1
|
Cao L, Wu Y, Gong Y, Zhou Q. Small molecule modulators of cystic fibrosis transmembrane conductance regulator (CFTR): Structure, classification, and mechanisms. Eur J Med Chem 2024; 265:116120. [PMID: 38194776 DOI: 10.1016/j.ejmech.2023.116120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/28/2023] [Accepted: 12/31/2023] [Indexed: 01/11/2024]
Abstract
The advent of small molecule modulators targeting the cystic fibrosis transmembrane conductance regulator (CFTR) has revolutionized the treatment of persons with cystic fibrosis (CF) (pwCF). Presently, these small molecule CFTR modulators have gained approval for usage in approximately 90 % of adult pwCF. Ongoing drug development endeavors are focused on optimizing the therapeutic benefits while mitigating potential adverse effects associated with this treatment approach. Based on their mode of interaction with CFTR, these drugs can be classified into two distinct categories: specific CFTR modulators and non-specific CFTR modulators. Specific CFTR modulators encompass potentiators and correctors, whereas non-specific CFTR modulators encompass activators, proteostasis modulators, stabilizers, reader-through agents, and amplifiers. Currently, four small molecule modulators, all classified as potentiators and correctors, have obtained marketing approval. Furthermore, numerous novel small molecule modulators, exhibiting diverse mechanisms of action, are currently undergoing development. This review aims to explore the classification, mechanisms of action, molecular structures, developmental processes, and interrelationships among small molecule CFTR modulators.
Collapse
Affiliation(s)
- Luyang Cao
- China Pharmaceutical University, Nanjing, 210009, PR China
| | - Yong Wu
- Jiangsu Vcare PharmaTech Co., Ltd., Huakang Road 136, Biotech and Pharmaceutical Valley, Jiangbei New Area, Nanjing, 211800, PR China
| | - Yanchun Gong
- Jiangsu Vcare PharmaTech Co., Ltd., Huakang Road 136, Biotech and Pharmaceutical Valley, Jiangbei New Area, Nanjing, 211800, PR China.
| | - Qingfa Zhou
- China Pharmaceutical University, Nanjing, 210009, PR China.
| |
Collapse
|
2
|
Kim HJ, Hong JH. Multiple Regulatory Signals and Components in the Modulation of Bicarbonate Transporters. Pharmaceutics 2024; 16:78. [PMID: 38258089 PMCID: PMC10820580 DOI: 10.3390/pharmaceutics16010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Bicarbonate transporters are responsible for the appropriate flux of bicarbonate across the plasma membrane to perform various fundamental cellular functions. The functions of bicarbonate transporters, including pH regulation, cell migration, and inflammation, are highlighted in various cellular systems, encompassing their participation in both physiological and pathological processes. In this review, we focused on recently identified modulatory signaling components that regulate the expression and activity of bicarbonate transporters. Moreover, we addressed recent advances in our understanding of cooperative systems of bicarbonate transporters and channelopathies. This current review aims to provide a new, in-depth understanding of numerous human diseases associated with the dysfunction of bicarbonate transporters.
Collapse
Affiliation(s)
| | - Jeong Hee Hong
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, 155 Getbeolro, Yeonsu-gu, Incheon 21999, Republic of Korea;
| |
Collapse
|
3
|
Al-Keilani MS, Awad S, Hammouri HM, Al Shalakhti T, Almomani BA, Dahabreh MM, Ajlony MJ. Evaluation of serum VIP and aCGRP during pulmonary exacerbation in cystic fibrosis: A longitudinal pilot study of patients undergoing antibiotic therapy. PLoS One 2023; 18:e0284511. [PMID: 37146001 PMCID: PMC10162560 DOI: 10.1371/journal.pone.0284511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 04/02/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Objective monitoring of improvement during treatment of pulmonary exacerbation can be difficulty in children when pulmonary function testing cannot be obtained. Thus, the identification of predictive biomarkers to determine the efficacy of drug treatments is of high priority. The major aim of the current study was to investigate the serum levels of vasoactive intestinal peptide (VIP) and alpha calcitonin gene related peptide (aCGRP) of cystic fibrosis pediatric patients during pulmonary exacerbation and post-antibiotic therapy, and possible associations of their levels with different clinicopathological parameters. METHODS 21 patients with cystic fibrosis were recruited at onset of pulmonary exacerbation. Serum was collected at time of admission, three days post-antibiotic therapy, and two weeks post-antibiotic therapy (end of antibiotic therapy). Serum VIP and aCGRP levels were measured using ELISA. RESULTS Overall least square means of serum aCGRP level but not VIP changed from time of exacerbation to completion of antibiotic therapy (p = 0.005). Serum VIP was significantly associated with the presence of diabetes mellitus (p = 0.026) and other comorbidities (p = 0.013), and with type of antibiotic therapy (p = 0.019). Serum aCGRP level was significantly associated with type of antibiotic therapy (p = 0.012) and positive Staphylococcus aureus microbiology test (p = 0.046). CONCLUSION This study could only show significant changes in serum aCGRP levels following treatment of pulmonary exacerbations. Future studies with larger sample size are required to investigate the clinical importance of VIP and aCGRP in cystic fibrosis patients.
Collapse
Affiliation(s)
- Maha S Al-Keilani
- Department of Clinical Pharmacy, College of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Samah Awad
- Department of Pediatrics and Neonatology, College of Medicine, Jordan University of Science and Technology, Irbid, Jordan
- Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Hanan M Hammouri
- Department of Mathematics and Statistics, College of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| | - Tala Al Shalakhti
- Department of Pediatrics and Neonatology, College of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Basima A Almomani
- Department of Clinical Pharmacy, College of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Muna M Dahabreh
- Department of Respiratory Medicine, Royal London Hospital Barts NHS Trust, London, United Kingdom
| | | |
Collapse
|
4
|
Patko E, Szabo E, Toth D, Tornoczky T, Bosnyak I, Vaczy A, Atlasz T, Reglodi D. Distribution of PACAP and PAC1 Receptor in the Human Eye. J Mol Neurosci 2022; 72:2176-2187. [PMID: 35253081 PMCID: PMC9726800 DOI: 10.1007/s12031-022-01985-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/08/2022] [Indexed: 12/16/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide with widespread distribution and diverse biological functions. Several studies show that PACAP has strong cytoprotective effects mediated mostly through its specific PAC1 receptor (PAC1-R) and it plays important roles in several pathological conditions. Its distribution and altered expression are known in various human tissues, but there is no descriptive data about PACAP and its receptors in the human eyebulb. Since PACAP38 is the dominant form of the naturally occurring PACAP, our aim was to investigate the distribution of PACAP38-like immunoreactivity in the human eye and to describe the presence of PAC1-R. Semiquantitative evaluation was performed after routine histology and immunohistochemical labeling on human eye sections. Our results showed high level of immunopositivity in the corneal epithelium and endothelium. Within the vascular layer, the iris and the ciliary body had strong immunopositivity for both PACAP and PAC1-R. Several layers of the retina showed immunoreactivity for PACAP and PAC1-R, but the ganglion cell layer had a special pattern in the immunolabeling. Labeling was observed in the neuropil within the optic nerve in both cases and glial cells displayed immunoreactivity for PAC1-R. In summary, our study indicates the widespread occurrence of PACAP and its specific receptor in the human eye, implying that the results from in vitro and animal studies have translational value and most probably are also present in the human eye.
