1
|
Rassier DE, Månsson A. Mechanisms of myosin II force generation: insights from novel experimental techniques and approaches. Physiol Rev 2025; 105:1-93. [PMID: 38451233 DOI: 10.1152/physrev.00014.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
Myosin II is a molecular motor that converts chemical energy derived from ATP hydrolysis into mechanical work. Myosin II isoforms are responsible for muscle contraction and a range of cell functions relying on the development of force and motion. When the motor attaches to actin, ATP is hydrolyzed and inorganic phosphate (Pi) and ADP are released from its active site. These reactions are coordinated with changes in the structure of myosin, promoting the so-called "power stroke" that causes the sliding of actin filaments. The general features of the myosin-actin interactions are well accepted, but there are critical issues that remain poorly understood, mostly due to technological limitations. In recent years, there has been a significant advance in structural, biochemical, and mechanical methods that have advanced the field considerably. New modeling approaches have also allowed researchers to understand actomyosin interactions at different levels of analysis. This paper reviews recent studies looking into the interaction between myosin II and actin filaments, which leads to power stroke and force generation. It reviews studies conducted with single myosin molecules, myosins working in filaments, muscle sarcomeres, myofibrils, and fibers. It also reviews the mathematical models that have been used to understand the mechanics of myosin II in approaches focusing on single molecules to ensembles. Finally, it includes brief sections on translational aspects, how changes in the myosin motor by mutations and/or posttranslational modifications may cause detrimental effects in diseases and aging, among other conditions, and how myosin II has become an emerging drug target.
Collapse
Affiliation(s)
- Dilson E Rassier
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Alf Månsson
- Physiology, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
2
|
Lin Z, Xie Y, Gongora J, Liu X, Zahn E, Palai BB, Ramirez D, Searfoss RM, Vitorino FN, Dann GP, Zhao C, Han X, MacTaggart B, Lan X, Fu D, Greenberg L, Zhang Y, Lavine KJ, Greenberg MJ, Lv D, Kashina A, Garcia BA. An Unbiased Proteomic Platform for Activity-based Arginylation Profiling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.01.596974. [PMID: 38854050 PMCID: PMC11160793 DOI: 10.1101/2024.06.01.596974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Protein arginylation is an essential posttranslational modification (PTM) catalyzed by arginyl-tRNA-protein transferase 1 (ATE1) in mammalian systems. Arginylation features a post-translational conjugation of an arginyl to a protein, making it extremely challenging to differentiate from translational arginine residues with the same mass in a protein sequence. Here we present a general activity-based arginylation profiling (ABAP) platform for the unbiased discovery of arginylation substrates and their precise modification sites. This method integrates isotopic arginine labeling into an ATE1 assay utilizing biological lysates (ex vivo) rather than live cells, thus eliminating translational bias derived from the ribosomal activity and enabling bona fide arginylation identification using isotopic features. ABAP has been successfully applied to an array of peptide, protein, cell, patient, and animal tissue samples using 20 μg sample input, with 229 unique arginylation sites revealed from human proteomes. Representative sites were validated and followed up for their biological functions. The developed platform is globally applicable to the aforementioned sample types and therefore paves the way for functional studies of this difficult-to-characterize protein modification.
