1
|
Engin AB, Engin A. Next-Cell Hypothesis: Mechanism of Obesity-Associated Carcinogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:727-766. [PMID: 39287871 DOI: 10.1007/978-3-031-63657-8_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Higher body fat content is related to a higher risk of mortality, and obesity-related cancer represents approximately 40% of all cancer patients diagnosed each year. Furthermore, epigenetic mechanisms are involved in cellular metabolic memory and can determine one's predisposition to being overweight. Low-grade chronic inflammation, a well-established characteristic of obesity, is a central component of tumor development and progression. Cancer-associated adipocytes (CAA), which enhance inflammation- and metastasis-related gene sets within the cancer microenvironment, have pro-tumoral effects. Adipose tissue is a major source of the exosomal micro ribonucleic acids (miRNAs), which modulate pathways involved in the development of obesity and obesity-related comorbidities. Owing to their composition of cargo, exosomes can activate receptors at the target cell or transfer molecules to the target cells and thereby change the phenotype of these cells. Exosomes that are released into the extracellular environment are internalized with their cargo by neighboring cells. The tumor-secreted exosomes promote organ-specific metastasis of tumor cells that normally lack the capacity to metastasize to a specific organ. Therefore, the communication between neighboring cells via exosomes is defined as the "next-cell hypothesis." The reciprocal interaction between the adipocyte and tumor cell is realized through the adipocyte-derived exosomal miRNAs and tumor cell-derived oncogenic miRNAs. The cargo molecules of adipocyte-derived exosomes are important messengers for intercellular communication involved in metabolic responses and have very specific signatures that direct the metabolic activity of target cells. RNA-induced silencing regulates gene expression through various mechanisms. Destabilization of DICER enzyme, which catalyzes the conversion of primary miRNA (pri-miRNA) to precursor miRNA (pre-miRNA), is an important checkpoint in cancer development and progression. Interestingly, adipose tissue in obesity and tumors share similar pathogenic features, and the local hypoxia progress in both. While hypoxia in obesity leads to the adipocyte dysfunction and metabolic abnormalities, in obesity-related cancer cases, it is associated with worsened prognosis, increased metastatic potential, and resistance to chemotherapy. Notch-interleukin-1 (IL-1)-Leptin crosstalk outcome is referred to as "NILCO effect." In this chapter, obesity-related cancer development is discussed in the context of "next-cell hypothesis," miRNA biogenesis, and "NILCO effect."
Collapse
Affiliation(s)
- Ayse Basak Engin
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Hipodrom, Ankara, Turkey.
| | - Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey
| |
Collapse
|
2
|
Abstract
Exosomes are nanoscale extracellular vesicles that can transport cargos of proteins, lipids, DNA, various RNA species and microRNAs (miRNAs). Exosomes can enter cells and deliver their contents to recipient cell. Owing to their cargo exosomes can transfer different molecules to the target cells and change the phenotype of these cells. The fate of the contents of an exosome depends on its target destination. Various mechanisms for exosome uptake by target cells have been proposed, but the mechanisms responsible for exosomes internalization into cells are still debated. Exosomes exposed cells produce labeled protein kinases, which are expressed by other cells. This means that these kinases are internalized by exosomes, and transported into the cytoplasm of recipient cells. Many studies have confirmed that exosomes are not only secreted by living cells, but also internalized or accumulated by the other cells. The "next cell hypothesis" supports the notion that exosomes constitute communication vehicles between neighboring cells. By this mechanism, exosomes participate in the development of diabetes and its associated complications, critically contribute to the spreading of neuronal damage in Alzheimer's disease, and non-proteolysed form of Fas ligand (mFasL)-bearing exosomes trigger the apoptosis of T lymphocytes. Furthermore, exosomes derived from human B lymphocytes induce antigen-specific major histocompatibility complex (MHC) class II-restricted T cell responses. Interestingly, exosomes secreted by cancer cells have been demonstrated to express tumor antigens, as well as immune suppressive molecules. This process is defined as "exosome-immune suppression" concept. The interplay via the exchange of exosomes between cancer cells and between cancer cells and the tumor stroma promote the transfer of oncogenes and onco-miRNAs from one cell to other. Circulating exosomes that are released from hypertrophic adipocytes are effective in obesity-related complications. On the other hand, the "inflammasome-induced" exosomes can activate inflammatory responses in recipient cells. In this chapter protein kinases-related checkpoints are emphasized considering the regulation of exosome biogenesis, secretory traffic, and their impacts on cell death, tumor growth, immune system, and obesity.