Collapse
Affiliation(s)
- Evelin Patko
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Team, University of Pecs, 7624, Pecs, Hungary
| | - Edina Szabo
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Team, University of Pecs, 7624, Pecs, Hungary
| | - Denes Toth
- Department of Forensic Medicine, Medical School, University of Pecs, 7624, Pecs, Hungary
| | - Tamas Tornoczky
- Department of Pathology, Medical School and Clinical Center, University of Pecs, 7624, Pecs, Hungary
| | - Inez Bosnyak
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Team, University of Pecs, 7624, Pecs, Hungary
| | - Alexandra Vaczy
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Team, University of Pecs, 7624, Pecs, Hungary
| | - Tamas Atlasz
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Team, University of Pecs, 7624, Pecs, Hungary.
- Szentagothai Research Center, Medical School, University of Pecs, 7624, Pecs, Hungary.
- Department of Sportbiology, University of Pecs, 7624, Pecs, Hungary.
| | - Dora Reglodi
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Team, University of Pecs, 7624, Pecs, Hungary
- Szentagothai Research Center, Medical School, University of Pecs, 7624, Pecs, Hungary
| |
Collapse
|
5
|
Ensinck MM, Carlon MS. One Size Does Not Fit All: The Past, Present and Future of Cystic Fibrosis Causal Therapies. Cells 2022; 11:cells11121868. [PMID: 35740997 PMCID: PMC9220995 DOI: 10.3390/cells11121868] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 02/04/2023] Open
Abstract
Cystic fibrosis (CF) is the most common monogenic disorder, caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. Over the last 30 years, tremendous progress has been made in understanding the molecular basis of CF and the development of treatments that target the underlying defects in CF. Currently, a highly effective CFTR modulator treatment (Kalydeco™/Trikafta™) is available for 90% of people with CF. In this review, we will give an extensive overview of past and ongoing efforts in the development of therapies targeting the molecular defects in CF. We will discuss strategies targeting the CFTR protein (i.e., CFTR modulators such as correctors and potentiators), its cellular environment (i.e., proteostasis modulation, stabilization at the plasma membrane), the CFTR mRNA (i.e., amplifiers, nonsense mediated mRNA decay suppressors, translational readthrough inducing drugs) or the CFTR gene (gene therapies). Finally, we will focus on how these efforts can be applied to the 15% of people with CF for whom no causal therapy is available yet.
Collapse
Affiliation(s)
- Marjolein M. Ensinck
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Flanders, Belgium;
| | - Marianne S. Carlon
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Flanders, Belgium;
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Flanders, Belgium
- Correspondence:
| |
Collapse
|
6
|
Brusa I, Sondo E, Falchi F, Pedemonte N, Roberti M, Cavalli A. Proteostasis Regulators in Cystic Fibrosis: Current Development and Future Perspectives. J Med Chem 2022; 65:5212-5243. [PMID: 35377645 PMCID: PMC9014417 DOI: 10.1021/acs.jmedchem.1c01897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In cystic fibrosis (CF), the deletion of phenylalanine 508 (F508del) in the CF transmembrane conductance regulator (CFTR) leads to misfolding and premature degradation of the mutant protein. These defects can be targeted with pharmacological agents named potentiators and correctors. During the past years, several efforts have been devoted to develop and approve new effective molecules. However, their clinical use remains limited, as they fail to fully restore F508del-CFTR biological function. Indeed, the search for CFTR correctors with different and additive mechanisms has recently increased. Among them, drugs that modulate the CFTR proteostasis environment are particularly attractive to enhance therapy effectiveness further. This Perspective focuses on reviewing the recent progress in discovering CFTR proteostasis regulators, mainly describing the design, chemical structure, and structure-activity relationships. The opportunities, challenges, and future directions in this emerging and promising field of research are discussed, as well.
Collapse
Affiliation(s)
- Irene Brusa
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy.,Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Elvira Sondo
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | | | | | - Marinella Roberti
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Andrea Cavalli
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy.,Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| |
Collapse
|
7
|
The COVID-19 Cell Signalling Problem: Spike, RAGE, PKC, p38, NFκB & IL-6 Hyper-Expression and the Human Ezrin Peptide, VIP, PKA-CREB Solution. IMMUNO 2022. [DOI: 10.3390/immuno2020017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
SARS-CoV-2 infection inhibits interferon expression, while hyper-activating innate-immune signalling and expression of pro-inflammatory cytokines. SARS-CoV-2 proteins: Spike, M and nsp6, nsp12 and nsp13 inhibit IFR3-mediated Type-1-interferon defence, but hyper-activate intracellular signalling, which leads to dysfunctional expression of pro-inflammatory cytokines, particularly IL-1β IL-6, IL-8, and TNFα. Ezrin, a sub-membrane adaptor-protein, organises multi-protein-complexes such as ezrin+NHERF1+NHE+CFTR, which control the density and location of ACE2 receptor expression on the luminal surface of airway-epithelial-cells, as well as determining susceptibility to SARS-CoV-2 infection. This protein complex is vital for lung-surfactant production for efficient gas-exchange. Ezrin also forms multi-protein-complexes that regulate signalling kinases; Ras, PKC, PI3K, and PKA. m-RAGE is a pattern-recognition-receptor of the innate immune system that is triggered by AGEs, which are chemically modified proteins common in the elderly and obese. m-RAGE forms multi-protein complexes with ezrin and TIRAP, a toll-like-receptor adaptor-protein. The main cause of COVID-19 is not viral infection but pro-inflammatory p38MAPK signalling mediated by TLRs and RAGE. In contrast, it appears that activated ezrin+PKA signalling results in the activation of transcription-factor CREB, which suppresses NFκB mediated pro-inflammatory cytokine expression. In addition, competition between ezrin and TIRAP to form multi-protein-complexes on membrane PIP2-lipid-rafts is a macromolecular-switch that changes the priority from innate immune activation programs to adaptive immune activation programs. Human Vasoactive Intestinal Peptide (VIP), and Human Ezrin Peptides (HEP-1 and RepG3) probably inhibit COVID-19 by activating the ezrin+PKA and ras>Raf>MEK>ERK>RSK>CREB>IL-10 signalling, which favours activation of adaptive immunity programs and inhibition of the dysfunctional innate-inflammation, the cause of COVID-19. HEP-1, RepG3, and VIP in individual human volunteers and in small clinical studies have been shown to be effective COVID-19 therapies, and seem to have a closely related mechanism of action.
