Hospital, Chiba, Japan (K.A., A.S.); and Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan (Y.M.); Mitsukoshi Health and Welfare Foundation, Tokyo, Japan (K.M.)
| | - Kuniya Asai
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan (M.K., K.M., S.N., H.K., N.S., W.S.); Intensive Care Unit, Nippon Medical School Chiba-Hokusou Hospital, Chiba, Japan (K.A., A.S.); and Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan (Y.M.); Mitsukoshi Health and Welfare Foundation, Tokyo, Japan (K.M.)
| | - Yasuhiro Maejima
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan (M.K., K.M., S.N., H.K., N.S., W.S.); Intensive Care Unit, Nippon Medical School Chiba-Hokusou Hospital, Chiba, Japan (K.A., A.S.); and Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan (Y.M.); Mitsukoshi Health and Welfare Foundation, Tokyo, Japan (K.M.)
| | - Akihiro Shirakabe
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan (M.K., K.M., S.N., H.K., N.S., W.S.); Intensive Care Unit, Nippon Medical School Chiba-Hokusou Hospital, Chiba, Japan (K.A., A.S.); and Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan (Y.M.); Mitsukoshi Health and Welfare Foundation, Tokyo, Japan (K.M.)
| | - Koji Murai
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan (M.K., K.M., S.N., H.K., N.S., W.S.); Intensive Care Unit, Nippon Medical School Chiba-Hokusou Hospital, Chiba, Japan (K.A., A.S.); and Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan (Y.M.); Mitsukoshi Health and Welfare Foundation, Tokyo, Japan (K.M.)
| | - Satsuki Noma
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan (M.K., K.M., S.N., H.K., N.S., W.S.); Intensive Care Unit, Nippon Medical School Chiba-Hokusou Hospital, Chiba, Japan (K.A., A.S.); and Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan (Y.M.); Mitsukoshi Health and Welfare Foundation, Tokyo, Japan (K.M.)
| | - Hidenori Komiyama
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan (M.K., K.M., S.N., H.K., N.S., W.S.); Intensive Care Unit, Nippon Medical School Chiba-Hokusou Hospital, Chiba, Japan (K.A., A.S.); and Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan (Y.M.); Mitsukoshi Health and Welfare Foundation, Tokyo, Japan (K.M.)
| | - Naoki Sato
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan (M.K., K.M., S.N., H.K., N.S., W.S.); Intensive Care Unit, Nippon Medical School Chiba-Hokusou Hospital, Chiba, Japan (K.A., A.S.); and Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan (Y.M.); Mitsukoshi Health and Welfare Foundation, Tokyo, Japan (K.M.)
| | - Kyoichi Mizuno
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan (M.K., K.M., S.N., H.K., N.S., W.S.); Intensive Care Unit, Nippon Medical School Chiba-Hokusou Hospital, Chiba, Japan (K.A., A.S.); and Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan (Y.M.); Mitsukoshi Health and Welfare Foundation, Tokyo, Japan (K.M.)
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan (M.K., K.M., S.N., H.K., N.S., W.S.); Intensive Care Unit, Nippon Medical School Chiba-Hokusou Hospital, Chiba, Japan (K.A., A.S.); and Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan (Y.M.); Mitsukoshi Health and Welfare Foundation, Tokyo, Japan (K.M.)
| |
Collapse
|
10
|
Michel LYM, Farah C, Balligand JL. The Beta3 Adrenergic Receptor in Healthy and Pathological Cardiovascular Tissues. Cells 2020; 9:cells9122584. [PMID: 33276630 PMCID: PMC7761574 DOI: 10.3390/cells9122584] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022] Open
Abstract
The third isotype of beta-adrenoreceptors (β3-AR) has recently come (back) into focus after the observation of its expression in white and beige human adipocytes and its implication in metabolic regulation. This coincides with the recent development and marketing of agonists at the human receptor with superior specificity. Twenty years ago, however, we and others described the expression of β3-AR in human myocardium and its regulation of contractility and cardiac remodeling. Subsequent work from many laboratories has since expanded the characterization of β3-AR involvement in many aspects of cardiovascular physio(patho)logy, justifying the present effort to update current paradigms under the light of the most recent evidence.
Collapse
Affiliation(s)
- Lauriane Y. M. Michel
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Experimentale et Clinique (IREC), Université Catholique de Louvain, B1.57.04, 57 Avenue Hippocrate, 1200 Brussels, Belgium; (L.Y.M.M.); (C.F.)
| | - Charlotte Farah
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Experimentale et Clinique (IREC), Université Catholique de Louvain, B1.57.04, 57 Avenue Hippocrate, 1200 Brussels, Belgium; (L.Y.M.M.); (C.F.)
| | - Jean-Luc Balligand
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Experimentale et Clinique (IREC), Université Catholique de Louvain, B1.57.04, 57 Avenue Hippocrate, 1200 Brussels, Belgium; (L.Y.M.M.); (C.F.)
