1
|
Gookin JL, Holmes J, Clarke LL, Stauffer SH, Meredith B, Vandewege MW, Torres-Machado N, Friedenberg SG, Seiler GS, Mathews KG, Meurs K. Acquired dysfunction of CFTR underlies cystic fibrosis-like disease of the canine gallbladder. Am J Physiol Gastrointest Liver Physiol 2024; 327:G513-G530. [PMID: 39041675 PMCID: PMC11482251 DOI: 10.1152/ajpgi.00145.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Mucocele formation in dogs is a unique and enigmatic muco-obstructive disease of the gallbladder caused by the amassment of abnormal mucus that bears striking pathological similarity to cystic fibrosis. We investigated the role of cystic fibrosis transmembrane conductance regulatory protein (CFTR) in the pathogenesis of this disease. The location and frequency of disease-associated variants in the coding region of CFTR were compared using whole genome sequence data from 2,642 dogs representing breeds at low-risk, high-risk, or with confirmed disease. Expression, localization, and ion transport activity of CFTR were quantified in control and mucocele gallbladders by NanoString, Western blotting, immunofluorescence imaging, and studies in Ussing chambers. Our results establish a significant loss of CFTR-dependent anion secretion by mucocele gallbladder mucosa. A significantly lower quantity of CFTR protein was demonstrated relative to E-cadherin in mucocele compared with control gallbladder mucosa. Immunofluorescence identified CFTR along the apical membrane of epithelial cells in control gallbladders but not in mucocele gallbladder epithelium. Decreases in mRNA copy number for CFTR were accompanied by decreases in mRNA for the Cl-/[Formula: see text] exchanger SLC26A3, K+ channels (KCNQ1, KCNN4), and vasoactive intestinal polypeptide receptor (VIPR1), which suggest a driving force for change in secretory function of gallbladder epithelial cells in the pathogenesis of mucocele formation. There were no significant differences in CFTR gene variant frequency, type, or predicted impact comparing low-risk, high-risk, and definitively diagnosed groups of dogs. This study describes a unique, naturally occurring muco-obstructive disease of the canine gallbladder, with uncanny similarity to cystic fibrosis, and driven by the underlying failure of CFTR function.NEW & NOTEWORTHY Cystic fibrosis transmembrane conductance regulatory protein (CFTR) genomic variants and expression of mRNA, protein, and electrogenic anion secretory activity of CFTR were characterized in dog gallbladder. Acquired inhibition of CFTR expression by gallbladder epithelium was identified as underpinning a naturally occurring muco-obstructive disease of the dog gallbladder that bears striking pathological similarity to animal models of cystic fibrosis.
Collapse
Affiliation(s)
- Jody L Gookin
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States
| | - Jenny Holmes
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States
| | - Lane L Clarke
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States
| | - Stephen H Stauffer
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States
| | - Bryanna Meredith
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States
| | - Michael W Vandewege
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States
| | - Nicole Torres-Machado
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States
| | - Steven G Friedenberg
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, United States
| | - Gabriela S Seiler
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States
| | - Kyle G Mathews
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States
| | - Kathryn Meurs
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States
| |
Collapse
|
2
|
Kitayama E, Kimura M, Ouchi T, Furusawa M, Shibukawa Y. Functional Expression of IP, 5-HT 4, D 1, A 2A, and VIP Receptors in Human Odontoblast Cell Line. Biomolecules 2023; 13:879. [PMID: 37371459 DOI: 10.3390/biom13060879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/26/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
Odontoblasts are involved in sensory generation as sensory receptor cells and in dentin formation. We previously reported that an increase in intracellular cAMP levels by cannabinoid 1 receptor activation induces Ca2+ influx via transient receptor potential vanilloid subfamily member 1 channels in odontoblasts, indicating that intracellular cAMP/Ca2+ signal coupling is involved in dentinal pain generation and reactionary dentin formation. Here, intracellular cAMP dynamics in cultured human odontoblasts were investigated to understand the detailed expression patterns of the intracellular cAMP signaling pathway activated by the Gs protein-coupled receptor and to clarify its role in cellular functions. The presence of plasma membrane Gαs as well as prostaglandin I2 (IP), 5-hydroxytryptamine 5-HT4 (5-HT4), dopamine D1 (D1), adenosine A2A (A2A), and vasoactive intestinal polypeptide (VIP) receptor immunoreactivity was observed in human odontoblasts. In the presence of extracellular Ca2+, the application of agonists for the IP (beraprost), 5-HT4 (BIMU8), D1 (SKF83959), A2A (PSB0777), and VIP (VIP) receptors increased intracellular cAMP levels. This increase in cAMP levels was inhibited by the application of the adenylyl cyclase (AC) inhibitor SQ22536 and each receptor antagonist, dose-dependently. These results suggested that odontoblasts express Gs protein-coupled IP, 5-HT4, D1, A2A, and VIP receptors. In addition, activation of these receptors increased intracellular cAMP levels by activating AC in odontoblasts.
