1
|
Alonazi A, Nash CA, Wang CH, Christofidou E, Challiss RAJ, Willets JM. GRK2 expression and catalytic activity are essential for vasoconstrictor/ERK-stimulated arterial smooth muscle proliferation. Biochem Pharmacol 2023; 216:115795. [PMID: 37690571 DOI: 10.1016/j.bcp.2023.115795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Prolonged vasoconstrictor signalling found in hypertension, increases arterial contraction, and alters vessel architecture by stimulating arterial smooth muscle cell (ASMC) growth, underpinning the development of re-stenosis lesions and vascular remodelling. Vasoconstrictors interact with their cognate G protein coupled receptors activating a variety of signalling pathways to promote smooth muscle proliferation. Here, angiotensin II (AngII) and endothelin 1 (ET1), but not UTP stimulates ASMC proliferation. Moreover, siRNA-mediated depletion of endogenous GRK2 expression, or GRK2 inhibitors, compound 101 or paroxetine, prevented AngII and ET1-promoted ASMC growth. Depletion of GRK2 expression or inhibition of GRK2 activity ablated the prolonged phase of AngII and ET-stimulated ERK signalling, while enhancing and prolonging UTP-stimulated ERK signalling. Increased GRK2 expression enhanced and prolonged AngII and ET1-stimulated ERK signalling, but suppressed UTP-stimulated ERK signalling. In ASMC prepared from 6-week-old WKY and SHR, AngII and ET1-stimulated proliferation rates were similar, however, in cultures prepared from 12-week-old rats AngII and ET1-stimulated growth was enhanced in SHR-derived ASMC, which was reversed following depletion of GRK2 expression. Furthermore, in ASMC cultures isolated from 6-week-old WKY and SHR rats, AngII and ET1-stimulated ERK signals were similar, while in cultures from 12-week-old rats ERK signals were both enhanced and prolonged in SHR-derived ASMC, and were reversed to those seen in age-matched WKY-derived ASMC following pre-treatment of SHR-derived ASMC with compound 101. These data indicate that the presence of GRK2 and its catalytic activity are essential to enable pro-proliferative vasoconstrictors to promote growth via recruitment and activation of the ERK signalling pathway in ASMC.
Collapse
Affiliation(s)
- Asma Alonazi
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7RH, United Kingdom; Department of Pharmacology and Toxicology, Pharmacy College, King Saud University, Riyadh, P.O. Box 145111, Saudi Arabia(1)
| | - Craig A Nash
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7RH, United Kingdom; Cardiovascular Metabolism, Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, MA 02139, USA
| | - Chuan-Han Wang
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7RH, United Kingdom
| | - Elena Christofidou
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7RH, United Kingdom; Tumor Viruses and Cancer Laboratory, Department of Biological Sciences, University of Cyprus, Panepistimiou 1, Aglantzia 2109, Nicosia, Cyprus(1)
| | - R A John Challiss
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7RH, United Kingdom
| | - Jonathon M Willets
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7RH, United Kingdom.
| |
Collapse
|
2
|
Alonazi ASA, Willets JM. G protein-coupled receptor kinase 2 is essential to enable vasoconstrictor-mediated arterial smooth muscle proliferation. Cell Signal 2021; 88:110152. [PMID: 34555505 DOI: 10.1016/j.cellsig.2021.110152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/07/2021] [Accepted: 09/15/2021] [Indexed: 01/05/2023]
Abstract
Hypertension is associated with increased production and circulation of vasoconstrictors, resulting in enhanced signalling through their cognate G protein-coupled receptors (GPCR). Prolonged vasoconstrictor GPCR signalling increases arterial contraction and stimulates signalling pathways that promote vascular smooth muscle cell (VSMC) proliferation, contributing to the development of atherosclerotic plaques, re-stenosis lesions and vascular remodelling. GPCR signalling through phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) promotes VSMC proliferation. In VSMC, G protein-coupled receptor kinase 2 (GRK2) is known to regulate numerous vasoconstrictor GPCRs and their downstream signalling pathways. As GRK2 is implicated in controlling various aspects of cellular growth, we examined whether GRK2 could affect VSMC proliferation. Using two indices of cell growth, we show that PI3K inhibition and depletion of GRK2 expression produced a similar ablation of pro-proliferative vasoconstrictor-stimulated VSMC growth. Furthermore, GRK2-knockdown ablated the sustained phase of endothelin-1 and angiotensin-II-stimulated Akt phosphorylation, whilst the peak (5 min) phase was unaffected. Conversely, the GRK2 inhibitor compound 101 did not affect vasoconstrictor-driven Akt phosphorylation. Vasoconstrictor-stimulated phosphorylation of the Akt substrates GSK3α and GSK3β was ablated following RNAi-mediated GRK2 depletion, or after PI3K inhibition. Moreover, GRK2 knockdown prevented endothelin-1 and angiotensin-II from increasing cyclin D1 expression. These data suggest GRK2 expression is essential to facilitate vasoconstrictor-driven VSMC proliferation through its ability to promote efficient prolonged PI3K-Akt signalling, and thus relieve the GSK3-mediated block on cell cycling. Considering VSMC GRK2 expression increases early in the development of hypertension, this highlights the potential for GRK2 to promote VSMC growth and exacerbate hypertensive pathophysiological vascular remodelling.