Collapse
|
8
|
Farinha CM, Gentzsch M. Revisiting CFTR Interactions: Old Partners and New Players. Int J Mol Sci 2021; 22:13196. [PMID: 34947992 PMCID: PMC8703571 DOI: 10.3390/ijms222413196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 01/07/2023] Open
Abstract
Remarkable progress in CFTR research has led to the therapeutic development of modulators that rescue the basic defect in cystic fibrosis. There is continuous interest in studying CFTR molecular disease mechanisms as not all cystic fibrosis patients have a therapeutic option available. Addressing the basis of the problem by comprehensively understanding the critical molecular associations of CFTR interactions remains key. With the availability of CFTR modulators, there is interest in comprehending which interactions are critical to rescue CFTR and which are altered by modulators or CFTR mutations. Here, the current knowledge on interactions that govern CFTR folding, processing, and stability is summarized. Furthermore, we describe protein complexes and signal pathways that modulate the CFTR function. Primary epithelial cells display a spatial control of the CFTR interactions and have become a common system for preclinical and personalized medicine studies. Strikingly, the novel roles of CFTR in development and differentiation have been recently uncovered and it has been revealed that specific CFTR gene interactions also play an important role in transcriptional regulation. For a comprehensive understanding of the molecular environment of CFTR, it is important to consider CFTR mutation-dependent interactions as well as factors affecting the CFTR interactome on the cell type, tissue-specific, and transcriptional levels.
Collapse
Affiliation(s)
- Carlos M. Farinha
- BioISI—Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal
| | - Martina Gentzsch
- Marsico Lung Institute and Cystic Fibrosis Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Pediatrics, Division of Pediatric Pulmonology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
9
|
Bergeron C, Cantin AM. New Therapies to Correct the Cystic Fibrosis Basic Defect. Int J Mol Sci 2021; 22:ijms22126193. [PMID: 34201249 PMCID: PMC8227161 DOI: 10.3390/ijms22126193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/31/2021] [Accepted: 06/04/2021] [Indexed: 12/24/2022] Open
Abstract
Rare diseases affect 400 million individuals worldwide and cause significant morbidity and mortality. Finding solutions for rare diseases can be very challenging for physicians and researchers. Cystic fibrosis (CF), a genetic, autosomal recessive, multisystemic, life-limiting disease does not escape this sad reality. Despite phenomenal progress in our understanding of this disease, treatment remains difficult. Until recently, therapies for CF individuals were focused on symptom management. The discovery of the cystic fibrosis transmembrane conductance regulator (CFTR) gene and its product, a protein present at the apical surface of epithelial cells regulating ion transport, allowed the scientific community to learn about the basic defect in CF and to study potential therapies targeting the dysfunctional protein. In the past few years, promising therapies with the goal to restore CFTR function became available and changed the lives of several CF patients. These medications, called CFTR modulators, aim to correct, potentialize, stabilize or amplify CFTR function. Furthermore, research is ongoing to develop other targeted therapies that could be more efficient and benefit a larger proportion of the CF community. The purpose of this review is to summarize our current knowledge of CF genetics and therapies restoring CFTR function, particularly CFTR modulators and gene therapy.
Collapse
Affiliation(s)
- Christelle Bergeron
- Department of Medicine, Respiratory Division, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - André M. Cantin
- Department of Medicine, Respiratory Division, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Respiratory Division, Faculty of Medicine, University of Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
- Correspondence: ; Tel.: +1-819-346-1110 (ext. 14893); Fax: +1-819-564-5377
| |
Collapse
|
10
|
Semaniakou A, Chappe F, Anini Y, Chappe V. VIP reduction in the pancreas of F508del homozygous CF mice and early signs of Cystic Fibrosis Related Diabetes (CFRD). J Cyst Fibros 2021; 20:881-890. [PMID: 34034984 DOI: 10.1016/j.jcf.2021.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 12/19/2022]
Abstract
Vasoactive intestinal peptide (VIP), a 28-amino acid neuropeptide with potent anti-inflammatory, bronchodilatory and immunomodulatory functions, is secreted by intrinsic neurons innervating all exocrine glands, including the pancreas, in which it exerts a regulatory function in the secretion of insulin and glucagon. Cystic fibrosis-related diabetes (CFRD) is the most common co-morbidity associated with cystic fibrosis (CF), impacting approximately 50% of adult patients. We recently demonstrated a 50% reduction of VIP abundance in the lungs, duodenum and sweat glands of C57Bl/6 CF mice homozygous for the F508del-CFTR disease-causing mutation. VIP deficiency resulted from a reduction in VIPergic and cholinergic innervation, starting before signs of CF disease were observed. As VIP functions as a neuromodulator with insulinotropic effect on pancreatic beta cells, we sought to study changes in VIP in the pancreas of CF mice. Our goal was to examine VIP content and VIPergic innervation in the pancreas of 8- and 17-week-old F508del-CFTR homozygous mice and to determine whether changes in VIP levels would contribute to CFRD development. Our data showed that a decreased amount of VIP and reduced innervation are found in CF mice pancreas, and that these mice also exhibited reduced insulin secretion, up-regulation of glucagon production and high random blood glucose levels compared to same-age wild-type mice. We propose that low level of VIP, due to reduced innervation of the CF pancreas and starting at an early disease stage, contributes to changes in insulin and glucagon secretion that can lead to CFRD development.
