1
|
Dogru S, Yasar E, Yesilkaya A. Effects of uric acid on oxidative stress in vascular smooth muscle cells. Biomed Rep 2024; 21:171. [PMID: 39346579 PMCID: PMC11428086 DOI: 10.3892/br.2024.1859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/15/2024] [Indexed: 10/01/2024] Open
Abstract
Hyperuricemia during hypertension is associated with aberrant vascular functions and increased oxidative stress, which affects endothelial dysfunction. Nevertheless, the molecular mechanisms underlying the effects of uric acid on vascular smooth muscle cells (VSMCs) through oxidative stress remain unclear. The aim of the present study was to investigate the dose- and time-dependent effects of uric acid on oxidative stress and p53 protein expression in VSMCs. VSMCs were incubated with various concentrations of uric acid (0-50 mg/dl) for different time periods (1-24 h). Thiobarbituric acid reactive substances (TBARs), protein carbonylation and nitric oxide (NO) levels were determined using appropriate assay kits. Superoxide anion release was detected using the Görlach method. Western blotting was performed to determine the protein expression levels of p53. The findings demonstrated that the application of uric acid led to an increase in protein carbonylation and superoxide anion levels while causing a decrease in NO levels. Conversely, no significant effect was observed on TBARS levels. Additionally, it was observed that high concentrations of uric acid suppressed p53 expression at 6, 12 and 24 h. The present study provided evidence that the influence of uric acid on oxidative stress was more closely associated with time than dose; however, not all effects observed were strictly time-dependent.
Collapse
Affiliation(s)
- Segun Dogru
- Department of Medical Biochemistry, Akdeniz University Medical School, 07058 Antalya, Turkey
| | - Ekrem Yasar
- Department of Biophysics, Akdeniz University Medical School, 07058 Antalya, Turkey
- Department of Biophysics, Faculty of Medicine, Erzincan Binali Yildirim University, 24100 Erzincan, Turkey
| | - Akin Yesilkaya
- Department of Medical Biochemistry, Akdeniz University Medical School, 07058 Antalya, Turkey
| |
Collapse
|
2
|
Costa TJ, Barros PR, Arce C, Santos JD, da Silva-Neto J, Egea G, Dantas AP, Tostes RC, Jiménez-Altayó F. The homeostatic role of hydrogen peroxide, superoxide anion and nitric oxide in the vasculature. Free Radic Biol Med 2021; 162:615-635. [PMID: 33248264 DOI: 10.1016/j.freeradbiomed.2020.11.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/08/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023]
Abstract
Reactive oxygen and nitrogen species are produced in a wide range of physiological reactions that, at low concentrations, play essential roles in living organisms. There is a delicate equilibrium between formation and degradation of these mediators in a healthy vascular system, which contributes to maintaining these species under non-pathological levels to preserve normal vascular functions. Antioxidants scavenge reactive oxygen and nitrogen species to prevent or reduce damage caused by excessive oxidation. However, an excessive reductive environment induced by exogenous antioxidants may disrupt redox balance and lead to vascular pathology. This review summarizes the main aspects of free radical biochemistry (formation, sources and elimination) and the crucial actions of some of the most biologically relevant and well-characterized reactive oxygen and nitrogen species (hydrogen peroxide, superoxide anion and nitric oxide) in the physiological regulation of vascular function, structure and angiogenesis. Furthermore, current preclinical and clinical evidence is discussed on how excessive removal of these crucial responses by exogenous antioxidants (vitamins and related compounds, polyphenols) may perturb vascular homeostasis. The aim of this review is to provide information of the crucial physiological roles of oxidation in the endothelium, vascular smooth muscle cells and perivascular adipose tissue for developing safer and more effective vascular interventions with antioxidants.
Collapse
Affiliation(s)
- Tiago J Costa
- Pharmacology Department, Ribeirao Preto Medical School, University of São Paulo, Brazil.