Collapse
Affiliation(s)
- Asma S A Alonazi
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7RH, United Kingdom; Department of Pharmacology and Toxicology, Pharmacy College, King Saud University, Riyadh, Saudi Arabia
| | - Jonathon M Willets
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7RH, United Kingdom.
| |
Collapse
|
5
|
Rainbow RD, Brennan S, Jackson R, Beech AJ, Bengreed A, Waldschmidt HV, Tesmer JJG, Challiss RAJ, Willets JM. Small-Molecule G Protein-Coupled Receptor Kinase Inhibitors Attenuate G Protein-Coupled Receptor Kinase 2-Mediated Desensitization of Vasoconstrictor-Induced Arterial Contractions. Mol Pharmacol 2018; 94:1079-1091. [PMID: 29980659 PMCID: PMC6086822 DOI: 10.1124/mol.118.112524] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/29/2018] [Indexed: 01/01/2023] Open
Abstract
Vasoconstrictor-driven G protein-coupled receptor (GPCR)/phospholipase C (PLC) signaling increases intracellular Ca2+ concentration to mediate arterial contraction. To counteract vasoconstrictor-induced contraction, GPCR/PLC signaling can be desensitized by G protein-coupled receptor kinases (GRKs), with GRK2 playing a predominant role in isolated arterial smooth muscle cells. In this study, we use an array of GRK2 inhibitors to assess their effects on the desensitization of UTP and angiotensin II (AngII)-mediated arterial contractions. The effects of GRK2 inhibitors on the desensitization of UTP- or AngII-stimulated mesenteric third-order arterial contractions, and PLC activity in isolated mesenteric smooth muscle cells (MSMC), were determined using wire myography and Ca2+ imaging, respectively. Applying a stimulation protocol to cause receptor desensitization resulted in reductions in UTP- and AngII-stimulated arterial contractions. Preincubation with the GRK2 inhibitor paroxetine almost completely prevented desensitization of UTP- and attenuated desensitization of AngII-stimulated arterial contractions. In contrast, fluoxetine was ineffective. Preincubation with alternative GRK2 inhibitors (Takeda compound 101 or CCG224063) also attenuated the desensitization of UTP-mediated arterial contractile responses. In isolated MSMC, paroxetine, Takeda compound 101, and CCG224063 also attenuated the desensitization of UTP- and AngII-stimulated increases in Ca2+, whereas fluoxetine did not. In human uterine smooth muscle cells, paroxetine reversed GRK2-mediated histamine H1 receptor desensitization, but not GRK6-mediated oxytocin receptor desensitization. Utilizing various small-molecule GRK2 inhibitors, we confirm that GRK2 plays a central role in regulating vasoconstrictor-mediated arterial tone, highlighting a potentially novel strategy for blood pressure regulation through targeting GRK2 function.
Collapse
Affiliation(s)
- Richard D Rainbow
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom (A.B., R.A.J.C., J.M.W.); Department of Cardiovascular Sciences, University of Leicester, Clinical Sciences Wing, Glenfield General Hospital, Leicester, United Kingdom (R.D.R., S.B., R.J., A.J.B.); Life Sciences Institute and Departments of Pharmacology, Biological Sciences, and Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan (H.V.W., J.J.G.T.); and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - Sean Brennan
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom (A.B., R.A.J.C., J.M.W.); Department of Cardiovascular Sciences, University of Leicester, Clinical Sciences Wing, Glenfield General Hospital, Leicester, United Kingdom (R.D.R., S.B., R.J., A.J.B.); Life Sciences Institute and Departments of Pharmacology, Biological Sciences, and Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan (H.V.W., J.J.G.T.); and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - Robert Jackson
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom (A.B., R.A.J.C., J.M.W.); Department of Cardiovascular Sciences, University of Leicester, Clinical Sciences Wing, Glenfield General Hospital, Leicester, United Kingdom (R.D.R., S.B., R.J., A.J.B.); Life Sciences Institute and Departments of Pharmacology, Biological Sciences, and Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan (H.V.W., J.J.G.T.); and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - Alison J Beech
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom (A.B., R.A.J.C., J.M.W.); Department of Cardiovascular Sciences, University of Leicester, Clinical Sciences Wing, Glenfield General Hospital, Leicester, United Kingdom (R.D.R., S.B., R.J., A.J.B.); Life Sciences Institute and Departments of Pharmacology, Biological Sciences, and Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan (H.V.W., J.J.G.T.); and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - Amal Bengreed
