1
|
Preclinical Models of Retinitis Pigmentosa. Methods Mol Biol 2022; 2560:181-215. [PMID: 36481897 DOI: 10.1007/978-1-0716-2651-1_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Retinitis pigmentosa (RP) is the name for a group of phenotypically-related heritable retinal degenerative disorders. Many genes have been implicated as causing variants of RP, and while the clinical phenotypes are remarkably similar, they may differ in age of onset, progression, and severity. Common inheritance patterns for specific genes connected with the development of the disorder include autosomal dominant, autosomal recessive, and X-linked. Modeling the disease in animals and other preclinical systems offers a cost-conscious, ethical, and time-efficient method for studying the disease subtypes. The history of RP models is briefly examined, and both naturally occurring and transgenic preclinical models of RP in many different organisms are discussed. Syndromic forms of RP and models thereof are reviewed as well.
Collapse
|
2
|
Berkowitz BA, Podolsky RH, Childers KL, Roberts R, Katz R, Waseem R, Robbings BM, Hass DT, Hurley JB, Sweet IR, Goodman C, Qian H, Alvisio B, Heaps S. Transducin-Deficient Rod Photoreceptors Evaluated With Optical Coherence Tomography and Oxygen Consumption Rate Energy Biomarkers. Invest Ophthalmol Vis Sci 2022; 63:22. [PMID: 36576748 PMCID: PMC9804021 DOI: 10.1167/iovs.63.13.22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Purpose To test the hypothesis that rod energy biomarkers in light and dark are similar in mice without functional rod transducin (Gnat1rd17). Methods Gnat1rd17 and wildtype (WT) mice were studied in canonically low energy demand (light) and high energy demand (dark) conditions. We measured rod inner segment ellipsoid zone (ISez) profile shape, external limiting membrane-retinal pigment epithelium (ELM-RPE) thickness, and magnitude of a hyporeflective band (HB) intensity dip located between photoreceptor tips and apical RPE; antioxidants were given in a subset of mice. Oxygen consumption rate (OCR) and visual performance indexes were also measured. Results The lower energy demand expected in light-adapted wildtype retinas was associated with an elongated ISez, thicker ELM-RPE, and higher HB magnitude, and lower OCR compared to high energy demand conditions in the dark. Gnat1rd17 mice showed a wildtype-like ISez profile shape at 20 minutes of light that became rounder at 60 minutes; at both times, ELM-RPE was smaller than wildtype values, and the HB magnitude was unmeasurable. OCR was higher than in the dark. Light-adapted Gnat1rd17 mice biomarkers were unaffected by anti-oxidants. Gnat1rd17 mice showed modest outer nuclear layer thinning and no reduction in visual performance indexes. Conclusions Light-stimulated changes in all biomarkers in WT mice are consistent with the established light-induced decrease in net energy demand. In contrast, biomarker changes in Gnat1rd17 mice raise the possibility that light increases net energy demand in the absence of rod phototransduction.
Collapse
Affiliation(s)
- Bruce A Berkowitz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Robert H Podolsky
- Biostatistics and Study Methodology, Children's National Hospital, Silver Spring, Maryland, United States
| | - Karen Lins Childers
- Beaumont Research Institute, Beaumont Health, Royal Oak, Michigan, United States
| | - Robin Roberts
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Ryan Katz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Rida Waseem
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Brian M Robbings
- Department of Biochemistry, Department of Ophthalmology, University of Washington, Seattle, Washington, United States.,Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, United States
| | - Daniel T Hass
- Department of Biochemistry, Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - James B Hurley
- Department of Biochemistry, Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Ian R Sweet
- Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, United States
| | - Cole Goodman
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Haohua Qian
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Bruno Alvisio
- OSIO Bioinformatics Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Sam Heaps
- OSIO Bioinformatics Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
3
|
Mut SR, Mishra S, Vazquez M. A Microfluidic Eye Facsimile System to Examine the Migration of Stem-like Cells. MICROMACHINES 2022; 13:mi13030406. [PMID: 35334698 PMCID: PMC8954941 DOI: 10.3390/mi13030406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 02/05/2023]
Abstract
Millions of adults are affected by progressive vision loss worldwide. The rising incidence of retinal diseases can be attributed to damage or degeneration of neurons that convert light into electrical signals for vision. Contemporary cell replacement therapies have transplanted stem and progenitor-like cells (SCs) into adult retinal tissue to replace damaged neurons and restore the visual neural network. However, the inability of SCs to migrate to targeted areas remains a fundamental challenge. Current bioengineering projects aim to integrate microfluidic technologies with organotypic cultures to examine SC behaviors within biomimetic environments. The application of neural phantoms, or eye facsimiles, in such systems will greatly aid the study of SC migratory behaviors in 3D. This project developed a bioengineering system, called the μ-Eye, to stimulate and examine the migration of retinal SCs within eye facsimiles using external chemical and electrical stimuli. Results illustrate that the imposed fields stimulated large, directional SC migration into eye facsimiles, and that electro-chemotactic stimuli produced significantly larger increases in cell migration than the individual stimuli combined. These findings highlight the significance of microfluidic systems in the development of approaches that apply external fields for neural repair and promote migration-targeted strategies for retinal cell replacement therapy.