- Department of Medicine, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, 10 Avenue Hippocrate, 1200 Brussels, Belgium
- Correspondence: ; Tel.: +32-27645262
| |
Collapse
|
11
|
Petrushanko IY, Mitkevich VA, Makarov AA. Molecular Mechanisms of the Redox Regulation of the Na,K-ATPase. Biophysics (Nagoya-shi) 2020. [DOI: 10.1134/s0006350920050139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
12
|
Fry NAS, Liu CC, Garcia A, Hamilton EJ, Karimi Galougahi K, Kim YJ, Whalley DW, Bundgaard H, Rasmussen HH. Targeting Cardiac Myocyte Na +-K + Pump Function With β3 Adrenergic Agonist in Rabbit Model of Severe Congestive Heart Failure. Circ Heart Fail 2020; 13:e006753. [PMID: 32842758 DOI: 10.1161/circheartfailure.119.006753] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Abnormally high cytosolic Na+ concentrations in advanced heart failure impair myocardial contractility. Stimulation of the membrane Na+-K+ pump should lower Na+ concentrations, and the β3 adrenoceptor (β3 AR) mediates pump stimulation in myocytes. We examined if β3 AR-selective agonists given in vivo increase myocyte Na+-K+ pump activity and reverse organ congestion in severe heart failure (HF). METHODS Indices for HF were lung-, heart-, and liver: body weight ratios and ascites after circumflex coronary artery ligation in rabbits. Na+-K+ pump current, Ip, was measured in voltage-clamped myocytes from noninfarct myocardium. Rabbits were treated with the β3 AR agonists CL316,243 or ASP9531, starting 2 weeks after coronary ligation. RESULTS Coronary ligation caused ascites in most rabbits, significantly increased lung-, heart-, and liver: body weight ratios, and decreased Ip relative to that for 10 sham-operated rabbits. Treatment with CL316,243 for 3 days significantly reduced lung-, heart-, and liver: body weight ratios and prevalence of ascites in 8 rabbits with HF relative to indices for 13 untreated rabbits with HF. It also increased Ip significantly to levels of myocytes from sham-operated rabbits. Treatment with ASP9531 for 14 days significantly reduced indices of organ congestion in 6 rabbits with HF relative to indices of 6 untreated rabbits, and it eliminated ascites. β3 AR agonists did not significantly change heart rates or blood pressures. CONCLUSIONS Parallel β3 AR agonists-induced reversal of Na+-K+ pump inhibition and indices of congestion suggest pump inhibition is a useful target for treatment with β3 AR agonists in congestive HF.
Collapse
Affiliation(s)
- Natasha A S Fry
- North Shore Heart Research Group, Kolling Medical Research Institute, University of Sydney, Australia (N.A.S.F., E.J.H., Y.J.K., H.H.R.)
| | - Chia-Chi Liu
- University of Sydney, Australia (C.-C.L., K.K.G., Y.J.K., D.W.W., H.H.R.)
| | | | - Elisha J Hamilton
- North Shore Heart Research Group, Kolling Medical Research Institute, University of Sydney, Australia (N.A.S.F., E.J.H., Y.J.K., H.H.R.)
| | | | - Yeon Jae Kim
- North Shore Heart Research Group, Kolling Medical Research Institute, University of Sydney, Australia (N.A.S.F., E.J.H., Y.J.K., H.H.R.).,University of Sydney, Australia (C.-C.L., K.K.G., Y.J.K., D.W.W., H.H.R.)
| | - David W Whalley
- University of Sydney, Australia (C.-C.L., K.K.G., Y.J.K., D.W.W., H.H.R.).,Department of Cardiology, Royal North Shore Hospital, Sydney, Australia (D.W.W., H.H.R.)
| | - Henning Bundgaard
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Denmark (H.B.)
| | - Helge H Rasmussen
- North Shore Heart Research Group, Kolling Medical Research Institute, University of Sydney, Australia (N.A.S.F., E.J.H., Y.J.K., H.H.R.).,University of Sydney, Australia (C.-C.L., K.K.G., Y.J.K., D.W.W., H.H.R.).,Department of Cardiology, Royal North Shore Hospital, Sydney, Australia (D.W.W., H.H.R.)
| |
Collapse
|
13
|
Beta-3 adrenoceptors: A potential therapeutic target for heart disease. Eur J Pharmacol 2019; 858:172468. [DOI: 10.1016/j.ejphar.2019.172468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/12/2019] [Accepted: 06/16/2019] [Indexed: 12/21/2022]
|
14
|
Arioglu-Inan E, Kayki-Mutlu G, Michel MC. Cardiac β 3 -adrenoceptors-A role in human pathophysiology? Br J Pharmacol 2019; 176:2482-2495. [PMID: 30801686 DOI: 10.1111/bph.14635] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/11/2019] [Accepted: 01/29/2019] [Indexed: 01/06/2023] Open
Abstract
As β3 -adrenoceptors were first demonstrated to be expressed in adipose tissue they have received much attention for their metabolic effects in obesity and diabetes. After the existence of this subtype had been suggested to be present in the heart, studies focused on its role in cardiac function. While the presence and functional role of β3 -adrenoceptors in the heart has not uniformly been detected, there is a broad consensus that they become up-regulated in pathological conditions associated with increased sympathetic activity such as heart failure and diabetes. When detected, the β3 -adrenceptor has been demonstrated to mediate negative inotropic effects in an inhibitory G protein-dependent manner through the NO-cGMP-PKG signalling pathway. Whether these negative inotropic effects provide protection from the adverse effects induced by overstimulation of β1 /β2 -adrenoceptors or in themselves are potentially harmful is controversial, but ongoing clinical studies in patients with congestive heart failure are testing the hypothesis that β3 -adrenceptor agonism has a beneficial effect. LINKED ARTICLES: This article is part of a themed section on Adrenoceptors-New Roles for Old Players. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.14/issuetoc.