| | | | - Cristina Arce
- Department of Biomedical Sciences, University of Barcelona School of Medicine and Health Sciences, Barcelona, Spain; Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS)-University of Barcelona, Barcelona, Spain; Institut de Nanociencies i Nanotecnologia (IN2UB), University of Barcelona, Barcelona, Spain
| | | | - Júlio da Silva-Neto
- Pharmacology Department, Ribeirao Preto Medical School, University of São Paulo, Brazil
| | - Gustavo Egea
- Department of Biomedical Sciences, University of Barcelona School of Medicine and Health Sciences, Barcelona, Spain; Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS)-University of Barcelona, Barcelona, Spain; Institut de Nanociencies i Nanotecnologia (IN2UB), University of Barcelona, Barcelona, Spain
| | - Ana Paula Dantas
- Institut Clínic del Tòrax, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Rita C Tostes
- Pharmacology Department, Ribeirao Preto Medical School, University of São Paulo, Brazil
| | - Francesc Jiménez-Altayó
- Department of Pharmacology, Therapeutics and Toxicology, Neuroscience Institute, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
3
|
Xu J, Benabou K, Cui X, Madia M, Tzeng E, Billiar T, Watkins S, Sachdev U. TLR4 Deters Perfusion Recovery and Upregulates Toll-like Receptor 2 (TLR2) in Ischemic Skeletal Muscle and Endothelial Cells. Mol Med 2015; 21:605-15. [PMID: 26181630 DOI: 10.2119/molmed.2014.00260] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 07/09/2015] [Indexed: 01/14/2023] Open
Abstract
Toll-like receptors (TLRs) play an important role in regulating muscle regeneration and angiogenesis in response to ischemia. TLR2 knockout mice exhibit pronounced skeletal muscle necrosis and abnormal vessel architecture after femoral artery ligation, suggesting that TLR2 signaling is protective during ischemia. TLR4, an important receptor in inflammatory signaling, has been shown to regulate TLR2 expression in other systems. We hypothesize that a similar relationship between TLR4 and TLR2 may exist in hindlimb ischemia in which TLR4 upregulates TLR2, a mediator of angiogenesis and perfusion recovery. We examined the expression of TLR2 in unstimulated and in TLR-agonist treated endothelial cells (ECs). TLR2 expression (low in control ECs) was upregulated by lipopolysaccharide, the danger signal high mobility group box-1, and hypoxia in a TLR4-dependent manner. Endothelial tube formation on Matrigel as well as EC permeability was assessed as in vitro measures of angiogenesis. Time-lapse imaging demonstrated that ECs lacking TLR4 formed more tubes, whereas TLR2 knockdown ECs exhibited attenuated tube formation. TLR2 also mediated EC permeability, an initial step during angiogenesis, in response to high-mobility group box-1 (HMGB1) that is released by cells during hypoxic injury. In vivo, ischemia-induced upregulation of TLR2 required intact TLR4 signaling that mediated systemic inflammation, as measured by local and systemic IL-6 levels. Similar to our in vitro findings, vascular density and limb perfusion were both enhanced in the absence of TLR4 signaling, but not if TLR2 was deleted. These findings indicate that TLR2, in the absence of TLR4, improves angiogenesis and perfusion recovery in response to ischemia.
Collapse
Affiliation(s)
- Jia Xu
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Kelly Benabou
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Xiangdong Cui
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America.,Department of Veterans Affairs Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Marissa Madia
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Edith Tzeng
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America.,Department of Veterans Affairs Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Timothy Billiar
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Simon Watkins
- Centers for Biologic Imaging, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Ulka Sachdev
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
4
|
Tsihlis ND, Kapadia MR, Vavra AK, Flannery WD, Oustwani CS, Jiang Q, Kibbe MR. Nitric oxide may inhibit neointimal hyperplasia by decreasing isopeptidase T levels and activity in the vasculature. J Vasc Surg 2013; 58:179-86. [PMID: 23375434 DOI: 10.1016/j.jvs.2012.10.066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 09/27/2012] [Accepted: 10/01/2012] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Isopeptidase T is a cysteine protease deubiquitinating enzyme that hydrolyzes unanchored polyubiquitin chains to free monoubiquitin. Nitric oxide (NO) decreases 26S proteasome activity in vascular smooth muscle cells (VSMCs) and inhibits neointimal hyperplasia in animal models. As NO can cause S-nitrosylation of active-site cysteines, we hypothesize that NO inhibits isopeptidase T activity through S-nitrosylation. Because accumulation of polyubiquitin chains inhibits the 26S proteasome, this may be one mechanism through which NO prevents neointimal hyperplasia. METHODS To investigate our hypothesis, we examined the effect of NO on isopeptidase T activity, levels, and localization in VSMCs in vitro and in a rat carotid balloon injury model in vivo. RESULTS NO inhibited recombinant isopeptidase T activity by 82.8% (t = 60 minutes, P < .001 vs control). Dithiothreitol and glutathione (5 mmol/L) both significantly reversed NO-mediated inhibition of isopeptidase T activity (P < .001). NO caused a time-dependent increase in S-nitrosylated isopeptidase T levels in VSMCs, which was reversible with dithiothreitol, indicating that isopeptidase T undergoes reversible S-nitrosylation on exposure to NO in vitro. Although NO did not affect isopeptidase T levels or subcellular localization in VSMCs in vitro, it decreased isopeptidase T levels and increased ubiquitinated proteins after balloon injury in vivo. CONCLUSIONS Local administration of NO may prevent neointimal hyperplasia by inhibiting isopeptidase T levels and activity in the vasculature, thereby inhibiting the 26S proteasome in VSMCs. These data provide additional mechanistic insights into the ability of NO to prevent neointimal hyperplasia after vascular interventions.