Collapse
Affiliation(s)
- Stephen Ryan Mut
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Rd, Piscataway, NJ 08854, USA;
| | - Shawn Mishra
- Regeneron, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA;
| | - Maribel Vazquez
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Rd, Piscataway, NJ 08854, USA;
- Correspondence:
| |
Collapse
|
4
|
Mamun AA, Wu Y, Nasrin F, Akter A, Taniya MA, Munir F, Jia C, Xiao J. Role of Pyroptosis in Diabetes and Its Therapeutic Implications. J Inflamm Res 2021; 14:2187-2206. [PMID: 34079327 PMCID: PMC8164340 DOI: 10.2147/jir.s291453] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/14/2021] [Indexed: 12/13/2022] Open
Abstract
Pyroptosis is mainly considered as a new pro-inflammatory mediated-programmed cell death. In addition, pyroptosis is described by gasdermin-induced pore formation on the membrane, cell swelling and rapid lysis, and several pro-inflammatory mediators interleukin-1β (IL-1β) and interleukin-18 (IL-18) release. Extensive studies have shown that pyroptosis is commonly involved by activating the caspase-1-dependent canonical pathway and caspase-4/5/11-dependent non-canonical pathway. However, pyroptosis facilitates local inflammation and inflammatory responses. Current researches have reported that pyroptosis promotes the progression of several diabetic complications. Emerging studies have suggested that some potential molecules targeting the pyroptosis and inflammasome signaling pathways could be a novel therapeutic avenue for managing and treating diabetes and its complications in the near future. Our narrative review concisely describes the possible mechanism of pyroptosis and its progressive understanding of the development of diabetic complications.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou, Zhejiang Province, 325035, People's Republic of China
| | - Yanqing Wu
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang Province, 325035, People's Republic of China
| | - Fatema Nasrin
- Institute of Health and Biomedical Innovation, Translational Research Institute, Brisbane, Australia.,School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Afroza Akter
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Masuma Afrin Taniya
- Department of Life Sciences, School of Environment and Life Sciences, Independent University, Bangladesh, Dhaka, 1229, Bangladesh
| | - Fahad Munir
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, People's Republic of China
| | - Chang Jia
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang Province, People's Republic of China
| | - Jian Xiao
- Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou, Zhejiang Province, 325035, People's Republic of China
| |
Collapse
|
5
|
LaVail MM, Nishikawa S, Steinberg RH, Naash MI, Duncan JL, Trautmann N, Matthes MT, Yasumura D, Lau-Villacorta C, Chen J, Peterson WM, Yang H, Flannery JG. Phenotypic characterization of P23H and S334ter rhodopsin transgenic rat models of inherited retinal degeneration. Exp Eye Res 2018; 167:56-90. [PMID: 29122605 PMCID: PMC5811379 DOI: 10.1016/j.exer.2017.10.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/25/2017] [Accepted: 10/31/2017] [Indexed: 02/07/2023]
Abstract
We produced 8 lines of transgenic (Tg) rats expressing one of two different rhodopsin mutations in albino Sprague-Dawley (SD) rats. Three lines were generated with a proline to histidine substitution at codon 23 (P23H), the most common autosomal dominant form of retinitis pigmentosa in the United States. Five lines were generated with a termination codon at position 334 (S334ter), resulting in a C-terminal truncated opsin protein lacking the last 15 amino acid residues and containing all of the phosphorylation sites involved in rhodopsin deactivation, as well as the terminal QVAPA residues important for rhodopsin deactivation and trafficking. The rates of photoreceptor (PR) degeneration in these models vary in proportion to the ratio of mutant to wild-type rhodopsin. The models have been widely studied, but many aspects of their phenotypes have not been described. Here we present a comprehensive study of the 8 Tg lines, including the time course of PR degeneration from the onset to one year of age, retinal structure by light and electron microscopy (EM), hemispheric asymmetry and gradients of rod and cone degeneration, rhodopsin content, gene dosage effect, rapid activation and invasion of the outer retina by presumptive microglia, rod outer segment disc shedding and phagocytosis by the retinal pigmented epithelium (RPE), and retinal function by the electroretinogram (ERG). The biphasic nature of PR cell death was noted, as was the lack of an injury-induced protective response in the rat models. EM analysis revealed the accumulation of submicron vesicular structures in the interphotoreceptor space during the peak period of PR outer segment degeneration in the S334ter lines. This is likely due to the elimination of the trafficking consensus domain as seen before as with other rhodopsin mutants lacking the C-terminal QVAPA. The 8 rhodopsin Tg lines have been, and will continue to be, extremely useful models for the experimental study of inherited retinal degenerations.