Collapse
Affiliation(s)
- Atilla Engin
- Department of General Surgery, Faculty of Medicine, Gazi University, Ankara, Turkey.
| |
Collapse
|
3
|
Jiao F, Gao F, Liu Y, Fan Z, Xiang X, Xia C, Lv Y, Xie Y, Bai H, Zhang W, Qin W, Qian X. A facile "one-material" strategy for tandem enrichment of small extracellular vesicles phosphoproteome. Talanta 2021; 223:121776. [PMID: 33298282 DOI: 10.1016/j.talanta.2020.121776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 01/08/2023]
Abstract
Small extracellular vesicles (SEVs), are cell-derived, membrane-enclosed nanometer-sized vesicles that play vital roles in many biological processes. Recent years, more and more evidences proved that small EVs have close relationship with many diseases such as cancers and Alzheimer's disease. The use of phosphoproteins in SEVs as potential biomarkers is a promising new choice for early diagnosis and prognosis of cancer. However, current techniques for SEVs isolation still facing many challenges, such as highly instrument dependent, time consuming and insufficient purity. Furthermore, complex enrichment procedures and low microgram amounts of proteins available from clinical sources largely limit the throughput and the coveage depth of SEVs phosphoproteome mapping. Here, we synthesized Ti4+-modified magnetic graphene-oxide composites (GFST) and developed a "one-material" strategy for facile and efficient phosphoproteome enrichment and identification in SEVs from human serum. By taking advantage of chelation and electrostatic interactions between metal ions and phosphate groups, GFST shows excellent performance in both SEVs isolation and phosphopeptide enrichment. Close to 85% recovery is achieved within a few minutes by simple incubation with GFST and magnetic separation. Proteome profiling of the isolated serum SEVs without phosphopeptide enrichment results in 515 proteins, which is approximately one-fold more than those otained by ultracentrifugation or coprecipitation kits. Further application of GFST in one-material-based enrichment led to identification of 859 phosphosites in 530 phosphoproteins. Kinase-substrate correlation analysis reveals enriched substrates of CAMK in serum SEVs phosphoproteome. Therefore, we expect that the low instrument dependency and the limited sample requirement of this new strategy may facilitate clinical investigations in SEV-based transportation of abnormal kinases and substrates for drug target discovery and cancer monitoring.
Collapse
Affiliation(s)
- Fenglong Jiao
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Fangyuan Gao
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Yuanyuan Liu
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Zhiya Fan
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Xiaochao Xiang
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Chaoshuang Xia
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Yayao Lv
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Yuping Xie
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Haihong Bai
- Phase I Clinical Trial Center, Capital Medical University Affiliated Beijing Shijitan Hospital University, Beijing, 100038, China
| | - Wanjun Zhang
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Weijie Qin
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China; College of Basic Medicine, Anhui Medical University, Hefei, 230032, China.
| | - Xiaohong Qian
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China
| |
Collapse
|
4
|
Rosa-Fernandes L, Rocha VB, Carregari VC, Urbani A, Palmisano G. A Perspective on Extracellular Vesicles Proteomics. Front Chem 2017; 5:102. [PMID: 29209607 PMCID: PMC5702361 DOI: 10.3389/fchem.2017.00102] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/03/2017] [Indexed: 12/15/2022] Open
Abstract
Increasing attention has been given to secreted extracellular vesicles (EVs) in the past decades, especially in the portrayal of their molecular cargo and role as messengers in both homeostasis and pathophysiological conditions. This review presents the state-of-the-art proteomic technologies to identify and quantify EVs proteins along with their PTMs, interacting partners and structural details. The rapid growth of mass spectrometry-based analytical strategies for protein sequencing, PTMs and structural characterization has improved the level of molecular details that can be achieved from limited amount of EVs isolated from different biological sources. Here we will provide a perspective view on the achievements and challenges on EVs proteome characterization using mass spectrometry. A detailed bioinformatics approach will help us to picture the molecular fingerprint of EVs and understand better their pathophysiological function.