Collapse
Affiliation(s)
- Ebru Arioglu-Inan
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Gizem Kayki-Mutlu
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Martin C Michel
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
15
|
Tuncay E, Olgar Y, Durak A, Degirmenci S, Bitirim CV, Turan B. β 3 -adrenergic receptor activation plays an important role in the depressed myocardial contractility via both elevated levels of cellular free Zn 2+ and reactive nitrogen species. J Cell Physiol 2019; 234:13370-13386. [PMID: 30613975 DOI: 10.1002/jcp.28015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/11/2018] [Indexed: 12/27/2022]
Abstract
Role of β3 -AR dysregulation, as either cardio-conserving or cardio-disrupting mediator, remains unknown yet. Therefore, we examined the molecular mechanism of β3 -AR activation in depressed myocardial contractility using a specific agonist CL316243 or using β3 -AR overexpressed cardiomyocytes. Since it has been previously shown a possible correlation between increased cellular free Zn2+ ([Zn2+ ]i ) and depressed cardiac contractility, we first demonstrated a relation between β3 -AR activation and increased [Zn2+ ]i , parallel to the significant depolarization in mitochondrial membrane potential in rat ventricular cardiomyocytes. Furthermore, the increased [Zn2+ ]i induced a significant increase in messenger RNA (mRNA) level of β3 -AR in cardiomyocytes. Either β3 -AR activation or its overexpression could increase cellular reactive oxygen species (ROS) and reactive nitrogen species (RNS) levels, in line with significant changes in nitric oxide (NO)-pathway, including increases in the ratios of pNOS3/NOS3 and pGSK-3β/GSK-3β, and PKG expression level in cardiomyocytes. Although β3 -AR activation induced depression in both Na+ - and Ca2+ -currents, the prolonged action potential (AP) seems to be associated with a marked depression in K+ -currents. The β3 -AR activation caused a negative inotropic effect on the mechanical activity of the heart, through affecting the cellular Ca2+ -handling, including its effect on Ca2+ -leakage from sarcoplasmic reticulum (SR). Our cellular level data with β3 -AR agonism were supported with the data on high [Zn2+ ]i and β3 -AR protein-level in metabolic syndrome (MetS)-rat heart. Overall, our present data can emphasize the important deleterious effect of β3 -AR activation in cardiac remodeling under pathological condition, at least, through a cross-link between β3 -AR activation, NO-signaling, and [Zn2+ ]i pathways. Moreover, it is interesting to note that the recovery in ER-stress markers with β3 -AR agonism in hyperglycemic cardiomyocytes is favored. Therefore, how long and to which level the β3 -AR agonism would be friend or become foe remains to be mystery, yet.
Collapse
Affiliation(s)
- Erkan Tuncay
- Department of Biophysics, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Yusuf Olgar
- Department of Biophysics, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Aysegul Durak
- Department of Biophysics, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Sinan Degirmenci
- Department of Biophysics, Ankara University Faculty of Medicine, Ankara, Turkey
| | | | - Belma Turan
- Department of Biophysics, Ankara University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
16
|
Bubb KJ, Ritchie RH, Figtree GA. Modified redox signaling in vasculature after chronic infusion of the insulin receptor antagonist, S961. Microcirculation 2018; 26:e12501. [PMID: 30178465 DOI: 10.1111/micc.12501] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/02/2018] [Accepted: 08/30/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND Type 2 diabetes and associated vascular complications cause substantial morbidity and mortality. It is important to investigate mechanisms and test therapies in relevant physiological models, yet few animal models adequately recapitulate all aspects of the human condition. OBJECTIVE We sought to determine the potential of using an insulin receptor antagonist, S961, in mice for investigating vascular pathophysiology. METHODS S961 was infused into mice for 4 weeks. Blood glucose was monitored, and insulin was measured at the end of the protocol. Blood pressure and pressor responses to vasodilators were measured in cannulated mice, and vascular reactive oxygen and nitrogen species were measured in isolated tissue. RESULTS S961 infusion-induced hyperglycemia and hyperinsulinemia. There was evidence of increased vascular reactive oxygen and nitrogen species and modification of NO-mediated signaling. Pressor responses to a NO donor were attenuated, but responses to bradykinin were preserved. CONCLUSIONS Infusion of S961, an insulin receptor antagonist, results in the production of a mouse model of type 2 diabetes that may be useful for investigating redox signaling in the vasculature of insulin-resistant mice over the short term. It is limited by both the transient nature of the hyperglycemia and incomplete functional analogy to the human condition.