Collapse
Affiliation(s)
- Zongtao Lin
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO 63110
| | - Yixuan Xie
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO 63110
| | - Joanna Gongora
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO 63110
| | - Xingyu Liu
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO 63110
| | - Emily Zahn
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO 63110
| | - Bibhuti Bhusana Palai
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO 63110
| | - Daniel Ramirez
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO 63110
| | - Rick M. Searfoss
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO 63110
| | - Francisca N. Vitorino
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO 63110
| | - Geoffrey P. Dann
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, 19104
| | - Chenfeng Zhao
- McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63110
| | - Xian Han
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO 63110
| | - Brittany MacTaggart
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Xin Lan
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106
| | - Dechen Fu
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106
| | - Lina Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO 63110
| | - Yi Zhang
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106
| | - Kory J. Lavine
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael J. Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO 63110
| | - Dongwen Lv
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Anna Kashina
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Benjamin A. Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO 63110
| |
Collapse
|
3
|
Arginylation Regulates Cytoskeleton Organization and Cell Division and Affects Mitochondria in Fission Yeast. Mol Cell Biol 2022; 42:e0026122. [PMID: 36226970 PMCID: PMC9670973 DOI: 10.1128/mcb.00261-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Protein arginylation mediated by arginyltransferase Ate1 is a posttranslational modification of emerging importance implicated in the regulation of mammalian embryogenesis, the cardiovascular system, tissue morphogenesis, cell migration, neurodegeneration, cancer, and aging. Ate1 deletion results in embryonic lethality in mice but does not affect yeast viability, making yeast an ideal system to study the molecular pathways regulated by arginylation. Here, we conducted a global analysis of cytoskeleton-related arginylation-dependent phenotypes in Schizosaccharomyces pombe, a fission yeast species that shares many fundamental features of higher eukaryotic cells. Our studies revealed roles of Ate1 in cell division, cell polarization, organelle transport, and interphase cytoskeleton organization and dynamics. We also found a role of Ate1 in mitochondria morphology and maintenance. Furthermore, targeted mass spectrometry analysis of the total Sc. pombe arginylome identified a number of arginylated proteins, including those that play direct roles in these processes; lack of their arginylation may be responsible for ate1-knockout phenotypes. Our work outlines global biological processes potentially regulated by arginylation and paves the way to unraveling the functions of protein arginylation that are conserved at multiple levels of evolution and potentially constitute the primary role of this modification in vivo.
Collapse
|
4
|
de Souza Leite F, Rassier DE. Sarcomere Length Nonuniformity and Force Regulation in Myofibrils and Sarcomeres. Biophys J 2020; 119:2372-2377. [PMID: 33217382 DOI: 10.1016/j.bpj.2020.11.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/21/2020] [Accepted: 11/05/2020] [Indexed: 10/23/2022] Open
Abstract
The smallest contractile unit in striated muscles is the sarcomere. Although some of the classic features of contraction assume a uniform behavior of sarcomeres within myofibrils, the occurrence of sarcomere length nonuniformities has been well recognized for years, but it is yet not well understood. In the past years, there has been a great advance in experiments using isolated myofibrils and sarcomeres that has allowed scientists to directly evaluate sarcomere length nonuniformity. This review will focus on studies conducted with these preparations to develop the hypotheses that 1) force production in myofibrils is largely altered and regulated by intersarcomere dynamics and that 2) the mechanical work of one sarcomere in a myofibril is transmitted to other sarcomeres in series. We evaluated studies looking into myofibril activation, relaxation, and force changes produced during activation. We conclude that force production in myofibrils is largely regulated by intersarcomere dynamics, which arises from the cooperative work of the contractile and elastic elements within a myofibril.
Collapse
Affiliation(s)
| | - Dilson E Rassier
- Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
5
|
Haeger R, de Souza Leite F, Rassier DE. Sarcomere length non-uniformities dictate force production along the descending limb of the force-length relation. Proc Biol Sci 2020; 287:20202133. [PMID: 33109011 DOI: 10.1098/rspb.2020.2133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The force-length relation is one of the most defining features of muscle contraction, and yet a topic of debate in the literature. The sliding filament theory predicts that the force produced by muscle fibres is proportional to the degree of overlap between myosin and actin filaments, producing a linear descending limb of the active force-length relation. However, several studies have shown forces that are larger than predicted, especially at long sarcomere lengths (SLs). Studies have been conducted with muscle fibres, preparations containing thousands of sarcomeres that make measurements of individual SL challenging. The aim of this study was to evaluate force production and sarcomere dynamics in isolated myofibrils and single sarcomeres from the rabbit psoas muscle to enhance our understanding of the theoretically predicted force-length relation. Contractions at varying SLs along the plateau (SL = 2.25-2.39 µm) and the descending limb (SL > 2.39 µm) of the force-length relation were induced in sarcomeres and myofibrils, and different modes of force measurements were used. Our results show that when forces are measured in single sarcomeres, the experimental force-length relation follows theoretical predictions. When forces are measured in myofibrils with large SL dispersions, there is an extension of the plateau and forces elevated above the predicted levels along the descending limb. We also found an increase in SL non-uniformity and slowed rates of force production at long lengths in myofibrils but not in single sarcomere preparations. We conclude that the deviation of the descending limb of the force-length relation is correlated with the degree of SL non-uniformity and slowed force development.