Collapse
Affiliation(s)
- Eri Kitayama
- Department of Physiology, Tokyo Dental College, 2-9-18, Kanda-Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
- Department of Endodontics, Tokyo Dental College, 2-9-18, Kanda-Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Maki Kimura
- Department of Physiology, Tokyo Dental College, 2-9-18, Kanda-Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Takehito Ouchi
- Department of Physiology, Tokyo Dental College, 2-9-18, Kanda-Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Masahiro Furusawa
- Department of Endodontics, Tokyo Dental College, 2-9-18, Kanda-Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Yoshiyuki Shibukawa
- Department of Physiology, Tokyo Dental College, 2-9-18, Kanda-Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| |
Collapse
|
3
|
Al-Keilani MS, Awad S, Hammouri HM, Al Shalakhti T, Almomani BA, Dahabreh MM, Ajlony MJ. Evaluation of serum VIP and aCGRP during pulmonary exacerbation in cystic fibrosis: A longitudinal pilot study of patients undergoing antibiotic therapy. PLoS One 2023; 18:e0284511. [PMID: 37146001 PMCID: PMC10162560 DOI: 10.1371/journal.pone.0284511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 04/02/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Objective monitoring of improvement during treatment of pulmonary exacerbation can be difficulty in children when pulmonary function testing cannot be obtained. Thus, the identification of predictive biomarkers to determine the efficacy of drug treatments is of high priority. The major aim of the current study was to investigate the serum levels of vasoactive intestinal peptide (VIP) and alpha calcitonin gene related peptide (aCGRP) of cystic fibrosis pediatric patients during pulmonary exacerbation and post-antibiotic therapy, and possible associations of their levels with different clinicopathological parameters. METHODS 21 patients with cystic fibrosis were recruited at onset of pulmonary exacerbation. Serum was collected at time of admission, three days post-antibiotic therapy, and two weeks post-antibiotic therapy (end of antibiotic therapy). Serum VIP and aCGRP levels were measured using ELISA. RESULTS Overall least square means of serum aCGRP level but not VIP changed from time of exacerbation to completion of antibiotic therapy (p = 0.005). Serum VIP was significantly associated with the presence of diabetes mellitus (p = 0.026) and other comorbidities (p = 0.013), and with type of antibiotic therapy (p = 0.019). Serum aCGRP level was significantly associated with type of antibiotic therapy (p = 0.012) and positive Staphylococcus aureus microbiology test (p = 0.046). CONCLUSION This study could only show significant changes in serum aCGRP levels following treatment of pulmonary exacerbations. Future studies with larger sample size are required to investigate the clinical importance of VIP and aCGRP in cystic fibrosis patients.