Collapse
Affiliation(s)
- Anna Semaniakou
- Department of Physiology & Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Frederic Chappe
- Department of Physiology & Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Younes Anini
- Department of Physiology & Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada; Obstetrics and Gynecology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Valerie Chappe
- Department of Physiology & Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
11
|
Vistrup-Parry M, Sneddon WB, Bach S, Strømgaard K, Friedman PA, Mamonova T. Multisite NHERF1 phosphorylation controls GRK6A regulation of hormone-sensitive phosphate transport. J Biol Chem 2021; 296:100473. [PMID: 33639163 PMCID: PMC8042174 DOI: 10.1016/j.jbc.2021.100473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/13/2022] Open
Abstract
The type II sodium-dependent phosphate cotransporter (NPT2A) mediates renal phosphate uptake. The NPT2A is regulated by parathyroid hormone (PTH) and fibroblast growth factor 23, which requires Na+/H+ exchange regulatory factor-1 (NHERF1), a multidomain PDZ-containing phosphoprotein. Phosphocycling controls the association between NHERF1 and the NPT2A. Here, we characterize the critical involvement of G protein–coupled receptor kinase 6A (GRK6A) in mediating PTH-sensitive phosphate transport by targeted phosphorylation coupled with NHERF1 conformational rearrangement, which in turn allows phosphorylation at a secondary site. GRK6A, through its carboxy-terminal PDZ recognition motif, binds NHERF1 PDZ1 with greater affinity than PDZ2. However, the association between NHERF1 PDZ2 and GRK6A is necessary for PTH action. Ser162, a PKCα phosphorylation site in PDZ2, regulates the binding affinity between PDZ2 and GRK6A. Substitution of Ser162 with alanine (S162A) blocks the PTH action but does not disrupt the interaction between NHERF1 and the NPT2A. Replacement of Ser162 with aspartic acid (S162D) abrogates the interaction between NHERF1 and the NPT2A and concurrently PTH action. We used amber codon suppression to generate a phosphorylated Ser162(pSer162)-PDZ2 variant. KD values determined by fluorescence anisotropy indicate that incorporation of pSer162 increased the binding affinity to the carboxy terminus of GRK6A 2-fold compared with WT PDZ2. Molecular dynamics simulations predict formation of an electrostatic network between pSer162 and Asp183 of PDZ2 and Arg at position −1 of the GRK6A PDZ-binding motif. Our results suggest that PDZ2 plays a regulatory role in PTH-sensitive NPT2A-mediated phosphate transport and phosphorylation of Ser162 in PDZ2 modulates the interaction with GRK6A.
Collapse
Affiliation(s)
- Maria Vistrup-Parry
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - W Bruce Sneddon
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sofie Bach
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Strømgaard
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Peter A Friedman
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Tatyana Mamonova
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
12
|
Mamonova T, Friedman PA. Noncanonical Sequences Involving NHERF1 Interaction with NPT2A Govern Hormone-Regulated Phosphate Transport: Binding Outside the Box. Int J Mol Sci 2021; 22:1087. [PMID: 33499384 PMCID: PMC7866199 DOI: 10.3390/ijms22031087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/27/2022] Open
Abstract
Na+/H+ exchange factor-1 (NHERF1), a multidomain PDZ scaffolding phosphoprotein, is required for the type II sodium-dependent phosphate cotransporter (NPT2A)-mediated renal phosphate absorption. Both PDZ1 and PDZ2 domains are involved in NPT2A-dependent phosphate uptake. Though harboring identical core-binding motifs, PDZ1 and PDZ2 play entirely different roles in hormone-regulated phosphate transport. PDZ1 is required for the interaction with the C-terminal PDZ-binding sequence of NPT2A (-TRL). Remarkably, phosphocycling at Ser290 distant from PDZ1, the penultimate step for both parathyroid hormone (PTH) and fibroblast growth factor-23 (FGF23) regulation, controls the association between NHERF1 and NPT2A. PDZ2 interacts with the C-terminal PDZ-recognition motif (-TRL) of G Protein-coupled Receptor Kinase 6A (GRK6A), and that promotes phosphorylation of Ser290. The compelling biological puzzle is how PDZ1 and PDZ2 with identical GYGF core-binding motifs specifically recognize distinct binding partners. Binding determinants distinct from the canonical PDZ-ligand interactions and located "outside the box" explain PDZ domain specificity. Phosphorylation of NHERF1 by diverse kinases and associated conformational changes in NHERF1 add more complexity to PDZ-binding diversity.
Collapse
Affiliation(s)
- Tatyana Mamonova
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA;
| | | |
Collapse
|
13
|
Lopes-Pacheco M. CFTR Modulators: The Changing Face of Cystic Fibrosis in the Era of Precision Medicine. Front Pharmacol 2020; 10:1662. [PMID: 32153386 PMCID: PMC7046560 DOI: 10.3389/fphar.2019.01662] [Citation(s) in RCA: 298] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/19/2019] [Indexed: 12/22/2022] Open
Abstract
Cystic fibrosis (CF) is a lethal inherited disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, which result in impairment of CFTR mRNA and protein expression, function, stability or a combination of these. Although CF leads to multifaceted clinical manifestations, the respiratory disorder represents the major cause of morbidity and mortality of these patients. The life expectancy of CF patients has substantially lengthened due to early diagnosis and improvements in symptomatic therapeutic regimens. Quality of life remains nevertheless limited, as these individuals are subjected to considerable clinical, psychosocial and economic burdens. Since the discovery of the CFTR gene in 1989, tremendous efforts have been made to develop therapies acting more upstream on the pathogenesis cascade, thereby overcoming the underlying dysfunctions caused by CFTR mutations. In this line, the advances in cell-based high-throughput screenings have been facilitating the fast-tracking of CFTR modulators. These modulator drugs have the ability to enhance or even restore the functional expression of specific CF-causing mutations, and they have been classified into five main groups depending on their effects on CFTR mutations: potentiators, correctors, stabilizers, read-through agents, and amplifiers. To date, four CFTR modulators have reached the market, and these pharmaceutical therapies are transforming patients' lives with short- and long-term improvements in clinical outcomes. Such breakthroughs have paved the way for the development of novel CFTR modulators, which are currently under experimental and clinical investigations. Furthermore, recent insights into the CFTR structure will be useful for the rational design of next-generation modulator drugs. This review aims to provide a summary of recent developments in CFTR-directed therapeutics. Barriers and future directions are also discussed in order to optimize treatment adherence, identify feasible and sustainable solutions for equitable access to these therapies, and continue to expand the pipeline of novel modulators that may result in effective precision medicine for all individuals with CF.