Collapse
Affiliation(s)
- Matthew M LaVail
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143-0730, USA.
| | - Shimpei Nishikawa
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143-0730, USA.
| | - Roy H Steinberg
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143-0730, USA
| | - Muna I Naash
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd., Room 2011, Houston, TX 77204-5060, USA.
| | - Jacque L Duncan
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143-0730, USA.
| | - Nikolaus Trautmann
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143-0730, USA.
| | - Michael T Matthes
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143-0730, USA.
| | - Douglas Yasumura
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143-0730, USA
| | - Cathy Lau-Villacorta
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143-0730, USA.
| | - Jeannie Chen
- Zilka Neurogenetic Institute, USC Keck School of Medicine, Los Angeles, CA 90089-2821, USA.
| | - Ward M Peterson
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143-0730, USA.
| | - Haidong Yang
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143-0730, USA.
| | - John G Flannery
- School of Optometry, UC Berkeley, Berkeley, CA 94720-2020, USA.
| |
Collapse
|
6
|
Vinpocetine protects inner retinal neurons with functional NMDA glutamate receptors against retinal ischemia. Exp Eye Res 2018; 167:1-13. [DOI: 10.1016/j.exer.2017.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/31/2017] [Accepted: 10/08/2017] [Indexed: 11/21/2022]
|
7
|
Ahnood A, Meffin H, Garrett DJ, Fox K, Ganesan K, Stacey A, Apollo NV, Wong YT, Lichter SG, Kentler W, Kavehei O, Greferath U, Vessey KA, Ibbotson MR, Fletcher EL, Burkitt AN, Prawer S. Diamond Devices for High Acuity Prosthetic Vision. ACTA ACUST UNITED AC 2016; 1:e1600003. [DOI: 10.1002/adbi.201600003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 10/27/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Arman Ahnood
- School of Physics University of Melbourne Victoria 3010 Australia
| | - Hamish Meffin
- National Vision Research Institute Australian College of Optometry Victoria 3053 Australia
- ARC Centre of Excellence for Integrative Brain Function Department of Optometry and Vision Science University of Melbourne Victoria 3010 Australia
| | - David J. Garrett
- School of Physics University of Melbourne Victoria 3010 Australia
| | - Kate Fox
- School of Physics University of Melbourne Victoria 3010 Australia
- School of Engineering RMIT University Melbourne 3000 Australia
| | | | - Alastair Stacey
- School of Physics University of Melbourne Victoria 3010 Australia
| | | | - Yan T. Wong
- National Vision Research Institute Australian College of Optometry Victoria 3053 Australia
- Department of Electrical & Electronic Engineering The University of Melbourne Victoria 3010 Australia
| | | | - William Kentler
- Department of Electrical & Electronic Engineering The University of Melbourne Victoria 3010 Australia
| | - Omid Kavehei
- School of Engineering RMIT University Melbourne 3000 Australia
| | - Ursula Greferath
- Department of Anatomy and Neuroscience University of Melbourne Victoria 3010 Australia
| | - Kirstan A. Vessey
- Department of Anatomy and Neuroscience University of Melbourne Victoria 3010 Australia
| | - Michael R. Ibbotson
- National Vision Research Institute Australian College of Optometry Victoria 3053 Australia
- ARC Centre of Excellence for Integrative Brain Function Department of Optometry and Vision Science University of Melbourne Victoria 3010 Australia
| | - Erica L. Fletcher
- Department of Anatomy and Neuroscience University of Melbourne Victoria 3010 Australia
| | - Anthony N. Burkitt
- Department of Electrical & Electronic Engineering The University of Melbourne Victoria 3010 Australia
| | - Steven Prawer
- School of Physics University of Melbourne Victoria 3010 Australia
| |
Collapse
|
8
|
Viringipurampeer IA, Metcalfe AL, Bashar AE, Sivak O, Yanai A, Mohammadi Z, Moritz OL, Gregory-Evans CY, Gregory-Evans K. NLRP3 inflammasome activation drives bystander cone photoreceptor cell death in a P23H rhodopsin model of retinal degeneration. Hum Mol Genet 2016; 25:1501-16. [PMID: 27008885 DOI: 10.1093/hmg/ddw029] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/01/2016] [Indexed: 12/11/2022] Open
Abstract