Collapse
Affiliation(s)
- Nick D Tsihlis
- Division of Vascular Surgery, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Kim JJ, Lee MY. p53 is not necessary for nuclear translocation of GAPDH during NO-induced apoptosis. BMB Rep 2012; 44:782-6. [PMID: 22189680 DOI: 10.5483/bmbrep.2011.44.12.782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Aberrant GAPDH expression following S-nitrosoglutathione (GSNO) treatment was compared in HepG2 cells, which express functional p53, and Hep3B cells, which lack functional p53. The results of Western blotting and fluorescent immunocytochemistry revealed that nuclear translocation and accumulation of GAPDH occur in both HepG2 and Hep3B cells. This finding suggests that p53 may not be necessary for the GSNO-induced translocation of GAPDH to the nucleus during apoptotic cell death in hepatoma cells.
Collapse
Affiliation(s)
- Jum-Ji Kim
- Department of Medical Biotechnology, Soonchunhyang University, Asan 336-600, Korea
| | | |
Collapse
|
6
|
Popowich DA, Vavra AK, Walsh CP, Bhikhapurwala HA, Rossi NB, Jiang Q, Aalami OO, Kibbe MR. Regulation of reactive oxygen species by p53: implications for nitric oxide-mediated apoptosis. Am J Physiol Heart Circ Physiol 2010; 298:H2192-200. [PMID: 20382856 PMCID: PMC2886652 DOI: 10.1152/ajpheart.00535.2009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 03/24/2010] [Indexed: 02/04/2023]
Abstract
Nitric oxide (NO) induces vascular smooth muscle cell (VSMC) apoptosis in part through activation of p53. Traditionally, p53 has been thought of as the gatekeeper, determining if a cell should undergo arrest and repair or apoptosis following exposure to DNA-damaging agents, depending on the severity of the damage. However, our laboratory previously demonstrated that NO induces apoptosis to a much greater extent in p53(-/-) compared with p53(+/+) VSMC. Increased reactive oxygen species (ROS) within VSMC has been shown to induce VSMC apoptosis, and recently it was found that the absence of, or lack of, functional p53 leads to increased ROS and oxidative stress within different cell types. This study investigated the differences in intracellular ROS levels between p53(-/-) and p53(+/+) VSMC and examined if these differences were responsible for the increased susceptibility to NO-induced apoptosis observed in p53(-/-) VSMC. We found that p53 actually protects VSMC from NO-induced apoptosis by increasing antioxidant protein expression [i.e., peroxiredoxin-3 (PRx-3)], thereby reducing ROS levels and cellular oxidative stress. We also observed that the NO-induced apoptosis in p53(-/-) VSMC was largely abrogated by pretreatment with catalase. Furthermore, when the antioxidant protein PRx-3 and its specific electron acceptor thioredoxin-2 were silenced within p53(+/+) VSMC with small-interfering RNA, not only did these cells exhibit greater ROS production, but they also exhibited increased NO-induced apoptosis similar to that observed in p53(-/-) VSMC. These findings suggest that ROS mediate NO-induced VSMC apoptosis and that p53 protects VSMC from NO-induced apoptosis by decreasing intracellular ROS. This research demonstrates that p53 has antioxidant functions in stressed cells and also suggests that p53 has antiapoptotic properties.
Collapse
Affiliation(s)
- Daniel A Popowich
- Division of Vascular Surgery, Northwestern Univ., 676 N. St. Clair, no. 650, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
The Potential Role of Nitric Oxide Synthase in Survival and Regeneration of Magnocellular Neurons of Hypothalamo-Neurohypophyseal System. Neurochem Res 2009; 34:1907-13. [DOI: 10.1007/s11064-009-9965-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 03/25/2009] [Indexed: 12/21/2022]
|
8
|
Ahanchi SS, Varu VN, Tsihlis ND, Martinez J, Pearce CG, Kapadia MR, Jiang Q, Saavedra JE, Keefer LK, Hrabie JA, Kibbe MR. Heightened efficacy of nitric oxide-based therapies in type II diabetes mellitus and metabolic syndrome. Am J Physiol Heart Circ Physiol 2008; 295:H2388-98. [PMID: 18931034 DOI: 10.1152/ajpheart.00185.2008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Type II diabetes mellitus (DM) and metabolic syndrome are associated with accelerated restenosis following vascular interventions due to neointimal hyperplasia. The efficacy of nitric oxide (NO)-based therapies is unknown in these environments. Therefore, the aim of this study is to examine the efficacy of NO in preventing neointimal hyperplasia in animal models of type II DM and metabolic syndrome and examine possible mechanisms for differences in outcomes. Aortic vascular smooth muscle cells (VSMC) were harvested from rodent models of type II DM (Zucker diabetic fatty), metabolic syndrome (obese Zucker), and their genetic control (lean Zucker). Interestingly, NO inhibited proliferation and induced G0/G1 cell cycle arrest to the greatest extent in VSMC from rodent models of metabolic syndrome and type II DM compared with controls. This heightened efficacy was associated with increased expression of cyclin-dependent kinase inhibitor p21, but not p27. Using the rat carotid artery injury model to assess the efficacy of NO in vivo, we found that the NO donor PROLI/NO inhibited neointimal hyperplasia to the greatest extent in type II DM rodents, followed by metabolic syndrome, then controls. Increased neointimal hyperplasia correlated with increased reactive oxygen species (ROS) production, as demonstrated by dihydroethidium staining, and NO inhibited this increase most in metabolic syndrome and DM. In conclusion, NO was surprisingly a more effective inhibitor of neointimal hyperplasia following arterial injury in type II DM and metabolic syndrome vs. control. This heightened efficacy may be secondary to greater inhibition of VSMC proliferation through cell cycle arrest and regulation of ROS expression, in addition to other possible unidentified mechanisms that deserve further exploration.