Collapse
Affiliation(s)
- Kristen J Bubb
- Cardiovascular and Thoracic Health, Kolling Institute of Medical Research, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Rebecca H Ritchie
- Heart Failure Pharmacology Laboratory, Basic Science Domain, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Gemma A Figtree
- Cardiovascular and Thoracic Health, Kolling Institute of Medical Research, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
17
|
Role of the β 3-adrenergic receptor subtype in catecholamine-induced myocardial remodeling. Mol Cell Biochem 2018; 446:149-160. [PMID: 29363058 DOI: 10.1007/s11010-018-3282-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/16/2018] [Indexed: 10/18/2022]
Abstract
β3-Adrenoceptors (AR) stimulate cardiac Na+/K+ pump in healthy hearts. β3-ARs are upregulated by persistent sympathetic hyperactivity; however, their effect on Na+/K+ ATPase activity and ventricular function in this condition is still unknown. Here, we investigate preventive effects of additional β3-AR activation (BRL) on Na+/K+ ATPase activity and in vivo hemodynamics in a model of noradrenaline-induced hypertrophy. Rats received NA or NA plus simultaneously administered BRL in vivo infusion for 14 days; their cardiac function was investigated by left ventricular pressure-volume analysis. Moreover, fibrosis and apoptosis were also assessed histologically. NA induced an hypertrophic pattern, as detected by morphological, histological, and biochemical markers. Additional BRL exposure reversed the hypertrophic pattern and restored Na+/K+ ATPase activity. NA treatment increased systolic function and depressed diastolic function (slowed relaxation). Additional BRL treatment reversed most NA-induced hemodynamic changes. NA decreased Na+/K+ pump α2 subunit expression selectively, a change also reversed by additional BRL treatment. Increasing β3-AR stimulation may prevent the consequences of chronic NA exposure on Na+/K+ pump and in vivo hemodynamics. β3-AR agonism may thus represent a new therapeutic strategy for pharmacological modulation of hypertrophy under conditions of chronically enhanced sympathetic activity.
Collapse
|
18
|
Schiavone S, Camerino GM, Mhillaj E, Zotti M, Colaianna M, De Giorgi A, Trotta A, Cantatore FP, Conte E, Bove M, Tucci P, Morgese MG, Trabace L. Visceral Fat Dysfunctions in the Rat Social Isolation Model of Psychosis. Front Pharmacol 2017; 8:787. [PMID: 29167640 PMCID: PMC5682313 DOI: 10.3389/fphar.2017.00787] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/17/2017] [Indexed: 01/18/2023] Open
Abstract
Medication with neuroleptics has been associated with adipose tissue dysfunctions and, in particular, with increased visceral fat amount. However, several studies suggested that antipsychotic treatment might not be the main responsible of fat mass accumulation, as this has been also described in not treated psychotic patients. One of the most used “drug-free” rodent models of psychosis is the social isolation rearing of young adult rats, which provides a non-pharmacologic method of inducing long-term alterations reminiscent of symptoms seen in psychotic patients. Recent data highlighted a crucial role of redox imbalance in adipose tissue dysfunctions, in terms of decreased antioxidant defense and increased reactive oxygen species (ROS). Here, we investigated possible oxidative stress-related biomolecular alterations associated with visceral fat increase in 7 week isolated rats. To this purpose, we quantified total and visceral fat amount by using dual-energy X-ray (DEXA) absorptiometry. On visceral fat, we analyzed the expression of specific ROS-producer genes (Nox1, Nox4, Hmox-1), antioxidant enzymes (Prdx1 and Ucp-1) and oxidative stress-induced damage markers (Cidea, Slc2a4, and Acacb). The impact of oxidative stress on beta3-adrenergic receptors (Adrb3), at both mRNA and protein level, was also assessed. We found that 7 weeks of social isolation induced an increase in total and visceral fat, associated with a decrease in Prdx1 (mRNA and protein) as well as Ucp-1 mRNA levels and an enhanced expression of Nox1 (mRNA and protein) and Hmox-1 mRNA. No differences were detected in Nox4 mRNA levels between grouped and isolated animals. Elevations in Cidea, Slc2a4, and Acacb expression in visceral fat of isolated animals accounted for oxidative stress-related damage in this tissue, further associated with a significant increase in Adrb3 mRNA and protein. Our results provide a novel understanding of the pathological link existing among psychosocial stress-induced psychosis, adipose tissue dysfunctions and redox imbalance, opening new therapeutic perspectives for the treatment of alterations in peripheral tissues associated with this mental disorder.