The molecular signaling leading to cell death in hereditary neurological diseases such as retinal degeneration is incompletely understood. Previous neuroprotective studies have focused on apoptotic pathways; however, incomplete suppression of cell death with apoptosis inhibitors suggests that other mechanisms are at play. Here, we report that different signaling pathways are activated in rod and cone photoreceptors in the P23H rhodopsin mutant rat, a model representing one of the commonest forms of retinal degeneration. Up-regulation of the RIP1/RIP3/DRP1 axis and markedly improved survival with necrostatin-1 treatment highlighted necroptosis as a major cell-death pathway in degenerating rod photoreceptors. Conversely, up-regulation of NLRP3 and caspase-1, expression of mature IL-1β and IL-18 and improved cell survival with N-acetylcysteine treatment suggested that inflammasome activation and pyroptosis was the major cause of cone cell death. This was confirmed by generation of the P23H mutation on an Nlrp3-deficient background, which preserved cone viability. Furthermore, Brilliant Blue G treatment inhibited inflammasome activation, indicating that the 'bystander cell death' phenomenon was mediated through the P2RX7 cell-surface receptor. Here, we identify a new pathway in cones for bystander cell death, a phenomenon important in development and disease in many biological systems. In other retinal degeneration models different cell-death pathways are activated, which suggests that the particular pathways that are triggered are to some extent genotype-specific. This also implies that neuroprotective strategies to limit retinal degeneration need to be customized; thus, different combinations of inhibitors will be needed to target the specific pathways in any given disease.
Collapse
Affiliation(s)
- Ishaq A Viringipurampeer
- Department of Ophthalmology and Visual Sciences, University of British Columbia, 2550 Willow Street, Vancouver, BC, Canada V5Z 3N9
| | - Andrew L Metcalfe
- Department of Ophthalmology and Visual Sciences, University of British Columbia, 2550 Willow Street, Vancouver, BC, Canada V5Z 3N9
| | - Abu E Bashar
- Department of Ophthalmology and Visual Sciences, University of British Columbia, 2550 Willow Street, Vancouver, BC, Canada V5Z 3N9
| | - Olena Sivak
- Department of Ophthalmology and Visual Sciences, University of British Columbia, 2550 Willow Street, Vancouver, BC, Canada V5Z 3N9
| | - Anat Yanai
- Department of Ophthalmology and Visual Sciences, University of British Columbia, 2550 Willow Street, Vancouver, BC, Canada V5Z 3N9
| | - Zeinabsadat Mohammadi
- Department of Ophthalmology and Visual Sciences, University of British Columbia, 2550 Willow Street, Vancouver, BC, Canada V5Z 3N9
| | - Orson L Moritz
- Department of Ophthalmology and Visual Sciences, University of British Columbia, 2550 Willow Street, Vancouver, BC, Canada V5Z 3N9
| | - Cheryl Y Gregory-Evans
- Department of Ophthalmology and Visual Sciences, University of British Columbia, 2550 Willow Street, Vancouver, BC, Canada V5Z 3N9
| | - Kevin Gregory-Evans
- Department of Ophthalmology and Visual Sciences, University of British Columbia, 2550 Willow Street, Vancouver, BC, Canada V5Z 3N9
| |
Collapse
|
9
|
Beeson C, Lindsey C, Nasarre C, Bandyopadhyay M, Perron N, Rohrer B. Small Molecules that Protect Mitochondrial Function from Metabolic Stress Decelerate Loss of Photoreceptor Cells in Murine Retinal Degeneration Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 854:449-54. [PMID: 26427445 DOI: 10.1007/978-3-319-17121-0_60] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
One feature common to many of the pathways implicated in retinal degeneration is increased metabolic stress leading to impaired mitochondrial function. We found that exposure of cells to calcium ionophores or oxidants as metabolic stressors diminish maximal mitochondrial capacity. A library of 50,000 structurally diverse "drug-like" molecules was screened for protection against loss of calcium-induced loss of mitochondrial capacity in 661W rod-derived cells and C6 glioblastomas. Initial protective hits were then tested for protection against IBMX-induced loss of mitochondrial capacity as measured via respirometry. Molecules that protected mitochondria were then evaluated for protection of rod photoreceptor cells in retinal explants from rd1 mice. Two of the molecules attenuated loss of photoreceptor cells in the rd1 model. In the 661W cells, exposure to calcium ionophore or tert-butylhydroperoxide caused mitochondrial fragmentation that was blocked with the both compounds. Our studies have identified molecules that protect mitochondria and attenuate loss of photoreceptors in models of retinal degeneration suggesting that they could be good leads for development of therapeutic drugs for treatment of a wide variety of retinal dystrophies.