Collapse
Affiliation(s)
- Sadaf S Ahanchi
- Division of Vascular Surgery, Institute for BioNanotechnology in Medicine, Northwestern University, 201 E. Huron St., Galter 10-105, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Atherosclerosis in the form of peripheral arterial disease results in significant morbidity and mortality. Surgical treatment options for peripheral arterial disease include angioplasty with and without stenting, endarterectomy, and bypass grafting. Unfortunately, all of these procedures injure the vascular endothelium, which impairs its ability to produce nitric oxide (NO) and ultimately leads to neointimal hyperplasia and restenosis. To improve on current patency rates after vascular procedures, investigators are engaged in research to improve the bioavailability of NO at the site of vascular injury in an attempt to reduce the risk of thrombosis and restenosis after successful revascularization. This article reviews some of the previous research that has aimed to improve NO bioavailability after vascular procedures whether through systemic or local delivery, as well as to describe some of the NO-releasing products that are currently undergoing study for use in clinical practice.
Collapse
Affiliation(s)
- Daniel A Popowich
- Division of Vascular Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | |
Collapse
|
10
|
Pérez-Rodríguez R, Fuentes MP, Oliván AM, Martínez-Palacián A, Roncero C, González MP, Oset-Gasque MJ. Mechanisms of nitric oxide-induced apoptosis in bovine chromaffin cells: Role of mitochondria and apoptotic proteins. J Neurosci Res 2007; 85:2224-38. [PMID: 17523167 DOI: 10.1002/jnr.21342] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The aim of this work was to establish the possible involvement of mitochondria in the apoptotic event triggered by nitric oxide (NO) in chromaffin cells. Using bovine chromaffin cells in primary culture and several NO donors (SNP, SNAP, and GSNO) at apoptotic concentrations (50 microM-1 mM), we have shown that NO induces a time-dependent decrease in the mitochondrial transmembrane potential (DeltaPsi(m)), which correlates with the appearance of hypodiploid cells. Disruption in DeltaPsi(m) is followed by cytochrome c release to the cytosol, which in turn precedes caspase 3 activation. In this mechanism participates the Bcl-2 protein family, because NO donors downregulate the expression of anti-apoptotic members of the family such as Bcl-2 and Bcl-XL, and increase the expression of pro-apoptotic members, Bax and Bcl-Xs, inductors of cytochrome c release to cytosol. Different cell signaling pathways seem to regulate Bax induction and Bcl-2 inhibition because decreased Bcl-2 levels are detected later than enhanced Bax expression. The tumour suppressor protein p53 is also upregulated in a very early phase (30 min) of the NO-induced apoptosis and may be responsible for the further induction of Bax expression. Finally, the translocation of NF-kappaB to the nucleus seems to be another early event in NO-induced apoptosis and it may be involved in the regulation of p53 expression. These results support strongly the participation of mitochondrial mechanisms in NO-induced apoptosis in chromaffin cells and suggest that these cells may be good models for the investigation of molecular basis of neurodegeneration and neuroprotection.
Collapse
Affiliation(s)
- Rocío Pérez-Rodríguez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
11
|
McLaughlin LM, Demple B. Nitric Oxide–Induced Apoptosis in Lymphoblastoid and Fibroblast Cells Dependent on the Phosphorylation and Activation of p53. Cancer Res 2005; 65:6097-104. [PMID: 16024610 DOI: 10.1158/0008-5472.can-04-4254] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
When nitric oxide (NO) is produced at micromolar concentrations, as during inflammation, exposure to surrounding cells is potentially cytotoxic. The NO-dependent signaling pathways that initiate cell death are thought to involve the tumor suppressor protein p53, but the degree to which this factor contributes to NO-induced cell death is less clear. Various reports either confirm or negate a role for p53 depending on the cell type and NO donor used. In this study, we have used several pairs of cell lines whose only differences are the presence or absence of p53, and we have treated these cell lines with the same NO donor, spermineNONOate (SPER/NO). Treatment with SPER/NO induced such apoptotic markers as DNA fragmentation, nuclear condensation, poly(ADP-ribose) polymerase cleavage, cytochrome c release, and Annexin V staining. p53 was required for at least 50% of SPER/NO-induced apoptotic cell death in human lymphoblastoid cells and for almost all in primary and E1A-tranformed mouse embryonic fibroblasts, which highlights the possible importance of DNA damage for apoptotic signaling in fibroblasts. In contrast, p53 did not play a significant role in NO-induced necrosis. NO treatment also induced the phosphorylation of p53 at Ser15; pretreatment with phosphoinositide-3 kinase (PI3K) family inhibitors, wortmannin, LY294002, and caffeine, blocked such phosphorylation, but the p38 mitogen-activated protein kinase inhibitor, SB203580, did not. Pretreatment with the PI3K family inhibitors also led to a switch from NO-induced apoptosis to necrosis, which implicates a PI3K-related kinase such as ataxia telangiectasia mutated (ATM) or ATR (ATM and Rad3 related) in p53-dependent NO-induced apoptosis.