Collapse
Affiliation(s)
- Maha S Al-Keilani
- Department of Clinical Pharmacy, College of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Samah Awad
- Department of Pediatrics and Neonatology, College of Medicine, Jordan University of Science and Technology, Irbid, Jordan
- Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Hanan M Hammouri
- Department of Mathematics and Statistics, College of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| | - Tala Al Shalakhti
- Department of Pediatrics and Neonatology, College of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Basima A Almomani
- Department of Clinical Pharmacy, College of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Muna M Dahabreh
- Department of Respiratory Medicine, Royal London Hospital Barts NHS Trust, London, United Kingdom
| | | |
Collapse
|
4
|
Semaniakou A, Chappe F, Anini Y, Chappe V. VIP reduction in the pancreas of F508del homozygous CF mice and early signs of Cystic Fibrosis Related Diabetes (CFRD). J Cyst Fibros 2021; 20:881-890. [PMID: 34034984 DOI: 10.1016/j.jcf.2021.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 12/19/2022]
Abstract
Vasoactive intestinal peptide (VIP), a 28-amino acid neuropeptide with potent anti-inflammatory, bronchodilatory and immunomodulatory functions, is secreted by intrinsic neurons innervating all exocrine glands, including the pancreas, in which it exerts a regulatory function in the secretion of insulin and glucagon. Cystic fibrosis-related diabetes (CFRD) is the most common co-morbidity associated with cystic fibrosis (CF), impacting approximately 50% of adult patients. We recently demonstrated a 50% reduction of VIP abundance in the lungs, duodenum and sweat glands of C57Bl/6 CF mice homozygous for the F508del-CFTR disease-causing mutation. VIP deficiency resulted from a reduction in VIPergic and cholinergic innervation, starting before signs of CF disease were observed. As VIP functions as a neuromodulator with insulinotropic effect on pancreatic beta cells, we sought to study changes in VIP in the pancreas of CF mice. Our goal was to examine VIP content and VIPergic innervation in the pancreas of 8- and 17-week-old F508del-CFTR homozygous mice and to determine whether changes in VIP levels would contribute to CFRD development. Our data showed that a decreased amount of VIP and reduced innervation are found in CF mice pancreas, and that these mice also exhibited reduced insulin secretion, up-regulation of glucagon production and high random blood glucose levels compared to same-age wild-type mice. We propose that low level of VIP, due to reduced innervation of the CF pancreas and starting at an early disease stage, contributes to changes in insulin and glucagon secretion that can lead to CFRD development.
Collapse
Affiliation(s)
- Anna Semaniakou
- Department of Physiology & Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Frederic Chappe
- Department of Physiology & Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Younes Anini
- Department of Physiology & Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada; Obstetrics and Gynecology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Valerie Chappe
- Department of Physiology & Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
5
|
Herath M, Hosie S, Bornstein JC, Franks AE, Hill-Yardin EL. The Role of the Gastrointestinal Mucus System in Intestinal Homeostasis: Implications for Neurological Disorders. Front Cell Infect Microbiol 2020; 10:248. [PMID: 32547962 PMCID: PMC7270209 DOI: 10.3389/fcimb.2020.00248] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/29/2020] [Indexed: 12/19/2022] Open
Abstract
Mucus is integral to gut health and its properties may be affected in neurological disease. Mucus comprises a hydrated network of polymers including glycosylated mucin proteins. We propose that factors that influence the nervous system may also affect the volume, viscosity, porosity of mucus composition and subsequently, gastrointestinal (GI) microbial populations. The gut has its own intrinsic neuronal network, the enteric nervous system, which extends the length of the GI tract and innervates the mucosal epithelium. The ENS regulates gut function including mucus secretion and renewal. Both dysbiosis and gut dysfunction are commonly reported in several neurological disorders such as Parkinson's and Alzheimer's disease as well in patients with neurodevelopmental disorders including autism. Since some microbes use mucus as a prominent energy source, changes in mucus properties could alter, and even exacerbate, dysbiosis-related gut symptoms in neurological disorders. This review summarizes existing knowledge of the structure and function of the mucus of the GI tract and highlights areas to be addressed in future research to better understand how intestinal homeostasis is impacted in neurological disorders.