Collapse
Affiliation(s)
- Ricarda Haeger
- Kinesiology and Physical Education, McGill University, Montreal, QC, Canada
| | | | - Dilson E Rassier
- Kinesiology and Physical Education, McGill University, Montreal, QC, Canada
| |
Collapse
|
6
|
Bennett P, Rees M, Gautel M. The Axial Alignment of Titin on the Muscle Thick Filament Supports Its Role as a Molecular Ruler. J Mol Biol 2020; 432:4815-4829. [PMID: 32619437 PMCID: PMC7427331 DOI: 10.1016/j.jmb.2020.06.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 01/04/2023]
Abstract
The giant protein titin is expressed in vertebrate striated muscle where it spans half a sarcomere from the Z-disc to the M-band and is essential for muscle organisation, activity and health. The C-terminal portion of titin is closely associated with the thick, myosin-containing filament and exhibits a complex pattern of immunoglobulin and fibronectin domains. This pattern reflects features of the filament organisation suggesting that it acts as a molecular ruler and template, but the exact axial disposition of the molecule has not been determined. Here, we present data that allow us to precisely locate titin domains axially along the thick filament from its tip to the edge of the bare zone. We find that the domains are regularly distributed along the filament at 4-nm intervals and we can determine the domains that associate with features of the filament, such as the 11 stripes of accessory proteins. We confirm that the nine stripes ascribed to myosin binding protein-C are not related to the titin sequence previously assumed; rather, they relate to positions approximately 18 domains further towards the C terminus along titin. This disposition also allows a subgroup of titin domains comprising two or three fibronectin domains to associate with each of the 49 levels of myosin heads in each half filament. The results strongly support the role of titin as a blueprint for the thick filament and the arrangement of the myosin motor domains.
Collapse
Affiliation(s)
- Pauline Bennett
- The Randall Centre for Cell & Molecular Biophysics, School of Basic and Medical Biosciences, New Hunt's House, Guy's Campus, King's College London, London, UK.
| | - Martin Rees
- The Randall Centre for Cell & Molecular Biophysics, School of Basic and Medical Biosciences, New Hunt's House, Guy's Campus, King's College London, London, UK.
| | - Mathias Gautel
- The Randall Centre for Cell & Molecular Biophysics, School of Basic and Medical Biosciences, New Hunt's House, Guy's Campus, King's College London, London, UK.
| |
Collapse
|
7
|
Mendoza AC, Rassier DE. Extraction of Thick Filaments in Individual Sarcomeres Affects Force Production by Single Myofibrils. Biophys J 2020; 118:1921-1929. [PMID: 32251620 DOI: 10.1016/j.bpj.2020.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 11/26/2022] Open
Abstract
It has been accepted that the force produced by a skeletal muscle myofibril depends on its cross-sectional area but not on the number of active sarcomeres because they are arranged in series. However, a previous study performed by our group showed that blocking actomyosin interactions within an activated myofibril and depleting the thick filaments in one sarcomere unexpectedly reduced force production. In this study, we examined in detail how consecutive depletion of thick filaments in individual sarcomeres within a myofibril affects force production. Myofibrils isolated from rabbit psoas were activated and relaxed using a perfusion system. An extra microperfusion needle filled with a high-ionic strength solution was used to erase thick filaments in individual sarcomeres in real time before myofibril activation. The isometric forces were measured upon activation. The force produced by myofibrils with intact sarcomeres was significantly higher than the force produced by myofibrils with one or more sarcomeres lacking thick filaments (p < 0.0001) irrespective of the number of contractions imposed on the myofibrils and their initial sarcomere length. Our results suggest that the myofibril force is affected by intersarcomere dynamics and the number of active sarcomeres in series.