Collapse
Affiliation(s)
- Laura M McLaughlin
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts 02115-6021, USA
| | | |
Collapse
|
12
|
Valenti LM, Mathieu J, Chancerelle Y, De Sousa M, Levacher M, Dinh-Xuan AT, Florentin I. High levels of endogenous nitric oxide produced after burn injury in rats arrest activated T lymphocytes in the first G1 phase of the cell cycle and then induce their apoptosis. Exp Cell Res 2005; 306:150-67. [PMID: 15878341 DOI: 10.1016/j.yexcr.2005.02.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Revised: 12/19/2004] [Accepted: 02/01/2005] [Indexed: 11/27/2022]
Abstract
Major physical traumas provoke a systemic inflammatory response and immune dysfunction. In a model of thermal injury in rats, we previously showed that an overproduction of nitric oxide (NO) was responsible for the collapse of lymphoproliferative responses. In the present work, we performed a time-course analysis of cell proliferation and cell death parameters in order to establish the sequence of events triggered by the high NO output in Wistar/Han rat splenocytes activated with Con A, 10 days after burn injury. We demonstrate that activated T cells from burned rats never divided whereas normal T cells underwent four division cycles. However, T cells from both burned and normal rat entered the G1 phase as shown by increase of cell size, mitochondria hyperpolarization, and expression of cyclin D1. Burned rat T cells progressed to the late G1 phase as shown by expression of the nuclear Ki-67 antigen, but they never entered the S phase. They underwent apoptosis as shown by morphological parameters, disruption of transmembrane mitochondrial potential, and DNA fragmentation. Persistent accumulation of the p53 protein accompanied these phenomena. NO synthase inhibitors antagonize alterations of cell proliferation and cell death parameters in burned rat T cells and accelerated p53 turnover.
Collapse
Affiliation(s)
- Lionel M Valenti
- Laboratoire de Physiologie Respiratoire, Faculté de Médecine Cochin/Port-Royal, Université Paris V, 24 rue du Faubourg Saint Jacques, 75014 Paris, France.
| | | | | | | | | | | | | |
Collapse
|
13
|
Bai L, Yoon SO, King PD, Merchant JL. ZBP-89-induced apoptosis is p53-independent and requires JNK. Cell Death Differ 2005; 11:663-73. [PMID: 14963412 DOI: 10.1038/sj.cdd.4401393] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
ZBP-89 induces apoptosis in human gastrointestinal cancer cells through a p53-independent mechanism. To understand the apoptotic pathway regulated by ZBP-89, we identified downstream signal transduction targets. Ectopic expression of ZBP-89 induced apoptosis through the mitochondrial pathway and was accompanied by activation of all three MAP kinase subfamilies: JNK1/2, ERK1/2 and p38 MAP kinase. ZBP-89-induced apoptosis was markedly enhanced by ERK inhibition with U0126. In contrast, inhibiting JNK with a JNK1-specific peptide inhibitor or dominant-negative JNK2 expression abrogated ZBP-89-mediated apoptosis. The p38 inhibitor SB202190 had no effect on ZBP-89-induced cell death. Protein dephosphorylation assays revealed that ZBP-89 activates JNK via repression of JNK dephosphorylation. Oligonucleotide microarray analyses revealed that ectopic expression of ZBP-89 downregulated expression of the dual-specificity phosphatase MKP6. Overexpression of MKP6 blocked ZBP-89-induced JNK phosphorylation and PARP cleavage. In addition, ectopic expression of ZBP-89 repressed Bcl-xL and Mcl-1 expression, but had no effect on Bcl-2. Silencing ZBP-89 with small interfering RNA enhanced both Bcl-xL and Mcl-1 expression. Taken together, ZBP-89-mediated apoptosis occurs via a p53-independent mechanism that requires JNK activation.