Collapse
Affiliation(s)
- Stefania Schiavone
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Giulia M Camerino
- Department of Pharmacy and Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Emanuela Mhillaj
- Department of Physiology and Pharmacology, Sapienza Università di Roma, Rome, Italy
| | - Margherita Zotti
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Marilena Colaianna
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Angelo De Giorgi
- Dual Diagnosis Unit, Azienda Sanitaria Locale della Provincia di Foggia, Foggia, Italy
| | - Antonello Trotta
- Rheumatology Unit, Foggia City Hospital "Ospedali Riuniti", Foggia, Italy
| | | | - Elena Conte
- Department of Pharmacy and Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Maria Bove
- Department of Physiology and Pharmacology, Sapienza Università di Roma, Rome, Italy
| | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Maria G Morgese
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| |
Collapse
|
19
|
Bubb KJ, Birgisdottir AB, Tang O, Hansen T, Figtree GA. Redox modification of caveolar proteins in the cardiovascular system- role in cellular signalling and disease. Free Radic Biol Med 2017; 109:61-74. [PMID: 28188926 DOI: 10.1016/j.freeradbiomed.2017.02.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/18/2017] [Accepted: 02/05/2017] [Indexed: 02/07/2023]
Abstract
Rapid and coordinated release of a variety of reactive oxygen species (ROS) such as superoxide (O2.-), hydrogen peroxide (H2O2) and peroxynitrite, in specific microdomains, play a crucial role in cell signalling in the cardiovascular system. These reactions are mediated by reversible and functional modifications of a wide variety of key proteins. Dysregulation of this oxidative signalling occurs in almost all forms of cardiovascular disease (CVD), including at the very early phases. Despite the heavily publicized failure of "antioxidants" to improve CVD progression, pharmacotherapies such as those targeting the renin-angiotensin system, or statins, exert at least part of their large clinical benefit via modulating cellular redox signalling. Over 250 proteins, including receptors, ion channels and pumps, and signalling proteins are found in the caveolae. An increasing proportion of these are being recognized as redox regulated-proteins, that reside in the immediate vicinity of the two major cellular sources of ROS, nicotinamide adenine dinucleotide phosphate oxidase (Nox) and uncoupled endothelial nitric oxide synthase (eNOS). This review focuses on what is known about redox signalling within the caveolae, as well as endogenous protective mechanisms utilized by the cell, and new approaches to targeting dysregulated redox signalling in the caveolae as a therapeutic strategy in CVD.
Collapse
Affiliation(s)
- Kristen J Bubb
- Kolling Institute of Medical Research, University of Sydney and Cardiology Department, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | - Asa Birna Birgisdottir
- Kolling Institute of Medical Research, University of Sydney and Cardiology Department, Royal North Shore Hospital, St Leonards, NSW 2065, Australia; Department of Cardiothoracic and Vascular Surgery, Heart and Lung Clinic, University Hospital of North Norway, Tromsø, Norway
| | - Owen Tang
- Kolling Institute of Medical Research, University of Sydney and Cardiology Department, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | - Thomas Hansen
- Kolling Institute of Medical Research, University of Sydney and Cardiology Department, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | - Gemma A Figtree
- Kolling Institute of Medical Research, University of Sydney and Cardiology Department, Royal North Shore Hospital, St Leonards, NSW 2065, Australia.
| |
Collapse
|
20
|
Bubb KJ, Kok C, Tang O, Rasko NB, Birgisdottir AB, Hansen T, Ritchie R, Bhindi R, Reisman SA, Meyer C, Ward K, Karimi Galougahi K, Figtree GA. The NRF2 activator DH404 attenuates adverse ventricular remodeling post-myocardial infarction by modifying redox signalling. Free Radic Biol Med 2017; 108:585-594. [PMID: 28438659 DOI: 10.1016/j.freeradbiomed.2017.04.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 03/24/2017] [Accepted: 04/19/2017] [Indexed: 12/29/2022]
Abstract
BACKGROUND The novel synthetic triterpenoid, bardoxolone methyl, has the ability to upregulate cytoprotective proteins via induction of the nuclear factor erythroid-2-related factor 2 (Nrf2) pathway. This makes it a promising therapeutic agent in disease states characterized by dysregulated oxidative signalling. We have examined the effect of a Nrf2 activator, dihydro-CDDO-trifluoroethyl amide (DH404), a derivative of bardoxolone methyl, on post-infarct cardiac remodeling in rats. METHODS/RESULTS DH404, administered from day 2 post myocardial infarction (MI: 30min transient ischemia followed by reperfusion) resulted in almost complete protection against adverse ventricular remodeling as assessed at day 28 (left ventricular end-systolic area: sham 0.14±0.01cm2, MI vehicle 0.29±0.04cm2 vs. MI DH404 0.18±0.02cm2, P<0.05); infarct size (21.3±3.4% MI vehicle vs. 10.9±2.3% MI DH404, P<0.05) with associated benefits on systolic function (fractional shortening: sham 71.9±2.6%, MI vehicle 36.2±1.9% vs. MI DH404 58.6±4.0%, P<0.05). These structural and functional benefits were associated with lower myocardial expression of atrial natriuretic peptide (ANP, P<0.01 vs. MI vehicle), and decreased fibronectin (P<0.01 vs. MI vehicle) in DH404-treated MI rats at 28 days. MI increased glutathionylation of endothelial nitric oxide synthase (eNOS) in vitro - a molecular switch that uncouples the enzyme, increasing superoxide production and decreasing nitric oxide (NO) bioavailability. MI-induced eNOS glutathionylation was substantially ameliorated by DH404. An associated increase in glutaredoxin 1 (Grx1) co-immunoprecipitation with eNOS without a change in expression was mechanistically intriguing. Indeed, in parallel in vitro experiments, silencing of Grx1 abolished the protective effect of DH404 against Angiotensin II-induced eNOS uncoupling. CONCLUSION The bardoxolone derivative DH404 significantly attenuated cardiac remodeling post MI, at least in part, by re-coupling of eNOS and increasing the functional interaction of Grx1 with eNOS. This agent may have clinical benefits protecting against post MI cardiomyopathy.