Collapse
Affiliation(s)
- Andrea C Mendoza
- Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
| | - Dilson E Rassier
- Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
8
|
Persson M, Steinz MM, Westerblad H, Lanner JT, Rassier DE. Force generated by myosin cross-bridges is reduced in myofibrils exposed to ROS/RNS. Am J Physiol Cell Physiol 2019; 317:C1304-C1312. [DOI: 10.1152/ajpcell.00272.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Skeletal muscle weakness is associated with oxidative stress and oxidative posttranslational modifications on contractile proteins. There is indirect evidence that reactive oxygen/nitrogen species (ROS/RNS) affect skeletal muscle myofibrillar function, although the details of the acute effects of ROS/RNS on myosin-actin interactions are not known. In this study, we examined the effects of peroxynitrite (ONOO−) on the contractile properties of individual skeletal muscle myofibrils by monitoring myofibril-induced displacements of an atomic force cantilever upon activation and relaxation. The isometric force decreased by ~50% in myofibrils treated with the ONOO− donor (SIN-1) or directly with ONOO−, which was independent of the cross-bridge abundancy condition (i.e., rigor or relaxing condition) during SIN-1 or ONOO− treatment. The force decrease was attributed to an increase in the cross-bridge detachment rate ( gapp) in combination with a conservation of the force redevelopment rate (kTr) and hence, an increase in the population of cross-bridges transitioning from force-generating to non-force-generating cross-bridges during steady-state. Taken together, the results of this study provide important information on how ROS/RNS affect myofibrillar force production which may be of importance for conditions where increased oxidative stress is part of the pathophysiology.
Collapse
Affiliation(s)
- Malin Persson
- Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Maarten M. Steinz
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Håkan Westerblad
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Johanna T. Lanner
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Dilson E. Rassier
- Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
9
|
Philippe AG, Lionne C, Sanchez AMJ, Pagano AF, Candau R. Increase in muscle power is associated with myofibrillar ATPase adaptations during resistance training. Exp Physiol 2019; 104:1274-1285. [DOI: 10.1113/ep087071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/04/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Antony G. Philippe
- Université de Montpellier INRA UMR866 Dynamique Musculaire et Métabolisme F‐34060 Montpellier France
| | - Corinne Lionne
- Centre de Biochimie Structurale CNRS UMR 5048 – UM – INSERM U 1054 Montpellier France
| | - Anthony M. J. Sanchez
- Laboratoire Européen Performance Santé AltitudeEA4604, University of Perpignan Via DomitiaFaculty of Sports Sciences Font‐Romeu France
| | - Allan F. Pagano
- Université de Montpellier INRA UMR866 Dynamique Musculaire et Métabolisme F‐34060 Montpellier France
| | - Robin Candau
- Université de Montpellier INRA UMR866 Dynamique Musculaire et Métabolisme F‐34060 Montpellier France
| |
Collapse
|
10
|
Rassier DE, Kashina A. Protein arginylation of cytoskeletal proteins in the muscle: modifications modifying function. Am J Physiol Cell Physiol 2019; 316:C668-C677. [PMID: 30789755 PMCID: PMC6580163 DOI: 10.1152/ajpcell.00500.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 12/30/2022]
Abstract
The cytoskeleton drives many essential processes in normal physiology, and its impairments underlie many diseases, including skeletal myopathies, cancer, and heart failure, that broadly affect developed countries worldwide. Cytoskeleton regulation is a field of investigation of rapidly emerging global importance and a new venue for the development of potential therapies. This review overviews our present understanding of the posttranslational regulation of the muscle cytoskeleton through arginylation, a tRNA-dependent addition of arginine to proteins mediated by arginyltransferase 1. We focus largely on arginylation-dependent regulation of striated muscles, shown to play critical roles in facilitating muscle integrity, contractility, regulation, and strength.