Collapse
Affiliation(s)
- Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
14
|
Sato A, Kakinuma S, Miyoshi M, Kamiya A, Tsunoda T, Kaneko S, Tsuchiya J, Shimizu T, Takeichi E, Nitta S, Kawai-Kitahata F, Murakawa M, Itsui Y, Nakagawa M, Azuma S, Koshikawa N, Seiki M, Nakauchi H, Asahina Y, Watanabe M. Vasoactive Intestinal Peptide Derived From Liver Mesenchymal Cells Mediates Tight Junction Assembly in Mouse Intrahepatic Bile Ducts. Hepatol Commun 2019; 4:235-254. [PMID: 32025608 PMCID: PMC6996346 DOI: 10.1002/hep4.1459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/23/2019] [Indexed: 01/20/2023] Open
Abstract
Formation of intrahepatic bile ducts (IHBDs) proceeds in accordance with their microenvironment. Particularly, mesenchymal cells around portal veins regulate the differentiation and ductular morphogenesis of cholangiocytes in the developing liver; however, further studies are needed to fully understand the arrangement of IHBDs into a continuous hierarchical network. This study aims to clarify the interaction between biliary and liver mesenchymal cells during IHBD formation. To identify candidate factors contributing to this cell–cell interaction, mesenchymal cells were isolated from embryonic day 16.5 matrix metalloproteinase 14 (MMP14)‐deficient (knockout [KO]) mice livers, in which IHBD formation is retarded, and compared with those of the wild type (WT). WT mesenchymal cells significantly facilitated the formation of luminal structures comprised of hepatoblast‐derived cholangiocytes (cholangiocytic cysts), whereas MMP14‐KO mesenchymal cells failed to promote cyst formation. Comprehensive analysis revealed that expression of vasoactive intestinal peptide (VIP) was significantly suppressed in MMP14‐KO mesenchymal cells. VIP and VIP receptor 1 (VIPR1) were mainly expressed in periportal mesenchymal cells and cholangiocytic progenitors during IHBD development, respectively, in vivo. VIP/VIPR1 signaling significantly encouraged cholangiocytic cyst formation and up‐regulated tight junction protein 1, cystic fibrosis transmembrane conductance regulator, and aquaporin 1, in vitro. VIP antagonist significantly suppressed the tight junction assembly and the up‐regulation of ion/water transporters during IHBD development in vivo. In a cholestatic injury model of adult mice, exogenous VIP administration promoted the restoration of damaged tight junctions in bile ducts and improved hyperbilirubinemia. Conclusion: VIP is produced by periportal mesenchymal cells during the perinatal stage. It supports bile duct development by establishing tight junctions and up‐regulating ion/water transporters in cholangiocytes. VIP contributes to prompt recovery from cholestatic damage through the establishment of tight junctions in the bile ducts.
Collapse
Affiliation(s)
- Ayako Sato
- Department of Gastroenterology and Hepatology Tokyo Medical and Dental University Tokyo Japan
| | - Sei Kakinuma
- Department of Gastroenterology and Hepatology Tokyo Medical and Dental University Tokyo Japan.,Department of Liver Disease Control Tokyo Medical and Dental University (TMDU) Tokyo Japan
| | - Masato Miyoshi
- Department of Gastroenterology and Hepatology Tokyo Medical and Dental University Tokyo Japan
| | - Akihide Kamiya
- Department of Molecular Life Sciences School of Medicine Tokai University Isehara Japan
| | - Tomoyuki Tsunoda
- Department of Gastroenterology and Hepatology Tokyo Medical and Dental University Tokyo Japan
| | - Shun Kaneko
- Department of Gastroenterology and Hepatology Tokyo Medical and Dental University Tokyo Japan
| | - Jun Tsuchiya
- Department of Gastroenterology and Hepatology Tokyo Medical and Dental University Tokyo Japan
| | - Taro Shimizu
- Department of Gastroenterology and Hepatology Tokyo Medical and Dental University Tokyo Japan
| | - Eiko Takeichi
- Department of Gastroenterology and Hepatology Tokyo Medical and Dental University Tokyo Japan
| | - Sayuri Nitta
- Department of Gastroenterology and Hepatology Tokyo Medical and Dental University Tokyo Japan
| | - Fukiko Kawai-Kitahata
- Department of Gastroenterology and Hepatology Tokyo Medical and Dental University Tokyo Japan
| | - Miyako Murakawa
- Department of Gastroenterology and Hepatology Tokyo Medical and Dental University Tokyo Japan
| | - Yasuhiro Itsui
- Department of Gastroenterology and Hepatology Tokyo Medical and Dental University Tokyo Japan
| | - Mina Nakagawa
- Department of Gastroenterology and Hepatology Tokyo Medical and Dental University Tokyo Japan
| | - Seishin Azuma
- Department of Gastroenterology and Hepatology Tokyo Medical and Dental University Tokyo Japan
| | - Naohiko Koshikawa
- Division of Cancer Cell Research Institute of Medical Science University of Tokyo Tokyo Japan
| | - Motoharu Seiki
- Division of Cancer Cell Research Institute of Medical Science University of Tokyo Tokyo Japan
| | - Hiromitsu Nakauchi
- Institute for Stem Cell Biology and Regenerative Medicine Stanford University School of Medicine Stanford CA.,Division of Stem Cell Therapy Institute of Medical Science University of Tokyo Tokyo Japan
| | - Yasuhiro Asahina
- Department of Gastroenterology and Hepatology Tokyo Medical and Dental University Tokyo Japan.,Department of Liver Disease Control Tokyo Medical and Dental University (TMDU) Tokyo Japan
| | - Mamoru Watanabe
- Department of Gastroenterology and Hepatology Tokyo Medical and Dental University Tokyo Japan.,Advanced Research Institute Tokyo Medical and Dental University (TMDU) Tokyo Japan
| |
Collapse
|
15
|
Derouiche A, Geiger KD. Perspectives for Ezrin and Radixin in Astrocytes: Kinases, Functions and Pathology. Int J Mol Sci 2019; 20:ijms20153776. [PMID: 31382374 PMCID: PMC6695708 DOI: 10.3390/ijms20153776] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 02/06/2023] Open
Abstract
Astrocytes are increasingly perceived as active partners in physiological brain function and behaviour. The structural correlations of the glia–synaptic interaction are the peripheral astrocyte processes (PAPs), where ezrin and radixin, the two astrocytic members of the ezrin-radixin-moesin (ERM) family of proteins are preferentially localised. While the molecular mechanisms of ERM (in)activation appear universal, at least in mammalian cells, and have been studied in great detail, the actual ezrin and radixin kinases, phosphatases and binding partners appear cell type specific and may be multiplexed within a cell. In astrocytes, ezrin is involved in process motility, which can be stimulated by the neurotransmitter glutamate, through activation of the glial metabotropic glutamate receptors (mGluRs) 3 or 5. However, it has remained open how this mGluR stimulus is transduced to ezrin activation. Knowing upstream signals of ezrin activation, ezrin kinase(s), and membrane-bound binding partners of ezrin in astrocytes might open new approaches to the glial role in brain function. Ezrin has also been implicated in invasive behaviour of astrocytomas, and glial activation. Here, we review data pertaining to potential molecular interaction partners of ezrin in astrocytes, with a focus on PKC and GRK2, and in gliomas and other diseases, to stimulate further research on their potential roles in glia-synaptic physiology and pathology.