Collapse
Affiliation(s)
- Kristen J Bubb
- North Shore Heart Research Group, Kolling Institute, University of Sydney and Royal North Shore Hospital, Sydney, Australia
| | - Cindy Kok
- North Shore Heart Research Group, Kolling Institute, University of Sydney and Royal North Shore Hospital, Sydney, Australia
| | - Owen Tang
- North Shore Heart Research Group, Kolling Institute, University of Sydney and Royal North Shore Hospital, Sydney, Australia
| | - Nathalie B Rasko
- North Shore Heart Research Group, Kolling Institute, University of Sydney and Royal North Shore Hospital, Sydney, Australia
| | - Asa B Birgisdottir
- North Shore Heart Research Group, Kolling Institute, University of Sydney and Royal North Shore Hospital, Sydney, Australia; Department of Cardiothoracic and Vascular Surgery, Heart and Lung Clinic, University Hospital of North Norway, Tromsø, Norway
| | - Thomas Hansen
- North Shore Heart Research Group, Kolling Institute, University of Sydney and Royal North Shore Hospital, Sydney, Australia
| | - Rebecca Ritchie
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Ravinay Bhindi
- North Shore Heart Research Group, Kolling Institute, University of Sydney and Royal North Shore Hospital, Sydney, Australia; Department of Cardiology, Royal North Shore Hospital and University of Sydney, Australia
| | | | | | - Keith Ward
- Reata Pharmaceuticals, Inc. Irving, TX, USA
| | - Keyvan Karimi Galougahi
- North Shore Heart Research Group, Kolling Institute, University of Sydney and Royal North Shore Hospital, Sydney, Australia
| | - Gemma A Figtree
- North Shore Heart Research Group, Kolling Institute, University of Sydney and Royal North Shore Hospital, Sydney, Australia; Department of Cardiology, Royal North Shore Hospital and University of Sydney, Australia.
| |
Collapse
|
21
|
Altara R, Giordano M, Nordén ES, Cataliotti A, Kurdi M, Bajestani SN, Booz GW. Targeting Obesity and Diabetes to Treat Heart Failure with Preserved Ejection Fraction. Front Endocrinol (Lausanne) 2017; 8:160. [PMID: 28769873 PMCID: PMC5512012 DOI: 10.3389/fendo.2017.00160] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/23/2017] [Indexed: 12/12/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a major unmet medical need that is characterized by the presence of multiple cardiovascular and non-cardiovascular comorbidities. Foremost among these comorbidities are obesity and diabetes, which are not only risk factors for the development of HFpEF, but worsen symptoms and outcome. Coronary microvascular inflammation with endothelial dysfunction is a common denominator among HFpEF, obesity, and diabetes that likely explains at least in part the etiology of HFpEF and its synergistic relationship with obesity and diabetes. Thus, pharmacological strategies to supplement nitric oxide and subsequent cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG) signaling may have therapeutic promise. Other potential approaches include exercise and lifestyle modifications, as well as targeting endothelial cell mineralocorticoid receptors, non-coding RNAs, sodium glucose transporter 2 inhibitors, and enhancers of natriuretic peptide protective NO-independent cGMP-initiated and alternative signaling, such as LCZ696 and phosphodiesterase-9 inhibitors. Additionally, understanding the role of adipokines in HFpEF may lead to new treatments. Identifying novel drug targets based on the shared underlying microvascular disease process may improve the quality of life and lifespan of those afflicted with both HFpEF and obesity or diabetes, or even prevent its occurrence.
Collapse
Affiliation(s)
- Raffaele Altara
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Center for Cardiac Research, Oslo, Norway
- Department of Pathology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
- *Correspondence: Raffaele Altara,
| | - Mauro Giordano
- Department of Medical, Surgical, Neurological, Metabolic and Geriatrics Sciences, University of Campania “L. Vanvitelli”, Caserta, Italy
| | - Einar S. Nordén
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Center for Cardiac Research, Oslo, Norway
- Bjørknes College, Oslo, Norway
| | - Alessandro Cataliotti
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Center for Cardiac Research, Oslo, Norway
| | - Mazen Kurdi
- Faculty of Sciences, Department of Chemistry and Biochemistry, Lebanese University, Hadath, Lebanon
| | - Saeed N. Bajestani
- Department of Pathology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
- Department of Ophthalmology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - George W. Booz
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
22
|
Abstract
While crucial for the acute physiologic response to stress, the adrenergic system may become maladaptive upon prolonged stimulation in the course of development of heart failure. This has been the basis for the development of beta-blocking therapies, targeting mainly beta1-2 adrenoreceptors (B1-2AR). The third isotype, B3AR, was more recently identified in cardiac myocytes and endothelial cells from human (and many other animal species), where its distinctive coupling to nitric oxide and antioxidant pathways suggested potential protective properties that were unexploited so far. The observation of beneficial effects of B3AR expression/activation on myocardial remodeling and the availability of specific agonists for clinical use now open the way for directly testing the hypothesis in heart failure patients. We will briefly review the specificities of B3AR signaling in the context of the cardiovascular adrenergic system, the evidence supporting its beneficial effects and outline an ongoing clinical trial using the B3AR agonist, mirabegron in patients with/at risk of developing heart failure with preserved ejection fraction (HFpEF).