Collapse
Affiliation(s)
- L Bai
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
14
|
Chae IH, Park KW, Kim HS, Oh BH. Nitric oxide-induced apoptosis is mediated by Bax/Bcl-2 gene expression, transition of cytochrome c, and activation of caspase-3 in rat vascular smooth muscle cells. Clin Chim Acta 2004; 341:83-91. [PMID: 14967162 DOI: 10.1016/j.cccn.2003.11.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2003] [Revised: 11/04/2003] [Accepted: 11/05/2003] [Indexed: 10/26/2022]
Abstract
BACKGROUND In contrast to the anti-apoptotic action of nitric oxide (NO) on endothelial cells, NO exerts a pro-apoptotic effect on vascular smooth muscle cells (VSMCs). This study was designed to elucidate the mechanism underlying NO-induced apoptosis in rat VSMCs. METHODS AND RESULTS (1) Using the terminal deoxynucleotidyl transferase-mediated digoxigenin-11-dUTP nick end labeling (TUNEL) assay and fluorescence activated cell sorter (FACS) analyses, apoptosis of rat VSMCs were confirmed after exposure to sodium nitroprusside (SNP) (0.5 to 4 mmol/l), an exogenous NO donor. The effects of SNP were blocked by hemoglobin. (2) A universal caspase inhibitor, z-VAD-fmk, dose-dependently inhibited NO-induced apoptosis. VSMCs degraded Ac-DEVD-pNA rather than Ac-WHED-pNA after exposure to SNP, which suggested that the activation of caspase 3 rather than caspase 1 was involved in the process. Immunoblot analysis confirmed the activation of caspase-3. (3) Exposure to SNP induced the release of cytochrome c from the mitochondria to the cytosol, which was detected by immunoblot analysis of mitochondrial and cytosol fractions. (4) SNP exposure increased the ratio of Bax/Bcl-2 protein expression twofold by immunoblot analysis. CONCLUSIONS The mechanism of NO-induced apoptosis in rat VSMCs involves an increase in the ratio of Bax/Bcl-2 gene expression, which leads to the release of cytochrome c from the mitochondria to the cytosol, finally activating caspase-3 and resultant apoptosis.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/cytology
- Aorta, Thoracic/enzymology
- Aorta, Thoracic/metabolism
- Apoptosis/physiology
- Blotting, Western
- Caspase 3
- Caspases/metabolism
- Cell Count
- Cell Survival/physiology
- Cells, Cultured
- Cytochromes c/genetics
- Cytoplasm/enzymology
- Enzyme Activation/physiology
- Flow Cytometry
- Gene Expression/genetics
- Gene Expression/physiology
- Genes, bcl-2/genetics
- In Situ Nick-End Labeling
- Male
- Mitochondria, Muscle/enzymology
- Muscle, Smooth, Vascular/enzymology
- Nitric Oxide/physiology
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins c-bcl-2
- Rats
- Rats, Sprague-Dawley
- Tetrazolium Salts
- Thiazoles
- bcl-2-Associated X Protein
Collapse
Affiliation(s)
- In-Ho Chae
- Cardiovascular Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | | | | | | |
Collapse
|
15
|
Yung HW, Bal-Price AK, Brown GC, Tolkovsky AM. Nitric oxide-induced cell death of cerebrocortical murine astrocytes is mediated through p53- and Bax-dependent pathways. J Neurochem 2004; 89:812-21. [PMID: 15140181 DOI: 10.1111/j.1471-4159.2004.02395.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have investigated the mechanism by which nitric oxide (NO) induces the death of mouse astrocytes. We show that NO (from donor diethylenetriamine-NO adduct) induces death with several features of apoptosis, including chromatin condensation, phosphatidylserine exposure on the outer leaflet of the plasma membrane, Bax translocation to the mitochondria and cytochrome c release, but no caspase activation or nuclear fragmentation is observed. Nitric oxide also elevates p53 expression, causing a concomitant increase in p53 serine 18 phosphorylation and p53 translocation from the cytoplasm to the nucleus. Activation of Bax and p53 is important for NO-induced apoptosis-like cell death because Bax- or p53-deficient astrocytes are much more resistant than wild-type cells to the same NO treatment. We further demonstrate that LY294002-sensitive kinases are responsible for controlling serine 18 phosphorylation of p53, thereby regulating the pro-apoptotic activity of p53 in astrocytes. While apoptosis is suppressed in the presence of LY294002, however, death by necrosis is increased, suggesting that LY294002-sensitive kinases additionally suppress a latent necrotic response to NO. We conclude that NO-induced death in astrocytes is mediated by p53- and Bax-dependent mechanisms, although full manifestation of apoptosis is aborted by concomitant inhibition of caspase activation. More generally, our data suggest that apoptotic mediators should be evaluated as the cause of cell death even in cases where a full apoptotic phenotype is lacking.