Collapse
Affiliation(s)
- Amin Derouiche
- Institute of Anatomy II, Goethe-University Frankfurt, D-60590 Frankfurt am Main, Germany.
| | - Kathrin D Geiger
- Neuropathology, Institute for Pathology, Carl Gustav Carus University Hospital, TU Dresden, D-01307 Dresden, Germany
| |
Collapse
|
16
|
Wu Q, Eickelberg O. Ezrin in Asthma: A First Step to Early Biomarkers of Airway Epithelial Dysfunction. Am J Respir Crit Care Med 2019; 199:408-410. [PMID: 30383410 DOI: 10.1164/rccm.201810-1964ed] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Qun Wu
- 1 Division of Pulmonary Sciences and Critical Care Medicine University of Colorado Anschutz Medical Campus Denver, Colorado
| | - Oliver Eickelberg
- 1 Division of Pulmonary Sciences and Critical Care Medicine University of Colorado Anschutz Medical Campus Denver, Colorado
| |
Collapse
|
17
|
Oswald F, Klöble P, Ruland A, Rosenkranz D, Hinz B, Butter F, Ramljak S, Zechner U, Herlyn H. The FOXP2-Driven Network in Developmental Disorders and Neurodegeneration. Front Cell Neurosci 2017; 11:212. [PMID: 28798667 PMCID: PMC5526973 DOI: 10.3389/fncel.2017.00212] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/04/2017] [Indexed: 12/24/2022] Open
Abstract
The transcription repressor FOXP2 is a crucial player in nervous system evolution and development of humans and songbirds. In order to provide an additional insight into its functional role we compared target gene expression levels between human neuroblastoma cells (SH-SY5Y) stably overexpressing FOXP2 cDNA of either humans or the common chimpanzee, Rhesus monkey, and marmoset, respectively. RNA-seq led to identification of 27 genes with differential regulation under the control of human FOXP2, which were previously reported to have FOXP2-driven and/or songbird song-related expression regulation. RT-qPCR and Western blotting indicated differential regulation of additional 13 new target genes in response to overexpression of human FOXP2. These genes may be directly regulated by FOXP2 considering numerous matches of established FOXP2-binding motifs as well as publicly available FOXP2-ChIP-seq reads within their putative promoters. Ontology analysis of the new and reproduced targets, along with their interactors in a network, revealed an enrichment of terms relating to cellular signaling and communication, metabolism and catabolism, cellular migration and differentiation, and expression regulation. Notably, terms including the words "neuron" or "axonogenesis" were also enriched. Complementary literature screening uncovered many connections to human developmental (autism spectrum disease, schizophrenia, Down syndrome, agenesis of corpus callosum, trismus-pseudocamptodactyly, ankyloglossia, facial dysmorphology) and neurodegenerative diseases and disorders (Alzheimer's, Parkinson's, and Huntington's diseases, Lewy body dementia, amyotrophic lateral sclerosis). Links to deafness and dyslexia were detected, too. Such relations existed for single proteins (e.g., DCDC2, NURR1, PHOX2B, MYH8, and MYH13) and groups of proteins which conjointly function in mRNA processing, ribosomal recruitment, cell-cell adhesion (e.g., CDH4), cytoskeleton organization, neuro-inflammation, and processing of amyloid precursor protein. Conspicuously, many links pointed to an involvement of the FOXP2-driven network in JAK/STAT signaling and the regulation of the ezrin-radixin-moesin complex. Altogether, the applied phylogenetic perspective substantiated FOXP2's importance for nervous system development, maintenance, and functioning. However, the study also disclosed new regulatory pathways that might prove to be useful for understanding the molecular background of the aforementioned developmental disorders and neurodegenerative diseases.