Collapse
Affiliation(s)
- Lauriane Y M Michel
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Experimentale et Clinique (IREC), Université Catholique de Louvain, B1.53.09, 52 Ave. Mounier, 1200, Brussels, Belgium
| | - Jean-Luc Balligand
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Experimentale et Clinique (IREC), Université Catholique de Louvain, B1.53.09, 52 Ave. Mounier, 1200, Brussels, Belgium.
- Department of Medicine, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, 10 Ave. Hippocrate, 1200, Brussels, Belgium.
| |
Collapse
|
23
|
Balligand JL. Cardiac salvage by tweaking with beta-3-adrenergic receptors. Cardiovasc Res 2016; 111:128-33. [PMID: 27001422 DOI: 10.1093/cvr/cvw056] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/22/2016] [Indexed: 11/14/2022] Open
Abstract
Overstimulation of the orthosympathetic system leads to cardiovascular cell and tissue damage through prolonged activation of β-1-2 adrenergic receptors (BARs). The more recent identification of the third isotype of BAR (B3AR) in cardiac myocytes and endothelial cells with a distinctive coupling and effect on cardiac function and remodelling introduced a new facet to this paradigm. In particular, B3AR is up-regulated in cardiac disease and less prone to homologous desensitization, which may reinforce its influence on the diseased myocardium. Mice with transgenic cardiac-specific expression of the human B3AR are protected from cardiac hypertrophy and fibrosis in response to neurohormonal stimulation. B3AR has also been implicated in cardiac protection after ischaemia-reperfusion and the benefits of exercise on the heart. Many of these salvage mechanisms are mediated by B3AR coupling to nitric oxide synthase (eNOS and nNOS) and downstream cGMP/protein kinase G signalling. Notably, B3AR exerts antioxidant protective effects on these and other signalling elements, which may subserve its protective properties in the setting of chronic heart failure. Additional vasorelaxing properties and paracrine NO-mediated signalling by B3AR in endothelium, together with systemic metabolic effects on beige/brown fat complete the pleiotropic protective properties of this new therapeutic target.
Collapse
Affiliation(s)
- Jean-Luc Balligand
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Experimentale et Clinique (IREC), and Department of Medicine, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, B1.53.09, 52 avenue Mounier, 1200 Brussels, Belgium
| |
Collapse
|
24
|
Karimi Galougahi K, Liu CC, Garcia A, Gentile C, Fry NA, Hamilton EJ, Hawkins CL, Figtree GA. β3 Adrenergic Stimulation Restores Nitric Oxide/Redox Balance and Enhances Endothelial Function in Hyperglycemia. J Am Heart Assoc 2016; 5:e002824. [PMID: 26896479 PMCID: PMC4802476 DOI: 10.1161/jaha.115.002824] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/07/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Perturbed balance between NO and O2 (•-). (ie, NO/redox imbalance) is central in the pathobiology of diabetes-induced vascular dysfunction. We examined whether stimulation of β3 adrenergic receptors (β3 ARs), coupled to endothelial nitric oxide synthase (eNOS) activation, would re-establish NO/redox balance, relieve oxidative inhibition of the membrane proteins eNOS and Na(+)-K(+) (NK) pump, and improve vascular function in a new animal model of hyperglycemia. METHODS AND RESULTS We established hyperglycemia in male White New Zealand rabbits by infusion of S961, a competitive high-affinity peptide inhibitor of the insulin receptor. Hyperglycemia impaired endothelium-dependent vasorelaxation by "uncoupling" of eNOS via glutathionylation (eNOS-GSS) that was dependent on NADPH oxidase activity. Accordingly, NO levels were lower while O2 (•-) levels were higher in hyperglycemic rabbits. Infusion of the β3 AR agonist CL316243 (CL) decreased eNOS-GSS, reduced O2 (•-), restored NO levels, and improved endothelium-dependent relaxation. CL decreased hyperglycemia-induced NADPH oxidase activation as suggested by co-immunoprecipitation experiments, and it increased eNOS co-immunoprecipitation with glutaredoxin-1, which may reflect promotion of eNOS de-glutathionylation by CL. Moreover, CL reversed hyperglycemia-induced glutathionylation of the β1 NK pump subunit that causes NK pump inhibition, and improved K(+)-induced vasorelaxation that reflects enhancement in NK pump activity. Lastly, eNOS-GSS was higher in vessels of diabetic patients and was reduced by CL, suggesting potential significance of the experimental findings in human diabetes. CONCLUSIONS β3 AR activation restored NO/redox balance and improved endothelial function in hyperglycemia. β3 AR agonists may confer protection against diabetes-induced vascular dysfunction.