Collapse
Affiliation(s)
- Hong Wa Yung
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | | | |
Collapse
|
16
|
Mizuno S, Kadowaki M, Demura Y, Ameshima S, Miyamori I, Ishizaki T. p42/44 Mitogen-activated protein kinase regulated by p53 and nitric oxide in human pulmonary arterial smooth muscle cells. Am J Respir Cell Mol Biol 2004; 31:184-92. [PMID: 15016620 DOI: 10.1165/rcmb.2003-0397oc] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Although nitric oxide (NO) is known to inhibit vascular smooth muscle cell proliferation, the subcellular molecular mechanisms involved with the inhibitory signal transduction pathways are uncertain. We investigated the effect of exogenous NO on cell proliferation and the expression of p53, p21, and phosphorylated p42/44 mitogen-activated protein kinase (MAPK) in human pulmonary arterial smooth muscle cells (HPASMC). Both S-nitroso-N-acetyl penicillamine and diethylenetriaminelNONOate dose-dependently suppressed [3H]-thymidine incorporation in cultured HPASMC, and induced the expression of p53 and p21 protein. Further, the NO donors transiently increased the phosphorylation of p42/44 MAPK and then suppressed it. Although MAPK kinase inhibitors suppressed [3H]-thymidine incorporation by the cells, no significant change was observed in the expression of p53 and p21. The NO donors also suppressed the activation of p42/44 MAPK evoked by transient transfection of the wild-type p53 gene; however, they failed to suppress the activation of p42/44 MAPK in constitutive-active mutations of the Ras or Raf genes trasnsfected from HPASMC. These results indicate that exogenous NO is able to transiently activate p42/44 MAPK via the induction of p53, and then suppress it via inactivation of the Ras and Raf cascades.
Collapse
Affiliation(s)
- Shiro Mizuno
- Third Department of Internal Medicine, University of Fukui, 23-3 Matsuoka-cho Yoshida-gun, Fukui, Japan.
| | | | | | | | | | | |
Collapse
|
17
|
Ren Z, Kar S, Wang Z, Wang M, Saavedra JE, Carr BI. JS-K, a novel non-ionic diazeniumdiolate derivative, inhibits Hep 3B hepatoma cell growth and induces c-Jun phosphorylation via multiple MAP kinase pathways. J Cell Physiol 2003; 197:426-34. [PMID: 14566972 DOI: 10.1002/jcp.10380] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
JS-K, a non-ionic diazeniumdiolate derivative, is capable of arylating nucleophiles and spontaneously generating nitric oxide (NO) at physiological pH. This recently synthesized low molecular weight compound is shown here to be an inhibitor of cell growth with concomitant activation of mitogen-activated protein kinase (MAPK) members ERK, JNK, and p38 and their downstream effectors c-Jun and AP-1. Inhibitors of these MAPK pathways abrogated the growth inhibitory actions of JS-K. In addition to the well-described actions of JNK as a kinase for c-Jun, we show that c-Jun is also an ERK target. Furthermore, JS-K generated NO in culture and NO inhibitors antagonized both MAPK induction and the growth inhibitory effects of JS-K. These results suggest two possible mechanisms for the mediation of JS-K growth inhibitory actions, namely NO-induction of MAPK pathway constituents as well as possible arylation reactions. The data support the idea that prolonged MAPK activation by JS-K action is important in mediating its growth-inhibitory actions. JS-K thus represents a promising platform for novel growth inhibitory analog synthesis.
Collapse
Affiliation(s)
- Zhenggang Ren
- Liver Cancer Center, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
Nitric oxide (NO) is known for its diverse activities throughout biology. Among signaling qualities, NO affects cellular decisions of life and death either by turning on apoptotic pathways or by shutting them off. Although copious reports support both notions, the dichotomy of NO actions remains unsolved. Proapoptotic pathways of NO are compatible with established signaling circuits appreciated for mitochondria-dependent roads of death, with some emphasis on the involvement of the tumor suppressor p53 as a target during cell death execution. Antiapoptotic actions of NO are numerous, ranging from an immediate interference with proapoptotic signaling cascades to long-lasting effects based on expression of cell protective proteins with some interest on the ability of NO-redox species to block caspases by S-nitrosylation/S-nitrosation. Summarizing emerging concepts to understand p53 accumulation on the one hand while proposing inhibition of procaspase processing on the other may help to define the pro- versus antiapoptotic roles of NO.
Collapse
Affiliation(s)
- Bernhard Brüne
- University of Kaiserslautern, Faculty of Biology, Department of Cell Biology, 67663 Kaiserslautern, Germany.