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom (A.B., R.A.J.C., J.M.W.); Department of Cardiovascular Sciences, University of Leicester, Clinical Sciences Wing, Glenfield General Hospital, Leicester, United Kingdom (R.D.R., S.B., R.J., A.J.B.); Life Sciences Institute and Departments of Pharmacology, Biological Sciences, and Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan (H.V.W., J.J.G.T.); and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - Helen V Waldschmidt
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom (A.B., R.A.J.C., J.M.W.); Department of Cardiovascular Sciences, University of Leicester, Clinical Sciences Wing, Glenfield General Hospital, Leicester, United Kingdom (R.D.R., S.B., R.J., A.J.B.); Life Sciences Institute and Departments of Pharmacology, Biological Sciences, and Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan (H.V.W., J.J.G.T.); and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - John J G Tesmer
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom (A.B., R.A.J.C., J.M.W.); Department of Cardiovascular Sciences, University of Leicester, Clinical Sciences Wing, Glenfield General Hospital, Leicester, United Kingdom (R.D.R., S.B., R.J., A.J.B.); Life Sciences Institute and Departments of Pharmacology, Biological Sciences, and Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan (H.V.W., J.J.G.T.); and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - R A John Challiss
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom (A.B., R.A.J.C., J.M.W.); Department of Cardiovascular Sciences, University of Leicester, Clinical Sciences Wing, Glenfield General Hospital, Leicester, United Kingdom (R.D.R., S.B., R.J., A.J.B.); Life Sciences Institute and Departments of Pharmacology, Biological Sciences, and Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan (H.V.W., J.J.G.T.); and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - Jonathon M Willets
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom (A.B., R.A.J.C., J.M.W.); Department of Cardiovascular Sciences, University of Leicester, Clinical Sciences Wing, Glenfield General Hospital, Leicester, United Kingdom (R.D.R., S.B., R.J., A.J.B.); Life Sciences Institute and Departments of Pharmacology, Biological Sciences, and Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan (H.V.W., J.J.G.T.); and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| |
Collapse
|
7
|
Reciprocal regulation of β 2-adrenoceptor-activated cAMP response-element binding protein signalling by arrestin2 and arrestin3. Cell Signal 2017; 38:182-191. [PMID: 28733084 DOI: 10.1016/j.cellsig.2017.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 07/06/2017] [Accepted: 07/16/2017] [Indexed: 11/24/2022]
Abstract
Activation of Gs coupled receptors (e.g. β2-adrenoreceptor (β2AR)) expressed within the uterine muscle layer (myometrium), promotes intracellular cAMP generation, inducing muscle relaxation through short-term inhibition of contractile proteins, and longer-term modulation of cellular phenotype to promote quiescence. In the myometrium cAMP-driven modulation of cell phenotype is facilitated by CREB activity, however despite the importance of CREB signalling in the promotion of myometrial quiescence during pregnancy, little is currently known regarding the molecular mechanisms involved. Thus, we have characterised β-adrenoceptor-stimulated CREB signalling in the immortalised ULTR human myometrial cell line. The non-selective β-adrenoceptor agonist isoprenaline induced time- and concentration-dependent CREB phosphorylation, which was abolished by the β2AR selective antagonist ICI118,551. β2AR-stimulated CREB phosphorylation was mediated through a short-term PKA-dependent phase, and longer-term Src/p38 MAPK-dependent/PKA-independent phase. Since in model cells, arrestin2 can facilitate β2AR-mediated Src/p38 recruitment, we examined whether CREB signalling was activated through a similar process in myometrial cells. Depletion of arrestin2 attenuated p38 phosphorylation, whilst arrestin3 depletion enhanced and prolonged isoprenaline-stimulated p38 signals, which was reversed following inhibition of Src. Knockdown of arrestin2 led to enhanced short-term (up to 10min), and attenuated longer-term (>10min) isoprenaline-stimulated CREB phosphorylation. Contrastingly, removal of arrestin3 enhanced and prolonged isoprenaline-stimulated CREB phosphorylation, whilst depletion of both arrestins abolished CREB signals at time points >5min. In summary, we have delineated the molecular mechanisms coupling β2AR activity to CREB signalling in ULTR myometrial cells, revealing a biphasic activation process encompassing short-term PKA-dependent, and prolonged Src/arrestin2/p38-dependent components. Indeed, our data highlight a novel arrestin-mediated modulation of CREB signalling, suggesting a reciprocal relationship between arrestin2 and arrestin3, wherein recruitment of arrestin3 restricts the ability of β2AR to activate prolonged CREB phosphorylation by precluding recruitment of an arrestin2/Src/p38 complex.
Collapse
|