Collapse
Affiliation(s)
- Madushani Herath
- Department of Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Suzanne Hosie
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Joel C Bornstein
- Department of Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Ashley E Franks
- School of Life Sciences, La Trobe University, Bundoora, VIC, Australia
| | - Elisa L Hill-Yardin
- Department of Physiology, University of Melbourne, Parkville, VIC, Australia.,School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| |
Collapse
|
6
|
Sun L, Zhang Z, Yao Y, Li WY, Gu J. Analysis of expression differences of immune genes in non-small cell lung cancer based on TCGA and ImmPort data sets and the application of a prognostic model. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:550. [PMID: 32411773 PMCID: PMC7214889 DOI: 10.21037/atm.2020.04.38] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background There has been little investigation carried out into the activity of immune-related genes in the prognosis of non-small cell lung cancer (NSCLC). Our study set out to analyze the correlation between the differential expression of immune genes and NSCLC prognosis by screening the differential expression of immune genes. Based on the immune genes identified, we aimed to construct a prognostic risk model and explore some novel molecules which have predictive potential for therapeutic effect and prognosis in lung cancer. Methods Immune gene transcriptome data and clinical data of NSCLC samples were extracted from TCGA database, and transcription factors in the ImmPort dataset were obtained. The data were divided into two groups: normal tissues and tumor tissues. The expression levels of immune genes were compared using the edgeR algorithm, and then differential expression analysis was performed. The survival analysis was carried out by combining differential immune genes with clinical survival time, so that the immune genes influencing the prognosis of NSCLC could be determined. A risk score was calculated based on the expression levels of the immune genes related to the prognosis of NSCLC and their corresponding coefficients to construct a prognostic risk model. This model was used to calculate patient risk scores and perform clinical correlation analysis. The selected molecules were further verified by clinical samples. Results By comparing NSCLC tissues with normal tissues, a total of 6,778 differentially expressed genes were found (P<0.05), of which 490 were differential immune-related genes. Survival analysis determined 28 differential immune genes to be associated with prognosis (P<0.05). We calculated the patient risk value based on the immune gene prognosis model. The survival curve was drawn according to the patient risk score and showed that the survival prognosis was significantly different for the high-risk and the low-risk groups (P<0.05). The area under the receiver operating characteristic (ROC) curve (AUC) was 0.723, which represented a relatively high true-positive rate. All of the results proved the reliability of our immune gene risk prognostic model. After drawing the risk curve, S100A16, IGKV4, S100P, ANGPTL4, SEMA4B, and LGR4 were found to be the high-risk immune genes in NSCLC. Clinical correlation analysis of survival-related differential immune genes revealed that in patients with lymph node metastasis, ANGPTL4 was positively correlated with T stage, S100a16 and SEMA4B were upregulated, and VIPR1 was downregulated. Further analysis revealed that VIPR1 was decreased in metastatic lung cancer compared to non-metastatic lung cancer. Furthermore, the real-time PCR detection of the clinical samples showed that S100A16 expression in lung cancer was increased, while VIPR1 expression in lung cancer was downregulated, which was consistent with the results of our bioinformatics analysis. Conclusions Based on big data from the TCGA and ImmPort databases, our study analyzed the relationship between differential expression of immune-related genes and clinical data, and constructed a prognostic model based on the immune genes identified. Two novel molecules, S100A16 and VIPR1, were verified to possibly have significant biological function in NSCLC. Our research may provide us with new insight into the immune genes by which the malignant biological behavior of NSCLC is mediated.
Collapse
Affiliation(s)
- Lei Sun
- Department of Thoracic Surgery, the First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Zhe Zhang
- Department of Thoracic Surgery, the First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Yao Yao
- Department of Thoracic Surgery, the First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Wen-Ya Li
- Department of Thoracic Surgery, the First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Jia Gu
- Department of Otolaryngology, the First Affiliated Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
7
|
Semaniakou A, Croll RP, Chappe V. Animal Models in the Pathophysiology of Cystic Fibrosis. Front Pharmacol 2019; 9:1475. [PMID: 30662403 PMCID: PMC6328443 DOI: 10.3389/fphar.2018.01475] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/03/2018] [Indexed: 01/28/2023] Open
Abstract
Our understanding of the multiorgan pathology of cystic fibrosis (CF) has improved impressively during the last decades, but we still lack a full comprehension of the disease progression. Animal models have greatly contributed to the elucidation of specific mechanisms involved in CF pathophysiology and the development of new therapies. Soon after the cloning of the CF transmembrane conductance regulator (CFTR) gene in 1989, the first mouse model was generated and this model has dominated in vivo CF research ever since. Nonetheless, the failure of murine models to mirror human disease severity in the pancreas and lung has led to the generation of larger animal models such as pigs and ferrets. The following review presents and discusses data from the current animal models used in CF research.