Collapse
Affiliation(s)
- Craig Beeson
- MitoChem Therapeutics Inc, 280 Calhoun Street, MSC140, 29403, Charleston, SC, USA. .,Departments of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, 29425, Charleston, SC, USA.
| | - Chris Lindsey
- MitoChem Therapeutics Inc, 280 Calhoun Street, MSC140, 29403, Charleston, SC, USA. .,Departments of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, 29425, Charleston, SC, USA.
| | - Cecile Nasarre
- Departments of Ophthalmology, Medical University of South Carolina, 29425, Charleston, SC, USA.
| | - Mausumi Bandyopadhyay
- Departments of Ophthalmology, Medical University of South Carolina, 29425, Charleston, SC, USA.
| | - Nathan Perron
- Departments of Ophthalmology, Medical University of South Carolina, 29425, Charleston, SC, USA.
| | - Bärbel Rohrer
- Departments of Ophthalmology, Medical University of South Carolina, 29425, Charleston, SC, USA. .,Division of Research, Ralph H. Johnson VA Medical Center, 29401, Charleston, SC, USA.
| |
Collapse
|
10
|
Kalloniatis M, Nivison-Smith L, Chua J, Acosta ML, Fletcher EL. Using the rd1 mouse to understand functional and anatomical retinal remodelling and treatment implications in retinitis pigmentosa: A review. Exp Eye Res 2015; 150:106-21. [PMID: 26521764 DOI: 10.1016/j.exer.2015.10.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/22/2015] [Accepted: 10/23/2015] [Indexed: 12/31/2022]
Abstract
Retinitis Pigmentosa (RP) reflects a range of inherited retinal disorders which involve photoreceptor degeneration and retinal pigmented epithelium dysfunction. Despite the multitude of genetic mutations being associated with the RP phenotype, the clinical and functional manifestations of the disease remain the same: nyctalopia, visual field constriction (tunnel vision), photopsias and pigment proliferation. In this review, we describe the typical clinical phenotype of human RP and review the anatomical and functional remodelling which occurs in RP determined from studies in the rd/rd (rd1) mouse. We also review studies that report a slowing down or show an acceleration of retinal degeneration and finally we provide insights on the impact retinal remodelling may have in vision restoration strategies.
Collapse
Affiliation(s)
- M Kalloniatis
- Centre for Eye Health, University of New South Wales, Kensington, NSW, Australia; School of Optometry and Vision Science, University of New South Wales, Kensington, NSW, Australia; School of Optometry and Vision Science, University of Auckland, Auckland, New Zealand; Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia.