Collapse
Affiliation(s)
- Livia Rosa-Fernandes
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Victória Bombarda Rocha
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Andrea Urbani
- Proteomic and Metabonomic Laboratory, Fondazione Santa Lucia, Rome, Italy.,Institute of Biochemistry and Biochemical Clinic, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giuseppe Palmisano
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Proteomic and Metabonomic Laboratory, Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
5
|
Zhang J, Karimy JK, Delpire E, Kahle KT. Pharmacological targeting of SPAK kinase in disorders of impaired epithelial transport. Expert Opin Ther Targets 2017; 21:795-804. [PMID: 28679296 PMCID: PMC6081737 DOI: 10.1080/14728222.2017.1351949] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The mammalian SPS1-related proline/alanine-rich serine-threonine kinase SPAK (STK39) modulates ion transport across and between epithelial cells in response to environmental stimuli such osmotic stress and inflammation. Research over the last decade has established a central role for SPAK in the regulation of ion and water transport in the distal nephron, colonic crypts, and pancreatic ducts, and has implicated deregulated SPAK signaling in NaCl-sensitive hypertension, ulcerative colitis and Crohn's disease, and cystic fibrosis. Areas covered: We review recent advances in our understanding of the role of SPAK kinase in the regulation of epithelial transport. We highlight how SPAK signaling - including its upstream Cl- sensitive activators, the WNK kinases, and its downstream ion transport targets, the cation- Cl- cotransporters contribute to human disease. We discuss prospects for the pharmacotherapeutic targeting of SPAK kinase in specific human disorders that feature impaired epithelial homeostasis. Expert opinion: The development of novel drugs that antagonize the SPAK-WNK interaction, inhibit SPAK kinase activity, or disrupt SPAK kinase activation by interfering with its binding to MO25α/β could be useful adjuncts in essential hypertension, inflammatory colitis, and cystic fibrosis.
Collapse
Affiliation(s)
- Jinwei Zhang
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratory, Exeter, EX4 4PS, UK
| | - Jason K. Karimy
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06510, USA
| | - Eric Delpire
- Department of Anesthesiolgy, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kristopher T. Kahle
- Departments of Neurosurgery, Pediatrics, and Cellular & Molecular Physiology; and Centers for Mendelian Genomics, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
6
|
Dozio V, Sanchez JC. Characterisation of extracellular vesicle-subsets derived from brain endothelial cells and analysis of their protein cargo modulation after TNF exposure. J Extracell Vesicles 2017; 6:1302705. [PMID: 28473883 PMCID: PMC5405560 DOI: 10.1080/20013078.2017.1302705] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 02/24/2017] [Indexed: 02/07/2023] Open
Abstract
Little is known about the composition and functional differences between extracellular vesicle (EV) subsets, such as microvesicles (MVs) and exosomes (EXOs), nor to what extent their cargo reflects the phenotypic state of the cell of origin. Brain endothelial cells are the constitutive part of the blood–brain barrier (BBB), a selective barrier that maintains brain homeostasis. BBB impairment is associated with several neuroinflammatory diseases with the pro-inflammatory cytokine tumour necrosis factor (TNF) often playing a key role. In the present study, shotgun proteomics and parallel reaction monitoring (PRM)-based targeted mass spectrometry were used to characterise brain endothelial cell-released EVs, and to study how TNF exposure modulated EV protein cargoes. MVs were found to be enriched in mitochondrial and cytoskeletal proteins, whereas EXOs were enriched in adhesion, histone and ribosomal proteins. After stimulation with TNF, several proteins involved in TNF and NF-κB signalling pathways, that were found to be differentially expressed in cells, were also differentially expressed in both MVs and EXOs. Thus, our results revealed some novel proteins as potentially useful candidates for discriminating between MVs and EXOs, together with additional evidence that cells “package” proteins in EVs systematically and according to their phenotypic state.