Collapse
MESH Headings
- Adrenergic beta-3 Receptor Agonists/pharmacology
- Animals
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/enzymology
- Diabetes Mellitus, Experimental/physiopathology
- Diabetic Angiopathies/chemically induced
- Diabetic Angiopathies/enzymology
- Diabetic Angiopathies/physiopathology
- Diabetic Angiopathies/prevention & control
- Dioxoles/pharmacology
- Dose-Response Relationship, Drug
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/enzymology
- Endothelium, Vascular/physiopathology
- Enzyme Activation
- Glutathione/metabolism
- Hyperglycemia/chemically induced
- Hyperglycemia/drug therapy
- Hyperglycemia/enzymology
- Hyperglycemia/physiopathology
- Hypoglycemic Agents/pharmacology
- Male
- NADPH Oxidases/metabolism
- Nitric Oxide/metabolism
- Nitric Oxide Synthase Type III/metabolism
- Oxidation-Reduction
- Oxidative Stress/drug effects
- Peptides
- Rabbits
- Receptors, Adrenergic, beta-3/drug effects
- Receptors, Adrenergic, beta-3/metabolism
- Signal Transduction/drug effects
- Sodium-Potassium-Exchanging ATPase/metabolism
- Superoxides/metabolism
- Time Factors
Collapse
Affiliation(s)
- Keyvan Karimi Galougahi
- North Shore Heart Research Group, Kolling Institute, University of Sydney, Australia University of Sydney Medical School Foundation, Sydney, Australia Columbia University Medical Center, New York, NY
| | - Chia-Chi Liu
- North Shore Heart Research Group, Kolling Institute, University of Sydney, Australia
| | - Alvaro Garcia
- North Shore Heart Research Group, Kolling Institute, University of Sydney, Australia
| | - Carmine Gentile
- School of Medicine, University of Sydney, Australia Heart Research Institute, Sydney, Australia
| | - Natasha A Fry
- North Shore Heart Research Group, Kolling Institute, University of Sydney, Australia
| | - Elisha J Hamilton
- North Shore Heart Research Group, Kolling Institute, University of Sydney, Australia
| | | | - Gemma A Figtree
- North Shore Heart Research Group, Kolling Institute, University of Sydney, Australia Department of Cardiology, Royal North Shore Hospital, Sydney, Australia
| |
Collapse
|
25
|
Black SM. β3-Adrenoceptor, glutathionylation, and diabetic cardiomyopathy. Focus on "β3-Adrenoceptor activation relieves oxidative inhibition of the cardiac Na+-K+ pump in hyperglycemia induced by insulin receptor blockade". Am J Physiol Cell Physiol 2015; 309:C283-5. [PMID: 26179604 DOI: 10.1152/ajpcell.00196.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Stephen M Black
- Division of Translational and Regenerative Medicine, Department of Medicine, University of Arizona, Tucson, Arizona
| |
Collapse
|
26
|
Garcia A, Eljack ND, Sani MA, Separovic F, Rasmussen HH, Kopec W, Khandelia H, Cornelius F, Clarke RJ. Membrane accessibility of glutathione. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2430-6. [PMID: 26232559 DOI: 10.1016/j.bbamem.2015.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 07/23/2015] [Accepted: 07/28/2015] [Indexed: 10/23/2022]
Abstract
Regulation of the ion pumping activity of the Na+,K+-ATPase is crucial to the survival of animal cells. Recent evidence has suggested that the activity of the enzyme could be controlled by glutathionylation of cysteine residue 45 of the β-subunit. Crystal structures so far available indicate that this cysteine is in a transmembrane domain of the protein. Here we have analysed via fluorescence and NMR spectroscopy as well as molecular dynamics simulations whether glutathione is able to penetrate into the interior of a lipid membrane. No evidence for any penetration of glutathione into the membrane was found. Therefore, the most likely mechanism whereby the cysteine residue could become glutathionylated is via a loosening of the α-β subunit association, creating a hydrophilic passageway between them to allow access of glutathione to the cysteine residue. By such a mechanism, glutathionylation of the protein would be expected to anchor the modified cysteine residue in a hydrophilic environment, inhibiting further motion of the β-subunit during the enzyme's catalytic cycle and suppressing enzymatic activity, as has been experimentally observed. The results obtained, therefore, suggest a possible structural mechanism of how the Na+,K+-ATPase could be regulated by glutathione.
Collapse
Affiliation(s)
- Alvaro Garcia
- School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Nasma D Eljack
- School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Marc-Antoine Sani
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Frances Separovic
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Helge H Rasmussen
- Department of Cardiology, Royal North Shore Hospital, Sydney, New South Wales 2065, Australia; Kolling Institute, University of Sydney, Sydney, New South Wales 2065, Australia
| | - Wojciech Kopec
- Center for BioMembrane Physics, University of Southern Denmark, Odense M5230, Denmark
| | - Himanshu Khandelia
- Center for BioMembrane Physics, University of Southern Denmark, Odense M5230, Denmark
| | - Flemming Cornelius
- Department of Biomedicine, University of Aarhus, DK-8000 Aarhus C, Denmark
| | - Ronald J Clarke
- School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia.
| |
Collapse
|