| | - L Nivison-Smith
- Centre for Eye Health, University of New South Wales, Kensington, NSW, Australia; School of Optometry and Vision Science, University of New South Wales, Kensington, NSW, Australia
| | - J Chua
- School of Optometry and Vision Science, University of Auckland, Auckland, New Zealand
| | - M L Acosta
- School of Optometry and Vision Science, University of Auckland, Auckland, New Zealand
| | - E L Fletcher
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
11
|
Nivison-Smith L, O'Brien BJ, Truong M, Guo CX, Kalloniatis M, Acosta ML. Vinpocetine modulates metabolic activity and function during retinal ischemia. Am J Physiol Cell Physiol 2015; 308:C737-49. [PMID: 25696811 DOI: 10.1152/ajpcell.00291.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 02/17/2015] [Indexed: 12/18/2022]
Abstract
Vinpocetine protects against a range of degenerative conditions and insults of the central nervous system via multiple modes of action. Little is known, however, of its effects on metabolism. This may be highly relevant, as vinpocetine is highly protective against ischemia, a process that inhibits normal metabolic function. This study uses the ischemic retina as a model to characterize vinpocetine's effects on metabolism. Vinpocetine reduced the metabolic demand of the retina following ex vivo hypoxia and ischemia to normal levels based on lactate dehydrogenase activity. Vinpocetine delivered similar effects in an in vivo model of retinal ischemia-reperfusion, possibly through increasing glucose availability. Vinpocetine's effects on glucose also appeared to improve glutamate homeostasis in ischemic Müller cells. Other actions of vinpocetine following ischemia-reperfusion, such as reduced cell death and improved retinal function, were possibly a combination of the drug's actions on metabolism and other retinal pathways. Vinpocetine's metabolic effects appeared independent of its other known actions in ischemia, as it recovered retinal function in a separate metabolic model where the glutamate-to-glutamine metabolic pathway was inhibited in Müller cells. The results of this study indicate that vinpocetine mediates ischemic damage partly through altered metabolism and has potential beneficial effects as a treatment for ischemia of neuronal tissues.
Collapse
Affiliation(s)
- Lisa Nivison-Smith
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Brendan J O'Brien
- Department of Optometry and Vision Science, University of Auckland, Auckland, New Zealand
| | - Mai Truong
- Department of Optometry and Vision Science, University of Auckland, Auckland, New Zealand
| | - Cindy X Guo
- Department of Optometry and Vision Science, University of Auckland, Auckland, New Zealand
| | - Michael Kalloniatis
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia; Department of Optometry and Vision Science, University of Auckland, Auckland, New Zealand; Centre for Eye Health, University of New South Wales, Sydney, Australia; and
| | - Monica L Acosta
- Department of Optometry and Vision Science, University of Auckland, Auckland, New Zealand; New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| |
Collapse
|
12
|
Nivison-Smith L, Zhu Y, Whatham A, Bui BV, Fletcher EL, Acosta ML, Kalloniatis M. Sildenafil alters retinal function in mouse carriers of Retinitis Pigmentosa. Exp Eye Res 2014; 128:43-56. [DOI: 10.1016/j.exer.2014.08.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 08/22/2014] [Accepted: 08/28/2014] [Indexed: 11/17/2022]
|
13
|
Mapping cation entry in photoreceptors and inner retinal neurons during early degeneration in the P23H-3 rat retina. Vis Neurosci 2013; 30:65-75. [PMID: 23557623 DOI: 10.1017/s0952523813000047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The proline-23-histidine line 3 (P23H-3) transgenic rat carries a human opsin gene mutation leading to progressive photoreceptor loss characteristic of human autosomal dominant retinitis pigmentosa. The aim of the present study was to evaluate neurochemical modifications in the P23H-3 retina as a function of development and degeneration. Specifically, we investigated the ion channel permeability of photoreceptors by tracking an organic cation, agmatine (1-amino-4-guanidobutane, AGB), which permeates through nonspecific cation channels. We also investigated the activity of ionotropic glutamate receptors in distinct populations of bipolar, amacrine, and ganglion cells using AGB tracking in combination with macromolecular markers. We found elevated cation channel permeation in photoreceptors as early as postnatal day 12 (P12) suggesting that AGB labeling is an early indicator of impending photoreceptor degeneration. However, bipolar, amacrine, or ganglion cells displayed normal responses secondary to ionotropic glutamate receptor activation even at P138 when about one half of the photoreceptor layer was lost and apoptosis and gliosis were observed. These results suggest that possible therapeutic windows as downstream neurons in inner retina appear to retain normal function with regard to AGB permeation when photoreceptors are significantly reduced but not lost.