Collapse
Affiliation(s)
- Vito Dozio
- Department of Human Protein Sciences, University of Geneva, Geneva, Switzerland.,Swiss Centre for Applied Human Toxicology, Geneva, Switzerland
| | - Jean-Charles Sanchez
- Department of Human Protein Sciences, University of Geneva, Geneva, Switzerland.,Swiss Centre for Applied Human Toxicology, Geneva, Switzerland
| |
Collapse
|
7
|
Delpire E. The mysterious role of the neuronal anion exchanger-3. J Physiol 2017; 595:601-602. [DOI: 10.1113/jp273033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Eric Delpire
- Vanderbilt University School of Medicine; Nashville TN 37232 USA
| |
Collapse
|
8
|
Salameh AI, Hübner CA, Boron WF. Role of Cl - -HCO 3- exchanger AE3 in intracellular pH homeostasis in cultured murine hippocampal neurons, and in crosstalk to adjacent astrocytes. J Physiol 2016; 595:93-124. [PMID: 27353306 DOI: 10.1113/jp272470] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 06/20/2016] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS A polymorphism of human AE3 is associated with idiopathic generalized epilepsy. Knockout of AE3 in mice lowers the threshold for triggering epileptic seizures. The explanations for these effects are elusive. Comparisons of cells from wild-type vs. AE3-/- mice show that AE3 (present in hippocampal neurons, not astrocytes; mediates HCO3- efflux) enhances intracellular pH (pHi ) recovery (decrease) from alkali loads in neurons and, surprisingly, adjacent astrocytes. During metabolic acidosis (MAc), AE3 speeds initial acidification, but limits the extent of pHi decrease in neurons and astrocytes. AE3 speeds re-alkalization after removal of MAc in neurons and astrocytes, and speeds neuronal pHi recovery from an ammonium prepulse-induced acid load. We propose that neuronal AE3 indirectly increases acid extrusion in (a) neurons via Cl- loading, and (b) astrocytes by somehow enhancing NBCe1 (major acid extruder). The latter would enhance depolarization-induced alkalinization of astrocytes, and extracellular acidification, and thereby reduce susceptibility to epileptic seizures. ABSTRACT The anion exchanger AE3, expressed in hippocampal (HC) neurons but not astrocytes, contributes to intracellular pH (pHi ) regulation by facilitating the exchange of extracellular Cl- for intracellular HCO3- . The human AE3 polymorphism A867D is associated with idiopathic generalized epilepsy. Moreover, AE3 knockout (AE3-/- ) mice are more susceptible to epileptic seizure. The mechanism of these effects has been unclear because the starting pHi in AE3-/- and wild-type neurons is indistinguishable. The purpose of the present study was to use AE3-/- mice to investigate the role of AE3 in pHi homeostasis in HC neurons, co-cultured with astrocytes. We find that the presence of AE3 increases the acidification rate constant during pHi recovery from intracellular alkaline loads imposed by reducing [CO2 ]. The presence of AE3 also speeds intracellular acidification during the early phase of metabolic acidosis (MAc), not just in neurons but, surprisingly, in adjacent astrocytes. Additionally, AE3 contributes to braking the decrease in pHi later during MAc in both neurons and astrocytes. Paradoxically, AE3 enhances intracellular re-alkalization after MAc removal in neurons and astrocytes, and pHi recovery from an ammonium prepulse-induced acid load in neurons. The effects of AE3 knockout on astrocytic pHi homeostasis in MAc-related assays require the presence of neurons, and are consistent with the hypothesis that the AE3 knockout reduces functional expression of astrocytic NBCe1. These findings suggest a new type of neuron-astrocyte communication, based on the expression of AE3 in neurons, which could explain how AE3 reduces seizure susceptibility.
Collapse
Affiliation(s)
- Ahlam I Salameh
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | | | - Walter F Boron
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| |
Collapse
|