| |
Collapse
|
19
|
Dulak J, Józkowicz A. Regulation of vascular endothelial growth factor synthesis by nitric oxide: facts and controversies. Antioxid Redox Signal 2003; 5:123-32. [PMID: 12626124 DOI: 10.1089/152308603321223612] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Vascular endothelial growth factor (VEGF) is the major molecule governing angiogenesis, defined as the growth of blood vessels from vascular structure. There is abundant evidence that nitric oxide (NO) is an effector molecule mediating the activity of VEGF. By binding to its receptors, VEGF initiates the signaling cascades leading to NO production and angiogenic activation of endothelial cells. Recent data show that NO induces VEGF synthesis in numerous cell types, including vascular smooth muscle cells, macrophages, keratinocytes, and tumor cells. NO enhances VEGF production by augmenting its expression through activation of Akt kinase, followed by induction of several transcription factors, of which stabilization of hypoxia-inducible factor (HIF-1) is the critical step. With respect to its effect on VEGF expression, NO mimics hypoxia, the classical activator of HIF-1 and VEGF synthesis. The effect of NO on VEGF production is also mediated by heme oxygenase, an enzyme generating carbon monoxide, which appears to stimulate VEGF release. In this review, we attempt to elucidate the molecular mechanisms underlying the effects of NO on VEGF synthesis. We also discuss some discrepant data and suggest explanations for various aspects of the NO-VEGF relationship.
Collapse
Affiliation(s)
- Józef Dulak
- Department of Cell Biochemistry, Faculty of Biotechnology, Jagiellonian University, Kraków, Poland.
| | | |
Collapse
|
20
|
Tian B, Liu J, Bitterman PB, Bache RJ. Mechanisms of cytokine induced NO-mediated cardiac fibroblast apoptosis. Am J Physiol Heart Circ Physiol 2002; 283:H1958-67. [PMID: 12384474 DOI: 10.1152/ajpheart.01070.2001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study examined the role of nitric oxide (NO) in cytokine-induced apoptosis in adult cardiac fibroblasts (CFbs). In cultured adult rat CFbs, IL-1beta (5 ng/ml), but not interferon-gamma (10 ng/ml) or tumor necrosis factor-alpha (10 ng/ml), induced inducible NO synthase (iNOS) expression and NO production that was associated with an increase in caspase-3 activity and apoptotic cell death. Apoptotic frequency was reduced by the iNOS inhibitor S-methylisothiourea (3 x 10(-5) M). Apoptosis in response to IL-1beta was attenuated by the caspase-3 inhibitor [Z-Asp-Glu-Val-Asp-fluoromethyl ketone (Z-DVED-FMK)] but not by inhibition of guanylyl cyclase with 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ). IL-1beta-induced CFb apoptosis was associated with an increase in p53 and Bax protein expression with no changes in Bcl-2 or Bcl-x(L). Nuclear condensation and fragmentation occurred when isolated nuclei were exposed to an NO donor [Z-1[N-(2-aminoethyl)-N-(2-ammonoethyl)amino]diazen-1-ium-1,2-dioate (DETA-NONOate) 10(-5) M], an effect that was not blocked by the peroxynitrite scavenger Mn(III)tetrakis(4-benzoic acid) porphyrin chloride. Moreover, Mn(III)tetrakis(4-benzoic acid) porphyrin chloride attenuated but did not eliminate IL-1beta-induced CFb apoptosis, indicating that the proapoptotic effect of NO can occur independently of its conversion to peroxynitrite. Our results demonstrate that IL-1beta-induced iNOS expression can trigger NO-dependent apoptosis in adult CFbs, which appears to result from DNA damage and may be mediated by a p53-dependent apoptotic pathway.
Collapse
Affiliation(s)
- Bin Tian
- Division of Cardiology, Department of Medicine, University of Minnesota Health Science Center, 420 Delaware Street SE, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
21
|
Kim SJ, Hwang SG, Shin DY, Kang SS, Chun JS. p38 kinase regulates nitric oxide-induced apoptosis of articular chondrocytes by accumulating p53 via NFkappa B-dependent transcription and stabilization by serine 15 phosphorylation. J Biol Chem 2002; 277:33501-8. [PMID: 12091386 DOI: 10.1074/jbc.m202862200] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nitric oxide (NO) during primary culture of articular chondrocytes causes apoptosis via p38 mitogen-activated protein kinase in association with elevation of p53 protein level, caspase-3 activation, and differentiation status. In this study, we characterized the molecular mechanism by which p38 kinase induces apoptosis through activation of p53. We report here that NO-induced activation of p38 kinase leads to activation of NFkappaB, which in turn induces transcription of the p53 gene. Activated p38 kinase also physically associates and phosphorylates the serine 15 residue of p53, which results in accumulation of p53 protein during NO-induced apoptosis. Ectopic expression of wild-type p53 enhanced NO-induced apoptosis, whereas expression of a dominant negative p53 blocked it, indicating that p53 plays an essential role in NO-induced apoptosis of chondrocytes. The increased accumulation of p53 caused expression of Bax, a pro-apoptotic member of the Bcl-2 family that is known to cause apoptosis via release of cytochrome c and caspase activation. These results suggest that NO-activated p38 kinase activates p53 function in two different ways, transcriptional activation by NFkappaB and direct phosphorylation of p53 protein, leading to apoptosis of articular chondrocytes.
Collapse
Affiliation(s)
- Song-Ja Kim
- Department of Life Science, Kwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | | | | | | | | |
Collapse
|