Collapse
|
14
|
Sahaboglu A, Paquet-Durand O, Dietter J, Dengler K, Bernhard-Kurz S, Ekström PAR, Hitzmann B, Ueffing M, Paquet-Durand F. Retinitis pigmentosa: rapid neurodegeneration is governed by slow cell death mechanisms. Cell Death Dis 2013; 4:e488. [PMID: 23392176 PMCID: PMC3593146 DOI: 10.1038/cddis.2013.12] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 12/21/2012] [Accepted: 01/03/2013] [Indexed: 12/31/2022]
Abstract
For most neurodegenerative diseases the precise duration of an individual cell's death is unknown, which is an obstacle when counteractive measures are being considered. To address this, we used the rd1 mouse model for retinal neurodegeneration, characterized by phosphodiesterase-6 (PDE6) dysfunction and photoreceptor death triggered by high cyclic guanosine-mono-phosphate (cGMP) levels. Using cellular data on cGMP accumulation, cell death, and survival, we created mathematical models to simulate the temporal development of the degeneration. We validated model predictions using organotypic retinal explant cultures derived from wild-type animals and exposed to the selective PDE6 inhibitor zaprinast. Together, photoreceptor data and modeling for the first time delineated three major cell death phases in a complex neuronal tissue: (1) initiation, taking up to 36 h, (2) execution, lasting another 40 h, and finally (3) clearance, lasting about 7 h. Surprisingly, photoreceptor neurodegeneration was noticeably slower than necrosis or apoptosis, suggesting a different mechanism of death for these neurons.
Collapse
Affiliation(s)
- A Sahaboglu
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - O Paquet-Durand
- Institute of Food Science and Biotechnology, University of Stuttgart Hohenheim, Stuttgart, Germany
| | - J Dietter
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - K Dengler
- Skin Clinic, University of Tübingen, Tübingen, Germany
| | - S Bernhard-Kurz
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - P AR Ekström
- Department of Clinical Sciences, Lund, University of Lund, Lund, Sweden
| | - B Hitzmann
- Institute of Food Science and Biotechnology, University of Stuttgart Hohenheim, Stuttgart, Germany
| | - M Ueffing
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - F Paquet-Durand
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
15
|
|
16
|
Fletcher EL, Jobling AI, Vessey KA, Luu C, Guymer RH, Baird PN. Animal models of retinal disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 100:211-86. [PMID: 21377628 DOI: 10.1016/b978-0-12-384878-9.00006-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Diseases of the retina are the leading causes of blindness in the industrialized world. The recognition that animals develop retinal diseases with similar traits to humans has led to not only a dramatic improvement in our understanding of the pathogenesis of retinal disease but also provided a means for testing possible treatment regimes and successful gene therapy trials. With the advent of genetic and molecular biological tools, the association between specific gene mutations and retinal signs has been made. Animals carrying natural mutations usually in one gene now provide well-established models for a host of inherited retinal diseases, including retinitis pigmentosa, Leber congenital amaurosis, inherited macular degeneration, and optic nerve diseases. In addition, the development of transgenic technologies has provided a means by which to study the effects of these and novel induced mutations on retinal structure and function. Despite these advances, there is a paucity of suitable animal models for complex diseases, including age-related macular degeneration (AMD) and diabetic retinopathy, largely because these diseases are not caused by single gene defects, but involve complex genetics and/or exacerbation through environmental factors, epigenetic, or other modes of genetic influence. In this review, we outline in detail the available animal models for inherited retinal diseases and how this information has furthered our understanding of retinal diseases. We also examine how transgenic technologies have helped to develop our understanding of the role of isolated genes or pathways in complex diseases like AMD, diabetes, and glaucoma.
Collapse
Affiliation(s)
- Erica L Fletcher
- Department of Anatomy and Cell Biology, The University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
17
|
Winkler BS. Letter to the editor: Comments on retinal metabolic state in P23H and normal retinas. Am J Physiol Cell Physiol 2010; 299:C185; author reply C186-7. [PMID: 20554913 DOI: 10.1152/ajpcell.00109.2010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Acosta ML, Shin YS, Ready S, Fletcher EL, Christie DL, Kalloniatis M. Reply to “Letter to the editor: ‘Comments on retinal metabolic state in P23H and normal retinas’”. Am J Physiol Cell Physiol 2010. [DOI: 10.1152/ajpcell.00132.2010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | - Sarah Ready
- Department of Optometry and Vision Science and
| | - Erica L. Fletcher
- Anatomy and Cell Biology, University of Melbourne, Parkville, Victoria; and
| | - David L. Christie
- Molecular, Cellular, and Developmental Biology, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Michael Kalloniatis
- Department of Optometry and Vision Science and
- Anatomy and Cell Biology, University of Melbourne, Parkville, Victoria; and
- Centre for Eye Health and
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|