Collapse
Affiliation(s)
- Franz Oswald
- Center for Internal Medicine, Department of Internal Medicine I, University Medical Center UlmUlm, Germany
| | - Patricia Klöble
- Center for Internal Medicine, Department of Internal Medicine I, University Medical Center UlmUlm, Germany
| | - André Ruland
- Center for Internal Medicine, Department of Internal Medicine I, University Medical Center UlmUlm, Germany
| | - David Rosenkranz
- Institut für Organismische und Molekulare Evolutionsbiologie, Johannes Gutenberg-University MainzMainz, Germany
| | - Bastian Hinz
- Institut für Organismische und Molekulare Evolutionsbiologie, Johannes Gutenberg-University MainzMainz, Germany
- Institute of Human Genetics, University Medical Center MainzMainz, Germany
| | - Falk Butter
- Institute of Molecular BiologyMainz, Germany
| | | | - Ulrich Zechner
- Institute of Human Genetics, University Medical Center MainzMainz, Germany
- Dr. Senckenbergisches Zentrum für HumangenetikFrankfurt, Germany
| | - Holger Herlyn
- Institut für Organismische und Molekulare Evolutionsbiologie, Johannes Gutenberg-University MainzMainz, Germany
| |
Collapse
|
18
|
Chin S, Hung M, Bear CE. Current insights into the role of PKA phosphorylation in CFTR channel activity and the pharmacological rescue of cystic fibrosis disease-causing mutants. Cell Mol Life Sci 2017; 74:57-66. [PMID: 27722768 PMCID: PMC11107731 DOI: 10.1007/s00018-016-2388-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 12/21/2022]
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) channel gating is predominantly regulated by protein kinase A (PKA)-dependent phosphorylation. In addition to regulating CFTR channel activity, PKA phosphorylation is also involved in enhancing CFTR trafficking and mediating conformational changes at the interdomain interfaces of the protein. The major cystic fibrosis (CF)-causing mutation is the deletion of phenylalanine at position 508 (F508del); it causes many defects that affect CFTR trafficking, stability, and gating at the cell surface. Due to the multiple roles of PKA phosphorylation, there is growing interest in targeting PKA-dependent signaling for rescuing the trafficking and functional defects of F508del-CFTR. This review will discuss the effects of PKA phosphorylation on wild-type CFTR, the consequences of CF mutations on PKA phosphorylation, and the development of therapies that target PKA-mediated signaling.
Collapse
Affiliation(s)
- Stephanie Chin
- Programme of Molecular Structure and Function, Research Institute, Hospital for Sick Children, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Maurita Hung
- Programme of Molecular Structure and Function, Research Institute, Hospital for Sick Children, Toronto, Canada
| | - Christine E Bear
- Programme of Molecular Structure and Function, Research Institute, Hospital for Sick Children, Toronto, Canada.
- Department of Biochemistry, University of Toronto, Toronto, Canada.
- Department of Physiology, University of Toronto, Toronto, Canada.
| |
Collapse
|
19
|
Farinha CM, Canato S. From the endoplasmic reticulum to the plasma membrane: mechanisms of CFTR folding and trafficking. Cell Mol Life Sci 2017; 74:39-55. [PMID: 27699454 PMCID: PMC11107782 DOI: 10.1007/s00018-016-2387-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 01/10/2023]
Abstract
CFTR biogenesis starts with its co-translational insertion into the membrane of endoplasmic reticulum and folding of the cytosolic domains, towards the acquisition of a fully folded compact native structure. Efficiency of this process is assessed by the ER quality control system that allows the exit of folded proteins but targets unfolded/misfolded CFTR to degradation. If allowed to leave the ER, CFTR is modified at the Golgi and reaches the post-Golgi compartments to be delivered to the plasma membrane where it functions as a cAMP- and phosphorylation-regulated chloride/bicarbonate channel. CFTR residence at the membrane is a balance of membrane delivery, endocytosis, and recycling. Several adaptors, motor, and scaffold proteins contribute to the regulation of CFTR stability and are involved in continuously assessing its structure through peripheral quality control systems. Regulation of CFTR biogenesis and traffic (and its dysregulation by mutations, such as the most common F508del) determine its overall activity and thus contribute to the fine modulation of chloride secretion and hydration of epithelial surfaces. This review covers old and recent knowledge on CFTR folding and trafficking from its synthesis to the regulation of its stability at the plasma membrane and highlights how several of these steps can be modulated to promote the rescue of mutant CFTR.
Collapse
Affiliation(s)
- Carlos M Farinha
- BioISI-Biosystems and Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal.
| | - Sara Canato
- BioISI-Biosystems and Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| |
Collapse
|
20
|
Lopes-Pacheco M. CFTR Modulators: Shedding Light on Precision Medicine for Cystic Fibrosis. Front Pharmacol 2016; 7:275. [PMID: 27656143 PMCID: PMC5011145 DOI: 10.3389/fphar.2016.00275] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/11/2016] [Indexed: 12/15/2022] Open
Abstract
Cystic fibrosis (CF) is the most common life-threatening monogenic disease afflicting Caucasian people. It affects the respiratory, gastrointestinal, glandular and reproductive systems. The major cause of morbidity and mortality in CF is the respiratory disorder caused by a vicious cycle of obstruction of the airways, inflammation and infection that leads to epithelial damage, tissue remodeling and end-stage lung disease. Over the past decades, life expectancy of CF patients has increased due to early diagnosis and improved treatments; however, these patients still present limited quality of life. Many attempts have been made to rescue CF transmembrane conductance regulator (CFTR) expression, function and stability, thereby overcoming the molecular basis of CF. Gene and protein variances caused by CFTR mutants lead to different CF phenotypes, which then require different treatments to quell the patients' debilitating symptoms. In order to seek better approaches to treat CF patients and maximize therapeutic effects, CFTR mutants have been stratified into six groups (although several of these mutations present pleiotropic defects). The research with CFTR modulators (read-through agents, correctors, potentiators, stabilizers and amplifiers) has achieved remarkable progress, and these drugs are translating into pharmaceuticals and personalized treatments for CF patients. This review summarizes the main molecular and clinical features of CF, emphasizes the latest clinical trials using CFTR modulators, sheds light on the molecular mechanisms underlying these new and emerging treatments, and discusses the major breakthroughs and challenges to treating all CF patients.
Collapse
Affiliation(s)
- Miquéias Lopes-Pacheco
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
21
|
Sun L, Zheng J, Wang Q, Song R, Liu H, Meng R, Tao T, Si Y, Jiang W, He J. NHERF1 regulates actin cytoskeleton organization through modulation of α-actinin-4 stability. FASEB J 2015; 30:578-89. [PMID: 26432781 DOI: 10.1096/fj.15-275586] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/21/2015] [Indexed: 01/12/2023]
Abstract
The actin cytoskeleton is composed of a highly dynamic network of filamentous proteins, yet the molecular mechanism that regulates its organization and remodeling remains elusive. In this study, Na(+)/H(+) exchanger regulatory factor (NHERF)-1 loss-of-function and gain-of-function experiments reveal that polymerized actin cytoskeleton (F-actin) in HeLa cells is disorganized by NHERF1, whereas actin protein expression levels exhibit no detectable change. To elucidate the molecular mechanism underlying actin cytoskeleton disorganization by NHERF1, a combined 2-dimensional electrophoresis-matrix-assisted laser desorption/ionization-time of flight mass spectrometry approach was used to screen for proteins regulated by NHERF1 in HeLa cells. α-Actinin-4, an actin cross-linking protein, was identified. Glutathione S-transferase pull-down and coimmunoprecipitation studies showed the α-actinin-4 carboxyl-terminal region specifically interacted with the NHERF1 postsynaptic density 95/disc-large/zona occludens-1 domain. The NHERF1/α-actinin-4 interaction increased α-actinin-4 ubiquitination and decreased its expression levels, resulting in actin cytoskeleton disassembly. Our study identified α-actinin-4 as a novel NHERF1 interaction partner and provided new insights into the regulatory mechanism of the actin cytoskeleton by NHERF1.