Collapse
Affiliation(s)
- Anna Semaniakou
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Roger P Croll
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Valerie Chappe
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
8
|
Webster MJ, Tarran R. Slippery When Wet: Airway Surface Liquid Homeostasis and Mucus Hydration. CURRENT TOPICS IN MEMBRANES 2018; 81:293-335. [PMID: 30243435 DOI: 10.1016/bs.ctm.2018.08.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The ability to regulate cell volume is crucial for normal physiology; equally the regulation of extracellular fluid homeostasis is of great importance. Alteration of normal extracellular fluid homeostasis contributes to the development of several diseases including cystic fibrosis. With regard to the airway surface liquid (ASL), which lies apically on top of airway epithelia, ion content, pH, mucin and protein abundance must be tightly regulated. Furthermore, airway epithelia must be able to switch from an absorptive to a secretory state as required. A heterogeneous population of airway epithelial cells regulate ASL solute and solvent composition, and directly secrete large mucin molecules, antimicrobials, proteases and soluble mediators into the airway lumen. This review focuses on how epithelial ion transport influences ASL hydration and ASL pH, with a specific focus on the roles of anion and cation channels and exchangers. The role of ions and pH in mucin expansion is also addressed. With regard to fluid volume regulation, we discuss the roles of nucleotides, adenosine and the short palate lung and nasal epithelial clone 1 (SPLUNC1) as soluble ASL mediators. Together, these mechanisms directly influence ciliary beating and in turn mucociliary clearance to maintain sterility and to detoxify the airways. Whilst all of these components are regulated in normal airways, defective ion transport and/or mucin secretion proves detrimental to lung homeostasis as such we address how defective ion and fluid transport, and a loss of homeostatic mechanisms, contributes to the development of pathophysiologies associated with cystic fibrosis.
Collapse
Affiliation(s)
- Megan J Webster
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Robert Tarran
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
9
|
Atanasova KR, Reznikov LR. Neuropeptides in asthma, chronic obstructive pulmonary disease and cystic fibrosis. Respir Res 2018; 19:149. [PMID: 30081920 PMCID: PMC6090699 DOI: 10.1186/s12931-018-0846-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 07/13/2018] [Indexed: 02/07/2023] Open
Abstract
The nervous system mediates key airway protective behaviors, including cough, mucus secretion, and airway smooth muscle contraction. Thus, its involvement and potential involvement in several airway diseases has become increasingly recognized. In the current review, we focus on the contribution of select neuropeptides in three distinct airway diseases: asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis. We present data on some well-studied neuropeptides, as well as call attention to a few that have not received much consideration. Because mucus hypersecretion and mucus obstruction are common features of many airway diseases, we place special emphasis on the contribution of neuropeptides to mucus secretion. Finally, we highlight evidence implicating involvement of neuropeptides in mucus phenotypes in asthma, COPD and cystic fibrosis, as well as bring to light knowledge that is still lacking in the field.
Collapse
Affiliation(s)
- Kalina R Atanasova
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, 1333 Center Drive, PO Box 100144, Gainesville, FL, 32610, USA
| | - Leah R Reznikov
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, 1333 Center Drive, PO Box 100144, Gainesville, FL, 32610, USA.
| |
Collapse
|
10
|
Prakash YS. Emerging concepts in smooth muscle contributions to airway structure and function: implications for health and disease. Am J Physiol Lung Cell Mol Physiol 2016; 311:L1113-L1140. [PMID: 27742732 DOI: 10.1152/ajplung.00370.2016] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/06/2016] [Indexed: 12/15/2022] Open
Abstract
Airway structure and function are key aspects of normal lung development, growth, and aging, as well as of lung responses to the environment and the pathophysiology of important diseases such as asthma, chronic obstructive pulmonary disease, and fibrosis. In this regard, the contributions of airway smooth muscle (ASM) are both functional, in the context of airway contractility and relaxation, as well as synthetic, involving production and modulation of extracellular components, modulation of the local immune environment, cellular contribution to airway structure, and, finally, interactions with other airway cell types such as epithelium, fibroblasts, and nerves. These ASM contributions are now found to be critical in airway hyperresponsiveness and remodeling that occur in lung diseases. This review emphasizes established and recent discoveries that underline the central role of ASM and sets the stage for future research toward understanding how ASM plays a central role by being both upstream and downstream in the many interactive processes that determine airway structure and function in health and disease.
Collapse
Affiliation(s)
- Y S Prakash
- Departments of Anesthesiology, and Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|