Collapse
Affiliation(s)
- Dilson E Rassier
- Department of Kinesiology and Physical Education, McGill University , Montreal, Quebec , Canada
| | - Anna Kashina
- Department of Biomedical Sciences, University of Pennsylvania , Philadelphia, Pennsylvania
| |
Collapse
|
11
|
Herrero-Galán E, Martínez-Martín I, Alegre-Cebollada J. Redox regulation of protein nanomechanics in health and disease: Lessons from titin. Redox Biol 2018; 21:101074. [PMID: 30584979 PMCID: PMC6305763 DOI: 10.1016/j.redox.2018.101074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/22/2018] [Accepted: 12/07/2018] [Indexed: 01/11/2023] Open
Abstract
The nanomechanics of sarcomeric proteins is a key contributor to the mechanical output of muscle. Among them, titin emerges as a main target for the regulation of the stiffness of striated muscle. In the last years, single-molecule experiments by Atomic Force Microscopy (AFM) have demonstrated that redox posttranslational modifications are strong modulators of the mechanical function of titin. Here, we provide an overview of the recent development of the redox mechanobiology of titin, and suggest avenues of research to better understand how the stiffness of molecules, cells and tissues are modulated by redox signaling in health and disease.
Collapse
|
12
|
Leite FDS, Kashina A, Rassier DE. Posttranslational Arginylation Regulates Striated Muscle Function. Exerc Sport Sci Rev 2018; 44:98-103. [PMID: 27111480 DOI: 10.1249/jes.0000000000000079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Felipe de Souza Leite
- 1Department of Kinesiology and Physical Education, Physics and Physiology, McGill University, Montreal, Quebec, Canada; and 2Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | | | | |
Collapse
|
13
|
Affiliation(s)
- Mei Methawasin
- From the Cellular and Molecular Medicine Department and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson
| | - Henk Granzier
- From the Cellular and Molecular Medicine Department and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson.
| |
Collapse
|
14
|
Wang L, Geist J, Grogan A, Hu LYR, Kontrogianni-Konstantopoulos A. Thick Filament Protein Network, Functions, and Disease Association. Compr Physiol 2018; 8:631-709. [PMID: 29687901 PMCID: PMC6404781 DOI: 10.1002/cphy.c170023] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sarcomeres consist of highly ordered arrays of thick myosin and thin actin filaments along with accessory proteins. Thick filaments occupy the center of sarcomeres where they partially overlap with thin filaments. The sliding of thick filaments past thin filaments is a highly regulated process that occurs in an ATP-dependent manner driving muscle contraction. In addition to myosin that makes up the backbone of the thick filament, four other proteins which are intimately bound to the thick filament, myosin binding protein-C, titin, myomesin, and obscurin play important structural and regulatory roles. Consistent with this, mutations in the respective genes have been associated with idiopathic and congenital forms of skeletal and cardiac myopathies. In this review, we aim to summarize our current knowledge on the molecular structure, subcellular localization, interacting partners, function, modulation via posttranslational modifications, and disease involvement of these five major proteins that comprise the thick filament of striated muscle cells. © 2018 American Physiological Society. Compr Physiol 8:631-709, 2018.