Collapse
Affiliation(s)
- Licui Sun
- *Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China; Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University-Cardiff University Joint Centre for Biomedical Research, Cancer Institute of Capital Medical University, Beijing, China; and Metastasis and Angiogenesis Research Group, Department of Surgery, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Junfang Zheng
- *Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China; Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University-Cardiff University Joint Centre for Biomedical Research, Cancer Institute of Capital Medical University, Beijing, China; and Metastasis and Angiogenesis Research Group, Department of Surgery, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Qiqi Wang
- *Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China; Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University-Cardiff University Joint Centre for Biomedical Research, Cancer Institute of Capital Medical University, Beijing, China; and Metastasis and Angiogenesis Research Group, Department of Surgery, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Ran Song
- *Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China; Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University-Cardiff University Joint Centre for Biomedical Research, Cancer Institute of Capital Medical University, Beijing, China; and Metastasis and Angiogenesis Research Group, Department of Surgery, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Hua Liu
- *Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China; Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University-Cardiff University Joint Centre for Biomedical Research, Cancer Institute of Capital Medical University, Beijing, China; and Metastasis and Angiogenesis Research Group, Department of Surgery, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Ran Meng
- *Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China; Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University-Cardiff University Joint Centre for Biomedical Research, Cancer Institute of Capital Medical University, Beijing, China; and Metastasis and Angiogenesis Research Group, Department of Surgery, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Tao Tao
- *Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China; Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University-Cardiff University Joint Centre for Biomedical Research, Cancer Institute of Capital Medical University, Beijing, China; and Metastasis and Angiogenesis Research Group, Department of Surgery, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Yang Si
- *Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China; Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University-Cardiff University Joint Centre for Biomedical Research, Cancer Institute of Capital Medical University, Beijing, China; and Metastasis and Angiogenesis Research Group, Department of Surgery, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Wenguo Jiang
- *Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China; Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University-Cardiff University Joint Centre for Biomedical Research, Cancer Institute of Capital Medical University, Beijing, China; and Metastasis and Angiogenesis Research Group, Department of Surgery, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Junqi He
- *Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China; Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University-Cardiff University Joint Centre for Biomedical Research, Cancer Institute of Capital Medical University, Beijing, China; and Metastasis and Angiogenesis Research Group, Department of Surgery, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| |
Collapse
|
22
|
Billet A, Jia Y, Jensen T, Riordan JR, Hanrahan JW. Regulation of the cystic fibrosis transmembrane conductance regulator anion channel by tyrosine phosphorylation. FASEB J 2015; 29:3945-53. [PMID: 26062600 DOI: 10.1096/fj.15-273151] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/26/2015] [Indexed: 11/11/2022]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) channel is activated by PKA phosphorylation of a regulatory domain that interacts dynamically with multiple CFTR domains and with other proteins. The large number of consensus sequences for phosphorylation by PKA has naturally focused most attention on regulation by this kinase. We report here that human CFTR is also phosphorylated by the tyrosine kinases p60c-Src (proto-oncogene tyrosine-protein kinase) and the proline-rich tyrosine kinase 2 (Pyk2), and they can also cause robust activation of quiescent CFTR channels. In excised patch-clamp experiments, CFTR activity during exposure to Src or Pyk2 reached ∼80% of that stimulated by PKA. Exposure to PKA after Src or Pyk2 caused a further increase to the level induced by PKA alone, implying a common limiting step. Channels became spontaneously active when v-Src or the catalytic domain of Pyk2 was coexpressed with CFTR and were further stimulated by the tyrosine phosphatase inhibitor dephostatin. Exogenous Src also activated 15SA-CFTR, a variant that lacks 15 potential PKA sites and has little response to PKA. PKA-independent activation by tyrosine phosphorylation has implications for the mechanism of regulation by the R domain and for the physiologic functions of CFTR.
Collapse
Affiliation(s)
- Arnaud Billet
- *Department of Physiology and Cystic Fibrosis Translational Research Centre, McGill University, Montreal, Quebec, Canada; Department of Biochemistry and Biophysics and Cystic Fibrosis Research Center, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, USA; and Research Institute of the McGill University Hospital Centre, Montreal, Quebec, Canada
| | - Yanlin Jia
- *Department of Physiology and Cystic Fibrosis Translational Research Centre, McGill University, Montreal, Quebec, Canada; Department of Biochemistry and Biophysics and Cystic Fibrosis Research Center, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, USA; and Research Institute of the McGill University Hospital Centre, Montreal, Quebec, Canada
| | - Tim Jensen
- *Department of Physiology and Cystic Fibrosis Translational Research Centre, McGill University, Montreal, Quebec, Canada; Department of Biochemistry and Biophysics and Cystic Fibrosis Research Center, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, USA; and Research Institute of the McGill University Hospital Centre, Montreal, Quebec, Canada
| | - John R Riordan
- *Department of Physiology and Cystic Fibrosis Translational Research Centre, McGill University, Montreal, Quebec, Canada; Department of Biochemistry and Biophysics and Cystic Fibrosis Research Center, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, USA; and Research Institute of the McGill University Hospital Centre, Montreal, Quebec, Canada
| | - John W Hanrahan
- *Department of Physiology and Cystic Fibrosis Translational Research Centre, McGill University, Montreal, Quebec, Canada; Department of Biochemistry and Biophysics and Cystic Fibrosis Research Center, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, USA; and Research Institute of the McGill University Hospital Centre, Montreal, Quebec, Canada
| |
Collapse
|