Collapse
Affiliation(s)
- Li Wang
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, USA
| | - Janelle Geist
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, USA
| | - Alyssa Grogan
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, USA
| | - Li-Yen R. Hu
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, USA
| | | |
Collapse
|
15
|
Wang J, Pavlyk I, Vedula P, Sterling S, Leu NA, Dong DW, Kashina A. Arginyltransferase ATE1 is targeted to the neuronal growth cones and regulates neurite outgrowth during brain development. Dev Biol 2017; 430:41-51. [PMID: 28844905 PMCID: PMC5628761 DOI: 10.1016/j.ydbio.2017.08.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/01/2017] [Accepted: 08/23/2017] [Indexed: 01/17/2023]
Abstract
Arginylation is an emerging protein modification mediated by arginyltransferase ATE1, shown to regulate embryogenesis and actin cytoskeleton, however its functions in different physiological systems are not well understood. Here we analyzed the role of ATE1 in brain development and neuronal growth by producing a conditional mouse knockout with Ate1 deletion in the nervous system driven by Nestin promoter (Nes-Ate1 mice). These mice were weaker than wild type, resulting in low postnatal survival rates, and had abnormalities in the brain that suggested defects in neuronal migration. Cultured Ate1 knockout neurons showed a reduction in the neurite outgrowth and the levels of doublecortin and F-actin in the growth cones. In wild type, ATE1 prominently localized to the growth cones, in addition to the cell bodies. Examination of the Ate1 mRNA sequence reveals the existence of putative zipcode-binding sequences involved in mRNA targeting to the cell periphery and local translation at the growth cones. Fluorescence in situ hybridization showed that Ate1 mRNA localized to the tips of the growth cones, likely due to zipcode-mediated targeting, and this localization coincided with spots of localization of arginylated β-actin, which disappeared in the presence of protein synthesis inhibitors. We propose that zipcode-mediated co-targeting of Ate1 and β-actin mRNA leads to localized co-translational arginylation of β-actin that drives the growth cone migration and neurite outgrowth.
Collapse
Affiliation(s)
- Junling Wang
- University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA 19104, United States
| | - Iuliia Pavlyk
- University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA 19104, United States
| | - Pavan Vedula
- University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA 19104, United States
| | - Stephanie Sterling
- University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA 19104, United States
| | - N Adrian Leu
- University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA 19104, United States
| | - Dawei W Dong
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Anna Kashina
- University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA 19104, United States.
| |
Collapse
|
16
|
Microfluidic perfusion shows intersarcomere dynamics within single skeletal muscle myofibrils. Proc Natl Acad Sci U S A 2017; 114:8794-8799. [PMID: 28765372 DOI: 10.1073/pnas.1700615114] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The sarcomere is the smallest functional unit of myofibrils in striated muscles. Sarcomeres are connected in series through a network of elastic and structural proteins. During myofibril activation, sarcomeres develop forces that are regulated through complex dynamics among their structures. The mechanisms that regulate intersarcomere dynamics are unclear, which limits our understanding of fundamental muscle features. Such dynamics are associated with the loss in forces caused by mechanical instability encountered in muscle diseases and cardiomyopathy and may underlie potential target treatments for such conditions. In this study, we developed a microfluidic perfusion system to control one sarcomere within a myofibril, while measuring the individual behavior of all sarcomeres. We found that the force from one sarcomere leads to adjustments of adjacent sarcomeres in a mechanism that is dependent on the sarcomere length and the myofibril stiffness. We concluded that the cooperative work of the contractile and the elastic elements within a myofibril rules the intersarcomere dynamics, with important consequences for muscle contraction.
Collapse
|
17
|
Tampering with springs: phosphorylation of titin affecting the mechanical function of cardiomyocytes. Biophys Rev 2017; 9:225-237. [PMID: 28510118 PMCID: PMC5498327 DOI: 10.1007/s12551-017-0263-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 03/26/2017] [Indexed: 12/17/2022] Open
Abstract
Reversible post-translational modifications of various cardiac proteins regulate the mechanical properties of the cardiomyocytes and thus modulate the contractile performance of the heart. The giant protein titin forms a continuous filament network in the sarcomeres of striated muscle cells, where it determines passive tension development and modulates active contraction. These mechanical properties of titin are altered through post-translational modifications, particularly phosphorylation. Titin contains hundreds of potential phosphorylation sites, the functional relevance of which is only beginning to emerge. Here, we provide a state-of-the-art summary of the phosphorylation sites in titin, with a particular focus on the elastic titin spring segment. We discuss how phosphorylation at specific amino acids can reduce or increase the stretch-induced spring force of titin, depending on where the spring region is phosphorylated. We also review which protein kinases phosphorylate titin and how this phosphorylation affects titin-based passive tension in cardiomyocytes. A comprehensive overview is provided of studies that have measured altered titin phosphorylation and titin-based passive tension in myocardial samples from human heart failure patients and animal models of heart disease. As our understanding of the broader implications of phosphorylation in titin progresses, this knowledge could be used to design targeted interventions aimed at reducing pathologically increased titin stiffness in patients with stiff hearts.
Collapse
|
18
|
Galiano MR, Goitea VE, Hallak ME. Post-translational protein arginylation in the normal nervous system and in neurodegeneration. J Neurochem 2016; 138:506-17. [PMID: 27318192 DOI: 10.1111/jnc.13708] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/24/2016] [Accepted: 06/13/2016] [Indexed: 02/07/2023]
Abstract
Post-translational arginylation of proteins is an important regulator of many physiological pathways in cells. This modification was originally noted in protein degradation during neurodegenerative processes, with an apparently different physiological relevance between central and peripheral nervous system. Subsequent studies have identified a steadily increasing number of proteins and proteolysis-derived polypeptides as arginyltransferase (ATE1) substrates, including β-amyloid, α-synuclein, and TDP43 proteolytic fragments. Arginylation is involved in signaling processes of proteins and polypeptides that are further ubiquitinated and degraded by the proteasome. In addition, it is also implicated in autophagy/lysosomal degradation pathway. Recent studies using mutant mouse strains deficient in ATE1 indicate additional roles of this modification in neuronal physiology. As ATE1 is capable of modifying proteins either at the N-terminus or middle-chain acidic residues, determining which proteins function are modulated by arginylation represents a big challenge. Here, we review studies addressing various roles of ATE1 activity in nervous system function, and suggest future research directions that will clarify the role of post-translational protein arginylation in brain development and various neurological disorders. Arginyltransferase (ATE1), the enzyme responsible for post-translational arginylation, modulates the functions of a wide variety of proteins and polypeptides, and is also involved in the main degradation pathways of intracellular proteins. Regulatory roles of ATE1 have been well defined for certain organs. However, its roles in nervous system development and neurodegenerative processes remain largely unknown, and present exciting opportunities for future research, as discussed in this review.
Collapse
Affiliation(s)
- Mauricio R Galiano
- Centro de Investigaciones de Química Biológica de Córdoba, CIQUIBIC, Departamento de Química Biológica, Facultad de Ciencias Químicas, CONICET, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - Victor E Goitea
- Centro de Investigaciones de Química Biológica de Córdoba, CIQUIBIC, Departamento de Química Biológica, Facultad de Ciencias Químicas, CONICET, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - Marta E Hallak
- Centro de Investigaciones de Química Biológica de Córdoba, CIQUIBIC, Departamento de Química Biológica, Facultad de Ciencias Químicas, CONICET, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| |
Collapse
|
19
|
Krüger M, Kötter S. Titin, a Central Mediator for Hypertrophic Signaling, Exercise-Induced Mechanosignaling and Skeletal Muscle Remodeling. Front Physiol 2016; 7:76. [PMID: 26973541 PMCID: PMC4771757 DOI: 10.3389/fphys.2016.00076] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/15/2016] [Indexed: 01/09/2023] Open
Abstract
Titin is a giant scaffold protein with multiple functions in striated muscle physiology. Due to the elastic I-band domains and the filament-like integration in the half-sarcomere titin is an important factor for sarcomere assembly and serves as an adaptable molecular spring that determines myofilament distensibility. Protein-interactions e.g., with muscle ankyrin repeat proteins or muscle LIM-protein link titin to hypertrophic signaling and via p62 and Muscle Ring Finger proteins to mechanisms that control protein quality control. This review summarizes our current knowledge on titin as a central node for exercise-induced mechanosignaling and remodeling and further highlights the pathophysiological implications.
Collapse
Affiliation(s)
- Martina Krüger
- Institute of Cardiovascular Physiology, Heinrich Heine University Düsseldorf Düsseldorf, Germany
| | - Sebastian Kötter
- Institute of Cardiovascular Physiology, Heinrich Heine University Düsseldorf Düsseldorf, Germany
| |
Collapse
|